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Abstract Cancer cells display aneuploid karyotypes and typically mis-segregate chromosomes at

high rates, a phenotype referred to as chromosomal instability (CIN). To test the effects of

aneuploidy on chromosome segregation and other mitotic phenotypes we used the colorectal cancer

cell line DLD1 (2n = 46) and two variants with trisomy 7 or 13 (DLD1+7 and DLD1+13), as well as

euploid and trisomy 13 amniocytes (AF and AF+13). We found that trisomic cells displayed higher

rates of chromosome mis-segregation compared to their euploid counterparts. Furthermore, cells

with trisomy 13 displayed a distinctive cytokinesis failure phenotype. We showed that up-regulation

of SPG20 expression, brought about by trisomy 13 in DLD1+13 and AF+13 cells, is sufficient for the

cytokinesis failure phenotype. Overall, our study shows that aneuploidy can induce chromosome

mis-segregation. Moreover, we identified a trisomy 13-specific mitotic phenotype that is driven by

up-regulation of a gene encoded on the aneuploid chromosome.

DOI: 10.7554/eLife.05068.001

Introduction
Aneuploidy, an abnormal number of chromosomes, is a leading cause of mis-carriage and birth

defects in humans (Nagaoka et al., 2012). In the vast majority of cases, this is due to errors

occurring in the oocyte (Nagaoka et al., 2012). However, aneuploidy can also arise in somatic

cells, and a number of studies have reported age-dependent increases in aneuploidy in human

peripheral blood lymphocytes (Nowinski et al., 1990; Carere et al., 1999; Leopardi et al., 2002).

Moreover, aneuploidy was recognized as a common feature of cancer cells already a century ago

(Boveri, 1914, 2008), and a causal role of aneuploidy in carcinogenesis is currently largely

acknowledged (reviewed in [Pavelka et al., 2010a; Nicholson and Cimini, 2011]). In addition to

being aneuploid, cancer cells typically display high rates of chromosome mis-segregation,

a phenomenon termed chromosomal instability (CIN) (Lengauer et al., 1997; Bakhoum et al.,

2014). The observation that even mosaic aneuploidy can cause severe physical and cognitive

developmental defects (Biesecker and Spinner, 2013) indicates that aneuploidy has pleiotropic

deleterious effects. This idea is further supported by a number of experimental observations: first,

knocking down spindle assembly checkpoint genes, which results in high rates chromosome mis-
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segregation and high levels of aneuploidy, invariably causes embryonic lethality in mouse models

(Foijer et al., 2008). Second, aneuploid yeast strains were shown to exhibit defects in cell cycle

progression and metabolism (Torres et al., 2007). Third, MEFs derived from mice carrying specific

trisomies were found to display cell proliferation defects and metabolic alterations (Williams et al.,

2008). Finally, genes involved in stress response were shown to be upregulated in aneuploid yeast

and human cells (Sheltzer et al., 2012; Stingele et al., 2012). But in the context of cancer,

aneuploidy and CIN strongly correlate with drug resistance (Lee et al., 2011) and poor patient

prognosis (Bardi et al., 2004; Carter et al., 2006; Walther et al., 2008; Sheffer et al., 2009),

indicating that aneuploidy and CIN may confer a proliferative advantage to cancer cells. In support

of this idea, certain aneuploidies were found to confer drug resistance in aneuploid Saccharomyces

cerevisiae (Pavelka et al., 2010b) and Candida albicans (Selmecki et al., 2006, 2009). These

studies suggest that aneuploidy may confer adaptability by inducing chromosome-specific

phenotypic changes, despite general negative effects on cell physiology. However, this problem

remains to be investigated in human cells.

Recent work in aneuploid budding yeast also showed that aneuploidy is sufficient to cause CIN

(Sheltzer et al., 2011; Zhu et al., 2012), but whether this is true in human cells is still a matter of debate

(Duesberg, 2014; Heng, 2014; Valind and Gisselsson, 2014a, 2014b). In fact, this question has been

difficult to address in cancer cells due to the complexity of cancer karyotypes (Gisselsson, 2011;

Mitelman et al., 2014), and previous studies in human cancer and non-cancer cells have reached

discrepant conclusions (Lengauer et al., 1997; Duesberg et al., 1998; Miyazaki et al., 1999; Valind

et al., 2013). To determine the effect of aneuploidy on chromosome segregation and cell division in

human cells, we utilized a number of diploid human cell types and trisomic counterparts, including:

colorectal cancer cell line DLD1 (2n = 46) and trisomic counterparts carrying extra copies of chromosomes

7 or 13 (DLD1+7 and DLD1+13, respectively); diploid amniotic fibroblasts (AF) and amniotic fibroblasts

with trisomy 13 (AF+13). These different cell types constitute a good model for our study for two main

reasons: first, their karyotypes are aneuploid, but not as complex as typically found in tumors and cancer

cell lines; second, they represent different cellular models (transformed and untransformed) of aneuploidy.

eLife digest The DNA in a human cell is divided between forty-six structures called

chromosomes. Before a cell divides, it copies every chromosome so that each daughter cell will have

the same DNA as the parent cell. These chromosomes align in the center of the cell and then the

matching chromosomes are separated and pulled to opposite ends.

However, in some cases the separation process does not work properly, which can produce cells

that either have too many, or too few, chromosomes. Abnormal numbers of chromosomes within

cells—called aneuploidy—is a leading cause of miscarriage and birth defects in humans. Aneuploidy

is also a common feature of cancer cells.

It is common for the chromosomes in cancer cells to be distributed unequally when the cell

divides. This phenomenon is known as chromosomal instability, but the link between aneuploidy and

chromosomal instability in cancer cells is not fully understood.

Here, Nicholson et al. used live-cell imaging techniques to analyze healthy human cells and cancer

cells that had either the normal forty-six chromosomes, or a defined extra chromosome. Nicholson

et al. found that when the cells divided, the chromosomes in the cells that had an extra copy of

chromosome 7 or 13 were more prone to distributing chromosomes unequally, compared to cells

with a normal number of chromosomes.

Nicholson et al. also observed that the cells with an extra chromosome 13 were unable to properly

divide into two. These cells had increased levels of a protein called Spartin—which is important for

the last stage in cell division—and this was responsible for the failure to produce two daughter cells.

These findings show that aneuploidy can cause chromosomal instability in human cells.

Furthermore, Nicholson et al. have identified a defect in cell division that is specifically caused by the

presence of an extra chromosome 13 in human cells. A future challenge will be to determine how,

and to what extent, different chromosomes can affect chromosome stability. This could be useful in

the development of therapies against cancer cells with aneuploidy.

DOI: 10.7554/eLife.05068.002
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Results
DLD1+7 and DLD1+13 cell lines were previously generated by micro-cell mediated chromosome

transfer (Upender et al., 2004), whereas AF and AF+13 cells (three cases each; see Table 1) were

collected upon amniocentesis. The presence of the additional chromosome was confirmed by

fluorescence in situ hybridization (FISH) with locus-specific probes (Figure 1A–B). Analysis of DLD1+7

cells previously showed that a large fraction (87%) of the population was trisomic (Upender et al.,

2004). However, the DLD1+13 cell population was shown to rapidly accumulate disomic (by loss of one

copy of chromosome 13) and tetraploid cell populations (Upender et al., 2004). Thus, for this study we

sub-cloned DLD1+13 cells in order to select a more homogenous cell population. When we analyzed

the clone selected for this study at early passages (P. 3–4) by chromosome 13 painting, we found that

83.5% of the cells in the population carried the trisomy 13 (Figure 1C). Similarly, analysis of AF+13

interphase nuclei (passage 1–2) FISH-stained with probes specific for chromosomes 13 and 21 showed

that the cell populations used in this study were highly homogenous (88.1 ± 6.5%) for the trisomic

karyotype (Figure 1C). Furthermore, we performed array comparative genomic hybridization (aCGH) of

all three DLD1 cell lines (Figure 1—figure supplement 1A,B,E). In all DLD1 cell lines, we found

amplification of regions on the p arm of chromosomes 2 and 11 and a deletion of a region on the p arm

of chromosome 6, which are known to be recurrently found in DLD1 cells. In addition to these common

copy number variations (CNVs), the DLD1+7 cell line (analyzed at passage 4) carried a partial trisomy 7

including most of the q arm (Figure 1—figure supplement 1B–C). FISH staining with a probe specific

to the centromere of chromosome 7 confirmed that the extra chromosome included a centromere

(Figure 1—figure supplement 1D). aCGH of DLD1+13 cells (at passage 11) showed that in addition to

the CNVs identified in all three DLD1 cell lines, there was an extra copy of the entire chromosome 13

(Figure 1—figure supplement 1E–F). The experiments described hereafter were performed at

passage number 7–25 for DLD1+7 cells and 13–25 for DLD1+13 cells to limit evolution of the

karyotypes and passage number 1–3 for amniocytes, whose proliferation was limited to few passages.

Increased chromosome mis-segregation in cells with trisomy 7 or 13
To investigate the effect of aneuploidy on chromosome segregation, we analyzed anaphase lagging

chromosomes, a common cause of aneuploidy in normal and cancer cells (Cimini et al., 2001;

Thompson and Compton, 2008). By analyzing fixed cells with immunostained kinetochores and

microtubules, we found that DLD1+7 and DLD1+13 cells displayed significantly higher frequencies of

anaphase lagging chromosomes compared to the parental DLD1 cell line (Figure 2A–B). We found no

evidence of aneuploidy-dependent increases in other mitotic defects, such as multipolar mitoses and

anaphase chromosome bridges (Figure 2—figure supplement 1). Frequencies of anaphase lagging

chromosomes in AF and AF+13 cells could not be analyzed in fixed samples due to low mitotic

indices. However, we optimized live-cell imaging of AF and AF+13 cells expressing H2B-GFP/RFP-

tubulin (Figure 2C; Videos 1–2) and found higher frequencies of anaphase lagging chromosomes in

AF+13 compared to AF cells (Figure 2D). Anaphase chromosome bridges or multipolarity were never

observed in AF or AF+13 cells.

As an additional method to measure chromo-

some mis-segregation and to account for events

in which two sister chromatids co-segregate to

the same spindle pole/daughter cell, we com-

bined the cytokinesis-block assay (Fenech, 1993)

with FISH staining using locus-specific probes

for chromosomes 3, 7, 11, and 13 in DLD1

cell lines, and probes specific for chromosomes 7,

11, 12, 13, 18, and 19 in amniocytes. Using

this approach, which allows analysis of the

reciprocal distribution of chromosomes between

the daughter nuclei of a single mitotic division

(Figure 3A, Figure 3—figure supplement 1), we

found a significant increase in chromosome mis-

segregation in DLD1+7, DLD1+13, and AF+13

compared to the corresponding diploid cell

Table 1. Euploid and trisomic amniocytes used in

this study

Name Karyotype Gestational age (week)

AF 1 46,XX 17

AF 2 46,XY 20

AF 3 46,XX 21

AF+13 1 47,XX,+13 16

AF+13 2 47,XX,+13 21

AF+13 3 47,XX,+13 21

AF+18 47,XX,+18 17

AF+21 47,XX,+21 17

DOI: 10.7554/eLife.05068.003
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cultures (Figure 3B–C). However, the higher mis-segregation rates were specific to certain

chromosomes. Namely, mis-segregation appeared to be increased for chromosome 7 in the DLD1+7

cell line, chromosomes 7 and 13 in DLD1+13 cells, and chromosome 13 in AF+13 cells as compared to

their diploid counterparts. We further investigated whether the observed increases in chromosome

mis-segregation rates impacted chromosome number variability (or karyotypic heterogeneity) in the

trisomic cells compared to the diploid counterparts. To this end, we performed chromosome counts in

Figure 1. Trisomy 7 and 13 in DLD1 and AF cells. (A–B) Chromosome-specific FISH staining for chromosomes 7

(red),13 (green), and 21 (red) in metaphase spreads confirms trisomy 7 in DLD1+7 and trisomy 13 in DLD1+13 and

AF+13 cells. DNA is shown in grey. Arrows point to FISH signals. Scale bars, 5 μm. (C) Characterization of cells with

trisomy 13 used in this study. The DLD1+13 cells were subcloned and the clone used for this study was analyzed by

chromosome painting of metaphase spreads with chromosome 13-specific probes. Cells were classified as having

lost chromosome 13, trisomic for chromosome 13, or poly/tetraploid when they carried six copies of chromosome 13

and ∼88 other chromosomes. The AF+13 cells were analyzed by interphase FISH at passage 1–2 with probes specific

to chromosomes 13 and 21. Cells were classified has having lost/gained a copy of chromosome 13 (two or four

nuclear signals for chr. 13, two signals for chr. 21), displaying trisomy 13 (three signals for chr. 13 and 2 signals for chr.

21), or displaying poly/tetraploidy (six signals for chr. 13 and four signals for chr. 21). A small fraction (1.9%) of the

AF+13 Case #3 displayed loss/gain of chr. 21.

DOI: 10.7554/eLife.05068.004

The following figure supplement is available for figure 1:

Figure supplement 1. aCGH in DLD1, DLD1+7, and DLD1+13 cells.

DOI: 10.7554/eLife.05068.005
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metaphase spreads and found increased karyotypic heterogeneity in both DLD1+7 and DLD1+13

compared to DLD1 cells. We also found higher karyotypic heterogeneity in AF+13 vs AF cells around

the modal chromosome number of 47 (Figure 3D). Finally, our chromosome counts revealed the

presence of a tetraploid/near-tetraploid sub-population in DLD1+13 cells (Figure 3D), confirming

previous findings (Upender et al., 2004). Because chromosome counts did not reveal a significant

difference in tetraploid cells between AF and AF+13 cell populations (Figure 3D), we decided to

further characterize chromosome number variability in these cells by performing FISH analysis with

locus-specific probes for chromosomes 7, 12, and 18 on interphase nuclei (Figure 3E), which allowed

for larger numbers of cells to be examined. This analysis confirmed higher degrees of aneuploidy in

Figure 2. Increased rates of anaphase lagging chromosomes in cells with trisomy 7 or 13. (A) Examples of normal anaphases (top row) and anaphase cells

with lagging chromosomes (bottom row). Cells were immunostained for microtubules (red) and kinetochores (green). DNA is shown in blue. Images

represent maximum intensity projections of Z-stacks. Arrowheads point at anaphase lagging chromosomes. Grey scale images at the bottom right corners

of the images in the bottom row are single focal planes of DAPI-stained chromosomes shown for easier visualization of the lagging chromosomes.

(B) Frequencies of anaphase lagging chromosomes were significantly higher (*χ2 test, p < 0.0001) in both DLD1+7 and DLD1+13 compared to DLD1 cells.

Data are reported as mean ± S.E.M and represent the average of three independent experiments in which a total of 613–1115 anaphases were analyzed.

(C) Time-lapse microscopy of AF and AF+13 cells undergoing mitosis. An example of AF undergoing normal mitosis is shown in the top row and an

example of AF+13 displaying an anaphase lagging chromosome is shown in the bottom row. DNA is shown in green (H2B-GFP) and microtubules in red

(RFP-tubulin). Images are maximum intensity projections of Z-stacks. Insets in the bottom row display enlarged views of the DNA alone (in grey scale) in

the region around the lagging chromosome. (D) None of the 19 AF cells (from cases #1 and #2) imaged displayed anaphase lagging chromosomes,

whereas 7 out of 26 AF+13 cells (5 out of 18 in case #1 and 3 out of 8 in case #2) displayed anaphase lagging chromosomes. Time stamps indicate elapsed

time in min:sec. Scale bars, 5 μm.

DOI: 10.7554/eLife.05068.006

The following figure supplement is available for figure 2:

Figure supplement 1. Similar frequencies of multipolar mitoses (A) and anaphase chromosome bridges (B) in diploid vs aneuploid DLD1 cells.

DOI: 10.7554/eLife.05068.007
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AF+13 compared to AF cells (Figure 3F).

Furthermore, it revealed the presence of a tetra-

ploid sub-population in AF+13 cells (Figure 3F).

The difference between numbers of AF+13

tetraploid interphase cells and tetraploid chro-

mosome spreads (compare Figure 3D and

Figure 3F) may be due to the inability of

tetraploid AF+13 cells to re-enter mitosis

(see also ‘Discussion’ section). Taken together,

these experiments (Figures 2–3) show that

trisomies 7 and 13 cause chromosome mis-

segregation, that mis-segregation affects certain

chromosomes more than others, and that such

increases in mis-segregation rates are associated

with karyotypic heterogeneity within the cell

population. However, because only trisomies

7 and 13 were examined, and a limited number

of chromosomes analyzed in our FISH experi-

ments, it remains elusive whether chromosome

mis-segregation is a karyotype-specific or a general

effect of aneuploidy in human cells.

Trisomy 13 promotes cytokinesis
failure due to the overexpression
of SPG20
Our chromosome counts (Figure 3D) showed

that DLD1+13 cells displayed a near-tetraploid sub-population, which was also evident in our FISH

experiments in which nuclei with four or more signals per chromosome were more frequent in DLD1+

13 compared to DLD1 cells (24.5% vs 16.6%, χ2, p < 0.0001). Similarly, a tetraploid sub-population was

evident in AF+13 cells (4.5% vs 0.3% in AF, χ2, p < 0.0001) analyzed by interphase FISH, which

revealed the presence of nuclei with four signals

per chromosome (Figure 3E–F). These observa-

tions suggested a possible causal link between

trisomy 13 and tetraploidy. Acknowledged mech-

anisms of tetraploidy induction include mitotic

slippage (Rieder and Maiato, 2004), cytokinesis

failure (Normand and King, 2010), and cell

fusion (Duelli and Lazebnik, 2003). To determine

which of these mechanisms cause tetraploidy in

DLD1+13 and AF+13 cells, we performed phase

contrast time-lapse microscopy and found no

evidence of mitotic slippage or cell fusion. Instead,

we found that both DLD1+13 and AF+13 cells

failed cytokinesis (Figure 4A–B, Videos 3–6) at

significantly higher rates than their diploid coun-

terparts (Figure 4C). To identify the molecular

mechanism that causes cytokinesis failure in cells

with trisomy 13, we referred to microarray data

available for DLD1+13 cells (Upender et al.,

2004). Interestingly, located on chromosome

13q13.3 is the gene SPG20, which encodes for

the protein Spartin, previously suggested to act as

a regulator of cytokinesis (Renvoise et al., 2010;

Lind et al., 2011), and shown to be overexpressed

in DLD1+13 compared to DLD1 cells (Upender

et al., 2004). None of the other mis-expressed

Video 1. Representative video showing normal mitosis

in an AF cell. Images were acquired by spinning-disk

confocal microscopy at 1 min intervals and they are

played back at 5 frames per second. DNA is shown in

green (H2B-GFP) and microtubules in red (RFP-tubulin).

DOI: 10.7554/eLife.05068.008

Video 2. Representative video showing anaphase

lagging chromosome during mitosis in an AF+13 cell.

Images were acquired by spinning-disk confocal

microscopy at 1 min intervals and they are played back

at 5 frames per second. DNA is shown green (H2B-GFP)

and microtubules in red (RFP-tubulin).

DOI: 10.7554/eLife.05068.009
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Figure 3. Increased chromosome mis-segregation rates and karyotypic heterogeneity in cells with trisomy 7 or 13. (A–C) Combination of cytokinesis-block

assay and FISH staining with chromosome-specific probes shows higher chromosome mis-segregation rates in DLD1+7 and DLD1+13 compared to DLD1

cells and AF+13 compared to AF cells. (A) Examples of FISH-stained binucleate (BN) DLD1 and DLD1+13 cells. Scale bar, 5 μm. (B–C) Frequencies of BN

cells displaying mis-segregation events. *Two-tailed χ2 test, p < 0.005; **two-tailed χ2 test, p < 0.0001, when compared to mis-segregation of the same

chromosome in the euploid cell line. Data are presented as mean ± S.E.M. and represent the average of at least three independent experiments/samples

in which a total of 460–1229 BN cells were analyzed. (D) Beeswarm plot displaying data from chromosome counts in metaphase spreads from the five cell

lines. DLD1+7, DLD1+13, and AF+13 (modal chromosome number 47, shown by the high concentration of sampled points) displayed increased karyotypic

heterogeneity compared to DLD1 and AF cells (modal chromosome number 46, shown by the high concentration of sampled points), respectively. In

addition, DLD1+13 cells displayed a large sub-population of near-tetraploid cells (modal chromosome number 92). Chromosome counts were performed

on 89–303 metaphase spreads. (E–F) FISH staining with chromosome-specific probes in interphase nuclei reveals higher rates of aneuploidy and

tetraploidy in AF+13 vs AF cells. (E) FISH staining in interphase AF and AF+13 cells with probes specific for chromosomes 7 (blue), 12 (green), and 18 (red).

Scale bar, 5 μm. (F) Quantification of interphase FISH data shown in (E). Cells were classified as having gained or lost 1-few chromosomes or as tetraploid

(4 signals for each of the three chromosomes analyzed). The data show a larger fraction of cells with gain/loss of 1-few chromosomes in the AF+13

population compared to AF cells (*χ2 test, p < 0.0001). Additionally, AF+13 cells displayed a larger sub-population of tetraploid cells (*χ2 test, p < 0.0001).

Data are presented as mean + S.E.M. and represent the average of three different samples in which a total of 2,117–2,410 cells were analyzed.

DOI: 10.7554/eLife.05068.010

The following figure supplement is available for figure 3:

Figure supplement 1. Combined cytokinesis-block assay and FISH staining with chromosome-specific probes.

DOI: 10.7554/eLife.05068.011
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Figure 4. DLD1+13 and AF+13 cells overexpress SPG20 and fail cytokinesis at high rates. (A–B) Time-lapse

microscopy indicates that cells with trisomy 13 frequently fail cytokinesis. Time stamps indicate elapsed time in

minutes. Scale bars, 10 μm. (A) Still images from time-lapse phase contrast videos of DLD1+13 cells undergoing

mitosis and completing (top row) or failing (bottom row) cytokinesis. (B) Still images from time-lapse phase contrast

videos of AF (top row) and AF+13 (bottom row) cells undergoing mitosis and completing (AF, top row) or failing

(AF+13, bottom row) cytokinesis. (C) Quantification of cytokinesis failure from phase-contrast time-lapse videos

showing that the rates of cytokinesis failure in DLD1+13 and AF+13 cells are significantly higher than those observed

in their diploid counterparts, DLD1 and AF cells (*χ2 test, p < 0.01; ** χ2 test, p < 0.001). (D) Western blot analysis of

Spartin across DLD1 cell lines, three samples of AF and three samples of AF+13 cells. β-actin was used as a loading

control. (E) Quantification of spartin levels (normalized to β-actin) in DLD1, DLD1+7, and DLD1+13 cells. The data

reported are the average of three independent experiments and are displayed as mean + S.E.M. (F) Quantification

Figure 4. continued on next page
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genes (Upender et al., 2004) was found to have any link with cytokinesis based on published data. We

confirmed SPG20 overexpression by western blot in both DLD1+13 and AF+13 cells (Figure 4D–F).

Importantly, neither DLD1+7 (Figure 4E) nor other trisomic AF cells (Figure 4—figure supplement 1)

overexpressed spartin, indicating that high levels of spartin are specifically associated with trisomy 13.

To test whether SPG20 overexpression could explain the cytokinesis-failure phenotype, we

transfected the parental cell line DLD1 with YFP-SPG20 (DLD1-YFP-SPG20; Figure 5A, Videos 7–8),

and found that high levels of Spartin (Figure 5B) induced high rates of cytokinesis failure (Figure 5C).

Moreover, we could rescue the cytokinesis failure phenotype in both DLD1+13 and AF+13 cells by

siRNA-mediated Spartin knockdown (Figure 5D–G). Thus, we conclude that the aneuploidy-

dependent overexpression of Spartin in DLD1+13 and AF+13 cells induces cytokinesis failure,

a karyotype-dependent phenotype.

How does spartin overexpression induce cytokinesis failure?
To determine how Spartin overexpression may lead to cytokinesis failure, we analyzed the amount and

localization of Spartin in fixed DLD1 cells (Figure 6A–B, Figure 6—figure supplement 1). Spartin

localized to the centrosomes throughout mitosis and to some extent along the microtubules of the

mitotic spindle (Figure 6—figure supplement 1), and localized to the midbody during cytokinesis

(Figure 6A), as previously described (Lind et al., 2011). We quantified the total intracellular amount of

Spartin by measuring total Spartin fluorescence intensity in interphase cells, and found that it was

significantly higher in DLD1+13 cells compared to

DLD1 cells (Figure 6B; see also Figure 4D).

However, we did not observe any difference in

Spartin localization between the two cell lines

during mitosis (Figure 6A, Figure 6—figure

supplement 1), although there was clearly a large

Figure 4. Continued

of spartin levels (normalized to β-actin) in AF and AF+13 cells. The data reported are the average of the three AF and

AF+13 samples shown in (E) and are displayed as mean + S.E.M.

DOI: 10.7554/eLife.05068.012

The following figure supplement is available for figure 4:

Figure supplement 1. Trisomies other than 13 are not associated with spartin overexpression.

DOI: 10.7554/eLife.05068.013

Video 3. Representative video showing normal cyto-

kinesis in a DLD1+13 cell. Images were acquired by

phase contrast microscopy at 2 min intervals, and they

are played back at 7 frames per second. Scale bar, 5 μm.

DOI: 10.7554/eLife.05068.014

Video 4. Representative video showing cytokinesis

failure in a DLD1+13 cell. Images were acquired by

phase contrast microscopy at 2 min intervals, and they

are played back at 7 frames per second. Scale bar, 5 μm.

DOI: 10.7554/eLife.05068.015
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amount of Spartin in the cytoplasm, away from the mitotic spindle, in DLD1+13, but not in the other

cell lines (Figure 6—figure supplement 1). Thus, although Spartin overexpression induces cytokinesis

failure (Figure 5A–C), the mechanism by which this happens is not simply mis-localization of Spartin at

the midbody (Figure 6A).

Spartin is recruited to the midbody by binding hIST1 (Renvoise et al., 2010), a component of the

ESCRTIII complex, which binds various proteins involved in cytokinesis, including the microtubule

severing protein Spastin (Renvoise et al., 2010), whose depletion was shown to cause cytokinesis

failure (Bajorek et al., 2009). Both Spartin and Spastin bind hIST1 through their MIT (Microtubule

Interacting and Trafficking) domains, which show considerable structural homology (Figure 6C) and

comparable binding affinities (Spartin, Kd = 10.4 ± 0.3 μM, Spastin, Kd = 4.6 ± 0.1 μM, respectively

[Renvoise et al., 2010]). Therefore, we postulated that Spartin overexpression might act in

a dominant negative manner by preventing Spastin from binding to hIST1. To test this, we analyzed

Spastin localization at the midbody. Consistent with our hypothesis, DLD1+13 and AF+13 cells

frequently lacked Spastin at the midbody (Figure 6D–G). Moreover, by knocking down Spartin we

could rescue Spastin mis-localization fully in DLD1+13 (Figure 6E) and partially in AF+13 cells

(Figure 6G).

In summary, we showed that overexpression of SPG20, a gene on chromosome 13 encoding the

protein Spartin, can cause cytokinesis failure in cells with trisomy 13 (Figures 4–5). Although Spartin

overexpression may cause cytokinesis failure by interfering with multiple pathways, here we provide

evidence of interference with a pathway responsible for Spastin localization at the midbody

(Figure 6D–G).

Discussion

Chromosomal instability in trisomic cells
We show here that cells with trisomy 7 or trisomy 13 display rates of anaphase lagging chromosomes

that are significantly higher than the rates observed in euploid counterparts. Anaphase lagging

chromosomes are a major source of aneuploidy in normal vertebrate cells (Cimini et al., 2001) and the

main type of chromosome segregation defect observed in CIN cancer cells (Thompson and Compton,

2008; Bakhoum et al., 2014). Previous studies have shown that anaphase lagging chromosomes

can be caused by transient spindle multipolarity in CIN cancer cells (Ganem et al., 2009;

Video 5. Representative video showing normal cyto-

kinesis in an AF cell. Images were acquired by phase

contrast microscopy at 2.5 min intervals, and they are

played back at 5 frames per second. Scale bar, 5 μm.

DOI: 10.7554/eLife.05068.016

Video 6. Representative video showing cytokinesis

failure in an AF+13 cell. Images were acquired by phase

contrast microscopy at 2.5 min intervals, and they are

played back at 5 frames per second. Scale bar, 5 μm.

DOI: 10.7554/eLife.05068.017
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Silkworth et al., 2009; Silkworth and Cimini, 2012). However, we can exclude transient multipolarity

as a cause of anaphase lagging chromosomes in our experimental systems, given that we did not find

differences in the frequencies of multipolar mitoses in DLD1+7 and DLD1+13 compared to DLD1 cells

and we did not observe transient spindle multipolarity in live AF+13. This finding may seem surprising,

particularly considering that we found trisomy 13 to be associated with cytokinesis failure, which is

believed to result in extra centrosomes and multipolar mitoses (Storchova and Pellman, 2004;

Fujiwara et al., 2005). However, this finding is in agreement with recent findings showing that

Figure 5. Spartin overexpression induces cytokinesis failure. (A) Time-lapse microscopy of DLD1 cells transiently transfected with a YFP-N1 vector (DLD1-

YFP, top row) or a YFP-SPG20-N1 vector (DLD1-YFP-SPG20, bottom row). Representative still images of time-lapse videos show a DLD1-YFP cell

undergoing mitosis and completing cytokinesis (top row) and a DLD1-YFP-SPG20 cell undergoing mitosis and failing cytokinesis (bottom row). YFP

expression was verified by fluorescence imaging and it is shown in the first panel for each time-lapse series. A copy of the last frame was added at the end

of the sequence to highlight cell (yellow) and nuclear (green) outlines. Scale bar, 10 μm. (B) Western blot analysis of Spartin levels in DLD1+13, DLD1-YFP,

and DLD1-YFP-SPG20 cells shows that the levels of YFP-Spartin in DLD1-YFP-SPG20 cells (center lane) are much higher than the levels of Spartin in DLD1-

YFP cells. WB of Spartin in DLD1+13 cells is shown for comparison. (C) Quantification of cytokinesis failure rates in DLD1-YFP and DLD1-YFP-SPG20

showing that overexpression of SPG20 leads to increased rates of cytokinesis failure (*χ2 test, p < 0.01 when comparing DLD1-YFP-SPG20 to DLD1-YFP

cells). (D) Western blot analysis of Spartin levels in DLD1+13 cells treated with a SPG20 siRNA or with a control siRNA. (E) Reducing the levels of Spartin by

SPG20 siRNA significantly reduces the rate of cytokinesis failure in DLD1+13 cells (*χ2 test, p < 0.02 when comparing cells treated with a control siRNA to

cells treated with SPG20 siRNA). (F) Western blot analysis of Spartin levels in AF+13 cells treated with a SPG20 siRNA or with a control siRNA. (G) Reducing

the levels of Spartin by SPG20 siRNA significantly reduces the rates of cytokinesis failure in AF+13 cells (*χ2 test, p < 0.02 when comparing cells treated

with a control siRNA to cells treated with SPG20 siRNA). Average values from three independent experiments; variability between AF+13 samples was not

significant.

DOI: 10.7554/eLife.05068.018

Nicholson et al. eLife 2015;4:e05068. DOI: 10.7554/eLife.05068 11 of 23

Research article Cell biology | Genes and chromosomes

http://dx.doi.org/10.7554/eLife.05068.018
http://dx.doi.org/10.7554/eLife.05068


experimental inhibition of cytokinesis can produce tetraploid cells with normal centrosome number

(Godinho et al., 2014). Our finding that aneuploidy is associated with increased rates of anaphase

lagging chromosomes, known to arise from errors in mitosis (Bakhoum et al., 2014), but not with

multipolarity or chromosome bridges, known to arise from errors in centrosome duplication or DNA

metabolism (occurring prior to mitosis), suggests that compared to events occurring during other cell

cycle stages, mitotic events may be more sensitive to the gene imbalance brought about by

aneuploidy. Although abnormal chromosome number was reported by others as not being sufficient to

cause CIN (Lengauer et al., 1997; Valind et al., 2013), such difference may be due to the different

methods used to evaluate CIN. For example, whereas we examined chromosome mis-segregation in

mitosis (anaphase lagging chromosomes) or at a post-mitotic interphase (BN cell analysis), Lengauer

and colleagues determined the degree of aneuploidy in the overall population after 25 serial passages

(Lengauer et al., 1997). This kind of analysis may produce a biased result because selective pressure

against arising aneuploid cells may mask the ability of aneuploidy to induce chromosome mis-

segregation at each cell cycle. Importantly, we were able to perform high-resolution live cell imaging of

individual human amniocytes with constitutional trisomy 13 at passage number 2–3 and directly

measure how frequently chromosome mis-segregation events occur. The frequency of lagging

chromosomes found in mitotic cells was considerably higher compared to the frequency of

chromosome mis-segregation measured by FISH analysis both in interphase and post-mitotic fixed

cells. This shows how different results are generated from distinct methods and might also explain the

divergence between our data and those previously reported by Valind et al. (2013) using interphase

FISH analysis. It should also be noted that, although we do observe an increase in the rates of anaphase

lagging chromosomes in trisomic cells, such rates are lower than those reported for most CIN cancer

cell lines (Thompson and Compton, 2008; Nicholson and Cimini, 2013; Bakhoum et al., 2014), in

Video 7. Representative video showing normal cyto-

kinesis in a DLD1 cell transiently transfected with a YFP

vector (control). Near-simultaneous phase contrast and

epifluorescence images were acquired at 4 min intervals

at a single focal plane using the Nikon perfect focus

function. For clarity, the fluorescent image is displayed

only in the first frame, whereas the rest of the video

shows only phase contrast images played back at 7

frames per second. Scale bar, 10 μm.

DOI: 10.7554/eLife.05068.019

Video 8. Representative video showing cytokinesis

failure in a DLD1 cell transiently transfected with a YFP-

SPG20 vector (SPG20 overexpression). Near-simultaneous

phase contrast and epifluorescence images were ac-

quired at 4 min intervals at a single focal plane using the

Nikon perfect focus function. For clarity, the fluorescent

image is displayed only in the first frame, whereas the rest

of the video shows only phase contrast images played

back at 7 frames per second. Scale bar, 10 μm.

DOI: 10.7554/eLife.05068.020
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Figure 6. Spartin overexpression impairs Spastin localization to the midbody. (A–B) Spartin localization at the

midbody is not affected by the high levels of intracellular Spartin in DLD1+13. (A) Images showing Spartin

localization (arrows) at the midbody of the three DLD1 cell lines. (B) The image shows interphase DLD1+13 cells

Figure 6. continued on next page
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agreement with findings by Valind et al. (2013). This suggests that, although single chromosome gains

may result in only modest increases in chromosome mis-segregation rates, the high degrees of

aneuploidy typical of most cancer cells may have a cumulative effect and could thus explain the high

rates of CIN displayed by many cancer cells (e.g., 20–75% anaphase lagging chromosomes in cells with

modal chromosome number 66–78; [Lengauer et al., 1997; Thompson and Compton, 2008; Ganem

et al., 2009; Silkworth et al., 2009; Nicholson and Cimini, 2011, 2013]). Finally, and perhaps most

importantly, the discrepancies in the conclusions reached in different studies may depend on the

specific chromosomes analyzed. Indeed, we find that the degree and type of CIN elicited by

aneuploidy depend on the aneuploid chromosome (see Figure 3D). This is an agreement with findings

in aneuploid budding yeast strains, in which different aneuploidies were found to result in different

rates of chromosome loss/CIN (Sheltzer et al., 2011; Zhu et al., 2012). Similarly, Valind and colleagues

reported increased rates of CIN for certain chromosomes in specific aneuploid contexts (e.g., increased

CIN for chromosome 17 in cells with trisomy 18), but not in others (Valind et al., 2013). In our study, we

specifically found that high rates of mis-segregation for chromosome 7 were observed both in DLD1+7

and DLD1+13 cells, whereas high mis-segregation for chromosome 13 was observed in DLD1+13 and

AF+13 cells. The observation that the trisomic chromosome displayed the highest rates of mis-

segregation across the trisomies studied (Figure 3B–C) suggests that the aneuploid chromosomes may

undergo changes that affect their mitotic behavior and segregation, such as delayed replication and/or

delayed condensation timing (DRT and DCT, respectively). Indeed, aneuploidy was shown to correlate

with DRT and DCT (Grinberg-Rashi et al., 2010) and previous studies in trisomic cells showed that one

of the chromosomes of the trisomic set displays DRT (Kost-Alimova et al., 2004). On the other hand,

the finding that chromosome 7 mis-segregated in DLD1+13, but not in AF+13 cells raises the question

as to whether types and rates of mis-segregation may vary in a cell type-dependent manner and

whether copy number variations in the DLD1-derived cell lines may account for chromosome 7 mis-

segregation. Given that the gain of chromosome 7 and chromosome 13 is commonly found in colon

cancer (Ried et al., 2012), a cell type-specific effect is plausible.

Although our cytokinesis-block assay data (Figure 3B–C) show the higher mis-segregation rates to

be limited to certain chromosomes, the chromosome count data show extensive karyotypic

heterogeneity in the trisomic cell populations (Figure 3D–F), thus suggesting that chromosome

mis-segregation is more widespread than the cytokinesis-block assay reveals. One explanation is that

Figure 6. Continued

immunostained for Spartin and the yellow and white outline indicate the regions of interest (ROI) selected for

measurements of total intracellular fluorescence (yellow ROI) and background fluorescence (white ROI). The data in

the graph report the total intracellular Spartin fluorescence intensity after background subtraction in randomly

sampled interphase cells and are represented as mean ± S.E.M (*t-test, p < 0.0001 when comparing DLD1+13 to

either DLD1 or DLD1+7). (C) Superimposition of the MIT domains of Spartin (orange) and Spastin (cyan) illustrates

the considerable degree of structural homology between the two. PDB ID #2DL1 (Suetake et al., 2009) and #3EAB

(Yang et al., 2008) for Spartin and Spastin, respectively. (D–E) Spastin localization at the midbody is impaired in

DLD1+13 cells, and is rescued by SPG20 siRNA. (D) Images of midbodies of cells immunostained for Spastin (green)

and microtubules (red). Arrows point at sites of Spastin localization or lack thereof. (E) Frequencies of cells lacking

Spastin at the midbody. Higher frequencies of cells lacking Spastin at the midbody can be found in DLD1+13 cells

compared to either DLD1 or DLD1+7 cells. Spastin localization could be rescued by knocking down Spartin levels in

DLD1+13 cells via SPG20 siRNA. Statistical significance was calculated using a χ2 test (*p < 0.05; **p < 0.01; N.S. =

not significant). Data are presented as mean ± S.E.M. and represent the average of three independent experiments.

(F–G) Spastin localization at the midbody is impaired in AF+13 cells, and is partially rescued by SPG20 siRNA.

(F) Images of midbodies of cells immunostained for Spastin (green) and microtubules (red). DNA is shown in blue in

the merged images. Arrows point at sites of Spastin localization or lack thereof. The insets show 3×magnifications of

the midbody region. (G) Frequencies of cells lacking Spastin at the midbody are higher in AF+13 compared to AF

cells. Spastin localization was partially rescued by SPG20 siRNA-mediated Spartin knock down in AF+13 cells.

Statistical significance was calculated using a χ2 test (*p < 0.05; ***p < 0.001; ****p < 0.0001). Data are presented as

mean ± S.E.M. and represent the average of three independent experiments/samples. Scale bars, 5 μm.

DOI: 10.7554/eLife.05068.021

The following figure supplement is available for figure 6:

Figure supplement 1. Spartin localization during mitosis.

DOI: 10.7554/eLife.05068.022
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the limited number of cells and chromosomes analyzed in the cytokinesis-block assay might only reveal

differences in mis-segregation rates when such differences are large, but other methods, such as

anaphase lagging chromosomes may be a better indicator of general mis-segregation rates. Moreover,

some mis-segregation events may result in cell cycle arrest or cell death. Cases of chromosome mis-

segregation leading to cell death would only be accounted for when examining cells undergoing

mitosis, but not interphase cells. On the other hand, chromosome mis-segregation events leading to

cell cycle arrest may only be appreciated when examining interphase nuclei, but not BN or mitotic cells

(Figure 3D–F). These considerations argue for the use of multiple assays in studies aimed at dissecting

the link between aneuploidy and CIN (Nicholson and Cimini, 2015). We would also like to point out

that chromosome mis-segregation events causing cell death or cell cycle arrest under tissue culture

conditions, may not do so in the context of the tumor environment, suggesting that low level

aneuploidy could be enough to drive CIN in cancer. Indeed, our data show that the complex

aneuploidies observed in cancer cells are not a requirement for increased rates of lagging

chromosomes and that at least some low grade and constitutional aneuploidies are sufficient to

induce such an effect. This would be in agreement with previous observations showing that haploid

budding yeast strains carrying disomies displayed increased genomic instability, and strains with

different degrees of aneuploidy displayed variable degrees of chromosomal instability (Sheltzer et al.,

2011; Zhu et al., 2012). Similarly, previous reports have shown that lymphocytes of congenitally

trisomic individuals displayed aneuploidies for chromosomes other than the congenitally trisomic ones

(Reish et al., 2006, 2011). Finally, random aneuploidy and senescent phenotypes were recently

reported in aneuploid amniocytes (Biron-Shental et al., 2015). Nonetheless, we do not exclude the

possibility that certain aneuploidies may not be sufficient to induce chromosome mis-segregation.

Aneuploidy confers karyotype-dependent phenotypes
Our finding that trisomy 13 caused a specific cytokinesis failure phenotype (Figures 4–5) clearly

indicates that different karyotypes can be associated with distinct phenotypic changes. It is important

to note that, although we observed cytokinesis failure in AF+13, the frequency of tetraploid

metaphase spreads in these cells was very low, as opposed to the DLD1+13 cells (Figure 3D). This may

be due to activation of a post-mitotic tetraploidy checkpoint in the AF+13 cells, but not in DLD1+13.

Indeed, previous studies have shown a cell cycle arrest following cleavage failure in untransformed

human cells (Andreassen et al., 2001; Krzywicka-Racka and Sluder, 2011), whereas transformed cells

continue cycling (Duelli et al., 2007; Panopoulos et al., 2014), but the triggering of a p53-dependent

arrest in tetraploid cells still remains a matter of debate (Andreassen et al., 2001; Stukenberg, 2004;

Uetake and Sluder, 2004; Fujiwara et al., 2005; Wong and Stearns, 2005).

The observation that overexpression of a gene mapping on chromosome 13 is specifically linked to

the cytokinesis failure phenotype in DLD1+13 and AF+13 cells demonstrates that there is a direct

causal relationship between aneuploidy, overexpression of genes on the aneuploid chromosome, and

phenotypic changes caused by the consequent proteomic imbalance. These findings support previous

studies showing that aneuploidy directly affects transcript and protein levels in various systems in

a karyotype-dependent manner (Pollack et al., 2002; Upender et al., 2004; Gao et al., 2007; Pavelka

et al., 2010b; Ried et al., 2012; Stingele et al., 2012; Gemoll et al., 2013). Previous studies in budding

yeast also showed that aneuploid strains displayed karyotype-specific phenotypic variations that conferred

resistance to a variety of drugs (Pavelka et al., 2010b). However, such phenotypic variations in aneuploid

yeast strains were only revealed when cells were grown under specific selective conditions (Pavelka et al.,

2010b), whereas we show here that such karyotype-dependent phenotypic changes can be intrinsic to the

aneuploid cells. Although some studies have shown that aneuploidy can have overall deleterious effects

on cell fitness (Torres et al., 2007; Williams et al., 2008), we provide strong evidence that specific

aneuploidies can also induce specific phenotypes, which could, under certain conditions, provide

a selective advantage. This particular concept was recently exploited to demonstrate that in fungi, certain

drug treatments can lead to the evolution of populations with defined aneuploid karyotypes (Chen et al.,

2015). In the particular case observed in our study, one could also envision how the increase in tolerance

to aneuploidy that tetraploidy was recently shown to confer (Dewhurst et al., 2014) could enable the

evolution of specific aneuploid karyotypes that may allow cells to overcome the detrimental impact of

aneuploidy on cellular fitness (Gordon et al., 2012). Karyotype-specific phenotypic changes such as those

observed in our study can also explain the recurrent aneuploidies that are found in tumors from

certain anatomical sites (e.g., gain of chromosome 13 and loss of chromosome 18 in colon cancer
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[Ried et al., 1996, 2012; Nicholson and Cimini, 2013]). Indeed, aneuploidies for certain chromosomes

may result in phenotypes that confer a selective advantage at a certain site (e.g., breast), but not at

a different one (e.g., colon). And this could explain why, despite the high degrees of aneuploidy and the

extensive karyotypic heterogeneity, the distribution of aneuploidies in different cancers is not

completely random (Nicholson and Cimini, 2011; Ried et al., 2012).

Materials and methods

Cell lines and culture conditions
The DLD1 cell line was obtained from American Type Culture Collection (ATCC, BA, USA), DLD1+7 and

DLD1+13 cell lines were created previously by microcell-mediated chromosome transfer as described in

(Upender et al., 2004), and DLD1+13 cells were sub-cloned for this study as described in the results

section. All cell lines were maintained in RPMI 1640 (ATCC, BA, USA) supplemented with 10% FBS

(Gibco, Life Technologies, CA, USA), penicillin, streptomycin, and amphotericin B (antimycotic). Passage

1–3 fibroblast cultures were established from surplus amniocentesis samples used in pre-natal diagnosis.

Three cases of constitutional trisomy 13 and three diploid controls were used in our study (Table 1).

The study acknowledged the ethics guidelines under national rules and according to the principles of

the Declaration of Helsinki, and was approved by the Ethics Committee of Hospital de S. João-Porto

(dispatch 14 November 2012). Informed consent forms with detailed information were provided to all

patients. The study did not imply collection of extra material from the healthy female donors (only

surplus cells/tissues were used); the study did not bring any direct benefits to the volunteers; there were

no risks or costs for the volunteers; there was no access to patient clinical data (samples were obtained

in anonymous form from the Hospital Genetics Department); participation was volunteer and free to be

interrupted at any moment; there are no ethical impacts predicted; there will be no commercial

interests. Amniotic fibroblasts were grown in EMEM (Lonza, Bazel, Switzerland) supplemented with 15%

FBS, 2.5 mM glutamine and 1× antibiotic-antimycotic solution (all from Gibco, Life Technologies, CA,

USA). All cells were kept in a humidified incubator at 37˚C with 5% CO2.

Immunostaining
For immunostaining, DLD1 cells were grown on sterilized glass coverslips inside 35 mm Petri dishes,

whereas AF cells were grown on sterilized glass coverslips coated with fibronectin (Sigma Aldrich, MO,

USA). For analysis of anaphase lagging chromosomes in the DLD1 lines, cells were fixed in freshly

prepared 4% paraformaldehyde in PHEM (60 mM Pipes, 25 mM HEPES, 10 mM EGTA, 2 mMMgSO4, pH

7.0) for 20 min at room temperature and then permeabilized for 10 min at room temperature in PHEM

buffer containing 0.5% Triton-X 100. Following fixation and permeabilization, cells were washed with PBS

3 times and then blocked with 10% boiled goat serum (BGS) for 1 hr at room temperature. Cells were then

incubated at 4˚C overnight with primary antibodies diluted in 5% BGS. Cells were washed in PBS-T (PBS

with 0.05% Tween 20) 3 times, and incubated at room temperature for 45 min with secondary antibodies

diluted in 5% BGS. Cells were finally washed, stained with DAPI for 5 min, and coverslips were mounted

on microscope slides in an antifade solution containing 90% glycerol and 0.5% N-propyl gallate.

For analysis of proteins at the midbody, cells were fixed in ice cold methanol for 4 min, washed with PBS 3

times, and blocked in 10% BGS with 0.5% Triton-X for 1 hr. The rest of the procedure was the same as

described above, except that primary antibodies were diluted in 1% BGS. Primary antibodies were diluted

as follows: ACA (human anti-centromere protein, Antibodies Inc., CA, USA), 1:100; mouse anti-α-tubulin

(DM1A, Sigma Aldrich, MO, USA), 1:500; rabbit anti-SPG20 (Protein Tech Group Inc., IL, USA), 1:300;

mouse anti-Spastin (SP 3G11/1, Abcam, Cambridge, UK), 1:150. Secondary antibodies were diluted as

follows: Rhodamine Red-X goat anti-mouse (Jackson ImmunoResearch Laboratories, Inc., PA, USA), 1:100;

Rhodamine Red-X goat anti-rabbit (Jackson ImmunoResearch Laboratories, Inc., PA, USA), 1:100; Alexa

488 goat anti-human (Molecular Probes, Life Technologies, CA, USA), 1:200; Alexa 488 goat anti-mouse

(Molecular Probes, Life Technologies, CA, USA), 1:200.

Metaphase spreads
Cell cultures were incubated in 50 ng/ml Colcemid (Karyomax, Invitrogen) at 37˚C for 3–4 hr to enrich

in mitotically arrested cells. The cells were then collected by trypsinization and centrifuged at 800 rpm

for 8 min. Hypotonic solution (0.075M KCl) was added drop-wise to the cell pellet and incubated for

10 min at room temperature. Cells were fixed with an ice-cold 3:1 methanol:acetic acid solution for
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5 min and then centrifuged at 800 rpm for 8 min. This last step was repeated two more times and fixed

cells were finally dropped on microscope slides.

Cytokinesis-block assay and fluorescence in situ hybridization (FISH)
For FISH on binucleate cells, amniocytes were grown in superfrost ultra plus slides (Thermo Scientific, Life

Technologies, CA, USA), whereas DLD1 cells were grown on coverslips. For the cytokinesis-block assay,

cells were treated with 3 μg/ml dihydrocytochalasin B (Sigma–Aldrich, MO, USA) for 24 hr before fixation,

and the experiment was repeated at least three independent times. Prior to being processed for FISH

staining, cytokinesis-blocked cells were fixed according to previously published protocols: a standard FISH

protocol (Nicholson and Duesberg, 2009) was used for all cells; an alternative (3-D FISH) protocol

(Cremer et al., 2008) was used in some experiments with DLD1, DLD1+7, and DLD1+13 cells. Bacterial

artificial chromosome (BAC) contigs using three to six BAC sequences specific to each region were made

for the following four probes: CDX2 on chromosome 13q12, MET on chromosome 7q31, CHEK1 on

chromosome 11q24, and TERC on chromosome 3q26. The BAC clone contigs were labeled by nick

translation with SpectrumOrange-dUTP (Abbott Laboratories; IL, USA) for CDX2, Dy-505-dUTP (Dyomics;

Jena, Germany) for MET, Spectrum Orange-dUTP (Abbott Laboratories; IL, USA) for CHEK1, and Dy-505-

dUTP (Dyomics; Jena, Germany) for TERC. Dual color human whole chromosome paint probes were

generated in-house using PCR labeling techniques. Chromosome 7 was labeled with Spectrum Orange

(Abbott Laboratories; Chicago, IL) and chromosome 13 was labeled with Dy505 (Dyomics; Jena,

Germany). Additionally, commercial locus-specific FISH probes for chromosomes 7, 11, 19 (red 5-ROX

dUTP) and 12, 13, 18 (green 5-fluorescein dUTP) were also used (Empire Genomics; Buffalo, NY, USA).

The probe mixtures were co-denatured with the coverslips at 72˚C for 5 min before being placed in

a moist chamber at 37˚C for two nights. After two nights, the coverslips were washed in 2XSSC for 5 min

and then mounted on microscope slides with mounting media (Vectashield; CA, USA) and DAPI.

FISH on DLD1 metaphase spreads was performed with the commercial FISH probes listed above.

Additionally, centromeric FISH probe against chromosome 7 (FITC) (Cytocell, Cambridge, UK) was

used in DLD1+7 cells to confirm the presence of centromeric DNA. FISH on metaphase spreads of AF

and AF+13 was performed with the XA 13/21 probe (MetaSystems, Germany) according to the

manufacturer’s instructions. Interphase FISH was performed with the Vysis centromeric probes CEP7

Spectrum Aqua, CEP12 Spectrum Green, and CEP18 Spectrum Orange (Abbott Molecular, IL, USA)

according to the manufacturer’s instructions. All the FISH-stained samples were analyzed blindly.

SPG20 transfection and SPG20 siRNA
DLD1 cells, grown on sterilized coverslips inside 35 mm Petri dishes, were transiently transfected with

either P-EYFP-N1 or P-EYFP-N1-SPG20 (a kind gift from J Bakowska) using Fugene HD (Roche, Basel,

Switzerland) according to the manufacturer’s protocol. For SPG20 knockdown, cells grown in glass-

bottom 35 mm u-dishes (Ibidi GmbH, Germany) or on sterilized coverslips inside 35 mm Petri dishes,

were transfected with Silencer Select siRNA specific to SPG20 (S23057, Ambion, Life Technologies,

CA, USA) using Oligofectamine according to the manufacturer’s instructions (Invitrogen, Life

Technologies, CA, USA). Silencer Select Negative control siRNA (Ambion, Life Technologies, CA,

USA) was used as a negative control and was also transfected into cells with Oligofectamine

(Invitrogen, Life Technologies, CA, USA). Cells were observed 48–72 hr after transfection.

Western blot analysis
Whole-cell extracts were separated by SDS-PAGE and transferred to PVDF membrane. Membranes

were blocked 1 hr at room temperature with 5% milk in tris-buffered saline and then incubated over

night with primary antibodies at 4˚C. Antibodies were diluted as follows: rabbit anti-Spartin (Protein

Tech Group Inc., IL, USA), 1:1000; rabbit anti-β-actin (Abcam, Cambridge, UK), 1:500. Blots were

detected using goat anti-rabbit secondary antibodies conjugated to horse radish peroxidase and

visualized with SuperSignal West Femto (Thermo Scientific, Life Technologies, CA, USA). A GS-800

calibrated densitometer, or alternatively a ChemiDoc XRS system, was used for quantitative analysis of

protein levels with the help of ImageLab 4.1 software (BioRad, CA, USA).

Confocal microscopy of immunostained cells and image analysis
Immunofluorescently labeled DLD1 cells were imaged with a swept field confocal system (Prairie

Technologies, WI, USA) on a Nikon Eclipse TE2000-U inverted microscope (Nikon Instruments Inc.,

Nicholson et al. eLife 2015;4:e05068. DOI: 10.7554/eLife.05068 17 of 23

Research article Cell biology | Genes and chromosomes

http://dx.doi.org/10.7554/eLife.05068


NY, USA) equipped with a 100×/1.4 NA Plan-Apochromatic objective and an automated ProScan

stage (Prior Scientific, Cambridge, UK). The confocal head was accessorized with multiband pass

filter set for illumination at 405, 488, 561, and 640 nm, and illumination was obtained through an

Agilent monolithic laser combiner (MLC400) controlled by a four channel acousto-optic tunable

filter. Digital images were acquired with a HQ2 CCD camera (Photometrics, AZ, USA).

Acquisition time, Z-axis position, laser line power, and confocal system were all controlled by

NIS Elements AR software (Nikon Instruments Inc., NY, USA) on a PC computer (Dell, TX, USA).

Both anaphase lagging chromosomes and Spartin localization were analyzed by acquiring

Z-sections of cells at 0.6 μm steps. The frequencies of anaphase lagging chromosomes were

determined from 3 independent experiments performed in duplicate. Spartin localization at the

midbody was determined from three independent experiments. Image acquisition of Spastin

immunostaining in AFs was carried out on a Zeiss AxioImager Z1 equipped with an Axiocam MR

and using a Plan-Apochromat 63×/1.4 NA objective. Images of telophase cells from three

independent experiments and/or samples were acquired as Z-stacks with 0.3 μM steps

and scored for the presence or absence of Spastin staining at the midbody. All data were

analyzed blindly.

Microscopy and image analysis of FISH-stained binucleate cells
FISH samples were viewed and imaged either with a Leica DM-RXA fluorescence microscope

(Leica; Wetzlar, Germany) or with a swept field confocal system (Prairie Technologies, WI, USA)

on a Nikon Eclipse TE2000-U inverted microscope (Nikon Instruments Inc., NY, USA). The Leica

DM-RXA fluorescence microscope was equipped with custom optical filters and a 63×/1.3 NA

objective. The Leica CW 4000 FISH software was used to acquire multifocal images for each

fluorescence channel. 15 to 25 images were taken in areas of optimal cell density with minimal

cellular clumps and overlapping cells. The Nikon Eclipse TE2000-U inverted microscope was

equipped with a 100×/1.4 NA Plan-Apochromatic objective and an automated ProScan stage

(Prior Scientific, Cambridge, UK). The confocal head was accessorized with a multiband pass

filter set for illumination at 405, 488, 561, and 640 nm and illumination was obtained through an

Agilent monolithic laser combiner (MLC400) controlled by a four channel acousto-optic tunable

filter. Digital images were acquired with a HQ2 CCD camera (Photometrics, AZ, USA). Exposure

time, Z-axis position, laser line power, and confocal system were all controlled by NIS Elements

AR software (Nikon Instruments Inc., NY, USA) on a PC computer (Dell, TX, USA). FISH-stained

samples were analyzed blindly and only cases with a total even number of signals were included

in the analysis.

Phase contrast live cell imaging
DLD1, DLD1+7, and DLD1+13 cells were grown on sterilized coverslips inside 35 mm Petri dishes.

Coverslips at 60–70% confluency were mounted in Rose chambers filled with L-15 medium

supplemented with 4.5 g/l glucose. Images were acquired on a Nikon Eclipse Ti inverted

microscope (Nikon Instruments Inc., NY, USA) equipped with phase-contrast transillumination,

transmitted light shutter, ProScan automated stage (Prior Scientific, Cambridge, UK), and a HQ2

CCD camera (Photometrics, AZ, USA). Cells were maintained at ∼36˚C using an air stream stage

incubator (Nevtek, MA, USA). For analysis of cytokinesis in untransfected or siRNA-transfected

cells, 10–15 different fields of cells were imaged every 2 min for 6–8 hr using a 60×/1.4 NA Plan-

Apochromatic phase contrast objective controlled by Nikon Perfect Focus (Nikon Instruments Inc.,

NY, USA). For P-EYFP-N1 and P-EYFP-N1-SPG20 transfection experiments, 10–15 different fields

of cells were imaged by fluorescence and phase contrast using a 20× or 60× objective every 4 min

for 8 hr. The time-lapse videos were analyzed using NIS Elements AR (Nikon Instruments Inc., NY,

USA) software on a PC computer (Dell, TX, USA).

Amniocytes were grown in glass-bottom 35 mm u-dishes (Ibidi GmbH, Germany) coated with

fibronectin and filled with phenol red-free EMEM complete medium. Images were acquired on a Zeiss

Axiovert 200M inverted microscope (Carl Zeiss, Germany) equipped with a CoolSnap camera (Roper,

FL, USA), XY motorized stage and NanoPiezo Z stage, under controlled temperature, atmosphere and

humidity. 20–25 neighbor fields were imaged every 2.5 min for 1–2 days using a 20×/0.3 NA A-Plan

objective. Grids of neighboring fields were generated using the plugin Stitch Grid (Stephan Preibisch)

from open source Fiji/Image J (http://rsb.info.nih.gov/ij/).

Nicholson et al. eLife 2015;4:e05068. DOI: 10.7554/eLife.05068 18 of 23

Research article Cell biology | Genes and chromosomes

http://rsb.info.nih.gov/ij/
http://dx.doi.org/10.7554/eLife.05068


Spinning-disk confocal live cell imaging
Amniotic cells, glass-bottom 35 mm u-dishes (Ibidi GmbH, Germany) coated with fibronectin, were co-

transfected with H2B-GFP and pmRFP-tubulin expression plasmids (Addgene, MA, USA) using

Lipofectamine 3000 transfection reagent and according to the manufacturer’s instructions. Live cell

imaging was performed 48 hr following transfection under a spinning-disk confocal system Andor

Revolution XD (Andor Technology, UK) coupled to an Olympus IX81 inverted microscope (Olympus,

UK) equipped with an electron-multiplying CCD iXonEM Camera and a Yokogawa CSU-22 unit based

on an Olympus IX81 inverted microscope. Two laser lines at 488 and 561 nm were used for the

excitation of GFP and pmRFP and the system was driven by IQ software (Andor Technology, UK).

Z-stacks (0.8–1.0 μm) covering the entire volume of the mitotic cells were collected every 1.5 min with

a PLANAPO 60×/1.4 NA objective. ImageJ was used to process all the videos.
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Sofia Dória, http://orcid.org/0000-0001-9225-9076

Ethics

Human subjects: The study acknowledged the ethics guidelines under national rules and accordingly

to the principles of the Declaration of Helsinki, and was approved by the Ethics Committee of

Hospital de S. João-Porto (dispatch 14 November 2012) (approval number 237/2012). Informed

consent forms with detailed information were provided to all patients. The study did not imply

collection of extra material from the healthy donor females (only surplus cells/tissues were used); the

study didn’t bring any direct benefits to the volunteers; there were no risks or costs for the

Nicholson et al. eLife 2015;4:e05068. DOI: 10.7554/eLife.05068 19 of 23

Research article Cell biology | Genes and chromosomes

http://orcid.org/0000-0001-9225-9076
http://dx.doi.org/10.7554/eLife.05068


volunteers; there was no access to patient clinical data (samples were obtained in anonymous form

from the Hospital Genetics Department); participation was volunteer and free to be interrupted at

any moment; there are no ethical impacts predicted; there will be no commercial interests.

Additional files

Major datasets
The following previously published datasets were used:

Author(s) Year Dataset title
Dataset ID
and/or URL

Database, license, and
accessibility information

Suetake T, Hayashi F,
Yokoyama S

2009 Solution structure of the
MIT domain from human
Spartin

http://www.rcsb.org/pdb/
explore/explore.do?
structureId=2DL1

Publicly available at RCSB
Protein Data Bank (2DL1).

Yang D, Rismanchi N,
Renvoise B, Lippincott-
Schwartz J, Blackstone C,
Hurley JH

2008 Crystal structure of
Spastin MIT in complex
with ESCRT III

http://www.rcsb.org/pdb/
explore/explore.do?
structureId=3EAB

Publicly available at RCSB
Protein Data Bank (3EAB).

References
Andreassen PR, Lohez OD, Lacroix FB, Margolis RL. 2001. Tetraploid state induces p53-dependent arrest of
nontransformed mammalian cells in G1. Molecular Biology of the Cell 12:1315–1328. doi: 10.1091/mbc.12.5.
1315.

Bajorek M, Morita E, Skalicky JJ, Morham SG, Babst M, Sundquist WI. 2009. Biochemical analyses of human IST1
and its function in cytokinesis. Molecular Biology of the Cell 20:1360–1373. doi: 10.1091/mbc.E08-05-0475.

Bakhoum SF, Silkworth WT, Nardi IK, Nicholson JM, Compton DA, Cimini D. 2014. The mitotic origin of
chromosomal instability. Current Biology 24:R148–R149. doi: 10.1016/j.cub.2014.01.019.

Bardi G, Fenger C, Johansson B, Mitelman F, Heim S. 2004. Tumor karyotype predicts clinical outcome in
colorectal cancer patients. Journal of Clinical Oncology 22:2623–2634. doi: 10.1200/JCO.2004.11.014.

Biesecker LG, Spinner NB. 2013. A genomic view of mosaicism and human disease. Nature Reviews Genetics 14:
307–320. doi: 10.1038/nrg3424.

Biron-Shental T, Liberman M, Sharvit M, Sukenik-Halevy R, Amiel A. 2015. Amniocytes from aneuploidy embryos
have enhanced random aneuploidy and signs of senescence - can these findings be related to medical problems?
Gene 562:232–235. doi: 10.1016/j.gene.2015.02.075.

Boveri T. 1914. Zur frage der entstehung maligner tumoren. Jena, Germany: Gustav Fischer Verlag.
Boveri T. 2008. Concerning the origin of malignant tumours by Theodor Boveri. Translated and annotated by
Henry Harris. Journal of Cell Science 121(Suppl 1):1–84. doi: 10.1242/jcs.025742.

Carere A, Antoccia A, Cimini D, Crebelli R, Degrassi F, Leopardi P, Marcon F, Sgura A, Tanzarella C, Zijno A. 1999.
Analysis of chromosome loss and non-disjunction in cytokinesis-blocked lymphocytes of 24 male subjects.
Mutagenesis 14:491–496. doi: 10.1093/mutage/14.5.491.

Carter SL, Eklund AC, Kohane IS, Harris LN, Szallasi Z. 2006. A signature of chromosomal instability inferred from
gene expression profiles predicts clinical outcome in multiple human cancers. Nature Genetics 38:1043–1048.
doi: 10.1038/ng1861.

Chen G, Mulla WA, Kucharavy A, Tsai HJ, Rubinstein B, Conkright J, McCroskey S, Bradford WD, Weems L, Haug
JS, Seidel CW, Berman J, Li R. 2015. Targeting the adaptability of heterogeneous aneuploids. Cell 160:771–784.
doi: 10.1016/j.cell.2015.01.026.

Cimini D, Howell B, Maddox P, Khodjakov A, Degrassi F, Salmon ED. 2001. Merotelic kinetochore orientation is
a major mechanism of aneuploidy in mitotic mammalian tissue cells. The Journal of Cell Biology 153:517–527.
doi: 10.1083/jcb.153.3.517.

Cremer M, Grasser F, Lanctot C, Muller S, Neusser M, Zinner R, Solovei I, Cremer T. 2008. Multicolor 3D
fluorescence in situ hybridization for imaging interphase chromosomes. Methods in Molecular Biology 463:
205–239. doi: 10.1007/978-1-59745-406-3_15.

Dewhurst SM, McGranahan N, Burrell RA, Rowan AJ, Grönroos E, Endesfelder D, Joshi T, Mouradov D, Gibbs P,
Ward RL, Hawkins NJ, Szallasi Z, Sieber OM, Swanton C. 2014. Tolerance of whole-genome doubling propagates
chromosomal instability and accelerates cancer genome evolution. Cancer Discovery 4:175–185. doi: 10.1158/
2159-8290.CD-13-0285.

Duelli D, Lazebnik Y. 2003. Cell fusion: a hidden enemy? Cancer Cell 3:445–448. doi: 10.1016/S1535-6108(03)00114-4.
Duelli DM, Padilla-Nash HM, Berman D, Murphy KM, Ried T, Lazebnik Y. 2007. A virus causes cancer by
inducing massive chromosomal instability through cell fusion. Current Biology 17:431–437. doi: 10.1016/j.
cub.2007.01.049.

Duesberg P, Rausch C, Rasnick D, Hehlmann R. 1998. Genetic instability of cancer cells is proportional to their
degree of aneuploidy. Proceedings of the National Academy of Sciences of USA 95:13692–13697. doi: 10.1073/
pnas.95.23.13692.

Nicholson et al. eLife 2015;4:e05068. DOI: 10.7554/eLife.05068 20 of 23

Research article Cell biology | Genes and chromosomes

http://www.rcsb.org/pdb/explore/explore.do?structureId=2DL1
http://www.rcsb.org/pdb/explore/explore.do?structureId=2DL1
http://www.rcsb.org/pdb/explore/explore.do?structureId=2DL1
http://www.rcsb.org/pdb/explore/explore.do?structureId=3EAB
http://www.rcsb.org/pdb/explore/explore.do?structureId=3EAB
http://www.rcsb.org/pdb/explore/explore.do?structureId=3EAB
http://dx.doi.org/10.1091/mbc.12.5.1315
http://dx.doi.org/10.1091/mbc.12.5.1315
http://dx.doi.org/10.1091/mbc.E08-05-0475
http://dx.doi.org/10.1016/j.cub.2014.01.019
http://dx.doi.org/10.1200/JCO.2004.11.014
http://dx.doi.org/10.1038/nrg3424
http://dx.doi.org/10.1016/j.gene.2015.02.075
http://dx.doi.org/10.1242/jcs.025742
http://dx.doi.org/10.1093/mutage/14.5.491
http://dx.doi.org/10.1038/ng1861
http://dx.doi.org/10.1016/j.cell.2015.01.026
http://dx.doi.org/10.1083/jcb.153.3.517
http://dx.doi.org/10.1007/978-1-59745-406-3_15
http://dx.doi.org/10.1158/2159-8290.CD-13-0285
http://dx.doi.org/10.1158/2159-8290.CD-13-0285
http://dx.doi.org/10.1016/S1535-6108(03)00114-4
http://dx.doi.org/10.1016/j.cub.2007.01.049
http://dx.doi.org/10.1016/j.cub.2007.01.049
http://dx.doi.org/10.1073/pnas.95.23.13692
http://dx.doi.org/10.1073/pnas.95.23.13692
http://dx.doi.org/10.7554/eLife.05068


Duesberg PH. 2014. Does aneuploidy destabilize karyotypes automatically? Proceedings of the National Academy
of Sciences of USA 111:E974. doi: 10.1073/pnas.1401413111.

Fenech M. 1993. The cytokinesis-block micronucleus technique: a detailed description of the method and its application
to genotoxicity studies in human populations. Mutation Research 285:35–44. doi: 10.1016/0027-5107(93)90049-L.

Foijer F, Draviam VM, Sorger PK. 2008. Studying chromosome instability in the mouse. Biochimica et Biophysica
Acta 1786:73–82. doi: 10.1016/j.bbcan.2008.07.004.

Fujiwara T, Bandi M, Nitta M, Ivanova EV, Bronson RT, Pellman D. 2005. Cytokinesis failure generating tetraploids
promotes tumorigenesis in p53-null cells. Nature 437:1043–1047. doi: 10.1038/nature04217.

Ganem NJ, Godinho SA, Pellman D. 2009. A mechanism linking extra centrosomes to chromosomal instability.
Nature 460:278–282. doi: 10.1038/nature08136.

Gao C, Furge K, Koeman J, Dykema K, Su Y, Cutler ML, Werts A, Haak P, Vande Woude GF. 2007. Chromosome
instability, chromosome transcriptome, and clonal evolution of tumor cell populations. Proceedings of the
National Academy of Sciences of USA 104:8995–9000. doi: 10.1073/pnas.0700631104.

Gemoll T, Habermann JK, Becker S, Szymczak S, Upender MB, Bruch HP, Hellman U, Ried T, Auer G, Jornvall H,
Roblick UJ. 2013. Chromosomal aneuploidy affects the global proteome equilibrium of colorectal cancer cells.
Analytical Cellular Pathology 36:149–161. doi: 10.1155/2013/249054.

Gisselsson D. 2011. Intratumor diversity and clonal evolution in cancer–a skeptical standpoint. Advances in Cancer
Research 112:1–9. doi: 10.1016/B978-0-12-387688-1.00001-6.

Godinho SA, Picone R, Burute M, Dagher R, Su Y, Leung CT, Polyak K, Brugge JS, Thery M, Pellman D. 2014.
Oncogene-like induction of cellular invasion from centrosome amplification. Nature 510:167–171. doi: 10.1038/
nature13277.

Gordon DJ, Resio B, Pellman D. 2012. Causes and consequences of aneuploidy in cancer. Nature Reviews Genetics
13:189–203. doi: 10.1038/nrg3123.

Grinberg-Rashi H, Cytron S, Gelman-Kohan Z, Litmanovitch T, Avivi L. 2010. Replication timing aberrations and
aneuploidy in peripheral blood lymphocytes of breast cancer patients.Neoplasia 12:668–674. doi: 10.1593/neo.10568.

Heng HH. 2014. Distinguishing constitutional and acquired nonclonal aneuploidy. Proceedings of the National
Academy of Sciences of USA 111:E972. doi: 10.1073/pnas.1323636111.

Kost-Alimova M, Fedorova L, Yang Y, Klein G, Imreh S. 2004. Microcell-mediated chromosome transfer provides
evidence that polysomy promotes structural instability in tumor cell chromosomes through asynchronous
replication and breakage within late-replicating regions. Genes, Chromosomes & Cancer 40:316–324. doi: 10.
1002/gcc.20054.

Krzywicka-Racka A, Sluder G. 2011. Repeated cleavage failure does not establish centrosome amplification in
untransformed human cells. The Journal of Cell Biology 194:199–207. doi: 10.1083/jcb.201101073.

Lee AJ, Endesfelder D, Rowan AJ, Walther A, Birkbak NJ, Futreal PA, Downward J, Szallasi Z, Tomlinson IP, Howell
M, Kschischo M, Swanton C. 2011. Chromosomal instability confers intrinsic Multidrug resistance. Cancer
Research 71:1858–1870. doi: 10.1158/0008-5472.CAN-10-3604.

Lengauer C, Kinzler KW, Vogelstein B. 1997. Genetic instability in colorectal cancers. Nature 386:623–627. doi: 10.
1038/386623a0.

Leopardi P, Marcon F, Dobrowolny G, Zijno A, Crebelli R. 2002. Influence of donor age on vinblastine-induced
chromosome malsegregation in cultured peripheral lymphocytes. Mutagenesis 17:83–88. doi: 10.1093/mutage/
17.1.83.

Lind GE, Raiborg C, Danielsen SA, Rognum TO, Thiis-Evensen E, Hoff G, Nesbakken A, Stenmark H, Lothe RA.
2011. SPG20, a novel biomarker for early detection of colorectal cancer, encodes a regulator of cytokinesis.
Oncogene 30:3967–3978. doi: 10.1038/onc.2011.109.

Mitelman F, Johansson B, Mertens F. 2014. Mitelman database of chromosome aberrations and gene fusions in
cancer. http://cgap.nci.nih.gov/Chromosomes/Mitelman.

Miyazaki M, Furuya T, Shiraki A, Sato T, Oga A, Sasaki K. 1999. The relationship of DNA ploidy to chromosomal
instability in primary human colorectal cancers. Cancer Research 59:5283–5285.

Nagaoka SI, Hassold TJ, Hunt PA. 2012. Human aneuploidy: mechanisms and new insights into an age-old
problem. Nature Reviews Genetics 13:493–504. doi: 10.1038/nrg3245.

Nicholson JM, Cimini D. 2011. How mitotic errors contribute to karyotypic diversity in cancer. Advances in Cancer
Research 112:43–75. doi: 10.1016/B978-0-12-387688-1.00003-X.

Nicholson JM, Cimini D. 2013. Cancer karyotypes: survival of the fittest. Frontiers in Oncology 3:148. doi: 10.3389/
fonc.2013.00148.

Nicholson JM, Cimini D. 2015. Link between aneuploidy and chromosome instability. International Review of Cell
and Molecular Biology 315:299–317. doi: 10.1016/bs.ircmb.2014.11.002.

Nicholson JM, Duesberg P. 2009. On the karyotypic origin and evolution of cancer cells. Cancer Genetics and
Cytogenetics 194:96–110. doi: 10.1016/j.cancergencyto.2009.06.008.

Normand G, King RW. 2010. Understanding cytokinesis failure. Advances in Experimental Medicine and Biology
676:27–55. doi: 10.1007/978-1-4419-6199-0_3.

Nowinski GP, Van Dyke DL, Tilley BC, Jacobsen G, Babu VR, Worsham MJ, Wilson GN, Weiss L. 1990. The
frequency of aneuploidy in cultured lymphocytes is correlated with age and gender but not with reproductive
history. American Journal of Human Genetics 46:1101–1111.

Panopoulos A, Pacios-Bras C, Choi J, Yenjerla M, Sussman MA, Fotedar R, Margolis RL. 2014. Failure of cell
cleavage induces senescence in tetraploid primary cells. Molecular Biology of the Cell 25:3105–3118. doi: 10.
1091/mbc.E14-03-0844.

Nicholson et al. eLife 2015;4:e05068. DOI: 10.7554/eLife.05068 21 of 23

Research article Cell biology | Genes and chromosomes

http://dx.doi.org/10.1073/pnas.1401413111
http://dx.doi.org/10.1016/0027-5107(93)90049-L
http://dx.doi.org/10.1016/j.bbcan.2008.07.004
http://dx.doi.org/10.1038/nature04217
http://dx.doi.org/10.1038/nature08136
http://dx.doi.org/10.1073/pnas.0700631104
http://dx.doi.org/10.1155/2013/249054
http://dx.doi.org/10.1016/B978-0-12-387688-1.00001-6
http://dx.doi.org/10.1038/nature13277
http://dx.doi.org/10.1038/nature13277
http://dx.doi.org/10.1038/nrg3123
http://dx.doi.org/10.1593/neo.10568
http://dx.doi.org/10.1073/pnas.1323636111
http://dx.doi.org/10.1002/gcc.20054
http://dx.doi.org/10.1002/gcc.20054
http://dx.doi.org/10.1083/jcb.201101073
http://dx.doi.org/10.1158/0008-5472.CAN-10-3604
http://dx.doi.org/10.1038/386623a0
http://dx.doi.org/10.1038/386623a0
http://dx.doi.org/10.1093/mutage/17.1.83
http://dx.doi.org/10.1093/mutage/17.1.83
http://dx.doi.org/10.1038/onc.2011.109
http://cgap.nci.nih.gov/Chromosomes/Mitelman
http://dx.doi.org/10.1038/nrg3245
http://dx.doi.org/10.1016/B978-0-12-387688-1.00003-X
http://dx.doi.org/10.3389/fonc.2013.00148
http://dx.doi.org/10.3389/fonc.2013.00148
http://dx.doi.org/10.1016/bs.ircmb.2014.11.002
http://dx.doi.org/10.1016/j.cancergencyto.2009.06.008
http://dx.doi.org/10.1007/978-1-4419-6199-0_3
http://dx.doi.org/10.1091/mbc.E14-03-0844
http://dx.doi.org/10.1091/mbc.E14-03-0844
http://dx.doi.org/10.7554/eLife.05068


Pavelka N, Rancati G, Li R. 2010a. Dr Jekyll and Mr Hyde: role of aneuploidy in cellular adaptation and cancer.
Current Opinion in Cell Biology 22:809–815. doi: 10.1016/j.ceb.2010.06.003.

Pavelka N, Rancati G, Zhu J, Bradford WD, Saraf A, Florens L, Sanderson BW, Hattem GL, Li R. 2010b. Aneuploidy
confers quantitative proteome changes and phenotypic variation in budding yeast. Nature 468:321–325. doi: 10.
1038/nature09529.

Pollack JR, Sorlie T, Perou CM, Rees CA, Jeffrey SS, Lonning PE, Tibshirani R, Botstein D, Borresen-Dale AL, Brown
PO. 2002. Microarray analysis reveals a major direct role of DNA copy number alteration in the transcriptional
program of human breast tumors. Proceedings of the National Academy of Sciences of USA 99:12963–12968.
doi: 10.1073/pnas.162471999.

Reish O, Brosh N, Gobazov R, Rosenblat M, Libman V, Mashevich M. 2006. Sporadic aneuploidy in PHA-
stimulated lymphocytes of Turner’s syndrome patients. Chromosome Research 14:527–534. doi: 10.1007/
s10577-006-1050-9.

Reish O, Regev M, Kanesky A, Girafi S, Mashevich M. 2011. Sporadic aneuploidy in PHA-stimulated
lymphocytes of trisomies 21, 18, and 13. Cytogenetic and Genome Research 133:184–189. doi: 10.1159/
000323504.

Renvoise B, Parker RL, Yang D, Bakowska JC, Hurley JH, Blackstone C. 2010. SPG20 protein spartin is recruited to
midbodies by ESCRT-III protein Ist1 and participates in cytokinesis. Molecular Biology of the Cell 21:3293–3303.
doi: 10.1091/mbc.E09-10-0879.

Ried T, Hu Y, Difilippantonio MJ, Ghadimi BM, Grade M, Camps J. 2012. The consequences of chromosomal
aneuploidy on the transcriptome of cancer cells. Biochimica et Biophysica Acta 1819:784–793. doi: 10.1016/j.
bbagrm.2012.02.020.

Ried T, Knutzen R, Steinbeck R, Blegen H, Schrock E, Heselmeyer K, du Manoir S, Auer G. 1996. Comparative
genomic hybridization reveals a specific pattern of chromosomal gains and losses during the genesis of
colorectal tumors. Genes, Chromosomes & Cancer 15:234–245. doi: 10.1002/(SICI)1098-2264(199604)15:43.0.
CO;2-2.

Rieder CL, Maiato H. 2004. Stuck in division or passing through; what happens when cells cannot satisfy the spindle
assembly checkpoint. Developmental Cell 7:637–651. doi: 10.1016/j.devcel.2004.09.002.

Selmecki A, Forche A, Berman J. 2006. Aneuploidy and isochromosome formation in drug-resistant Candida
albicans. Science 313:367–370. doi: 10.1126/science.1128242.

Selmecki AM, Dulmage K, Cowen LE, Anderson JB, Berman J. 2009. Acquisition of aneuploidy provides increased
fitness during the evolution of antifungal drug resistance. PLOS Genetics 5:e1000705. doi: 10.1371/journal.pgen.
1000705.

Sheffer M, Bacolod MD, Zuk O, Giardina SF, Pincas H, Barany F, Paty PB, Gerald WL, Notterman DA, Domany E.
2009. Association of survival and disease progression with chromosomal instability: a genomic exploration of
colorectal cancer. Proceedings of the National Academy of Sciences of USA 106:7131–7136. doi: 10.1073/pnas.
0902232106.

Sheltzer JM, Blank HM, Pfau SJ, Tange Y, George BM, Humpton TJ, Brito IL, Hiraoka Y, Niwa O, Amon A. 2011.
Aneuploidy drives genomic instability in yeast. Science 333:1026–1030. doi: 10.1126/science.1206412.

Sheltzer JM, Torres EM, Dunham MJ, Amon A. 2012. Transcriptional consequences of aneuploidy. Proceedings of
the National Academy of Sciences of USA 109:12644–12649. doi: 10.1073/pnas.1209227109.

Silkworth WT, Cimini D. 2012. Transient defects of mitotic spindle geometry and chromosome segregation errors.
Cell Division 7:19. doi: 10.1186/1747-1028-7-19.

Silkworth WT, Nardi IK, Scholl LM, Cimini D. 2009. Multipolar spindle pole coalescence is a major source of
kinetochore mis-attachment and chromosome mis-segregation in cancer cells. PLOS ONE 4:e6564. doi: 10.1371/
journal.pone.0006564.

Stingele S, Stoehr G, Peplowska K, Cox J, Mann M, Storchova Z. 2012. Global analysis of genome, transcriptome
and proteome reveals the response to aneuploidy in human cells.Molecular Systems Biology 8:608. doi: 10.1038/
msb.2012.40.

Storchova Z, Pellman D. 2004. From polyploidy to aneuploidy, genome instability and cancer. Nature Reviews
Molecular Cell Biology 5:45–54. doi: 10.1038/nrm1276.

Stukenberg PT. 2004. Triggering p53 after cytokinesis failure. The Journal of Cell Biology 165:607–608. doi: 10.
1083/jcb.200405089.

Suetake T, Hayashi F, Yokoyama S. 2009. Chain A, solution structure of the MIT domain from human Spartin. http://
www.ncbi.nlm.nih.gov/protein/159164182.

Thompson SL, Compton DA. 2008. Examining the link between chromosomal instability and aneuploidy in human
cells. The Journal of Cell Biology 180:665–672. doi: 10.1083/jcb.200712029.

Torres EM, Sokolsky T, Tucker CM, Chan LY, Boselli M, Dunham MJ, Amon A. 2007. Effects of aneuploidy
on cellular physiology and cell division in haploid yeast. Science 317:916–924. doi: 10.1126/science.
1142210.

Uetake Y, Sluder G. 2004. Cell cycle progression after cleavage failure: mammalian somatic cells do not possess
a ‘tetraploidy checkpoint’. The Journal of Cell Biology 165:609–615. doi: 10.1083/jcb.200403014.

Upender MB, Habermann JK, McShane LM, Korn EL, Barrett JC, Difilippantonio MJ, Ried T. 2004. Chromosome
transfer induced aneuploidy results in complex dysregulation of the cellular transcriptome in immortalized and
cancer cells. Cancer Research 64:6941–6949. doi: 10.1158/0008-5472.CAN-04-0474.

Valind A, Gisselsson D. 2014a. Reply to Duesberg: stability of peritriploid and triploid states in neoplastic and
nonneoplastic cells. Proceedings of the National Academy of Sciences of USA 111:E975. doi: 10.1073/pnas.
1402008111.

Nicholson et al. eLife 2015;4:e05068. DOI: 10.7554/eLife.05068 22 of 23

Research article Cell biology | Genes and chromosomes

http://dx.doi.org/10.1016/j.ceb.2010.06.003
http://dx.doi.org/10.1038/nature09529
http://dx.doi.org/10.1038/nature09529
http://dx.doi.org/10.1073/pnas.162471999
http://dx.doi.org/10.1007/s10577-006-1050-9
http://dx.doi.org/10.1007/s10577-006-1050-9
http://dx.doi.org/10.1159/000323504
http://dx.doi.org/10.1159/000323504
http://dx.doi.org/10.1091/mbc.E09-10-0879
http://dx.doi.org/10.1016/j.bbagrm.2012.02.020
http://dx.doi.org/10.1016/j.bbagrm.2012.02.020
http://dx.doi.org/10.1002/(SICI)1098-2264(199604)15:43.0.CO;2-2
http://dx.doi.org/10.1002/(SICI)1098-2264(199604)15:43.0.CO;2-2
http://dx.doi.org/10.1016/j.devcel.2004.09.002
http://dx.doi.org/10.1126/science.1128242
http://dx.doi.org/10.1371/journal.pgen.1000705
http://dx.doi.org/10.1371/journal.pgen.1000705
http://dx.doi.org/10.1073/pnas.0902232106
http://dx.doi.org/10.1073/pnas.0902232106
http://dx.doi.org/10.1126/science.1206412
http://dx.doi.org/10.1073/pnas.1209227109
http://dx.doi.org/10.1186/1747-1028-7-19
http://dx.doi.org/10.1371/journal.pone.0006564
http://dx.doi.org/10.1371/journal.pone.0006564
http://dx.doi.org/10.1038/msb.2012.40
http://dx.doi.org/10.1038/msb.2012.40
http://dx.doi.org/10.1038/nrm1276
http://dx.doi.org/10.1083/jcb.200405089
http://dx.doi.org/10.1083/jcb.200405089
http://www.ncbi.nlm.nih.gov/protein/159164182
http://www.ncbi.nlm.nih.gov/protein/159164182
http://dx.doi.org/10.1083/jcb.200712029
http://dx.doi.org/10.1126/science.1142210
http://dx.doi.org/10.1126/science.1142210
http://dx.doi.org/10.1083/jcb.200403014
http://dx.doi.org/10.1158/0008-5472.CAN-04-0474
http://dx.doi.org/10.1073/pnas.1402008111
http://dx.doi.org/10.1073/pnas.1402008111
http://dx.doi.org/10.7554/eLife.05068


Valind A, Gisselsson D. 2014b. Reply to Heng: inborn aneuploidy and chromosomal instability. Proceedings of the
National Academy of Sciences of USA 111:E973. doi: 10.1073/pnas.1323978111.

Valind A, Jin Y, Baldetorp B, Gisselsson D. 2013. Whole chromosome gain does not in itself confer cancer-like
chromosomal instability. Proceedings of the National Academy of Sciences of USA 110:21119–21123. doi: 10.
1073/pnas.1311163110.

Walther A, Houlston R, Tomlinson I. 2008. Association between chromosomal instability and prognosis in
colorectal cancer: a meta-analysis. Gut 57:941–950. doi: 10.1136/gut.2007.135004.

Williams BR, Prabhu VR, Hunter KE, Glazier CM, Whittaker CA, Housman DE, Amon A. 2008. Aneuploidy affects
proliferation and spontaneous immortalization in mammalian cells. Science 322:703–709. doi: 10.1126/science.
1160058.

Wong C, Stearns T. 2005. Mammalian cells lack checkpoints for tetraploidy, aberrant centrosome number, and
cytokinesis failure. BMC Cell Biology 6:6. doi: 10.1186/1471-2121-6-6.

Yang D, Rismanchi N, Renvoise B, Lippincott-Schwartz J, Blackstone C, Hurley JH. 2008. Structural basis for
midbody targeting of spastin by the ESCRT-III protein CHMP1B. Nature Structural & Molecular Biology 15:
1278–1286. doi: 10.1038/nsmb.1512.

Zhu J, Pavelka N, Bradford WD, Rancati G, Li R. 2012. Karyotypic determinants of chromosome instability in
aneuploid budding yeast. PLOS Genetics 8:e1002719. doi: 10.1371/journal.pgen.1002719.

Nicholson et al. eLife 2015;4:e05068. DOI: 10.7554/eLife.05068 23 of 23

Research article Cell biology | Genes and chromosomes

http://dx.doi.org/10.1073/pnas.1323978111
http://dx.doi.org/10.1073/pnas.1311163110
http://dx.doi.org/10.1073/pnas.1311163110
http://dx.doi.org/10.1136/gut.2007.135004
http://dx.doi.org/10.1126/science.1160058
http://dx.doi.org/10.1126/science.1160058
http://dx.doi.org/10.1186/1471-2121-6-6
http://dx.doi.org/10.1038/nsmb.1512
http://dx.doi.org/10.1371/journal.pgen.1002719
http://dx.doi.org/10.7554/eLife.05068

