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The Cr-doped ZnO photocatalysts were synthesized through the chromium ion accumulations by water hyacinth (Eichhornia
crassipes). In the preparation process, the plant tissues were immersed in different sample flasks containing chromium
precursors for 1, 2, 4, 6, and 8 days. The plant tissue containing chromium ion was mixed with zinc precursor followed by
calcinations. For simplicity, the prepared Cr-doped ZnO samples with the plant immersed for 1, 2, 4, 6, and 8 days were
abbreviated as D1, D2, D4, D6, and D8, respectively. Moreover, pure ZnO was also prepared without the water hyacinth plant
accumulated with chromium ion for comparison purposes. The powder sample characterizations were performed and
evaluated in the degradation of methylene blue (MB). The Cr-doped ZnO sample (D1) degrades 80% of MB dye while the D2,
D4, D6, D8, and pure ZnO samples degrade only 74, 76, 79, 73, and 25%, respectively. On the other hand, without the
addition of catalysts (blank), there was no significant degradation of MB dye within 90min irradiation. Therefore, the
degradation performance of Cr-doped ZnO in the presence of optimum amount of chromium dopant and water hyacinth is
highly improved than that of pure ZnO. The catalytic improvement may be as a result of reducing the photogenerated electron
and hole recombination rates due to the presence of dopants. Moreover, the presence of the Eichhornia crassipes plant in the
synthesis of Cr-doped ZnO could also prevent further aggregations and particle size growth and enhance the porosity after
calcination.

1. Introduction

Currently, the disposals of industrial effluents without proper
treatment are the major threat and the utmost research areas
in the world [1, 2]. Mainly, organic and inorganic wastes
released from different sectors such as textile industries, dye-
ing, paintings, and other sources are the potential causes of
water pollutions [3, 4]. Hence, proper controls of pollutants

discharged from different sources with appropriate removal
techniques should be the primary activity [5–8]. One of the
techniques used in the wastewater treatment technology is
photocatalysis. In the photocatalysis process, semiconductors
such as ZnO can be used due to the ability to absorb the light,
nontoxicity, and stability [9–11]. However, the activity of the
ZnO semiconductor on the visible light source is not good
due to its larger band gap energy (3.2 eV) [12, 13]. Due to this
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reason, different modifications have been employed to
enhance the photocatalytic activity performances of the
ZnO semiconductor [14, 15].

Currently, reports on a ZnO-based photocatalyst are
available [15–18]. For example, the prepared ZnO from Acre-
monium potronii for dye degradation was reported by Ameen
et al. [19]. The hexavalent chromium and dye degradations
were also performed by using ZnO under UV light [20].
However, ZnO alone is not effective under visible light irradi-
ation. Due to this reason, a lot has been done on the photo-
catalytic performance improvements of ZnO [21, 22].
Among the reported performance improvements of ZnO
are doping with metal [23, 24], nonmetals [25], and ZnO
combination with other low band gap energy semiconduc-
tors [26]. Specifically, Cr-doped ZnO photocatalysts were
also synthesized and used for organic dye degradation [27,
28]. However, further catalytic performance improvements
of ZnO by using a green synthesis method are also needed.
For this purpose, the biological renewable plant materials
can be used as a template to prepare oxide semiconductor-
based photocatalysts [29, 30]. Among the biological renew-
able unwanted plant materials resources is Eichhornia
crassipes.

Recently, Eichhornia crassipes is used for pollutant
removal [31, 32]. For example, pollutant removal via phytor-
emediation techniques using water hyacinth from wastewa-
ter was studied by Rezania et al. [33]. The removal of Pb2+,
Zn2+, and Ni2+, with water hyacinth fiber, was also reported
[34]. Additionally, the cadmium ion, Cu2+, and chromium
(VI) ion heavy metal removal with water hyacinth-based
biochar, chitosan materials, and water hyacinth roots,
respectively, were also tested and showed good removal effi-
ciencies [35–37]. Moreover, recycling performance of the
heavy metals after accumulation on water hyacinth was also
studied [38]. In our previous report, the cobalt ion accumu-
lations onto Eichhornia crassipes for the purpose of cobalt
doping on ZnO were also studied [39]. However, there was
no report on the chromium ion accumulations onto water
hyacinth and recycled for organic pollutant degradations.

Herein, the water hyacinth was immersed into chromium
aqueous solution to collect the chromium ion on the surface of
the plant tissue. The chromium ion-containing plant was
mixed with a zinc precursor to prepare Cr-doped ZnO after
calcinations in air. The remained amount of chromium ion
in the aqueous solution was measured. The Cr-doped ZnO
powder catalyst characterizations were performed. The cata-
lytic performance of Cr-doped ZnO was tested. Here, the
chromium ion removal efficiency of water hyacinth from
aqueous solution was evaluated. Moreover, the reusing of the
accumulated chromium ion on the plant as a dopant for
ZnO preparation in the decontamination of organic pollutants
was also studied systematically. Pure ZnO only was prepared
and tested in the degradation of MB dye for comparison pur-
pose. It is suggested that the Cr-doped ZnO performance
could have better catalytic activity than pure ZnO due to wid-
ening the visible light absorption, electron/hole separation,
and improving the porosity of the materials as a result of Eich-
hornia crassipes after calcination.

2. Materials and Methods

2.1. Chemicals and Reagent. Potassium dichromate (K2Cr2O7)
(Sigma-Aldrich), zinc nitrate hexahydrate (Zn(NO3)2·6H2O)
(Sigma-Aldrich), sodium hydroxide (NaOH) (Loba Chemie),
and ethanol were used in the experimental work. The chemi-
cals used for the experiment were of analytical grade.

2.2. Preparation of the Water Hyacinth. The Eichhornia cras-
sipes plant was brought from Lake Koka, Ethiopia. The plant
was washed with water to remove dusts from the surface. It
was dried at room temperature, crushed, and stored for fur-
ther use.

2.3. Preparation of Cr-Doped ZnO. The crushed powder
plant (2 g) was added into a chromium solution at different
days (1, 2, 4, 6, and 8) in separate flasks. Then, the Eichhor-
nia crassipes having chromium ion on the surface was sepa-
rated. The supernatant solution was tested with a microwave
plasma atomic emission spectrometer (MP-AES) (Agilent,
Germany) to examine the remaining chromium ion content
in the solution. For comparison purpose, the initial concen-
tration of chromium ion (before soaking of the plant) was
also measured by MP-AES. The plant having chromium
ion was dried and mixed with 80mL of zinc nitrate (0.5M)
precursor. Then, the sample was stirred and heated at 80°C
for 2 h, followed by adjusting the pH to 10. Then, the solu-
tion was centrifuged, washed, and dried followed by calcina-
tion in air at 600°C for 3 h.

2.4. Characterizations. X-ray diffraction (XRD) was illustrated
by Shimadzu XRD-7000. The field emission scanning electron
microscopy (FESEM, JSM 6500F, JEOL) was used for mor-
phology analysis. ESCALAB 250 for X-ray photoelectron
spectroscopy (XPS) analysis was used to determine the oxida-
tion states in the powder. The diffuse reflectance spectroscopy
(DRS) was evaluated using a JASCO V-670UV-Vis spectro-
photometer. The photoluminescence behaviors of the mate-
rials were characterized with a JASCD FB-8500 fluorescence
spectrophotometer. Fourier transform infrared (FTIR) analy-
sis was performed with Spectrum 65 FT-IR (PerkinElmer)
using KBr pellets. The concentration of the pollutants before
and after photocatalytic reactions was measured by using a
Shimadzu-3600 Plus spectrophotometer.

Table 1: The chromium ion concentration remained after being
accumulated for different days.

Soaking days
Remained chromium
ion concentration

(mg/L)

Amount of chromium
ion accumulated

(mg/L)

Initial solution 1725.00 —

D1 1625.00 100.00

D2 1632.50 92.50

D4 1503.50 221.50

D6 1511.25 213.75

D8 1498.75 226.25
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Figure 1: XRD patterns of (a) ZnO (JCPDS No. 036-1451), ZnO, D1, D2, D4, D6, and D8 samples and (b) 2θ from 31-37° range.
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Figure 2: (a, b) SEM image of lower and higher resolution and (c) EDS analysis for the D1 sample.
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2.5. Photocatalytic Activities. MB dye was used as a pollutant
to test the photocatalytic performance of the prepared sam-
ples according to the reported literature with modification
[18]. In the degradation test, Cr-doped ZnO (25mg) was
mixed into 10 ppm of 100mL dye solution. Adsorption/
desorption experiment was performed for 30min under stir-
ring in the dark condition. Then, a light source (visible light)
was on after 30min adsorption/desorption reaction with
continuous stirring. Finally, 5mL of the aliquot sample was
taken out at 15min intervals of time and used for analysis
after centrifugation. For comparison purposes, the degrada-
tion of the pollutant was performed in the presence of pure
ZnO and blank (without catalyst) with the same procedure
as mentioned above.

3. Results and Discussion

After soaking the Eichhornia crassipes plant in the chro-
mium ion solution for different days, the plant materials
accumulated with chromium ion was separated and the
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Figure 3: The XPS analysis of (a) Zn 2p, (b) Cr 2p, and (c) O 1s for the D1 sample.
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remaining aqueous solution in the sample flasks was sub-
jected to MP-AES measurement. For comparison purpose,
the initial chromium solution was also measured. The initial
concentration of chromium ion was 1725.00mg/L. However,
after chromium ion accumulations, the concentrations in
the solution were decreased which indicated that the Eich-
hornia crassipes plant tissue has the ability to accumulate
the chromium ion. Table 1 shows the initial concentration
and remained and accumulated amount of chromium ion
on water Eichhornia crassipes tissue for each day.

The XRD analysis was performed for the powder sam-
ples. Figure 1 indicates the XRD patterns for reference
ZnO (JCPDS No.036-1451) and D1, D2, D4, D6, and D8
samples. As it is observed from Figure 1, all the samples
had ZnO hexagonal wurtzite structure with (100), (002),
(101), (102), (110), (103), (200), (112), and (201) planes
(JCPDS No. 036-1451). There were no other peaks observed
from chromium oxides or any other related phases in which
the prepared samples were ZnO. The results showed that the
structure of ZnO crystal was not affected by adding Cr atoms
which indicates that the Zn sites were substituted by Cr in
the lattices as it is reported Cr-doped ZnO [40]. Moreover,
in the presence of the water hyacinth plant accumulated
with chromium ion, the XRD was shifted to the higher angle
as it is illustrated from Figure 1(b) in the 31-37° range. This
magnificent shifting could be due to the incorporation of
Cr3+ into the ZnO lattice. On the other hand, it is expected
that Cr3+ ions can replace Zn2+ ions due to the smaller
radius (0.063 nm) of Cr3+ ions as compared to the radius
(0.074 nm) of Zn2+ ions [41].

Figure 2 indicates the SEM images at lower (Figure 2(a))
and higher (Figure 2(b)) resolution and EDS (Figure 2(c))
analysis for sample D1, respectively. As it is indicated in
the SEM image, smaller and well-dispersed spherical nano-
particles were observed. The SEM showed that the presence
of water hyacinth in the preparation process could prevent
the agglomeration and reduces the particle size which also
indicates better catalytic performance. Moreover, EDS anal-
ysis also indicates Zn, Cr, and O elements in the sample
which confirms the preparation of Cr-doped ZnO.

The powder sample of the Cr-doped ZnO (D1) was also
further characterized by XPS. Figure 3(a) illustrates the
presence of the Zn2+ in the sample with 1021.86 and
1044.95 eV binding energies for Zn 2p3/2 and Zn 2p1/2,
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Figure 5: (a) UV-visible spectra and (b) band gap for pure ZnO and Cr-doped ZnO samples.
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respectively [42]. Moreover, the 576.83 and 585.97 eV bind-
ing energies for Cr 2p3/2 and Cr 2p1/2, respectively, indicate
the Cr3+ (Figure 3(b)) [43, 44]. On the other hand, the O 1s
XPS peaks indicated at 530.37, 531.91, and 533.32 eV bind-
ing energies illustrate Zn-O and Cr-O of lattice oxygen and
oxygen vacancy, respectively (Figure 3(c)) [45–47]. The
result further confirms successful preparation of the Cr-
doped ZnO.

The FTIR analysis was also performed for further
exploring the structural properties of the samples. Figure 4

indicates the FTIR data for pure ZnO and Cr-doped ZnO
samples. The FTIR spectra exhibiting a band about
628 cm−1 for the Cr-doped ZnO sample could be assigned
to O-Cr-O [40]. The absorption peaks showed at ~3457
and 1643 cm−1 indicate the stretching and bending vibration
mode of O–H as a result of water molecule adsorbed on the
prepared sample surface. Moreover, the FTIR peak at
~473 cm−1 indicates the stretching vibrational mode of the
Zn–O bond [39, 48]. The results indicate that the Cr-
doped ZnO catalyst was synthesized successfully.

400 500 600 700 800

A
bs

or
pt

io
n 

(a
.u

)

Wavelength (nm)

STD

0 min

15 min

30 min

45 min

60 min

75 min

90 min

0.0

0.3

0.6

0.9

1.2

1.5

1.8

(a)

–30 –15 0 15 30 45 60 75 90

Light onDark

D1

D2

D4

D6

D8

ZnO

Blank
C t

/C
0

Time (min)

0.2

0.4

0.6

0.8

1.0

1.2

(b)

–20 0 20 40 60 80 100

–1.6

–1.2

–0.8

–0.4

0.0

0.4

D1
D2
D4
D6

D8
Pure ZnO
Blank

ln
 (C

t/C
0)

Time (min)

(c)

Figure 7: (a) UV-visible absorption spectra for D1, (b) Ct/C0, and (c) the first-order kinetic plots for D1, D2, D4, D6, D8, pure ZnO, and
blank samples.
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The absorption properties of pure ZnO and Cr-doped
ZnO catalysts were studied as shown in Figure 5(a). The
pure ZnO had an absorption edge at about 395 nm. After
Cr doping, the absorption edge was shifted to 424nm. More-
over, the absorption of Cr-doped ZnO becomes relatively
higher than that of pure ZnO in the visible region. The band
gaps for pure ZnO and Cr-doped ZnO were also calculated
and shown as 3.2 and 3.13 eV, respectively (Figure 5(b)).
The result indicates that the presence of Cr as a dopant in
the ZnO lattice plays the major role for enhancing the cata-
lytic activity. On the other hand, the Cr-doped ZnO perfor-
mance could have better catalytic activity than pure ZnO
due to widening the visible light absorption and electron
and hole separation [49].

The photoluminescence (PL) analysis was also per-
formed as shown in Figure 6. The PL measurements were
obtained at 325nm excitation wavelength. The decrease in
the PL band intensity was observed in the Cr-doped ZnO.
It is reported that the higher the intensity band in the PL
analysis, the higher the electron and hole recombination rate
of the samples [7]. It is observed that the PL intensity of Cr-
doped ZnO is smaller than that of pure ZnO, indicating that
Cr doping has the ability to increase the defects and oxygen
vacancies in the ZnO sample [50]. It is also known that any
compound having a lower PL intensity band and a long life-
time will have a good photocatalytic activity since the sepa-
ration of photogenerated electron and hole pairs will be
easy [51].

The catalytic activities of the prepared powders were
checked in the MB dye degradation as shown in Figure 7.
Figure 7(a) indicates the UV-visible absorption spectral
measurements at different interval reaction times for sample
D1. Moreover, Figure 7(b) shows the Ct/Co ratio plots for
D1, D2, D4, D6, D8, pure ZnO, and blank (without catalyst)

samples. As it is indicated from Figure 7(b), the Cr-doped
ZnO accumulated for one day (D1) degrades 80% of MB
dye. However, the D2, D4, D6, D8, and pure ZnO samples
degrade only 74, 76, 79, 73, and 25%, respectively. On the
other hand, without the addition of catalysts (blank), there
was no significant degradation of MB dye within 90min
irradiation. It is illustrated that the Cr ion incorporated into
the ZnO lattice from chromium-accumulated Eichhornia
crassipes with optimum amount enhances the photocatalytic
performance. Figure 7(c) indicates a plot for ln ðCt/CoÞ with
irradiation time in the MB dye degradation. The degradation
indicates the pseudo-first-order kinetics which is also similar
to the literature report [52]. The rate constants of D1, D2,
D4, D6, D8, and pure ZnO samples were also calculated
and shown as 0.0149, 0.0133, 0.0125, 0.0142, 0.0117, and
0.0024min-1, respectively. As it is shown from the result,
the maximum rate constant was obtained from the D1 sam-
ple in which the D1 was the best catalyst in the MB degrada-
tion. Moreover, the ratio constant (K) for the D1 sample was
also calculated and estimated to be 0.596min-1 g-1. More-
over, the catalytic performance was also compared with liter-
ature as shown in Table 2. It is suggested the catalytic
performance is comparable with literature reports.

Figure 8 indicates the mechanism for MB dye oxidation
with the Cr-doped ZnO catalyst. As it is reported, the photo-
catalyst absorbs the irradiated light to generate electron and
hole pairs. When semiconductor photocatalysts are sub-
jected to light irradiation, there will be excitation of elections
into the conduction band (CB). The photogenerated holes
will be remained in the VB [57]. When ZnO is doped with
chromium, the electrons will be trapped and the recombina-
tion of the hole and electron could be suppressed as it is also
reported in metal-doped ZnO [15, 58]. The electron-hole
pairs on the surface of the photocatalyst pass through a
series of oxidation-reduction reactions affecting the organic
pollutant molecules. For example, the photogenerated elec-
trons can interact with adsorbed O2, on the surface of the
sample, and generate a superoxide radical anion (∙O2).
Moreover, due to the presence of oxygen vacancies as it is
illustrated from the XPS results, there will be better absorp-
tion of O2 which is a source of superoxide radical anion [51].
The photogenerated holes can also interact with hydroxyl
ion (OH-) or H2O to generate hydroxyl radical (∙OH) [15,
27, 59]. The reactive oxygen species resulting from the reac-
tion will be interacted with MB dye and degrades into
smaller degradation products [39, 59]. Figure 8 illustrates
the mechanism for MB dye oxidation with the Cr-doped
ZnO catalyst.

Figure 8: The degradation mechanisms of MB dye with the Cr-
doped ZnO photocatalyst.

Table 2: Comparison of photocatalytic activity of Cr-doped ZnO with related literature in the degradation of MB dye.

Catalyst Weight (g) Concentration (ppm) Time (min) Degradation (%) Ref.

Fe3O4/ZnO 0.20 100 120 88.5 [53]

2%Fe–ZnO 1.00 10 180 92 [54]

ZnO NPs 0.02 10 150 94 [55]

NiO-ZnO 0.18 10 120 74.86 [56]

Cr-doped ZnO (D1) 0.025 10 90 80 This work
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4. Conclusion

The Cr-doped ZnO was prepared via the chromium ion
accumulation with the Eichhornia crassipes plant for one,
two, four, six, and eight days and mixed with a zinc precur-
sor. In this report, the removal of chromium ion and reusing
it again for the purpose of a dopant in the ZnO photocatalyst
synthesis were illustrated. The prepared materials were also
tested for MB dye degradation. The chromium ion accumu-
lated for one day and mixed with a zinc precursor followed
by calcination (D1) showed the best catalytic performance
and degrades 80% of MB dye while D2, D4, D6, D8, and
pure ZnO samples degrade only 74, 76, 79, 73, and 25% of
MB dye, respectively. Therefore, degradation of the organic
pollutants with Cr-doped ZnO with the aid of a plant accu-
mulated with chromium ion was efficient. The catalytic per-
formance enhancement may be as a result of reducing
recombination rates of the electrons and hole, the particle
size reduction, and porosity improvement resulting from
the water hyacinth plant after calcination.
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