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Abstract

As other causes decline in importance, chromium-tanned leather has become a more important source for
chromium allergy, which affects around 1% of the general population. The aim of this review is to give suggestions
on how to minimize the risk of leather-related allergic contact dermatitis, which can be elicited in chromium-
allergic persons by hexavalent and trivalent chromium released from leather. Hexavalent chromium is the more
potent chromium form and requires a lower skin dose to elicit allergic reactions. It is formed on the surface of
some, antioxidant-free, leathers at dry conditions (< 35% relative humidity) and is influenced by the tanning process
and other conditions, such as UV irradiation, contact with alkaline solutions, and leather age. Trivalent chromium is
the dominant form released from chromium-tanned leather and its released amount is sufficient to elicit allergic
reactions in some chromium-allergic individuals when they are exposed repetitively and over longer time (days –
months). A low initial test result (< 3 mg/kg) for hexavalent chromium with the current standard test (ISO 17075)
does not guarantee a low release of chromium from the leather or a low release of hexavalent chromium under
typical exposure conditions during the service life of the leather. Information, labels, and certificates regarding
leather products are often insufficient to protect chromium-allergic individuals. Correct labelling and information on
the possible content of different allergens, as well as different tanning alternatives for certain leather products, are
crucial.

Keywords: Hexavalent chromium, Chromium, Contact dermatitis, Allergy, Eczema, Relative humidity, Antioxidants,
Exposure, Speciation, ISO 17075

1 Introduction
1.1 Chromium speciation – toxicological considerations

It is widely accepted that the chemical speciation of

chromium matters for different toxicological outcomes

in man and other species. However, its importance is

different for different diseases and different species. For

example, while hexavalent chromium is known to be by

far more toxic and carcinogenic for man as compared to

trivalent chromium species [1], this might be reversed

for other species, such as bacteria and water organisms.

Trivalent chromium is more toxic to freshwater algae as

compared to hexavalent chromium [2]. Predicted no

effect concentrations of 3.4 μg/L for hexavalent

chromium and of 4.7 μg/L for trivalent chromium for

aquatic organisms have been estimated within the

framework of environmental risk assessment in the

European Union in 2005 [3]. This is in line with a recent

biotoxicity study on Photobacterium phosphoreum of

leachates from chromium-tanned leathers, that con-

tained trivalent chromium bound to different organic

ligands along with traces of other organic leachates [4].

The leachates were significantly more toxic as compared

to control solutions of trivalent and hexavalent chro-

mium, although the exact speciation and pH of these
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control solutions was not reported [4]. In the following,

however, this review will only focus on man and skin

allergies to chromium.

1.2 Chromium tanning

Tanning is a necessary process to preserve animal skins

and hides and convert them into useful leather, which is

a stable material resistant to microbial attack and with

enhanced resistance to wet and dry heat [5]. Chromium-

tanning is the most common tanning process world-

wide, using a basic trivalent chromium sulfate salt,

Cr(OH)SO4 [5]. There are several advantages of chro-

mium tanning as compared to other mineral tanning

types, oil tanning, vegetable tanning, and aldehyde

tanning: i) it results in higher heat resistance, ii) it is one

of the cheapest and fastest tanning processes, iii) it is

considered to be one of the environmentally most

friendly and least toxic options, and iv) the raw material

is readily available [5]. Trivalent chromium binds to the

proteins, primarily collagen, of the skin/hide forming a

complex [5, 6].

1.3 Chromium allergy and allergic contact dermatitis

(ACD)

Chemically, the binding of a molecule to a protein is a

common prerequisite for successful tanning, for skin al-

lergy, and for one type of allergic asthma. Allergic

asthma to chromium is relatively scarcely reported [7–

12]. Respiratory illness, coupled with high immuno-

globulin E (IgE) and chromium levels in the blood have

been reported for tannery workers [13, 14], although it is

not possible to rule out from these studies whether this

was due to allergic asthma caused by chromium. This

review will focus on skin allergy. The skin allergy dis-

cussed herein is a hypersensitivity of type IV, which is a

delayed and T-cell-mediated type of skin allergy, and

which can elicit allergic contact dermatitis (ACD) [15].

The word “contact” refers to the observation that ACD

occurs at that skin area that has been in physical contact

with the sensitizing substance. Type IV hypersensitivity

consists of the sensitization step and the elicitation step,

which take up to 30 days and 1–7 days, respectively, after

skin contact with the sensitizing substance, to which the

sensitization is specific. Once sensitized, the allergy is

life-long, but contact eczema are only elicited after con-

tact to the sensitizing substance. The reason for the long

time between skin contact with the substance and visible

skin reactions is a complicated cascade of immune reac-

tions that involve dendritic cells (in the skin), T-cells,

and lymph nodes [16]. To be sensitizing, chromium

must bind to a protein. The chromium species/ion is in

this context denoted hapten, and the protein to which it

binds is the carrier, and together, as a conjugate, they

form the antigen [17, 18]. The chromium species

changes the protein structure upon binding. The antigen

is then processed and presented to T-cells by cutaneous

dendritic cells (Langerhans cells) [18] during the

sensitization step or recognized by circulating hapten-

specific T-cells during the elicitation step [17–20].

Several common skin proteins, such as albumin and

heparin, have been found to be able to be the carriers

for the chromium antigen, and chromium binding as

well as structural changes of these proteins have been

confirmed [7, 21–29].

1.4 Relevant chemical speciation of chromium for ACD

Since hexavalent chromium forms exclusively negatively

charged mono- or dichromates under the conditions of

relevance for skin exposure and since these negatively

charged chromates are not able to bind to proteins, it is

only trivalent chromium that binds to proteins and

forms the antigen [7, 30–32]. This means that hexava-

lent chromium first needs to be reduced prior to form-

ing the antigen. Still, hexavalent chromium is considered

to be the more potent skin sensitizer as compared to tri-

valent chromium species, since it i) penetrates the skin

much more efficiently [7], ii) penetrates cell membranes

at much higher rates [30, 32, 33], and iii) seems able,

due to its oxidative properties, to induce some immuno-

logical responses that trivalent chromium is unable to

cause [34, 35].

The extent of skin penetration and doses required in

the sensitization and elicitation steps of chromium al-

lergy are affected by the chemical speciation of chro-

mium, in particular its size and charge, and the status of

the skin (intact or damaged skin, state of skin barrier) [7,

36]. The tanning agent Cr(OH)SO4 belongs to those

chromium species of lowest skin penetration rates and

lowest potency, which means that relatively high doses

are required to elicit ACD to chromium [7, 37]. Still, a

dose of 0.1M (16.5 g/L) Cr(OH)SO4 was able to elicit

ACD in 70 of 94 tested chromium-allergic individuals

[37]. In general, hexavalent chromium is found to be the

most potent species, requiring lowest doses for elicit-

ation (as low as 0.03 μg per cm2 skin area or 1 μg/L)

[38], followed by negatively charged trivalent chromium

species, such as trivalent chromium oxalate [7, 36, 39].

Most importantly, the chromium speciation during

leather tanning and that of relevance for consumer ex-

posure to leather articles varies as a function of environ-

mental parameters, such as pH, presence of complexing

agents and antioxidants, relative humidity, temperature,

and time [40–44]. Due to the acidic pH during chro-

mium tanning and desired chemistry during the tanning

process, exposure to Cr(OH)SO4 and related trivalent

chromium species seem most relevant for tannery

workers. During production of Cr(OH)SO4, however,

there is exposure possible to the highly potent
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hexavalent chromic acid, from which the spray dried

powder Cr(OH)SO4 is obtained by reduction by sulfur

dioxide [5]. Tannery workers have been found to have a

higher risk of ACD to chromium [13, 14, 45, 46] as com-

pared to control groups. This review will however

mostly focus on chromium allergy of relevance for

consumers.

1.5 Prevalence of chromium allergy

Chromium allergy is relatively common. Chromium

allergy becomes only clinically relevant upon sufficient

skin exposure to chromium, which elicits ACD.

Whether a person is chromium-allergic, can be tested

by patch testing (further explained in section 2.2.). Esti-

mates are approximately 1% of the general population

in Europe, which is the region that has been studied

most and has the lowest prevalence of chromium al-

lergy among those countries and regions that have been

studied, Table 1. Among clinical groups, which are

mainly patients of specialized dermatology clinics, the

prevalence of chromium allergy is about 4.2–4.8% in

Europe and North America, while it is higher (6–10%)

in other countries and continents, Table 1. Compared

to other allergens, chromium is among the most

frequent, usually among the top 1–20 most frequent al-

lergens in different studies, see references in Table 1

and [91]. Over time, the prevalence of chromium

allergy has declined in European and North American

countries, but the fraction of leather related chromium

allergy has increased. Most recent clinical data from

Austria, Switzerland, and Germany suggests however

an increase of the prevalence of chromium allergy after

2015 (from 4.2% in 2007–2010, to 3.3% in 2011–2014,

to 4.5% in 2015–2018) [49], which requires further

monitoring. Clinically, the leather related fraction of

chromium allergy may be determined by asking the

patient about the cause of his/her dermatitis, e.g. due

to contact with certain shoes or a certain item, con-

firming the localization of the dermatitis related to a

certain exposure, patch-testing the patient with that

source confirming its relevance for the dermatitis, test-

ing the leather for different allergens, and patch-testing

the patient with different allergen series, e.g. the shoe

series containing a number of shoe allergens covering,

among others, glues, plastic chemicals, metal allergens,

dyes, and preservatives. For example, Danish studies

suggest that the leather related fraction of chromium

allergy increased from about 24% in 1989–1994 [92] to

55% in 2010–2017 [50]. In other countries, work-

related exposures and other consumer exposures, such

as to cement, detergents, cleaning agents, chemicals,

metal work, metal fumes, and chromated surfaces,

remain dominant as cause of chromium allergy [7].

1.6 Severity and persistence of chromium allergy and

ACD

Once sensitized, ACD to chromium can be elicited by

relatively low doses of chromium [93]. Chromium

allergy is characterized by that it more often causes

chronic and severe eczema as compared to other type-

IV allergies [94, 95], resulting in lower quality of life and

higher unemployment rates. Also, the contact dermatitis

to chromium is more often located on the hands and

feet [96, 97]. ACD to chromium has been found to be

very persistent [98–100] and to have a poor prognosis

[94–96, 101–103].

This review focuses on chemical questions regarding

chromium allergy of relevance for the leather industry,

regulators, chromium-allergic persons, and consumers of

leather articles. The aim of this review is to give sugges-

tions on how to minimize the risk of chromium allergy

related to leather articles.

Table 1 Summary of selected data on the prevalence of chromium allergy in the general population and different clinical/
occupational groups in different continents and countries. The data are merged for Europe, Asia, and North America. A detailed
overview is given in the supplementary file, Table S1

Region Type of tested persons Years of testing Prevalence of contact allergy
to chromium (%)

Number of tested persons References

Europe (merged) General population 2008–2011 0.75 3119 [47]

Multi-national
(mostly Europe)

General population 1967–2010 1.8 13,250 [48]

Europe (merged) Clinical / occupational 1996–2018 4.2 260,676 [49–66]

North America
(merged)

Clinical 2006–2019 4.8 39,570 [67–69]

Australia Clinical 2001–2010 10 5180 [70]

Asia (merged) Clinical / occupational 1990–2017 8.4 30,038 [71–88]

Ethiopia clinical 2007–2008 6.4 514 [89]

Brazil clinical 2003–2015 9.0 1386 [90]
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2 Trivalent versus hexavalent chromium from an
allergic perspective
2.1 Release of trivalent and hexavalent chromium from

leather

Due to the different potency and skin permeability of tri-

valent and hexavalent chromium, it is important to

understand the chemistry behind the release of trivalent

and hexavalent chromium from leather articles in skin

contact or under relevant exposure conditions. Figure 1

summarizes some data of studies investigating trivalent

and hexavalent chromium release from different leathers

under different pre-exposure and exposure conditions

(for detailed information, see the supplementary file

Table S2). For most leathers and exposure conditions,

trivalent chromium is the predominant form of chro-

mium that is released. The release of trivalent and hexa-

valent chromium from leather, even for the same

leather, are strongly affected by pre-exposure conditions

and exposure conditions. To date, a number of factors

has been investigated both during the tanning and

manufacturing steps and during pre-exposure and

exposure from a consumer perspective. These factors

and their influence on trivalent and hexavalent chro-

mium release from leather are summarized in Table 2.

The release of total (trivalent and hexavalent) chro-

mium is highest for new leather since excess chromium

is released. Further, it is highest at acidic and alkaline

conditions and after exposure to dry (< 35% relative hu-

midity) air. The release of hexavalent chromium from

leathers is affected by a larger number of parameters.

The initial leather chemistry, which is largely determined

by the tanning process, plays an important role as well

as pre-exposure and exposure conditions. In the absence

of antioxidants, which is the case for some leathers and/

or for old/used leathers, the most important factor is

exposure to dry air (< 35% relative humidity) prior to ex-

posure to any solution or the skin. For antioxidant-free

and old/used leather, hexavalent chromium can even be

detected in artificial sweat (pH 5–6.5) [133], while it is

otherwise only detected at neutral and alkaline pH. This

agrees with early studies on extraction of hexavalent

chromium by human sweat [40]. The risk for release of

hexavalent chromium from leathers increases for:

– Purely chromium-tanned leathers without any anti-

oxidants, vegetable tannins, or reducing acids

– Tanning or manufacturing at too high pH or with

oxidative species

– Exposure to dry air (< 35% relative humidity) prior

to skin contact or exposure

– Exposure to UV irradiation and dry air prior to skin

contact or testing / exposure

– Pre-exposure or exposure to alkaline media (pH 12

or higher), such as contact with cement

– Age / usage of leather.

2.2 Allergic reactions to trivalent and hexavalent

chromium, and chromium-tanned leather

When comparing clinical studies on ACD to chromium

as a function of trivalent and hexavalent chromium skin

doses, it is important to consider the chemical speciation

of the applied chemical substance. Many trivalent chro-

mium salts induce a low pH that is not suitable for skin

patch testing. Patch testing means that a small amount

Fig. 1 Overview on some published data of the release of trivalent and hexavalent chromium from different leathers under different conditions.
The inset shows a magnified graph. The same leather name, e.g. L1, indicates the same leather. All available information on the leather, pre-
exposure, exposure conditions, and all data are given in Table S2 (supplementary file)
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Table 2 Most important tanning, leather, and exposure factors/conditions for the release of trivalent and hexavalent chromium from
chromium-tanned leather

Factor Release of trivalent chromium Release of hexavalent chromium Reference

Factors during tanning / manufacturing

Total content
of chromium

Possible increase in release Unclear or contradictive effects [104–111]

Fatty acids – Potential increase for mono- or polyunsaturated
(free or esterified) acids, such as natural oils
(fish oils etc.)

[104, 108, 111–119]

Vegetable tannins – Possible decrease, more decrease for higher
contents and certain tannins (tara, sumac)

[42, 104, 105, 116, 117,
120–123]

Synthetic tannins – No effect, decreasing effect for polyhydroxyphenol [104, 105, 122]

Reducing agents
(antioxidants)

– Decrease [43, 104, 112, 121, 124–
128]

Complexing agents – Can hinder the oxidation of trivalent chromium
in solution

[104, 115]

Hide constituents,
protein degradation
products or cationic
fatliquors

– No effect [104, 105]

pH in neutralization – Increase, if over-neutralization. Otherwise no effect. [104, 108, 120, 129,
130]

Washing/rinsing – No effect. If too extensive, increased release
possible due to removal of formic acid residues.

[104]

Alkaline adhesion
binders

– Increase [105]

Relative humidity,
leather water content

– Possible decrease for increased relative humidity
and leather water content

[43, 104, 106, 116, 125]

Storage time – Strongly dependent on relative humidity. Extended
storage time can reduce the Cr(VI) content if
relative humidity > 30–35%, otherwise a possible
increase.

[41, 43, 104]

Dry heating (oxygen
gas present)

– Possible increase [43, 104–106, 117, 121,
124, 125, 130, 131]

Vacuum drying – No effect [104, 112]

UV irradiation at
dry conditions

– Possible increase [104, 112, 117, 120, 121,
124, 125, 131]

Buffing – No effect [129]

Leather factors during exposure

Surface area to
mass ratio

If increased, more release Surface area that has been in contact with dry
(< 35% relative humidity) air prior to exposure:
if increased, more release. Increased surface area
at > 35% relative humidity may result in decreased
release due to co-released antioxidants/acids.

[41, 132]

Relative humidity and
temperature prior to
testing

Most release at 35% relative humidity.
Slightly less release at lower humidity,
and strongly reduced release at higher
humidity. Minor importance of temperature.

The lower relative humidity (and longer storage
time), the higher release. Relative humidity above
35% results in very low / non-detectable release.
Minor importance of temperature.

[41, 43]

UV irradiation (at dry
conditions) prior to
exposure

No effect Increase possible for certain exposure conditions [41, 123]

Temperature during
exposure (immersion
or skin contact)

Increased release for higher temperature
(even 5 °C higher)

– [132]

Solution pH Lowest release at neutral pH. Increased
release for acidic (< 5) and alkaline
(> 10) pH

Increased release for more alkaline pH. Very low
release for pH < 7.

[41, 44]
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of the chemical substance is applied on the skin in an

occluded chamber and kept there for usually 2 days

[135]. The allergic skin reaction is then read by a derma-

tologist after additionally 1–5 days. The pH of the chem-

ical substance applied should be in the range between 4

and 9. Most trivalent chromium salts are not stable in

solution above pH 4 and would precipitate, which hence

would reduce the actual, bioaccessible, skin dose during

patch testing. However, trivalent chromium species

bound to organic ligands can be stable under conditions

relevant for leather and skin contact. Relevant chemical

speciation of clinically important chromium species is

illustrated as a function of pH in Fig. 2a. When the line

of a certain species is on the top of that figure, all of it is

in solution (in its aqueous phase) and when it is at the

bottom, it is precipitated from solution (in a solid

phase). From Fig. 2a, it can be deduced that it is not pos-

sible to design a clinical study that investigates stable tri-

valent and hexavalent chromium species at the same pH.

The pH is an important factor for skin permeability

[136] and skin charge [137]. In a recent study [36], triva-

lent and hexavalent chromium salts were chosen that

would form similarly charged (negatively charged) and

relatively stable species over the entire concentration

range of the patch test study, Fig. 2b-c. The trivalent

chromium solution was buffered to a pH of 4.1 and the

hexavalent chromium solution to a pH of 8.5. The ma-

jority of chromium-allergic individuals in that study

reacted to both trivalent and hexavalent chromium, al-

though the required dose for a positive and stronger re-

action was significantly lower for hexavalent chromium

as compared to trivalent chromium, Fig. 2d-f, which is

in agreement with a number of previous studies [37–39,

97, 137–140].

Figure 3 shows the lowest skin doses of the trivalent

and hexavalent chromium during patch testing that the

ten chromium-allergic individuals in the clinical study

[36] reacted to. The asterisks in Fig. 3a-b mark those

four chromium-allergic individuals that also reacted to a

chromium-tanned leather bracelet within 3 weeks of use

(12 h per day like a normal bracelet). Only one of these

individuals reacted to the same leather when tested on

the back in an occluded patch test for 48 h. As also con-

firmed in other studies [97, 141], a lower elicitation

threshold and positive reactions to trivalent chromium

increased the risk of reacting to the chromium-tanned

leather bracelet within the study period. In a Danish

study on 2211 dermatitis patients, 71 (3.1%) had a posi-

tive reaction to hexavalent chromium (0.5% potassium

dichromate), of which 31 also had a positive reaction to

trivalent chromium (13% chromium trichloride) [97]. An

increased risk of foot dermatitis was found for those pa-

tients reacting to both trivalent and hexavalent chro-

mium. This increased risk of foot dermatitis was not

caused by a higher degree of sensitivity to hexavalent

chromium, suggesting that trivalent chromium played a

role for shoe dermatitis for these patients, along with

other shoe allergens [97]. The deposited amount of

chromium from the chromium-leather bracelets on the

skin of the participants in the bracelet study [36] was

very low and no hexavalent chromium was detectable on

the chromium-tanned leather bracelets after the three-

weeks use test, Fig. 3d. These findings suggested that re-

peated skin exposure to very low amounts of chromium

from chromium-tanned leather items and released triva-

lent chromium are sufficient to elicit ACD to chromium

from leather items in chromium-allergic individuals.

This observation is in agreement with other use test and

repeated open application test studies and allergens, sug-

gesting that lower doses are required if the exposure oc-

curs repeatedly over longer time as compared to an

occluded patch test during 48 h [141–144]. In that

bracelet study [36], the two leathers were also tested for

traces of other metals present (there were none). Both

leathers were non-finished to avoid the presence of dyes

or other allergens originating from the finishing process.

The chromium-tanned leather was not tanned with

other tannins. It is hence unlikely, but not completely

impossible, that another organic allergen that might have

been present in the chromium-tanned leather and absent

Table 2 Most important tanning, leather, and exposure factors/conditions for the release of trivalent and hexavalent chromium from
chromium-tanned leather (Continued)

Factor Release of trivalent chromium Release of hexavalent chromium Reference

Exposure time,
repeated exposure,
leather usage / age

Most release initially. Decreasing
release rates with time / age.

Decreasing release rates when immersed / at humid
conditions. Increased release after dry storage
conditions and for older / used leather.

[132–134]

Co-released
antioxidants

No effect Decrease / non-detectable values [42]

UV irradiation during
exposure or at
humid conditions

No effect No effect [132]

Wear No effect No effect [41]

-, not investigated; UV ultraviolet
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Fig. 2 Schematic overview on chemical speciation of different trivalent and hexavalent chromium species as a function of pH (a), calculated
chemical speciation of hexavalent chromium from a dichromate salt at pH 8.5 (b) and of trivalent chromium from a chromium(III) oxalate salt at
pH 4.1 (c) as a function of concentration covering the range of concentrations used in the clinical patch test study [36], number of positive skin
reactions in ten chromium-allergic individuals as a function of patch test dose (d), from [36], and severity of skin reactions, expressed as
percentage of the possible maximum score, of ten chromium-allergic individuals and 22 non-allergic controls, when tested with hexavalent
chromium (e) or trivalent chromium (f) in the same study. Cr – chromium; Cr(VI) – hexavalent chromium; Cr(III) – trivalent chromium; skin or
patch test dose is expressed as μg chromium species per cm2 skin area
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in the vegetable-tanned leather would have elicited the

reactions in the four chromium-allergic individuals, but

not in the 20 controls. None of the ten chromium-

allergic individuals in that study has been allergic to

formaldehyde.

3 The formation of hexavalent chromium during
use of chromium-tanned leather
While there is today enough evidence that released triva-

lent chromium from chromium-tanned leather is a prob-

lem for chromium-allergic individuals, the avoidance of

the formation of hexavalent chromium in, or more

exactly on, chromium-tanned leather remains the most

important measure regarding chromium-tanned leathers

for both chromium-allergic individuals and those that

should be protected from sensitization.

3.1 Age of chromium-tanned leather article in use

There are reports that show that the extent of released

hexavalent chromium from chromium-tanned leather

increases with age/use [43, 133, 134], most probably

since antioxidants, acids, and colors are washed out. The

chromium-allergic participant number 2 in Fig. 3a-b

reported that new leather shoes did not cause any prob-

lems, but old shoes did. A similar observation was re-

ported in [145]. Instead, a study investigating the effect

of different stable inhibitors for chromium oxidation

found that leathers that were prepared with this inhibi-

tor mixture did withstand the formation of hexavalent

chromium (under dry conditions) even after 12 months

of storage, while chromium-tanned leathers without that

inhibitors could re-form hexavalent chromium after a

heating step [43].

Fig. 3 The minimum elicitation threshold (the lowest skin dose that the person reacted positively to) for trivalent chromium (a) and hexavalent
chromium (b) of ten chromium-allergic individuals in [36]. The asterisks mark the individuals that reacted positively to a chromium-tanned leather
bracelet (the grey bracelet shown in c) within 3 weeks of usage. The appearance of the leather bracelets (chromium-tanned and control bracelet)
before and after the 3 weeks use test, and examples of positive and negative allergic skin reactions to the leather bracelets are shown in (c).
Trivalent and hexavalent chromium released from the chromium-tanned leather used for the bracelet into artificial sweat and during an ISO
17075 test (phosphate buffer), and the measured maximum amount deposited on the skin of the participants after 3 weeks of bracelet usage (d).
Cr – chromium; Cr(VI) – hexavalent chromium; Cr(III) – trivalent chromium; art. sweat – artificial sweat; n.d. – not detected
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3.2 Environmental factors during use of leather articles

For those chromium-tanned leathers that lack antioxi-

dants due to the tanning process or their age, hexavalent

chromium can be formed as a function of environmental

factors, such as relative humidity and UV irradiation

during storage, solution pH, and contact with alkaline

solutions (such as contact with cement), illustrated in

Fig. 4. There is generally a high risk of the formation of

hexavalent chromium for work gloves in contact with al-

kaline solutions or cement, especially if they are used re-

petitively and in regions with low relative humidity, such

as Northern countries in the wintertime. It should be

emphasized that the total chromium release from

chromium-tanned leather items is even more important

and that the total chromium release is primarily influ-

enced by the amount of sweat and therefore highest in

warm countries or during summertime [40, 133, 146–

148].

4 Obstacles related to the standard test for
hexavalent chromium in leather (ISO 17075)
Since 2015, all leather items in the European Union are

required to comply to the regulation Registration, Evalu-

ation, Authorization and Restriction of Chemicals

(REACH) [149, 150] and to have a lower test result than

3 mg/kg hexavalent chromium according to the standard

test ISO 17075 [151].

However, an initially compliant test result with < 3

mg/kg hexavalent chromium does not mean that the

leather item is not able to release hexavalent chromium

later under different environmental conditions. The

reasons are several.

First, it has been reported that manufacturers by

intention spray the leather items prior to testing or re-

testing occasions with antioxidants, such as ascorbic acid

[152]. These sprayed-on antioxidants prevent a test re-

sult that would prohibit the leather item to be placed on

the market, but may not necessarily hinder the forma-

tion of hexavalent chromium on the leather item in the

long term (if washed out). In contrast, stable inhibitors

of hexavalent chromium formation may be useful, as

they have been shown to be intact even after long-term

storage [43].

Second, as discussed in the previous sections, the rela-

tive humidity prior to testing with ISO 17075 is crucial.

If that relative humidity is greater than 35%, the test re-

sults will most probably be below the restriction limit of

3 mg/kg. In the current version of ISO 17075, it is

Fig. 4 Different pre-exposure (storage) and exposure scenarios for a chromium-tanned leather without antioxidants, such as common purely
chromium-tanned work gloves: The influence of relative humidity prior to exposure / skin contact (a), the influence of solution pH during
exposure / skin contact (b), and an occupational exposure scenario involving exposure to rain, cement or alkaline solutions, and UV irradiation
during drying / storage. Schematically redrawn from the results shown in [41]. Cr(VI) – hexavalent chromium; Cr(III) – trivalent chromium; UV –

ultraviolet irradiation
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referred to ISO 4044 [153], which in turn refers to ISO

2419 [154]. In ISO 2419, the conditioning of dry leather

samples is specified at 23 °C and 50% relative humidity

(reference standard atmosphere) for 24 h for dry leather

samples (dried at a temperature not exceeding 40 °C ac-

cording to ISO 4044), after which the sample should be

ground, cut, and stored (in a clean, dry, and airtight con-

tainer, kept away from sources of heat) according to ISO

4044. Alternative atmospheric conditions are also speci-

fied and allowed, when reported, according to ISO 2419.

The storage time and relative humidity during storage is

not further specified. Several studies on hexavalent chro-

mium in leathers pre-conditioned the samples by heat-

ing at 80 °C for at least 24 h [43, 123], which resulted in

higher hexavalent chromium release as compared to

other pre-conditioning. In one study, it was also con-

firmed that hexavalent chromium could be re-formed

after up to 12 months of storage when heated again at

80 °C [43].

Third, ISO 17075 requires the leather to be tested to

be cut/milled into small pieces. This increases largely

the surface area to mass ratio, which increases the over-

all chromium release [132]. However, for hexavalent

chromium, the increase of the specific surface area does

not necessarily result in an increased release and may

under some conditions even result in a slightly reduced

release due to two reasons: i) co-released acids and anti-

oxidants may decrease the amount of hexavalent

chromium in solution [42, 132, 134], and ii) without

new conditioning at low relative humidity, the increased

surface area does not result in new formed hexavalent

chromium all over the surface (hexavalent chromium is

only found and formed on the surface in contact with

oxygen at dry conditions) [41, 104, 116, 125, 132].

Several conditions of the ISO 17075 test are optimal

for testing leathers for hexavalent chromium. The deaer-

ated phosphate buffer, extraction time, and mass/solu-

tion ratio of the standard test of ISO 17075 can be

considered ideal for the extraction of all surface-

available hexavalent chromium of the test item [132].

There is no risk of oxidizing trivalent chromium to

hexavalent chromium during the test procedure of ISO

17075 [115], hence avoiding false positive results.

It can be questioned how meaningful it is to test

leather items for hexavalent chromium, without test-

ing the release of trivalent chromium. From an aller-

gic and exposure perspective, trivalent chromium is

also important. The one-time testing of hexavalent

chromium of a new leather product can rather be

seen as a, relatively irrelevant, snapshot in a dynamic

history of chromium speciation throughout the life-

cycle of leather. It could be argued that the release of

hexavalent chromium to some extent correlates with

the total allergic potential of that leather item. But

there is no relationship between released hexavalent

and trivalent chromium, Fig. 5.

Fig. 5 Measured trivalent and hexavalent chromium release in mg/kg from different leathers and conditions of Fig. 1 (specified in Table S2),
excluding non-measurable levels of hexavalent chromium due to color interferences. The red dotted line marks the restriction limit of 3 mg/kg
for hexavalent chromium. Only leather items below that restriction limit are allowed to be placed on the market in the EU. Cr – chromium
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5 Practical implications for chromium-allergic
individuals as consumers of leather products
ACD to chromium can be severe and chronic. Its severity

and persistency depend on the extent of exposure to chro-

mium. If a chromium-allergic individual learns about his/

her ACD to chromium and which sources of chromium

exist, the person can avoid sources of chromium and the

eczema will improve over time. Also, the elicitation thresh-

old can increase in the long-term if chromium exposure is

avoided for long time. Not all chromium-allergic individ-

uals report problems with leather items. Some chromium-

allergic persons report issues only for some types of leather

items or occasions, such as for direct skin contact or certain

types of shoes (e.g. old shoes). Other chromium-allergic in-

dividuals need to strictly avoid all skin contact with all

chromium-tanned leather items.

For all chromium-allergic persons, clearly labelled

leather products would be helpful. Information on

whether the leather has been chromium-tanned or not is

not easily available and sometimes wrong. Chromium-

allergic persons in Sweden in the clinical study [36]

reported that it was difficult to find some chromium-

free leather products, such as special shoes. So far, most

standards/labels only consider hexavalent chromium

tested by ISO 17075, but not the release of trivalent

chromium. The OEKO-TEX label, which has been initi-

ated in 1992 in Germany, Austria, and Switzerland, re-

quires testing for both hexavalent chromium (by ISO

17075) and for trivalent chromium extracted in artifi-

cial sweat for 4 h at 37 °C (by ISO 17072) with restric-

tion limits of < 2 mg/kg for leather products intended

for babies and of < 200 mg/kg for other leather

products intended for direct skin contact [155]. For

comparison, the leather that elicited allergic reactions

in the bracelet study [36] released 313 mg/kg trivalent

chromium into artificial sweat after 3 h at room

temperature [132].

ACD to chromium is not specific to chromium-tanned

leather but elicited by any sources of soluble chromium.

These include cement, chemicals, chromated metals,

metal fumes, detergents, and bleaching agents. A com-

prehensive overview is given in [7, 156]. Many occupa-

tions involve exposure to chromium, e.g. metal work

and construction work, which makes it difficult for

chromium-allergic persons to avoid long-lasting eczema

and consequences.

6 Alternatives to chromium-tanning from an
allergy perspective
Alternative methods to chromium-tanning exist, such as

aldehyde-tanning, mineral tanning (other metal ions),

and vegetable-tanning [5]. The allergenic potential of

vegetable-tanning is so far relatively unknown.

Vegetable-tanning has been claimed to have

considerable disadvantages as compared with

chromium-tanning [5]. Many attempts have been made

to overcome these disadvantages and find alternative

tanning methods [157–161]. The allergic potential for

aldehyde-tanned leather is known: ACD to aldehyde-

tanned leather has been reported [162, 163]. Of other

practically possible mineral tanning methods, aluminiu-

m(III), titanium, zirconium, and iron have been named

[5] and have a relatively low, but not totally absent, aller-

gic potential [15].

From an allergic perspective, it is important to clearly

label tanned leathers for any allergenic substances and

to provide alternatives to chromium-tanned leathers,

which today are dominating the market.

7 Conclusions

1. Chromium-tanning is the dominant tanning

method for leathers today. Chromium-tanned

leather increases in importance as cause for allergic

contact dermatitis to chromium in some European

and North American countries with a declining

number of other chromium sources.

2. Around 1% of the general population, and more in

some occupations and regions, are allergic to

chromium. This means, that these chromium-

allergic individuals can develop ACD upon sufficient

skin exposure to chromium-releasing items.

3. ACD to chromium-tanned leathers can be elicited

in chromium-allergic persons by both hexavalent

and trivalent chromium released from chromium-

tanned leather. Positive allergic reactions to

trivalent chromium are more common for

chromium-allergic persons that react to chromium-

tanned leather as compared to other chromium-

allergic individuals, which should further be

investigated in future studies.

4. Hexavalent chromium is the more potent

chromium form and requires a lower amount to

elicit allergic reactions. It is formed on the surface

of some, antioxidant-free, leathers at dry conditions

(< 35% relative humidity) and is influenced by the

tanning process and other environmental

conditions, such as UV irradiation or contact with

alkaline solutions. Hexavalent chromium can be

released to a higher extent for older / aged leather

as compared to new leather.

5. Trivalent chromium is the dominant form released

from chromium-tanned leather and its amount

released is sufficient to elicit allergic reactions in

some chromium-allergic individuals when they are

exposed repetitively and over longer time (days –

months). Trivalent chromium is mostly released
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initially, and its release is significantly lower for

older or used leather.

6. A low test result (< 3 mg/kg) for hexavalent

chromium with the current standard test ISO

17075 does not guarantee a low release of total

chromium from the leather or low release of

hexavalent chromium at another timepoint under

certain exposure conditions. This means that

certain leathers that have a negative test result in

ISO 17075 at one time point can form hexavalent

chromium later under certain environmental

conditions, such as low relative humidity during

storage and exposure to alkaline solutions.

7. Current information, labels and certificates of

leather products are insufficient to protect

chromium-allergic individuals.

8. Alternative tanning methods might not necessarily

be better from an allergic, environmental, toxic, or

economic point of view. Correct labelling and

information regarding the content of potential

allergens, as well as different tanning alternatives,

are crucial.

8 Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s42825-020-00027-y.
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