
RESEARCH ARTICLE Open Access

Chromosomal organization of the 18S and 5S
rRNAs and histone H3 genes in Scarabaeinae
coleopterans: insights into the evolutionary
dynamics of multigene families and
heterochromatin
Diogo C Cabral-de-Mello1*, Sárah G Oliveira2, Rita C de Moura3 and Cesar Martins2

Abstract

Background: Scarabaeinae beetles show a high level of macro-chromosomal variability, although the karyotypic

organization of heterochromatin and multigene families (rDNAs and histone genes) is poorly understood in this

group. To better understand the chromosomal organization and evolution in this group, we analyzed the

karyotypes, heterochromatin distribution and chromosomal locations of the rRNAs and histone H3 genes in beetles

belonging to eight tribes from the Scarabaeinae subfamily (Coleoptera, Scarabaeidae).

Results: The number of 18S rRNA gene (a member of the 45S rDNA unit) sites varied from one to 16 and were

located on the autosomes, sex chromosomes or both, although two clusters were most common. Comparison of

the 45S rDNA cluster number and the diploid numbers revealed a low correlation value. However, a comparison

between the number of 45S rDNA sites per genome and the quantity of heterochromatin revealed (i) species

presenting heterochromatin restricted to the centromeric/pericentromeric region that contained few rDNA sites

and (ii) species with a high quantity of heterochromatin and a higher number of rDNA sites. In contrast to the

high variability for heterochromatin and 45S rDNA cluster, the presence of two clusters (one bivalent cluster) co-

located on autosomal chromosomes with the 5S rRNA and histone H3 genes was highly conserved.

Conclusions: Our results indicate that the variability of the 45S rDNA chromosomal clusters is not associated with

macro-chromosomal rearrangements but are instead related to the spread of heterochromatin. The data obtained

also indicate that both heterochromatin and the 45S rDNA loci could be constrained by similar evolutionary forces

regulating spreading in the distinct Scarabaeinae subfamily lineages. For the 5S rRNA and the histone H3 genes, a

similar chromosomal organization could be attributed to their association/co-localization in the Scarabaeinae

karyotypes. These data provide evidence that different evolutionary forces act at the heterochromatin and the 45S

rDNA loci compared to the 5S rRNA and histone H3 genes during the evolution of the Scarabainae karyotypes.

Background

Repetitive DNA elements constitute a large portion of

eukaryote genomes and include satellites, minisatellites,

microsatellites, transposable elements and some multi-

gene families with high copy numbers [1,2]. Among

them, ribosomal RNAs (rRNA) and histone genes are

grouped into distinct multigene families that are orga-

nized in tandem with hundreds to thousands of copies

of each [3,4]. The major ribosomal DNA cluster (tan-

dem arrayed 45S rDNA repeating units) encodes for the

28S, 18S and 5.8S rRNAs, while the minor rDNA cluster

(tandemly arrayed 5S rDNA repeating units) is responsi-

ble for the transcription of 5S rRNA [3]. The histone

genes may be clustered into distinct chromosomal

regions, and among invertebrates, these genes are typi-

cally clustered as quartets (H2A, H2B, H3, and H4) or
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quintets (H2A, H2B, H3, and H4 plus H1), although

scattered solitary genes have also been reported [4-6].

Ribosomal RNA and multigene histone families are

very useful cytogenetic markers for studying chromoso-

mal diversification and genome organization. In insects,

these sequences have been cytogenetically mapped more

frequently in species belonging to the orders Coleoptera,

Lepidoptera and Orthoptera, although studies are still

incipient and have concentrated on mapping the major

rDNA locus [7-11]. The mapping of other multigene

families, such as the 5S rDNA locus and the histone

genes, was primarily performed in specific groups, e.g.,

Acrididae [9,12] and Proscopiidae grasshoppers [10],

chironomid midges [13] and fruit flies [14,15].

Scarabaeidae beetles comprise more than 25,000 spe-

cies that are distributed worldwide and represent the

largest group of the Scarabaeiodea superfamily [16,17].

Notably, the macro karyotypic structure of the Scarabai-

dae family is highly diverse in the representatives of sub-

family Scarabaeinae (dung beetles), with variations in the

diploid number that range from 2n = 8 to 2n = 24, dis-

tinct sex chromosome systems and chromosomal

morphologies [18]. Scarabaeidae have been poorly stu-

died with regards to chromosomal mapping of DNA

sequences, and the analyses were primarily performed to

describe the major rDNA clusters [19-27]. Only species

from the genus Dichotomius have been analyzed with

regard to the histone genes and the 5S rDNA locus [28].

Due to the high chromosomal diversity of Scarabaei-

nae beetles, the chromosomal organization and evolu-

tion of the group, the diploid number, the distribution

of heterochromatin, the location of the 18S and 5S

rRNA loci, and the histone H3 gene arrays were ana-

lyzed in several species that belong to different lineages,

in order to understand the patterns of karyotypic evolu-

tion in the group. Our results showed distinct evolution-

ary patterns for the multigene families studied. The 5S

rRNA and histone H3 gene clusters were primarily asso-

ciated and were highly conserved in number, while the

major rDNA locus and heterochromatin regions showed

an intense turnover in their number and location in the

Scarabaeinae karyotypes. These results are also discussed

in the light of the possible mechanisms that are involved

in diversification of repeated DNA elements.

Results
Karyotypes and heterochromatin distribution

Chromosomal complements and heterochromatin distri-

bution patterns of 13 Scarabaeinae species were deter-

mined, including new descriptions and re-descriptions

of previously published data (Table 1). The variation in

the diploid number ranged from 2n = 8 to 2n = 20. The

species were classified in three distinct groups of karyo-

types based on their heterochromatin distribution

pattern: (i) heterochromatin restricted to the centro-

meric/pericentromeric regions (non-spread pattern), (ii)

heterochromatin in the centromeric/pericentromeric

regions with additional terminal or subterminal hetero-

chromatic blocks (moderately spread pattern), and (iii)

high amount of heterochromatin, primarily represented

by diphasic chromosomes (with heterochromatin blocks

occupying one entire chromosomal arm) and large para-

centromeric blocks of heterochromatin (highly spread

pattern) (Table 1).

Mapping of multigene families

Chromosomal mapping of the 18S and 5S rDNA loci

primarily revealed conspicuous clusters on distinct chro-

mosomes (Figures 1, 2). The most common pattern for

the 18S rDNA clusters was the presence of two sites

(one bivalent). However, the number of clusters for this

repeated gene ranged from one to 16, with an average

of 4.2 sites per diploid genome, that were located on the

autosomes, sex chromosomes or both. The autosomes

were the most common location (~89.0% of the sites)

(Figures 1, 2, 3 and Table 1). For the 5S rRNA gene

almost all species presented only two sites (one bivalent)

that were located on one autosomal pair (Figures 1, 2

and Table 1). Distinct 5S rDNA location patterns were

observed for several species. In Eurysternus caribaeus

(Figure 2a), the 5S rDNA was restricted to the × chro-

mosome; in Diabroctis mimas (Figure 1c), six clusters

were observed (five on the autosomes and one on the ×

chromosome). In Coprophanaeus ensifer (Figure 1a), the

clusters were located on the sex chromosomes. In gen-

eral, the two rRNA genes presented distinct location,

although in three species the sites of the 18S and 5S

rDNA loci occurred in the same chromosomal region

(Figures 1, 2). In D. mimas, the sites of the 18S and 5S

rDNA loci co-occurred on one autosomal bivalent pair

and on the × chromosome (Figure 1c). For Digitontho-

phagus gazella and E. caribaeus, these genes were collo-

cated on one autosomal bivalent or on the ×

chromosome, respectively (Figure 2a, b).

FISH for the 5S rRNA and histone H3 genes revealed

that these two markers show overlapping signals in the

karyotypes of six species randomly selected and in all

other previously studied species, indicating that the

two genes co-locate (Figure 4, Table 1). In most spe-

cies, these two sequences were located only on one

autosomal bivalent (Figure 4, Table 1). However, in C.

ensifer, the 5S rDNA and histone H3 gene elements

were located on the × and Y chromosomes (Figure

4b), while in E. caribaeus, the H3 gene elements were

exclusively found on the × chromosome (Figure 4e). In

D. mimas, these two loci were located on five autoso-

mal chromosomes and the × chromosome (results not

shown).
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Table 1 Diploid numbers, heterochromatin patterns and chromosome location of rDNA clusters and H3 histone gene

in 31 Scarabaeinae species

Tribe Chromosomal formula
(males)

Overall heterochromatin distribution 45S rDNA 5S rDNA H3
histone

References

Species Aut Sex Aut Sex Aut Sex

Ateuchini

Atheuchus sp. 16 = 7 + Xy Pericentromeric blocks 4 - 2 - This work

Canthonini

Canthon staigi 18 = 8 + Xyp Pericentromeric blocks 2 - 2 - This work

Deltochilum
calcaratum

14 = 6 + neoXY Pericentromeric blocks and diphasic
chromosomes

4/6* X/X, Y* 2 - [26]; This
work

D. elevatum 20 = 9 + Xyp 2 - 2 - This work

D. morbillosum 14 = 6 + neoXY Pericentromeric blocks and diphasic
chromosomes

4 X [26]

D. verruciferum 20 = 9 +XYp Pericentromeric blocks and diphasic
chromosomes

4 Y 2 - 2 - This work

Coprini

Dichotomius affinis 18 = 8 + Xyp 2 - 2 - [28]

D. bos 18 = 8 + Xyp Pericentromeric blocks 2 - 2 - 2 - [28]

D. crinicollis 18 = 8 + Xyp Pericentromeric blocks 2 X 2 - 2 - [28]

D. depresicollis 18 = 8 + Xyp Pericentromeric blocks 2 - 2 - 2 - [28]

D. geminatus 18 = 8 +Xyp Pericentromeric and terminal blocks 4 - 2 - 2 - [28,63]

D. laevicollis 18 = 8 + Xyp Pericentromeric blocks 2 - 2 - 2 - [28]

D. mormon 18 = 8 + Xyp 3/4* X/X* 2 - [28]

D. aff mundus 18 = 8 + Xyp 2 - 2 - [28]

D. nisus 18 = 8 + Xyp Pericentromeric blocks - X, Y 2 - 2 - [25,28]

D. semianeus 18 = 8 + Xyp - X 2 - [28]

D. semisquamosus 18 = 8 + Xyp Pericentromeric blocks 2/2* -/X* 2 - 2 - [25,28]

D. sericeus 18 = 8 + Xyp Pericentromeric blocks 2 - 2 - 2 - [25,28]

D. aff sericeus 18 = 8 + Xyp 2 - 2 - [28]

Dichotomius sp. 18 = 8 + Xyp 2 - 2 - [28]

Ontherus
appendiculatus

20 = 9 + Xyp Pericentromeric and terminal blocks 2 - 2 - This work

O. sulcator 20 = 9 + Xyp 7/8* - This work

Oniticellini

Eurysternus
caribaeus

8 = 3 + neoXY Pericentromeric blocks - X, Y - X - X [24]; This
work

Gymnopleurini

Gymnopleurus
sturmi

20 = 9 +Xy Pericentromeric and subterminal blocks 4/5* - [22]

Onitini

Bubas bison 20 = 9 + XY Pericentromeric and large terminal blocks 8 [23]

Onthophagini

Digitonthophagus
gazella

20 = 9 + Xyp/Xy/Xyr Pericentromeric blocks 2 - 2 - This work

Phanaeini

Coprophanaeus
cyanescens

20 = 9 + XYp Diphasic chromosomes 5/4* -/X* 2 - 2 - [27]; This
work

C. ensifer 20 = 9 + XY Diphasic chromosomes 15/
10*

X/- * - X, Y - X, Y [27]; This
work

Diabroctis mimas 20 = 9 + Xyp/Xy Paracentromeric blocks and diphasic
chromosomes

4/6* X/X* 5 X 5 X [21]; This
work

Isocopris inhiata 18 = 8 + Xyp Peri- and paracentromeric blocks and
diphasic chromosomes

2 - [21]

Phanaeus
splendidulus

20 = 9 + Xyp 7 - 2 - 2 - This work

The references provided in the table are related to results of heterochromatin distribution or chromosomal mapping of rDNAs and H3 histone genes.

* Indicates the presence of polymorphism, being the two conditions observed in the same species separated by (/); Empty boxes: not available data;
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Figure 1 Fluorescent in situ hybridization in metaphase I using 5S rDNA (red) and 18S rDNA (green) in nine representative species of

Scarabaeinae that belong to three distinct tribes ([a-d] Phanaeini, [e-h] Canthonini, [i] Ateuchini). (a) Coprophanaeus ensifer, (b) C.

cyanescens, (c) Diabroctis mimas, (d) Phanaeus splendidulus, (e) Canthon staigi, (f) Deltochilum calcaratum, (g) D. verruciferum, (h) D. elevatum and

(i) Atheuchus sp. The arrows indicate the sex chromosome bivalents. Note the co-localization of the two gene clusters in (c) at two

chromosomes. Bar = 5 μm.
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The analysis of interphasic nuclei and early meiotic

cells (with less condensed chromosomes/chromatin)

hybridized with the 18S and 5S rDNA and histone H3

probes revealed that the 5S rRNA and histone H3 genes

overlapped (additional file 1), as observed in the

condensed metaphasic chromosomes (Figure 4). How-

ever, the 18S rDNA loci were located in a distinct

region of the cell from the 5S and histone sites, and

only the species that showed co-location of the 5S/18S

rDNAs (E. caribaeus and D. gazella) (Figure 2a, b),

showed overlapping signals (additional file1e, f).

An interesting characteristic for the three multigene

families studied was the presence of only one site per

chromosome (Figures 1, 2, 4). In addition to the varia-

bility observed for the 18S rDNA loci in the species stu-

died here for the first time, we identified polymorphisms

regarding the number of sites in species that had pre-

viously described, such as in Deltochilum calcaratum, C.

ensifer, C. cyanescens and Diabroctis mimas (Table 1).

Heteromorphism related to the cytogenetic mapping

of the three genes in several species was observed with

regard to the size and presence/absence of the clusters

in the homologous chromosomes, as in, for example,

Ontherus sulcator (Figure 2d), D. mimas (Figure 1c) and

Phanaeus splendidulus (Figure 1d). For E. caribaeus it

was observed variability of 18S rDNA cluster size

between × and Y chromosomes, and 5S rRNA/H3 his-

tone genes were restrict to × chromosome. Although we

were able to define the number of clusters for the genes

mapped, the precise positions along the chromosomes

were sometimes difficult to determine due the small size

and the high condensation level of the chromosomes. It

was also difficult to determine the specific chromosome

pair that contained the sequences studied in some spe-

cies due the karyotypic symmetry.

The data obtained regarding the number of major

rDNA sites for 31 species (including both the present

work and previous published data) were compared to

the diploid numbers (2n) and heterochromatin distribu-

tion patterns to evaluate the relationship between these

karyotype features. The variations in the diploid number

and the number of rDNA sites showed no apparent

Figure 2 Cytogenetic mapping of the 5S (red) and 18S (green)

rDNA clusters in four species of Scarabaeinae belonging to the

(a) Oniticellini, (b) Onthophagini, and (c, d) Coprini tribes. (a)

Eurysternus caribaeus, (b) Digitonthophagus gazella, (c) Ontherus

apendiculatus and (d) O. sulcator. The arrows indicate the sex

bivalents. Note the co-localization of the two gene clusters in (a)

and (b). Bar = 5 μm.

Figure 3 (a) Distribution of the major rDNA loci among 31 Scarabaeinae species; (b) Total number of major rDNA clusters and their

frequency on the autosomal and sex chromosomes. Species with intraspecific variation were considered twice (see Table 1).
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relationship as indicated by a low correlation value (r =

0.21, P = 0.199) between the data (Figure 5a). However,

a higher number of major rDNA sites were observed in

species with increased amounts of heterochromatin (Fig-

ure 5b).

Discussion

High diversity of the chromosomal distribution of the 18S

rDNA clusters and heterochromatin

Considering the major rRNA genes, two main patterns

of distribution were detected (i) two rDNA sites (one

chromosomal bivalent) harboring these genes, as

observed in Dichotomius, Canthon staigi, Deltochilum

elevatum and Ontherus apendiculatus; (ii) increased

numbers of 18S rDNA clusters (ranging from 3 to 16

sites), as observed in Bubas bison, C. ensifer, C. cyanes-

cens, D. mimas, Ontherus sulcator and three Deltochi-

lum species. This suggests that the major rRNA genes

are under a distinct evolutionary mechanism regarding

cluster spreading.

The two main patterns for the major rDNA distribu-

tion were primarily observed for three tribes, Cantho-

nini, Coprini and Phanaeini, which include several

species analyzed. Among Coprini species, the clusters of

the major rDNA clusters have not suffered intense chro-

mosomal reorganization, as they are primarily associated

with only one bivalent, as observed in Dichotomius spe-

cies and Ontherus apendiiculatus. Phanaeini is

Figure 4 FISH for the 5S rRNA and histone H3 genes in five Scarabaeinae representatives. (a) Coprophanaeus cyanescens, (b) C. ensifer, (c)

Phanaeus splendidulus, (d) Deltochilum verruciferum and (e) Eurysternus caribaeus. The arrows indicate the sex bivalents. Note the co-localization of

the two clusters in all cells, and the presence of only one cluster for the two genes on the × chromosome in (e). Bar = 5 μm.
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Figure 5 Comparison of the distribution of the number of 18S rDNA loci and the diploid number in 31 species of Scarabaeinae (a) or

with the distribution of heterochromatin in 21 species (b). Each symbol indicated below the name of species represents one of the distinct

tribes: (T with stroke) Oniticellini, (phi) Ateuchini, (black circle) Coprini, (empty triangle) Onthophagini, (plus sign) Gymnopleurini, (asterisk)

Canthonini, (empty circle) Onitini and (black square) Phaneini. Species with intraspecific variation were considered twice (see Table 1). The color

of the bars in (a) corresponds to each defined class regarding the diploid number, 2n = 8 (black), 2n = 14 (light green), 2n = 16 (orange), 2n =

18 (red), 2n = 20 (blue), and in (b) the distribution of heterochromatin, pericentromeric blocks (purple), pericentromeric and terminal blocks

(brown), pericentromeric blocks and diphasic chromosomes (dark green). In (b), the colored squares correspond to each heterochromatin

distribution pattern.
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characterized by an intense movement of the major

rDNA clusters that resulted in the generation of differ-

ent numbers of sites on several chromosomes, as

observed in C. ensifer, which presents the highest num-

ber of rDNA clusters (16 sites) within the subfamily,

and in Coleoptera [27]. Intraspecific polymorphism with

regard to the number of rDNA clusters was observed in

Coprophaneus ensifer, C. cyanescens, and D. mimas. In

the Canthonini tribe, variable patterns of rDNA clusters

were observed, with species presenting with either no

spreading of the major rDNA clusters, such as Canthon

staigi and Deltochilum elevatum, or with scattered

rDNA clusters, as observed for three of the Deltochilum

representatives. These results indicate that the major

rDNA clusters’ ability to move is independent of taxo-

nomic units and may be related to the heterochromatin

dispersion (see discussion below).

The ancient condition in Scarabaeinae appears to be

the occurrence of one autosomal bivalent as a nucleolar

organizer. This theory is corroborated by the presence

of the pattern in a large number of species within the

group and the sister groups of the subfamily. That dis-

tribution pattern is also the most common pattern for

Coleoptera as a whole, at least for representatives of

Polyphaga [29]. In addition to this common pattern that

consists of only one chromosomal pair of major rDNA

clusters, an intense repositioning of the major rDNA

clusters in Scarabaeinae was involved in the increasing

number of rDNA sites and the movement to different

autosomes and sex chromosomes. The presence of

major rDNA clusters associated with the sex chromo-

somes in different species could be related to either (i)

the occurrence of large chromosomal rearrangements,

such as fusions, as observed in Deltochilum calcaratum,

D. morbillosum and E. caribaeus, species that have a

derived neo-XY sex system, or (ii) the occurrence of

transpositions, as observed in Coprophanaeus, D. mimas

and Deltochilum verruciferum, which are species with

the ancient Scarabaeinae diploid number (2n = 20).

Although the occurrence of chromosomal fusions were

proposed in some species with a reduced diploid num-

ber, the presence of rDNA clusters on the sex chromo-

somes could also be a result of transpositions if fusion

involving only autosomes is considered, as in Dichoto-

mius [28].

Although the variation in the number of major rDNA

clusters can be attributed to chromosomal rearrange-

ments in some species, there is no correlation between

the variation in the rDNA sites and the diploid number.

There are examples of species that have a reduction in

the diploid number without a modification to the num-

ber of rDNA sites, while species with conservation of

the ancestral diploid number and extensive repositioning

and expansion of major rDNA clusters number have

also been identified. There is evidence of the “move-

ment” and “multiplication” of the major rDNA clusters

without fusions or other chromosomal rearrangements

[30]. In Scarabaeinae, these modifications could be

attributed to an ectopic recombination and transposition

and to inversions and translocations within the genome.

Similar mechanisms are responsible for intra- and inter-

specific variations in other insects, such as Acrididae

grasshoppers [8] and in Lepidoptera [11]. These results

indicate distinct evolutionary trends that are related to

the macro-chromosomal structure (diploid number,

chromosome morphology and sex chromosomes) and

the organization of the major rDNA genes in some

insect genomes.

The analysis of heterochromatin and major rDNA dis-

persion revealed an interesting relationship pattern. Spe-

cies with heterochromatin restricted to the centromeric/

pericentromeric regions were primarily characterized as

having a stable number of major rDNA that were

restricted to one chromosomal bivalent. Only Ateuchus

sp. had four clusters, while the presence of three clusters

in D. semisquamosus was a polymorphic condition.

However, extensive variability in the number of major

rDNA sites was observed in the majority of representa-

tives (except for Isocopris inhiata) in which heterochro-

matin was dispersed and occurred in large quantities

within the karyotypes, e.g., large paracentromeric het-

erochromatic blocks and diphasic chromosomes. In spe-

cies that showed a moderate dispersion of

heterochromatin, the major rDNA clusters spread in

two species and was restricted to one autosomal bivalent

in another, Ontherus appendiculatus. Interestingly in

species whose the relationship in position for hetero-

chromatic blocks and major rDNA was possible to

determine it was observed a general pattern for non co-

localization in some representatives without dispersion

for these two chromosomal markers, such as in Dichoto-

mius [28]. In species with spreading of these elements

in general they were co-located, such as in Deltochilum

and Coprophaneus [26,27]. Our results indicate that the

same evolutionary forces might be acting on these two

components of the Scarabaeinae genome, resulting in

the spreading of the major rDNA clusters along with

heterochromatin. This hypothesized pattern of evolution

might be favored by ectopic paring during chromocenter

formation during the initial meiotic stage. Ectopic pair-

ing is a common behavior in this insect group that

appears to play an important role in nucleolar organiza-

tion and chromosomal segregation [31,32].

The restriction or spreading of the number of rDNA

clusters might be associated with the presence or

absence of an appropriate molecular mechanism asso-

ciated with heterochromatin and involved in the ectopic

recombination possibly caused by repeated DNAs. The
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ability of rDNA clusters to move and vary in number

was first observed by Schubert (1984) [33] in Allium.

Since then, some additional evidence has accumulated

concerning the ability of rDNA to move within the gen-

ome. Recent studies have proposed that transposable

elements are a potential source for the movement of

rDNA [34,35] and other genes [36,37] to different

regions of the genome.

The conservation of the 5S rRNA and histone H3 genes in

Scarabaeinae karyotypes

In contrast to the variability in the number of major

rDNA clusters, a high conservation in the number of 5S

rRNA and histone H3 gene clusters was observed. For

invertebrates, the mapping of these sequences was pre-

viously restricted to few species of mollusks, insects,

crustaceans, annelids and echinoderms [9,10,12,

28,38-42]. In insects, these types of studies have been

mainly focused on grasshoppers [9,10,12,42], and only

14 species of beetles had been previously studied, all of

which belong to the genus Dichotomius [28]. The co-

localized clusters (one bivalent) for these two genes in

some Scarabaeinae species could indicate that this is the

ancient organization for these sequences, and they have

not extensively changed in number since the origin of

Scarabaeinae [43], despite the diversification of the spe-

cies. An intense conservation of the number of histone

gene clusters, with only one or two chromosomes con-

taining clusters, has also been described in grasshoppers

[9,10], mollusks [40,41] and fish species [44,45],

although variability has also been reported in these

groups. These results might indicate that a strong puri-

fying selection acts on the histone clusters, preventing

the spread of these genes through the genome, as was

proposed for the grasshoppers [9].

The 5S rDNA gene is highly conserved in Scarabaei-

nae representatives, and all species examined showed an

overlap between the 5S rDNA and the histone H3

genes’ signal at the same chromosomal region. This

overlap was corroborated by the observation of over-

lapped signals in cells that were in the initial stages of

meiosis and that had interphasic nuclei containing less

condensed chromosomes. This indicates that these two

multigene families could have a linked organization in

the Scarabaeinae genomes. The associated dispersion of

the 5S rRNA/histone H3 genes in D. mimas and the

restriction of these two sequences to the × chromosome

of E. caribaeus, likely due to unequal cross-over events

between the × and Y chromosome in this species [24],

reinforces the hypothesis that the 5S rDNA/histone H3

gene clusters are associated in the genome. Additional

molecular studies are necessary to fully confirm this

hypothesis. An associated or co-localized organization

has also been described in mollusks [46], crustaceans

[47-49], Dichotomius coleopterans [28] and Proscopiidae

grasshoppers [10]. Our results reinforce the idea that

the association of the 5S rDNA and histone H3 clusters

is not sporadic in coleopterans and that it appears to be

common. Besides the association of 5S rDNA and his-

tone H3 genes, co-localization or linked organization of

major rDNA and histone genes were also reported in

insect as described recently for example in Diuraphis

noxia (Hemiptera) [50], Anthonomus grandis and A. tex-

anus (Coleoptera) [51].

Unlike the results observed among the representatives

of Scarabaeinae, the 5S rDNA cluster is highly dynamic

among chromosomes and the genomic dynamism in

some animal groups, such as in fish and Acrididae

grasshoppers [12,52,53]. This stability in Scarabaeidae

beetles could be the result of its association with the

histone genes, which may result in the same purifying

selection that appears to act against the spread of his-

tone clusters.

In contrast to the co-localization of the 5S rDNA/

histone H3 clusters, the 18S rDNA is not co-localized

in the genomes of the Scarabaeinae species studied.

Only Diabroctis mimas and Digitonthophagus gazella

showed a co-localization of these sequences. These

results could be explained by a transposition of the

18S rDNA cluster due to its intense movement in the

genome of some species. This physical separation

could be result in a functional advantage for these

ribosomal sequences. The disassociation of the two

multigene families that encode for rRNAs is a common

pattern for eukaryotic and vertebrate chromosomes,

including those in fishes [54-56]. However, some inver-

tebrate species have co-localized rRNA clusters,

including representatives of the annelids, mollusks and

crustaceans; however, a non co-localized organization

has also been described [38,48,57,58].

The association/co-localization of multigene families

in animal genomes has been reported for some

sequences, including rRNAs, the histone genes and

small nuclear RNAs (snRNAs). These associations/co-

localizations are poorly understood, and their biological

effect is still unclear. According to studies by Dover

(1986) [59] and Liu and Fredga (1999) [60], the linkage

is important to maintain multiple, conserved arrays.

Kaplan et al. (1993) [61] hypothesized that the associa-

tion of the repetitive multigene families might play a

functional role in the organization of the nucleus. In the

case of the 18S rDNA, 5S rDNA and histone H3 his-

tone, the separation of the 18S and 5S rDNA arrays

might convey a functional advantage, since the 18S

rRNA gene is transcribed by RNA polymerase I and the

5S rRNA gene is transcribed by RNA polymerase III.

However, the association of the histone H3 and 5S

rRNA genes cannot be explained by a transcriptional
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advantage because these two sequences are transcribed

by different polymerases.

Conclusions

The high variability in the karyotype organization pre-

viously observed in Scarabaeinae representatives resulted

from distinct chromosome rearrangements during their

evolution [18] is also observed for heterochromatin and

the 18S rDNA clusters. Our results indicate that these

two genomic elements (18S rDNA and heterochromatin)

likely are subjected to similar evolutionary forces that

regulate their spreading in the distinct Scarabaeinae sub-

family lineages. The conservation of the location and

number of the 5S rRNA and histone H3 gene clusters

indicates that these multigene families are likely under

the control of different evolutionary forces than the 18S

rDNA clusters and heterochromatin. This separation

reinforces the idea that evolutionary spreading mechan-

ism might operate differently at multigene families and

other repeat elements.

Methods
Samples from adult males of 13 species of Scarabaeinae

beetles were collected in distinct cities in the Minas

Gerais, Paraná, Pernambuco, and São Paulo states in

Brazil. The testes were fixed in Carnoy (3:1 ethanol:

acetic acid) and were stored in the freezer at -20°C. To

check the male karyotypes, the slides were stained with

2% lacto-acetic orcein. The chromosome preparations

for the C-banding and fluorescence in situ hybridization

(FISH) experiments were made by squashing using a

drop of 45% acetic acid and subsequently removing the

coverslip after immersion in liquid nitrogen. The C-

banding experiments were performed according the pro-

tocol described by Sumner (1972) [62].

DNA probes for 5S rDNA and H3 histone sequences

were obtained from cloned fragments obtained from the

genome of the beetle Dichotomius semisquamosus [63].

The 18S rRNA and histone H3 gene probes were labeled

by nick translation using biotin-11-dATP (Invitrogen,

San Diego, CA, USA), and the 5S rRNA gene was labeled

with digoxigenin-11-dUTP (Roche, Mannheim, Ger-

many). The FISH procedures were performed according

to the method adapted by Cabral-de-Mello et al. (2010b)

[63]. Preparations were counterstained with 4,6-diami-

dino-2-phenylindole (DAPI) and mounted in Vectashield

(Vector, Burlingame, CA, USA). Images were captured

using an Olympus DP71 digital camera coupled to a

BX61 Olympus microscope and were optimized for

brightness and contrast using Adobe Photoshop CS2.

Statistical analysis was performed using the Pearson

rank test to analyze the degree of correlation between

the number of 45S rDNA sites and the diploid number.

A comparative analysis between the distribution of

heterochromatin and the number of 45S rDNA sites

was also performed.

Additional material

Additional file 1: Fluorescence in situ hybridization using as probes

18S and 5S rDNAs and histone H3 in initial meiotic and interphasic

nucleus of Scarabaeinae beetles species. Initial meiotic cells (a-e, h, i)

and interphasic nuclei (f, g) hybridized with probes for the 18S (green)

and 5S rDNA (red) genes (a-f) and the histone H3 (green) and 5S rRNA

(red) genes (g-i). (a) Deltochilum elevatum, (b) Deltochilum calcaratum, (c)

Dichotomius crinicollis, (d) Coprophanaeus cyanescens, (e, f) Diabroctis

mimas, (g) Dichotomius bos, (h) Dichotomius laevicollis and (i) Deltochilum

verruciferum. Note the separation of the 18S and 5S rDNA signals in (a-e).

In (f), two small signals for 18S and 5S rDNA overlap, and note the

overlapped configuration of 5S rRNA and histone H3 genes in (g-i). Also

note the formation of the chromocenter by heterochromatic sequences

(a, b, d, e and i). A scale bar is not shown.

List of abbreviations

2n: diploid number; DAPI: 4, 6-diamidino-2-phenylindole; FISH: fluorescence

in situ hybridization; rDNA: ribosomal DNA; rRNA: ribosomal RNA; snRNA:

small nuclear RNA
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