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Abstract

During early meiotic prophase, a nucleus-wide reorganization leads to sorting of chromosomes into homologous pairs and
to establishing associations between homologous chromosomes along their entire lengths. Here, we investigate global
features of chromosome organization during this process, using a chromosome painting method in whole-mount
Caenorhabditis elegans gonads that enables visualization of whole chromosomes along their entire lengths in the context of
preserved 3D nuclear architecture. First, we show that neither spatial proximity of premeiotic chromosome territories nor
chromosome-specific timing is a major factor driving homolog pairing. Second, we show that synaptonemal complex-
independent associations can support full lengthwise juxtaposition of homologous chromosomes. Third, we reveal a
prominent elongation of chromosome territories during meiotic prophase that initiates prior to homolog association and
alignment. Mutant analysis indicates that chromosome movement mediated by association of chromosome pairing centers
(PCs) with mobile patches of the nuclear envelope (NE)–spanning SUN-1/ZYG-12 protein complexes is not the primary driver
of territory elongation. Moreover, we identify new roles for the X chromosome PC (X-PC) and X-PC binding protein HIM-8 in
promoting elongation of X chromosome territories, separable from their role(s) in mediating local stabilization of pairing
and association of X chromosomes with mobile SUN-1/ZYG-12 patches. Further, we present evidence that HIM-8 functions
both at and outside of PCs to mediate chromosome territory elongation. These and other data support a model in which
synapsis-independent elongation of chromosome territories, driven by PC binding proteins, enables lengthwise
juxtaposition of chromosomes, thereby facilitating assessment of their suitability as potential pairing partners.
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Introduction

The success of sexual reproduction relies on the ability of

diploid germ cells to generate haploid gametes through the

specialized cell division program of meiosis. Haploidization relies

on the faithful segregation of chromosomes from their homologous

partners, which in turn relies on an ability to sort chromosomes

into homologous pairs and establish temporary associations

between them. It is now well established that both recombinational

interactions at the DNA level and assembly of a meiosis-specific

proteinaceous structure known as the synaptonemal complex (SC)

play roles in stabilizing associations between homologous chro-

mosomes. However, how homologs become colocalized and how

initial recognition is accomplished to establish these associations

remains poorly understood.

Substantial progress has been made recently in illuminating a

conserved mechanism that mediates chromosome movements that

likely contribute to the chromosome sorting process in diverse

organisms (for reviews, see [1–3]). The common feature of these

large-scale spatial reorganization mechanisms involves tethering of

one or two specified site(s) on a chromosome to conserved nuclear

envelope (NE)- spanning protein complexes, thereby coupling the

chromosomes to the cytoskeletal motility apparatus that can

transmit forces to drive chromosome movement. Such forces and

movements have been proposed to enhance the efficiency of

chromosome sorting both by providing opportunities for homol-

ogy assessment and by destabilizing interactions between incorrect

partners. However, our understanding remains limited regarding

how localized chromosome tethering sites might mediate recog-

nition and bring about colocalization along the entire lengths of

chromosomes.

One reason for this limitation is that many studies of early

prophase chromosome reorganization have focused on assessing

the behavior of a few specified individual chromosomal loci. While

such approaches have been highly fruitful, they do not provide

information regarding the spatial and morphological organization

of whole chromosomes within intact nuclei prior to and during the

pairing process. Intermediate events in the pairing process are
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particularly difficult to investigate using single-locus visualization

methods, as only two pairing states (paired or unpaired) can be

captured at each locus. Thus in order to comprehensively study

the pairing process, including intermediate states, it is necessary to

study pairing in the context of whole chromosomes. One

cytological approach that has been applied to address this problem

is the use of ‘‘chromosome paints’’, i.e., fluorescence in situ

hybridization (FISH) probes that allow visualization of whole

chromosomes or large chromosome segments. Several previous

studies have applied whole chromosome paints to investigate

meiotic pairing, e.g. to visualize endogenous chromosomes in

human spermatocytes [4–6] or ‘‘alien’’ chromosomes in hybrid

plants [7–9]. Such studies have indeed succeeded in revealing

aspects that would be difficult to demonstrate without whole

chromosome visualization, such as intermediate pairing states

along the chromosome before synapsis [10] and a correlation

between pairing activity and morphological changes in hetero-

chromatin in plants [9,11–13]. However, technical challenges such

as limited availability of material (e.g., human) or difficulty

visualizing native chromosome complements rather than exoge-

nously-derived chromosomes (e.g., plants) have hindered wide-

spread adoption of the paint approach.

In the current work, we have applied a multi-color whole-

chromosome painting approach to visualize spatial and morpho-

logical reorganization of chromosome territories during meiotic

prophase in the nematode Caenorhabditis elegans, which has several

features that make it especially amenable to reaping the benefits of

the painting approach. Germ cells comprise more than half of the

cells in the adult hermaphrodite and are organized in a spatial-

temporal gradient along the longitudinal axis of the gonad,

facilitating analysis of large numbers of nuclei undergoing the

meiotic pairing process [14,15]. Further, the germ line is

organized as an optically clear single-layer epithelial tube, enabling

visualization of chromosome territories in the context of well-

preserved 3D nuclear architecture in whole mount gonads.

Finally, these cytological advantages can be exploited in

combination with a rich history of genetic analysis of meiosis that

has identified both cis- and trans-acting factors required to establish

and maintain homolog pairing (Reviewed in [16]).

A central player driving the chromosome sorting process in C.

elegans is the meiotic pairing center (PC), a cis-acting domain

located near one end of each chromosome [17,18]. PCs have been

demonstrated to play roles both in promoting local stabilization of

pairing and in promoting SC assembly; these dual roles of PCs

together ensure that synapsis occurs specifically between homol-

ogous chromosomes [19,20]. PC function depends on members of

a family of Zn finger DNA binding proteins (HIM-8 and ZIM-1,

-2, -3), each of which becomes concentrated at the PCs of a

specific subset of chromosomes [21–23]. Recent work has shown

that PCs are the sites at which C. elegans chromosomes associate

with conserved NE-spanning protein complexes (comprised of the

SUN-1 and ZYG-12 proteins) that mediate tethering of chromo-

somes to the cytoskeletal motility apparatus to enable chromosome

movement during meiotic prophase [24–26]. Further, PCs have

been proposed to participate in checkpoint-like mechanisms that

function, in a manner analogous to the spindle-assembly

checkpoint, to prevent licensing of SC assembly until successful

homologous associations have been achieved [25,27,28]. While

PCs represent a key focal point for activities that drive

chromosome movements, mediate associations between prospec-

tive pairing partners, and couple SC assembly to homology

verification, however, it is not clear how the known functions and

properties of PCs and PC binding proteins might contribute to

homolog recognition per se. Further, our current understanding of

PCs does not explain how chromosomal regions outside of the PCs

might contribute to homology recognition.

In the current work, we fill a major gap in our knowledge

regarding the spatial and morphological organization of chromo-

somes within C. elegans germ cell nuclei prior to meiotic entry and

during the process of homolog pairing. Visualization of whole

chromosome territories has allowed us to exclude several possible

mechanisms as primary drivers of chromosome sorting. Further,

our analysis has revealed both a robust capacity for synapsis-

independent full-lengthwise alignment between homologous

chromosomes as well as a dramatic longitudinal extension of

chromosome territories that could enable this alignment. More-

over, we demonstrate unanticipated roles for the X chromosome

PC and PC binding protein HIM-8 in promoting territory

elongation. These and other observations together paint a picture

in which longitudinal restructuring of chromosome territories

collaborates with other functions of meiotic pairing centers to

bring about efficient, stable and productive interactions between

homologous chromosomes, ultimately leading to the production of

haploid gametes.

Results

Visualizing chromosome territories with chromosome
paints in whole-mount C. elegans gonads
During meiotic prophase, chromosomes are spatially reorganized

within the nucleus to establish productive associations between

homologous chromosomes. In order to study this reorganization

process, we used a chromosome painting approach to visualize

complete chromosomal territories in the context of preserved 3D

nuclear architecture in whole mount gonads of C. elegans. This

method provides a means to trace the full length of a chromosome,

making it particularly useful for analyzing the spatial organization of

chromosomes in premeiotic nuclei and during intermediate steps in

chromosome alignment. Figure 1 summarizes representative

Author Summary

Successful sexual reproduction relies on the ability of germ
cells to faithfully segregate homologous chromosomes in
meiosis, which requires accurate sorting of chromosomes
into homologous pairs and alignment of homologs along
their entire lengths. The mechanisms underlying homolog
sorting and alignment are not well understood, partly
because of a scarcity of studies investigating homolog
alignment at the level of whole chromosomes. This study
provides a global view of the organization of chromosome
territories during early meiotic prophase in the nematode
Caenorhabditis elegans. We applied chromosome painting
to visualize the entire lengths of chromosomes. Our study
provides several conceptual advances. First, our study
excluded several possible mechanisms as primary drivers
of chromosome sorting. Second, our analysis has revealed
both a robust capacity for full-lengthwise alignment
between homologous chromosomes prior to the stabili-
zation of pairing by the synaptonemal complex as well as a
dramatic elongation of chromosome territories that could
enable this alignment. We also identified a factor required
for the elongation of chromosome territories. Elongation
of chromosome territories could enable lengthwise
juxtaposition of chromosomes, thereby facilitating assess-
ment of their suitability as potential pairing partners by
promoting utilization of information about chromosome
identity that is distributed along the length of a
chromosome.

Caenorhabditis elegans Meiotic Chromosome Organization
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observations from an experiment in which chromosome II was

visualized with a paint probe generated from YAC clones tiled along

the length of the chromosome (see Materials and Methods). For this

probe, three different fluorescent dyes were assigned to three distinct

segments of the chromosome; in addition, the left- and right-most

YACs were double-labeled with a second fluorophore in order to

clearly locate chromosome ends.

We exploited the stereotyped spatio-temporal organization of

nuclei within the C. elegans gonad and the appearance of DAPI-

stained chromatin to identify premeiotic nuclei and nuclei at

different stages of meiotic prophase. Several basic observations are

introduced briefly here and will be expanded upon in subsequent

sections: 1) In premeiotic nuclei (located in the distal region of the

germ line), the chromosome II paint probe typically labels two

Figure 1. Visualization of chromosome II territories using multicolor chromosome paints. Each panel shows a three-dimensional
rendered image of the chromosome II pair in a single wild-type nucleus from a whole-mount gonad, reconstructed from optical sectioning confocal
microscopy; the chromosomes are visualized using a multicolor chromosome paint FISH probe, which is depicted schematically below. Three
different fluorescent dyes are assigned to each of three segments of chromosome II: Alexa-488 to the left segment (green), Alexa-555 to the central
segment (red) and Alexa-647 to the right segment (blue). (Details of the labeling scheme are in Table S1). The left and right ends of the chromosomes
are double-labeled with a second fluorescent dye (Alexa-647 and Alexa-488, respectively), and appear light blue in color as a result of the
colocalization of the two dyes. In this and other figures, gray segments in the schematic indicate regions of the chromosome that were not
represented in the probe; PC indicates the pairing center end and NPC represents the non-pairing center end of the relevant chromosome. In the
images, DAPI counter stain is shown in light gray. (a) A nucleus in the pre-meiotic zone, in which the two homologous chromosomes are seen in
compact territories. (b–g) Nuclei from the transition zone (TZ), the region of the germ line where chromosome territories become longitudinally
extended and pairing is established. Within the TZ, homologs can be: (b) not aligned; (c–f) partially aligned; or (g) fully aligned. (h and i) Nuclei from
the pachytene zone, in which fully aligned homologous chromosomes are seen in a single chromosome territory progressively extending during
pachytene progression. Scale is shown by the square grid in the background of each panel, with 0.5 mm as the length of each side of the unit square.
doi:10.1371/journal.pgen.1002231.g001
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relatively compact ovoid territories, often widely separated within

the nucleus (Figure 1a). 2) As nuclei move proximally in the gonad,

they enter meiotic prophase and initiate homolog pairing in a

region known as the transition zone. The transition zone contains

nuclei in the leptotene and zygotene stages of meiotic prophase,

and is characterized by an asymmetric clustering of chromosomes

within the nucleus that reflects active chromosome movement

driven by connections of chromosomes to the cytoskeletal motility

apparatus [25,26]. Nuclei within the transition zone frequently

exhibit highly elongated chromosome territories; such elongated

chromosome territories may be unassociated (Figure 1b), partially

aligned (Figure 1c–1f) or completely aligned along their entire

lengths (Figure 1g). At this and later stages, chromosome paint

signals sometimes exhibit a discontinuous ‘‘beads-on-a-string’’

appearance, even for chromosome regions whose sequence is fully

represented by YAC clones in the paint probe. 3) Nuclei exit the

transition zone upon entry into the pachytene stage, during which

homologous chromosomes are fully aligned and stably associated

with their homologous partners via the synaptonemal complex

(SC), and chromosomes are redispersed around the nuclear

periphery. During the pachytene stage, chromosome paints reveal

a single elongated chromosome territory reflecting complete

alignment and association of homologous chromosomes along

their entire lengths (Figure 1h, 1i).

Preferential proximity between homologous territories is
established predominantly after meiotic entry
In principle, a prior non-random arrangement of chromosomes

within the nucleus could potentially contribute mechanistically to

the process of homolog pairing during meiosis. It was previously

shown that homologous chromosomes are not aligned prior to

meiotic entry in C. elegans, as pairing between homologous loci in

premeiotic nuclei is rarely observed by conventional locus-specific

FISH (e.g. [19,29,30]). However, it had not been addressed

whether territories of homologous chromosomes might exhibit

preferential proximity compared to non-homologous territories.

Therefore, we compared the spatial relationships between

homologous and non-homologous territories by simultaneously

visualizing two pairs of chromosomes in a subset of the pre-meiotic

zone (1–15 cell diameters from the distal tip) that does not include

pre-meiotic S phase. These experiments used four fluorescent dyes

(two assigned to each chromosome) to identify each chromosome

and to distinguish their left and right halves. Spatial relationships

between chromosome territories were examined in 3D recon-

structed images (Figure 2A). We defined four categories of spatial

proximity for this analysis. If we observed any overlap or

association between two territories, territories were scored as

‘‘touching’’. Other spatial relationships between two territories

were classified into three categories based on visual inspection of

3D-rendered images. We approximated the distances between the

closest edges of the territories (d) using the width of chromosome

territory as a scale unit (D), since these territories are highly

uniform in their width (0.67 mm6SD 0.05 mm, n= 16); distances

were classified as: close (0,d#D), intermediate (D,d#2D) or far

(2D#d).

Several features of premeiotic nuclear organization were

revealed by simultaneous analysis of chromosome I and II
territories (Figure 2B). First, homologous chromosome territories

were frequently widely spaced within the nucleus, with more than

half of the distances in the intermediate and far categories. Second,

both homologous pairs (I-I and II-II) exhibited similar distributions

among the different spatial relationship categories. Third,

heterologous pairs of chromosome territories (I-II) did not exhibit

a significantly different distribution among the spatial categories

compared with homologous (I-I or II-II) pairs (p = 0.34 and

p= 0.26). This indicates that these chromosomes are not

‘‘presorted’’ in most of the pre-meiotic stage and suggests that

premeiotic nuclear organization is not the primary factor driving

meiotic homolog pairing.

Simultaneous analysis of chromosome I and X chromosome

territories revealed both similarities and differences (Figure 2C).

On one hand, the X chromosomes were no more or less likely than

chromosomes I or II to be in close proximity to or associated with

their homologous partners, as the distributions among the spatial

categories did not exhibit any significant differences (p = 0.79,

p = 0.36). This reinforces the view that no chromosome pair is in a

preferentially pre-associated state in the pre-meiotic stage. On the

other hand, however, heterologous pairs of chromosome territories

(I-X) did exhibit a significantly different distribution among the

spatial categories when compared with homologous (I-I or X-X)

pairs (p,0.0001), reflecting a tendency of I and X to be separated

by larger distances. This observation raises the possibility that the

X chromosomes, while no more likely than autosomes to be closely

associated with each other, may nevertheless be spatially

segregated from autosomes in pre-meiotic nuclei. Such a feature

could help explain the higher proficiency of X chromosome

pairing under some conditions where autosomal pairing is severely

abrogated [27,28,31–34].

One possible reason why the X chromosomes might be spatially

segregated from the autosomes premeiotically is that X chromo-

some PCs exhibit strong association with the HIM-8 protein and

the nuclear envelope in premeiotic nuclei, whereas the ZIM

proteins do not show strong association with the autosomal PCs

until meiotic entry [21,22]. We tested whether HIM-8 might be

responsible for X-A spatial segregation by examining the spatial

organization of pre-meiotic territories in the him-8(e1489) mutant,

which lacks detectable HIM-8 protein. We found that the

tendency for the X chromosome to be spatially segregated from

chromosome I was diminished in the him-8(e1489) mutant

(Figure 2D), as the distribution among spatial categories for

heterologous pairs (I-X) did not differ significantly from the

distribution observed for X-X pairs (p = 0.21) and exhibited only a

modest difference from that observed for I-I pairs (p = 0.03). Thus,

we conclude that association of the X chromosomes with the HIM-

8 protein and/or the nuclear envelope does indeed contribute to

the spatial segregation of X chromosomes from autosomes in

premeiotic nuclei.

Chromosomes do not exhibit a temporal hierarchy for
homolog alignment
The same sets of paints (4-color, 2-chromosome) were used to

examine chromosome organization in transition zone nuclei,

where homolog pairing is established. This analysis enabled us to

investigate the possibility that temporal heterogeneity in chromo-

some organization or behavior might play a role in chromosome

sorting during the pairing phase of meiotic prophase. Specifically,

for each transition zone nucleus we assessed whether each

homologous chromosome pair was unaligned, partially aligned

or fully aligned (Figure 3). In the majority of transition zone nuclei,

we found that either both pairs of chromosomes were unaligned or

both pairs were completely aligned, presumably reflecting nuclei

that had either not yet begun or had already completed the

homolog alignment process. Thus, to address the issue of relative

timing, we specifically considered the subset of nuclei that were in

the process of achieving homolog alignment, i.e., those nuclei in

which either 1) both chromosome pairs exhibited partial alignment

or 2) the two chromosome pairs exhibited disparate alignment

states (Figure 3A). Importantly, there was no pattern among these

Caenorhabditis elegans Meiotic Chromosome Organization
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nuclei that would indicate a specific temporal hierarchy in the

order of chromosome pairing. We observed nuclei in which

chromosome I was partially or fully aligned and chromosome II

was unaligned, and we likewise found nuclei in which chromosome

II was partially or fully aligned and chromosome I was unaligned.

Similar results were obtained for I and X. Thus, these data

demonstrate that all of the chromosomes initiate and complete

homologous alignment in a very similar time window. Moreover,

these experiments rule out the possibility that different chromo-

somes within the nucleus might pair in a reproducible temporal

order.

Homologous chromosomes can achieve full alignment in
the absence of synapsis
During wild-type C. elegans meiosis, successful pairing of

homologous chromosomes is quickly stabilized by assembly of

the SC, making it difficult to determine the extent to which full

alignment between homologs can occur in the absence of synapsis.

Mutants lacking the SC central region proteins (syp mutants)

provide an opportunity to address this issue, as such mutants not

only lack synapsis but also prolong the period of chromosome

clustering and chromosome mobility associated with the onset of

homolog pairing. Previous work using locus-specific FISH probes

had shown that syp mutants achieve substantial levels of pairing at

the pairing center (PC) ends of their chromosomes, revealing a role

for PCs in promoting local synapsis-independent stabilization of

pairing [19]. A subset of chromosomes in this prior analysis

displayed paired FISH signals at both PC and non-PC ends,

consistent with the possibility of full alignment, but the status of

interstitial chromosomal loci was ambiguous. Images of wild-type

leptotene/zygotene chromosome spreads showing parallel tracks

of foci of chromosome axis protein HIM-3 are also highly

suggestive of presynaptic alignment [35], but such images lack

information regarding chromosome identity, orientation and

extent of the proposed alignment. Thus, to directly evaluate the

capacity of C. elegans chromosomes to achieve full lengthwise

alignment in the absence of synapsis, we applied chromosome

painting to track chromosome territories in the syp-1(me17)

mutant, using the three-color chromosome II paint introduced

in Figure 1.

Figure 4A shows images of the most prominent classes of

chromosome association configurations observed during meiotic

prophase in the syp-1 mutant; Figure 4B shows a quantification of

the frequencies of these and other association types among nuclei

from different zones along the distal/proximal axis of the gonad

(representing a time course encompassing meiotic entry and

meiotic prophase progression through the end of the pachytene

stage). This analysis revealed that when homologous chromosome

pairs are associated in the syp-1 mutant, the two most common

configurations are: 1) a ‘‘V-shaped’’ configuration in which

homologs are associated only at the end of the chromosomes

harboring PC domain (Figure 4A, a), or 2) a configuration in

which the homologous territories are closely juxtaposed along their

entire lengths (Figure 4A, c). When the two homologous territories

are intimately aligned from end to end, they are visualized as a

single chromosome territory that is indistinguishable in appear-

ance from the synapsed chromosome pairs observed in wild type

nuclei at the pachytene stage (Figure 1h, 1i), with distinct

boundaries between chromosomal segments labeled with different

fluorophores clearly indicating alignment in register along the

entire length of the chromosomes. The high incidence of full

alignment demonstrates that C. elegans chromosomes have a

considerable propensity to align and associate closely along their

entire lengths without the aid of SC formation.

Interestingly, there was a relatively low abundance of homolog

pairs exhibiting a partial longitudinal association (‘‘Y-shaped’’

configuration, Figure 4A, b) compared to the V-shaped and fully-

aligned configurations. This dearth of intermediate alignment

states suggests that the PC-end-only association state and the full

alignment state may represent more stable configurations and/or

that there may be a relatively rapid transition between them.

Chromosome territories extend longitudinally after
meiotic entry and prior to homolog alignment
Our chromosome painting strategy revealed and allowed us to

document an extensive elongation of chromosome territories that

occurs in nuclei in the transition zone (Figure 1b–1d; Figure 5).

This longitudinal extension is mostly seen after meiotic entry. As

shown in Figure 5A, most chromosomes are in compact territories

before nuclei enter the transition zone (Figure 5A left, inset 1), but

once nuclei are in the transition zone (Figure 5A, a, b middle),

longitudinal extension of chromosome territories is clearly

observed in a subset of nuclei (Figure 5A, insets 2–4). For purposes

of quantitation, we defined ‘‘highly extended’’ chromosome

territories as those exhibiting an extremely elongated thread-like

morphology that was clearly distinguishable from the compact

ovoid shape of territories in the pre-meiotic region. Such territories

have a slenderness ratio (the ratio of the approximate length to the

approximate width of the painted chromosome) of .6. Half of

chromosome I territories and 25–30% of X chromosome

territories were scored as ‘‘highly extended’’ in wild-type transition

zone nuclei (see below).

Our analysis indicates that longitudinal extension of chromo-

some territories initiates before homologous association. Among

nuclei exhibiting highly extended chromosome territories prior to

full alignment, there was no obvious relationship between the

Figure 2. Spatial organization of premeiotic chromosome territories. (A) Three-dimensional rendered paint images of chromosomes I and II
in individual wild-type nuclei in the pre-meiotic zone. Chromosome I is painted with Alexa-488 (green) on the left half and Alexa-532 (yellow) on the
right half. Chromosome II is painted with Alexa-594 (red) on the left half and Alexa-647 (blue) on the right half. DAPI counter staining is shown in
white in panels a and c. The spatial relationships between each pair of chromosome territories in each nucleus were categorized based on the
observed separation between the two territories in the 3D reconstruction. In the nucleus in panel b, the distance between territories 1 and 2 was
scored as ‘‘intermediate’’ (D,d#2D, where d= the shortest distance between the edges of two territories and D= the average width of a territory);
distances between 1 and 3 and between 2 and 3 were both scored as ‘‘touching’’; the distance between territories 3 and 4 was scored as ‘‘far’’
(d.2D). In panel d, the distance between territories 1 and 3 was scored as ‘‘close’’ (d,D, but the territories are not touching). Scale is shown by the
square grid in the background of each panel, with 3.8 mm as the length of each side of the unit square. (B–D) Quantification of the spatial
organization of premeiotic chromosome territories. (B) Stacked bar graphs indicate the fraction of distances between pairs of homologous (I-I and II-II)
or heterologous (I-II) territories in wild type worms in each of the four spatial-relationship categories (Far, Intermediate, Close and Touching)
described above. A total of 91 nuclei from the pre-meiotic regions of three germ lines was analyzed. (C) Stacked bar graphs showing quantification of
the spatial organization of chromosome territories for chromosome I and the X chromosome in wild type worms. 104 nuclei from three germ lines
were analyzed. (D) Stacked bar graphs showing quantification of the spatial organization of chromosome territories for chromosome I and the X
chromosome in him-8(e1489) mutant worms. 73 nuclei from three germ lines were analyzed.
doi:10.1371/journal.pgen.1002231.g002
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Figure 3. Chromosomes do not exhibit a temporal hierarchy for homolog alignment in the transition zone. (A) Three-dimensional
rendered paint images of chromosomes I and II (a–d), and chromosomes I and X (e–h) in individual nuclei from the transition zone. Chromosomes I
and II are painted as in Figure 2A. The X chromosome is painted with Alexa-594 (red) on the left half and Alexa-647 (blue) on the right half. DAPI
counter staining is shown in white. (a, b) a fully aligned chromosome I pair is seen as a single territory, whereas two distinct chromosome II territories
indicate a lack of association between the chromosome II homologs. (c, d) full alignment of chromosome I and partial alignment (in the red segment)
of chromosome II. (e, f) fully aligned chromosome I and no association between the X chromosomes. (g, h) full alignment of the X chromosomes and
partial alignment (in the yellow segment) of chromosome I. Scale is shown by the square grid in the background of each panel, with 3.8 mm as the
length of each side of the unit square. (B) Matrices presenting quantitative analysis of chromosome alignment states in transition zone nuclei. Nuclei
were classified into nine categories based on the alignment states of chromosomes I and II (Part 1, n = 119 nuclei) or chromosomes I and X (Part 2,
n = 182 nuclei).
doi:10.1371/journal.pgen.1002231.g003
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elongation state and the association status of a homolog pair;

extended chromosome territories were seen for non-associated,

end-associated and partially aligned chromosomes (Figure 5B).

Quantitation of association/alignment states in these nuclei

revealed that between 42% (chromosome I ) and 68% (X

chromosomes) of such nuclei showed no evidence of homologous

association between the assayed chromosome pair. Therefore,

neither alignment nor association between homologous chromo-

somes is a prerequisite for the longitudinal extension of

chromosome territories. This observation indicates that chromo-

some territories extend from a compact shape to an elongated

shape in early meiotic prophase, before initiating homologous

alignment.

Among the chromosome I and chromosome II territories

analyzed in Figure 5B, association of chromosome territories only

at the PC end or only at the non-PC end (V-PC or V-NPC

configuration) was observed with similar frequencies. In contrast,

partial alignment of chromosome territories along the PC half of

the chromosome (the Y-PC configuration) occurred much more

frequently than the Y- NPC configuration (which was rarely

observed). This observation suggests that even though the non-PC

terminus of a chromosome has some potential to engage in

homologous association very early in meiotic prophase, this

activity is much weaker than the robust pairing-stabilization

activity at the PC terminus, which is capable of propagating

pairing into adjacent chromosome regions.

Elongation of chromosome territories revealed a beads-on-string

appearance of the chromosome paint signals: chromosomal

segments of high signal intensity are interspersed with regions of

low intensity or gaps. Further, while the number of ‘‘beads’’

depends on the composition of the probe, an increase in the degree

of extension generally correlates with an increase of the number of

discernable painted segments per chromosome (Figure 6A, 6B).

Thus, counting of painted segments provides a means to quantify

and compare the elongation states of the chromosomes at different

stages. Specifically, we counted the numbers of these ‘‘painted

segments’’ in three-dimensionally rendered images, as illustrated in

Figure 6A, 6B (see Videos S1 and S2 and Materials and Methods).

This analysis was conducted for chromosome I and for the X

chromosome, for nuclei from three distinct zones within the

Figure 4. Homologous chromosomes can achieve full alignment in the absence of synaptonemal complex formation. (A) Three-
dimensional rendered paint images of the chromosome II pair in individual nuclei from the syp-1(me17) mutant, which lacks the synaptonemal
complex. The probe was identical to that used in Figure 1. Three representative homolog association patterns are shown: (a) V-shaped configuration,
with homologs associated only at the left end, which contains the meiotic pairing center (PC); (b) Y-shaped configuration, with homologs aligned and
associated from the left (PC) end to the middle of the chromosome; (c) Fully-aligned configuration, in which homologs are aligned and associated
along their entire lengths. Scale is shown by the square grid in the background of each panel, with 0.6 mm as the length of each side of the unit
square. (B) Quantification of chromosome configurations in syp-1(me17) mutant germ lines. As illustrated in the inset diagram, each gonad was
subdivided into six zones (one pre-meiotic zone and five equally-sized meiotic zones). For each zone, the fraction of nuclei in which the chromosome
II pair exhibited the indicated configurations is shown using a stacked bar graph. Nuclei from five gonads were scored for this analysis. In addition to
the three categories described in (A), five additional classification categories were used, as follows: V-NPC: V-shaped configuration with homologs
associated only at the right (non-PC) end; Y-NPC: Y-shaped configuration with homologs aligned and associated from the right end; X, O, other:
X-shaped configuration with homologs aligned and associated only in the middle region, O-shaped configuration with homologs associated only at
both ends (but not in the middle region) and other association patterns (e.g. double O-shape); No alignment: homologs associated in non-
homologous manner, and No contact: No association between homologs.
doi:10.1371/journal.pgen.1002231.g004
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gonad: the pre-meiotic zone, the transition zone, and the early

pachytene zone. Further, for plotting of the data (Figure 6C) we

sorted nuclei from the transition zone into two classes: those that

had not yet achieved full alignment (TZ-NF), and those that had

achieved full alignment (TZ-Full, which likely includes nuclei that

had reached the pachytene stage). This quantitative treatment

provided strong statistical support for the observations described

above. For both chromosome I and X, there was an extremely

significant increase in the number of painted chromosomal

segments between pre-meiotic nuclei and TZ-NF nuclei

(p,0.0001), reflecting a substantial elongation of chromosome

territories following meiotic entry. Moreover, we also detected an

extremely significant increase in the number of painted segments

per chromosome between TZ-NF nuclei and TZ-Full nuclei

(p,0.0001). This increase indicates an ongoing elongation of

chromosome territories within the TZ as homolog alignment

proceeds to completion.

In contrast, we did not detect a significant difference in the

number of painted chromosomal segments between TZ-Full and

pachytene nuclei for either chromosome. In part, this observation

likely reflects inclusion of some pachytene nuclei in the TZ-Full

category. However, it also suggests that while the segment-

counting assay clearly reports on one aspect of chromosome

elongation, it may not capture the full extent of pachytene

chromosome extension.

Longitudinal extension of chromosome territories occurs
in mutants defective for SC assembly and chromosome
dynamics mediated by PC–SUN-1/ZYG-12 linkages
The timing of the longitudinal extension coincides temporally

with a period of active chromosome movement that is mediated by

association of chromosome pairing centers (PCs) with mobile

patches of the NE-spanning SUN-1/ZYG-12 protein complexes.

In order to test whether PC–SUN-1/ZYG-12-mediated move-

ment of chromosomes is required for chromosome elongation, we

evaluated territory elongation in mutants defective for chk-2 (which

encodes a protein kinase required for homolog pairing and nuclear

reorganization during meiotic prophase [30]), him-3 (which

encodes a major chromosome axis component required for

synapsis [36]), and syp-1 (which encodes a major component of

the SC central region [19]. Previous work has shown that: 1) NE-

associated PC–SUN-1/ZYG-12 aggregates do not form and SUN-

1 is not phosphorylated in chk-2 mutants [22,26]; 2) him-3 mutants

are defective for formation of autosomal PC–SUN-1/ZYG-12

aggregates [37]; and 3) in a syp mutant, the movement of SUN-1

aggregates is slower and more spatially constrained than during

wild-type meiosis [37]. We used three-color paints to assess

chromosome II territory morphology in pre-meiotic nuclei and in

nuclei within an early meiotic prophase zone (between 40 and 50

rows from the distal tip) that corresponds to early pachytene in the

wild type controls. The images shown in Figure 7A and the

quantitation of painted chromosome segments in Figure 7B both

indicate that substantial elongation of chromosome II territories

occurs in all of these mutants. chk-2 mutants exhibited an

extremely significant increase in the number of painted chromo-

somal segments (p,0.0001) between the premeiotic and pachy-

tene stages. Moreover, the number of painted segments in

pachytene nuclei in the chk-2 mutant was indistinguishable from

wild-type controls (p = 0.122), suggesting a normal degree of

territory elongation. him-3 and syp-1 mutants similarly exhibited

extremely significant increases in the number of painted segments

between the premeiotic and pachytene stages (p,0.0001);

however, these mutants had modest but significant differences

from wild type at the pachytene stage (p = 0.0006), suggesting a

slight reduction in the extent of elongation.

The apparently normal chromosome elongation observed in the

chk-2 mutant indicates that phosphorylation of SUN-1 and

association of PCs with mobile SUN-1/ZYG-12 patches at the

NE are not required to accomplish elongation of chromosome

territories during early meiotic prophase. This in turn implies that

chromosome movements mediated by PC–SUN-1 linkages are not

the primary driver of territory elongation. Further, the substantial

territory elongation observed in the him-3 and syp-1 mutants also

indicates that a high degree of elongation can be achieved without

SC assembly.

PC binding protein HIM-8 is required for normal
elongation of X chromosome territories
Although chromosome movement mediated by PC–SUN-1/

ZYG-12 linkages does not seem to be required for the territory

elongation, PCs have been shown previously to play several

distinct roles in promoting homolog synapsis. Therefore, we

tested the possibility that PCs might contribute to elongation in

other ways. Specifically, we investigated the importance of X

chromosome PC function in the process of chromosome territory

elongation. We first evaluated the potential contribution of

HIM-8, a zinc-finger protein that concentrates at the PC domain

of the X chromosome and is required for PC function [21], by

assessing X chromosome territory elongation in him-8 mutants.

Because impaired X pairing in him-8 mutants results in an

expanded zone of nuclei with a clustered chromosome

distribution, we used the alignment status of chromosome I to

define the boundary between transition zone and pachytene for

this analysis. Specifically, we defined the transition zone as the

region of the gonad in which nuclei exhibited a clustered

distribution of chromosomes and a mixture of unaligned,

Figure 5. Chromosome extension prior to alignment of homologous chromosomes. (A) Three-dimensional rendered paint images of
chromosome II in a wild-type germ line. Three fluorophores are assigned as in Figure 1 (Alexa-488, 564 and 647 from the left (PC) end to the right
(non-PC) end). DAPI counter stain is white. (a, b) Portion of a gonad spanning the region of meiotic prophase entry. Circles indicate the nuclei shown
in close-up at the right. In pre-meiotic nuclei (left side of the image), the chromosome II territories are unpaired and compact (close-up 1). Upon entry
into the transition zone (in the middle), chromosomes become clustered toward the one side of the nucleus, and longitudinal extension of
chromosome II territories is observed in a subset of nuclei. Three examples of nuclei with extended territories are shown in close-up: (2, 3)
homologous chromosomes with extended territories that are not associated with each other; (4) extended chromosomes partially aligned at the PC
end. Scale is shown by the square grid in the background of each panel, with 6 mm as the length of each side of the unit square. (B) Top: Three-
dimensional rendered paint images of chromosome I in individual nuclei from the transition zone of a wild-type germ line. The left half is painted by
Alexa-488 (green) and the right half is painted by Alexa-532 (yellow). White dashed lines are used to trace the paths of the territories. Three different
configurations of extended chromosome territories are shown: No contact between homologous territories; Homologous association only at the left
end (V-PC); Partial alignment from the left end to the middle of the chromosome (Y-PC). Scale is shown by the square grid in the background of each
panel, with 3.8 mm as the length of each side of the unit square. Bottom: Stacked bar graphs showing the distribution of association/alignment states
among nuclei with highly extended chromosome territories that do not show full alignment. Nuclei were classified based on the pattern of alignment
for chromosome I, II or X. Note that about half show no contact and no alignments between the assayed homologous territories.
doi:10.1371/journal.pgen.1002231.g005
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partially aligned and fully aligned chromosome I territories

(Figure 8B). The length of the transition zone defined by these

criteria is very similar among the strains tested (Materials and

Methods and Figure S1). Nuclei in the pachytene zone, adjacent

to the transition zone, mostly contained fully aligned chromo-

some I territories.

Figure 6. Increase in number of painted chromosome segments accompanies elongation of chromosome territories. (A and B) Pairs of
images depicting quantitation of painted chromosome segments, which increase in number in parallel with longitudinal extension of chromosome
territories. (A) The left half of chromosome I is painted by Alexa-488 (green) and the right half is painted by Alexa-532 (yellow). (B) The left half of the X
chromosome is painted by Alexa-594 (red) and the right half is painted by Alexa-647 (blue). For each nucleus depicted in A and B, in the right-hand
panels, visually discernable painted chromosomal segments are marked with dots, which are numbered sequentially and are connected by a line
tracing the path of the chromosome territory. Scale is shown by the square grid in the background of each panel, with 3.8 mm as the length of each
side of the unit square. (C) Quantification of the numbers of painted chromosome segments in nuclei from the pre-meiotic zone, the transition zone
(TZ) and the early pachytene zone (Pachy Full). The chromosome territories in the transition zone were subdivided into two groups based on the
status of alignment: fully aligned (TZ Full) and not-fully aligned (TZ NF). The numbers of painted segments per chromosome in individual nuclei of
each sample are displayed as scatter plots, with a horizontal black line showing the average.
doi:10.1371/journal.pgen.1002231.g006
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In wild type controls, X chromosome territories extended

longitudinally in the transition zone (Figure 8A), which was

quantitatively reflected as an increase of the number of painted

chromosomal segments (Figure 8C; p,0.0001). In the pachytene

zone, we saw full alignment of X chromosomes (Figure 8A, 8B)

and a further elongation of the X chromosome territory

(Figure 8A), reflected by a corresponding increase in the number

of painted segments (Figure 8C; p,0.0001). In contrast, we did

not observe any obvious longitudinal extension of X chromosome

territories in transition zone nuclei in the him-8 (e1489) mutant

(Figure 8A), which is a putative null allele that encodes a mutant

HIM-8 protein with a disrupted DNA binding domain that does

not localize to the X chromosomes [21]. A severe impairment of X

chromosome elongation was clearly reflected both in quantitation

of painted chromosomal segments, which did not detect any

significant difference between premeiotic and transition zone

nuclei in the him-8(e1489) mutant (Figure 8C; p= 0.27), and in the

frequency of transition zone nuclei exhibiting highly extended X

chromosome territories (Figure 8D), which was greatly reduced

relative to the wild-type control (p,0.0001). Chromosome

territories also remained relatively compact in the pachytene

region of him-8(e1489) mutant germ lines, even at the late

pachytene stage where extension of chromosome territories is most

obvious in wild-type germ cells (Figure 8A and data not shown).

Further, although we did detect a modest increase in the number

of painted segments per chromosome between transition zone and

pachytene nuclei in the him-8(e1489) mutant (Figure 8C;

p= 0.014), the magnitude of this increase was quite small in

comparison to controls. The impairment of X chromosome

territory elongation in the him-8(e1489) mutant clearly indicates

that HIM-8 is required for this elongation.

We also examined X chromosome elongation in the him-8(me4)
mutant. him-8(me4) produces a mutant HIM-8 protein that retains

its ability to localize onto the X chromosomes and to the NE, but

does not support HIM-8 functions in promoting pairing and SC

formation and is deficient for coupling of the X-PCs to mobile

Figure 7. Longitudinal extension of chromosome territories in mutants defective for SC assembly and chromosome dynamics
mediated by PC–SUN-1 linkages. (A) Three-dimensional rendered paint images of chromosome II in premeiotic and early pachytene nuclei from
wild-type and chk-2(me64), him-3(gk149) and syp-1(me17) mutant germ lines. Three fluorophores are assigned as in Figure 1 (Alexa-488, 564 and 647
from the left (PC) end to the right (non-PC) end). In the panel showing wild-type pre-meiotic nuclei, DAPI counter stain is shown in white and a
dotted line is used to encircle the domain of DAPI-stained chromatin within each nucleus; in other panels, DAPI is omitted to facilitate visualization of
the paint signals. Note that chromosome II territories show obvious longitudinal extension in all of these strains. Scale is shown by the square grid in
the background of each panel, with 6 mm as the length of each side of the unit square. (B) Numbers of painted segments per chromosome scored for
chromosome II in nuclei from the pre-meiotic zone (Pm) and the early pachytene zone (Pa) of germ lines of the indicated genotype. For each
genotype, nuclei from two gonads were scored; error bars indicate standard deviation.
doi:10.1371/journal.pgen.1002231.g007
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SUN-1/ZYG-12 patches [21,25]. In striking contrast to the him-
8(e1489) mutant, X chromosome territory elongation was normal

in the him-8(me4) mutant. Successful X territory elongation in the

him-8(me4) mutant was clearly evident in the images in Figure 8A

and is reflected both in an increased number of painted

chromosomal segments (Figure 8C, showing that the data for

him-8(me4) closely parallel the control data) and in the frequency of

transition zone nuclei exhibiting highly extended X chromosome

territories (Figure 8D). Whereas X chromosome elongation was

normal in this mutant, we confirmed the previously reported

failure in X chromosome alignment (Figure 8B). Thus, taken in the

context of prior work indicating failure in coupling to SUN-1/

ZYG-12 in the him-8(me4) mutant [25], our results indicate that

the function of HIM-8 in promoting X chromosome elongation is

distinct and genetically separable from its role in linking the X

chromosome PC to the cytoskeletal motility apparatus through the

Figure 8. Roles for pairing center binding protein HIM-8 in elongation of X chromosome territories. (A) Maximum intensity projections
of paint images of the X chromosomes in nuclei from the indicated regions from wild type (upper), him-8(e1489) (middle) and him-8(me4) (bottom)
germ lines. The X chromosome is painted with Alexa-594 (green) in the left half and Alexa-647 (red) in the right half. DAPI is in blue. Note that the
him-8(e1489) mutant fails to show longitudinal extension either in the transition zone or at the pachytene stage, whereas him-8(me4) shows
longitudinal extension of X at both stages (as in wild type) despite the fact that X chromosomes fail to align. (B) Percentage of nuclei that show full
alignment of chromosome I (left) and X (right) in the pre-meiotic zone, the transition zone and the pachytene zone. Chromosome I fully aligns in both
him-8(e1489) and him-8(me4) mutant as in the wild type, whereas the X chromosomes do not show any significant full alignment in either him-8
mutant. Scale Bar: 5 mm. (C) Numbers of painted segments per chromosome scored for chromosome I (left) and X (right) in nuclei from the pre-
meiotic zone (Pm), the transition zone (Tz) and the pachytene zone (Pa) of germ lines of the indicated genotype. For the transition zone, only those
nuclei that had not achieved full alignment were included in this analysis (see Figure 3D). For each genotype, nuclei from three gonads were scored;
error bars indicate standard deviation. (D) Percentage of transition zone nuclei exhibiting highly extended chromosome territories. Chromosome
territories were scored as ‘‘highly extended’’ if they exhibited an elongated thread-like morphology that was clearly distinguishable from the compact
ovoid shape characteristic of pre-meiotic nuclei; these chromosomes had a slenderness ratio of .6. For each of the indicated genotypes, nuclei from
three gonads were scored; error bars indicate standard error of the mean.
doi:10.1371/journal.pgen.1002231.g008
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known mechanism mediated by SUN-1/ZYG-12 patches. As

motility of the X-PC has not been assessed directly in the him-

8(me4) mutant, we cannot exclude the possibility of X chromo-

some movement by an alternative mechanism. However in the

context of our analysis of chk-2, him-3 and syp-1 mutants, our

analysis of the him-8(me4) mutant provides additional support for

the conclusion that chromosome elongation is not merely a

secondary consequence of PC–SUN-1/ZYG-12-mediated chro-

mosome mobilization.

Deletion of the X-PC leads to partial impairment in
elongation of X chromosome territories
We further investigated the role of the X chromosome PC in

chromosome territory extension using a strain homozygous for an

X chromosome that lacks the PC region, meDf2 [18]. To conduct

an appropriate direct comparison between the behavior of full-

length X chromosomes and meDf2 X chromosomes, we generated a

paint probe that did not include the portions of the X that are

deleted by meDf2. As for the him-8 experiments, we defined the

transition zone and the pachytene zone using DAPI staining and

chromosome I alignment as reference points (see Figure S1 and

Materials and Methods). In the wild type, X chromosome territory

elongation was successfully detected with this paint probe, which

was obvious in the appearance of chromosome territories in the

transition zone and pachytene zone (Figure 9A top panels), in

corresponding increases in the number of painted segments per

chromosome (Figure 9C), and in a frequency of transition zone

nuclei exhibiting highly extended X chromosome territories that

Figure 9. Pairing centers are required for normal longitudinal extension of the X chromosome territories. (A) Maximum intensity
projections of paint images of normal X chromosomes or X chromosomes with the meDf2 deletion (which removes the X-PC), in nuclei from the
indicated germline zones. As indicated in the schematic, the paint probe is similar to the X paint used in other analyses, except that it does not
include YACs corresponding to the region deleted bymeDf2. Note that themeDf2 X chromosomes do not show obvious longitudinal extension either
in the transition zone or at the pachytene stage. However, in contrast to the him-8(e1489) mutant (Figure 8A), X territories in meDf2 homozygotes do
have a beaded appearance, and an increase in the number of painted segments per chromosome is detected. Scale Bar: 5 mm. (B) Percentage of
nuclei that show full alignment of chromosome I (left) and X (right) in the pre-meiotic zone, the transition zone and the pachytene zone. In meDf2
germ lines, chromosome I fully aligns as in the wild type but the X chromosomes do not show any significant full alignment. (C) Numbers of painted
segments per chromosome scored for chromosome I (left) and X (right) in nuclei from the pre-meiotic zone (Pm), the transition zone (Tz) and the
pachytene zone (Pa) of germ lines of the indicated genotype. For the transition zone, only those nuclei that had not achieved full alignment were
included in this analysis (see Figure 3D). For each genotype, nuclei from three gonads were scored; error bars indicate standard deviation. (D)
Percentage of transition zone nuclei exhibiting highly extended chromosome territories. Chromosome territories were scored as ‘‘highly extended’’ if
they exhibited an elongated thread-like morphology that was clearly distinguishable from the compact ovoid shape characteristic of pre-meiotic
nuclei (slenderness ratio .6). For each of the indicated genotypes, nuclei from three gonads were scored; error bars indicate standard error of the
mean.
doi:10.1371/journal.pgen.1002231.g009
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was comparable to that detected using a paint probe representing

the complete X chromosome (Figure 8D, Figure 9D).

The meDf2 homozygote exhibited a distinct phenotype in which

the X chromosomes were intermediate in character between the

wild-type full length X chromosomes and those in the him-8(e1489)

mutant. On the one hand, meDf2 homozygotes exhibited increases

in the numbers of painted X chromosome segments that paralleled

those observed in wild-type controls (Figure 9C), reflecting

significant remodeling of X territories. However, X chromosome

territories had an overall more compact appearance in meDf2

homozygotes than in controls (Figure 9A), and the frequency of

transition zone nuclei with highly extended X chromosome

territories was greatly reduced (Figure 9D; p,0.0001), to a degree

comparable to that seen in the him-8(e1489) mutant (Figure 8D).

These features may reflect the meDf2 chromosomes having a more

folded or coiled organization, as suggested by the images in

Figure 10C and Figure S2. We interpret these data as reflecting a

partial impairment of X chromosome territory elongation in meDf2

homozygotes.

The observed partial impairment of X chromosome territory

elongation in meDf2 homozygotes is quite distinct from the

phenotype of him-8(e1489) mutants, in which all aspects of X

territory restructuring are profoundly impaired. This discrep-

ancy in phenotype suggests that HIM-8 protein may influence

the behavior of meDf2 X chromosomes even though they lack a

PC. That is, in addition to functioning in association with the

PC, HIM-8 protein may interact with the X chromosomes in

regions outside the PC to influence reorganization of chromo-

some structure during meiotic prophase. Several prior studies

have suggested function of HIM-8 outside of the X-PC: meDf2

homozygotes show higher frequencies of bivalent formation and

homolog synapsis and lower X chromosome missegregation

compared to him-8 loss-of-function mutants [18,21,38], HIM-8

consensus binding sites are present along the X chromosome as

well as at lower levels on the autosomes [23], and genetic

interactions between him-8 and several transcription factors

have raised the possibility that HIM-8 might play a broader role

in influencing chromatin state [39]. Actual localization of HIM-

8 outside of the X-PC, however, has not been demonstrated.

Therefore, we carefully re-examined HIM-8 localization by

immunofluorescence. In addition to the major focus of HIM-8

at the X-PC, we detected lower levels of HIM-8 at a number of

additional chromosome sites (Figure 10A). Additional HIM-8

signals were most prominent on the X chromosomes, but were

also detected on autosomes. HIM-8 was also observed at non-

PC regions of the unpaired X chromosomes in him-8(me4)

mutants and in meDf2 homozygotes (Figure 10B, 10C). These

localization data are consistent with the possibility that HIM-8

may promote remodeling of meiotic chromosome structure

through association with multiple sites along the lengths of

chromosomes.

Discussion

Visualization of whole chromosome territories constrains
models for mechanisms that promote chromosome
sorting
Elucidation of the early events that enable homologs to locate

and recognize their appropriate pairing partners has been

hindered in part by limited knowledge about how chromosomes

are organized within nuclei at the relevant stages. By enabling

visualization of whole chromosome territories both prior to meiosis

and during early meiotic prophase, our chromosome painting

analysis has allowed us to constrain our thinking regarding

potential mechanisms that might contribute to chromosome

sorting.

While it was clear from prior analysis that homologs achieve de

novo alignment during C. elegans meiosis [29], the possibility

remained that homologous territories might exhibit preferential

proximity (albeit without alignment) that could facilitate chromo-

some sorting. Without knowledge about the shape and spatial

arrangement of premeiotic chromosome territories, this hypothesis

could not be excluded based on existing data. Our finding that

homologous chromosome territories are frequently quite distant

from each other prior to meiotic entry rules out models in which

premeiotic proximity is the primary driver of homolog sorting.

This is an important finding in light of the fact that C. elegans has a

robust capacity to achieve homologous synapsis in the absence of

meiotic recombination [29]. This property is shared with Drosophila
females [40] but appears to be a derived trait, as the phylogenetic

distribution of recombination-dependence for SC formation (and

of proteins relevant for this process) [41] suggest that a

recombination-based mechanism for homology verification is the

ancestral state. Whereas premeiotic colocalization of homologs

[42,43] appears to be at least part of the explanation for loss of

reliance on recombination in Drosophila, it is clear that C. elegans

requires mechanisms that can bring distantly located homologs

into proximity.

Although our data exclude premeiotic proximity as a primary

driver of chromosome sorting, it is possible that the spatial

organization of premeiotic nuclei may contribute to pairing of the

X chromosomes. While X chromosomes were no more likely than

autosomes to be closely associated with their homologs, they were

significantly less likely to be closely associated with a heterologous

chromosome, in a manner dependent on HIM-8. We suggest that

a propensity to avoid inappropriate contacts could indirectly

facilitate interactions with an appropriate partner.

Our data also argue against the possibility that temporal

heterogeneity in the behavior of chromosomes might serve as a

primary driver of chromosome sorting. Under this type of

scenario, different chromosomes would differ in the timing with

which they acquire competence for interchromosomal interac-

tions. A key prediction of this model is that chromosomes would

exhibit a clear temporal hierarchy in achieving homolog

alignment. As no such hierarchy was observed, this type of

mechanism does not appear to be a major factor contributing to

homolog recognition in C. elegans.

Whereas we did not find evidence for either premeiotic

proximity or temporal heterogeneity in chromosome behavior as

key mechanisms underlying homolog pairing, our painting analysis

did reveal several features that could contribute: 1) a capacity for

synapsis-independent full-length alignment of homologs, 2)

synapsis-independent restructuring and elongation of chromosome

territories, and 3) for the X chromosomes, dependence of territory

remodeling on the X-PC and HIM-8. We consider the

implications of these findings below.

Roles for HIM-8 and the X-PC in meiotic prophase
remodeling of chromosome territories
In our analysis of wild-type C. elegans germ lines, we found that

chromosome territories are dramatically remodeled at the onset of

meiotic prophase. The relatively compact ovoid territory organi-

zation present in premeiotic germ cells is transformed into a

longitudinally extended, threadlike organization. This transforma-

tion is apparent prior to association and alignment of homologous

chromosomes. Similar elongation of chromosome territories has

been observed in meiocytes of yeast [44,45], tetrahymena [46],

maize [47], oat/maize hybrids [9], wheat/rye hybrids [11–13] and
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Figure 10. HIM-8 localizes to chromosome sites outside the X Pairing Center. (A) Mid-pachytene nuclei in wild type show one major focus
of HIM-8 (white) staining corresponding to the paired X PCs, as well additional fainter HIM-8 speckles elsewhere in the nucleus. Images on the left are
projections of deconvolved optical sections spanning the full nuclear depth. Scale bar, 2 mm. Images on the right are 3-D surface renderings
comprising half the depths of nuclei 1–4. These images show HIM-8 speckles localizing to discrete sites along the lengths of the X chromosome and
autosomes, with paths of the chromosomes visualized by immunostaining of chromosome axis marker HTP-3 (pink). While there is generally at least
one speckle adjacent to each chromosome axis, the most prominent HIM-8 speckles are found along the axis of the X chromosome and at one end of
an autosome. Nuclei 1–3 show the typical localization of two prominent HIM-8 speckles (white arrowheads) along the axis of the X chromosome
(white dotted trace); 3 or more prominent speckles are sometimes detected on the X. Nucleus 4 shows a cluster of HIM-8 speckles (grey triangles)
characteristic of one end of an autosomal axis (grey dotted trace). (B) Analysis of HIM-8 localization in the him-8(me4) mutant. Mid-pachytene nuclei
show two major foci of HIM-8 marking the unpaired X PCs; in this field, the HIM-8 foci are well separated in the Z dimension in all nuclei. Scale bar,
2 mm. The indicated nucleus is depicted in 3-D as in (A). HIM-8 speckles localize adjacent to the axes of the unpaired X chromosomes, which are
highlighted by immunostaining of H3K9me2 (orange), which concentrates on unsynapsed X chromosomes [48]. (C) Analysis of HIM-8 localization in
the meDf2 homozygote. Mid-pachytene nuclei show one major focus of HIM-8 staining corresponding to the paired mnDp66 chromosomes, which
contain a copy of the X-PC region fused to chromosome I. The meDf2 X chromosomes, which lack the X-PC and thus do not have an associated major
HIM-8 focus, are unpaired. Scale bar, 2 mm. The indicated nucleus is depicted in 3-D as in (A). (Note: the major HIM-8 focus on the mnDp66
chromosome is in the half of the nucleus not depicted in the 3-D rendering.) The axes of the unpaired X chromosomes are identified by lack of
associated immunostaining for SC central region protein SYP-1 (green). Although these X chromosomes lack PCs and the associated major HIM-8 foci,
HIM-8 speckles still localize along the unpaired X chromosome axes. In addition, the paths of the X chromosome axes in this nucleus are coiled (left)
or folded (right), although they appear comparable in length to those seen in the him-8(me4) mutant. This type of organization is common for X
chromosomes in meDf2 homozygotes and may account for the fact that meDf2 X chromosomes have relatively compact ovoid territories despite
exhibiting increases in the number of discernable painted chromosome segments.
doi:10.1371/journal.pgen.1002231.g010
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human [6], suggesting that territory elongation is a conserved

feature of the meiotic program. Our ability to visualize this

conserved feature in C. elegans provides an excellent opportunity to

investigate its mechanistic basis.

Our analysis revealed that normal remodeling of X chromo-

some territories depends on the function of both the X-PCs and X-

PC binding protein HIM-8. Moreover, our images reveal a

difference between the contributions of the PC per se and the HIM-

8 protein to altering chromosome architecture, implying that

HIM-8 can function outside of the PC to mediate a component of

this restructuring. In wild-type germ cells, longitudinal extension of

chromosome territories is associated with an increase in the

number of discernable painted segments per chromosome. X

chromosome territory elongation is profoundly impaired in the

him-8(e1489) mutant (in which no HIM-8 protein is detected on

chromosomes [21]), indicating that HIM-8 plays a central role in

chromosome restructuring. However, analysis of chromosomes

deleted for the X-PC showed that chromosome territories can

remain relatively compact and ovoid despite an increase in the

number of painted segments per chromosome. This suggests that

these chromosomes are competent to undergo partial elongation,

but cannot achieve full longitudinal extension of their territories,

likely because the chromosomes remain in a partially coiled or

folded state. These data reveal a difference in the contributions of

HIM-8 and the X-PC to X chromosome territory elongation,

helping to reconcile previously unexplained but reproducible

observations that him-8 null mutants show higher frequencies of X

chromosome missegregation than X-PC deletion homozygotes

[18,21]. We suggest that while HIM-8 protein concentrated at the

PCs is essential to achieve maximal longitudinal extension of X

territories, HIM-8 binding to non-PC sites elsewhere on the X

chromosome can promote a degree of territory elongation that

manifests as an increase in the number of painted segments.

In addition to providing evidence that HIM-8 functions both at

and outside the PC to promote X chromosome restructuring, our

analysis also demonstrated that the role(s) for HIM-8 and the X-

PC in restructuring of X chromosome territories are distinct and

separable from HIM-8/PC function in SUN-1/ZYG-12-mediated

chromosome mobilization. We found that the mutant HIM-8me4

protein, which binds to X chromosomes [21], is able to promote

territory elongation despite its inability to support association of

the X-PCs with SUN-1/ZYG-12 patches. Furthermore, we

demonstrated that chromosome II territory elongation appears

normal in the chk-2 mutant, which is defective for both the

phosphorylation of SUN-1 and the formation of PC–SUN-1/

ZYG-12 aggregates that are associated with chromosome

movement and homolog pairing. Together these data argue that

PC–SUN-1/ZYG-12-mediated chromosome movement is not the

primary driving force responsible for elongation of chromosome

territories.

It remains an open question whether autosomal PCs and/or

PC-binding proteins, ZIM-1,-2, -3 [22], similarly function in

promoting restructuring of chromosome territories. Our initial

analysis of zim-1 and zim-3 mutants did not uncover an obvious

impairment of territory elongation (K.N., unpublished), which

may indicate that different mechanisms underlie elongation of the

X chromosomes and autosomes. It is possible that the X

chromosomes, which are largely transcriptionally quiescent in

the germ line [48], might require a special mechanism to promote

elongation in order to counteract an inherent tendency to adopt a

compact territory organization. Alternatively, the ZIM proteins

may contribute to restructuring of autosomes, but there may be

substantial redundancy among the HIM-8/ZIM protein family in

fulfilling this role.

Integrating a gallery of painting data into a model for
homolog pairing
Our imaging of chromosome territories in syp-1 mutants, where

early pairing intermediates cannot be stabilized by synapsis,

provides additional insight regarding how productive homolog

alignment may be achieved during C. elegansmeiosis. Chromosome

painting revealed three predominant modes of homolog associa-

tion in the syp-1 mutant: V-PC (associated only at the PC end), Y-

PC (close association along part of the chromosome, including the

PC end), and full lengthwise alignment. The high incidence of the

V-PC and Y-PC configurations reinforces the previous conclusion

that PCs have a robust capacity to confer local stabilization of

pairing in the absence of synapsis. Moreover, the prevalence and

relative abundance of these three configurations allows several

additional inferences regarding the nature of synapsis-independent

interhomolog interactions.

First, the substantial fraction of homolog pairs in the ‘‘full

alignment’’ category clearly establishes that C. elegans chromo-

somes can achieve full lengthwise alignment independently of

synapsis. Whereas full-length alignment of homologs independent

of SC assembly had been demonstrated previously for a variety of

organisms in which SC formation is coupled to initiation of

interhomolog recombination (e.g. [49–51], reviewed in [52,53]),

our data show that SC-independent full-length alignment also

occurs in an organism where homologous synapsis does not

depend on recombination. Multicolor paint shows different

colored segments in register in the ‘‘full alignment’’ configuration,

indicating that this organization does not simply represent

coincidental colocalization resulting from PC pairing. Rather,

synapsis-independent full-length intimate alignment of homologs

implies a direct contribution of intrinsic pairing activity of non-PC

regions of the chromosomes to the homolog recognition process.

Such an ability of non-PC regions of chromosomes to mediate

homologous associations was suggested both by previous observa-

tions of parallel chromosome axes in spread nuclei [35] and

transient pairing in translocation heterozygotes of chromosome

regions that ultimately become engaged in heterologous synapsis

[20,54] and by observation in the current analysis of chromosome

pairs associated via non-PC regions. Moreover, our ability to

visualize chromosome territories provides an opportunity to

discover factors that mediate SC-independent full lengthwise

alignment and to investigate their potential contributions to

presynaptic alignment of homologs during wild-type meiosis. We

recently identified a meiotic mutant that is substantially impaired

for synapsis-independent full lengthwise alignment but retains

proficiency for PC pairing activity (Dombecki et al, submitted),

indicating that the process is under separate genetic control.

We integrate our observations from chromosome painting of

wild-type, chk-2, him-3 and syp-1 mutants as well as him-8/PC-

defective germ cells with data from previous studies to develop a

possible model for homolog pairing during C. elegans meiosis.

Specifically, we propose that synapsis-independent elongation of

chromosome territories and a capacity for full-length alignment

collaborate with other functions of PCs/PC binding proteins to

bring about successful sorting of meiotic chromosomes into

homologous pairs. According to this model, cytoskeletal driven

chromosome movement facilitates bringing prospective pairing

partners into proximity at defined sites (i.e. the PCs), whereas

elongation and restructuring of chromosome territories enables

rapid lengthwise juxtaposition of chromosome segments, and

potentially of entire chromosomes. This lengthwise juxtaposition

of homologs would facilitate assessment of suitability of potential

pairing partners. Indeed, similarities in structure between

homologous territories may contribute to homolog recognition
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per se. Further, the capacity for synapsis-independent full-length

alignment and the relatively high stability of this configuration

suggests the formation of presynaptic interactions between

homologs that can resist tension exerted by cytoskeletal forces

pulling the PCs of homologous chromosomes in opposite

directions. Such forces have been postulated to play a role in a

proposed checkpoint-like mechanism that functions to license SC

assembly in response to homology verification [25,27]. Although

our analysis does not prove that elongation of chromosome

territories directly facilitates the alignment process, this model

helps to reconcile how highly localized chromosomal sites can

serve to promote utilization of information about chromosome

identity that is distributed along the length of a chromosome: by

constraining an extended chromosome territory at a single point,

the problem of aligning homologs in register is considerably

simplified.

It is intriguing that, at least for the X chromosome, multiple

distinct functions that promote homolog pairing and synapsis are

coordinately dependent on a specific Zn-finger DNA binding

protein and its distribution on the chromosome. We speculate that

this feature may have been instrumental in the emergence in the

nematode of a recombination–independent mechanism for

achieving homologous synapsis. Consolidation of these functions

in a single protein may have permitted evolution of a robust

alternative mechanism for homology verification, thereby reducing

reliance on the ancestral recombination-based strategy.

Materials and Methods

Genetics
All C. elegans strains were cultured at 20uC following standard

conditions [55]. The following mutants and chromosome

rearrangements as well as the wild type strain Bristol N2 were

used: Chromosome IV: him-8(e1489), him-8(me4), him-3(gk149),

Chromosome V: syp-1(me17), chk-2(me64), and the X chromosome:

meDf2(X), mnDp66(I:X).

Chromosome paint
Chromosome painting was done using a protocol for FISH

described in [31] with modifications as briefly described in the

following:

Probe preparation. The YAC compositions of painting

probes used in this study are listed in Table S1, except for a partial

X chromosome paint probe used for the meDf2 analysis, which

contains only groups 4–19 of the X-chromosome YACs. YAC

DNA was prepared using the CHEF-DR II pulse-field

electrophoresis system (Bio-Rad) following manufacturer’s

instructions, with agarose gels made of SeaKem GTG agarose

(Cambrex). Agarose blocks containing YAC bands were excised

from gels, digested by GELase (EPICENTRE Biotechnologies),

and used as templates for amplification using the Illustra

GenomiPhi V2 DNA Amplification Kit (GE health care). At the

amplification step, multiple YAC clones were combined and

processed as groups containing YACs covering approximately

1 Mb chromosomal regions, as indicated in Table S1. Amplified

YAC DNA was digested using a cocktail of restriction enzymes

(AluI, HaeIII, MseI, MspI, RsaI, and Sau3AI; New England

Biolabs), and purified by QIAquick reaction cleanup kit

(QIAGEN). Labeling was done with ULYSIS DNA labeling kit

(Invitrogen), using 2 mg of purified DNA per reaction. After

labeling, labeled DNA was purified with Centri-Sep columns

(Applied Biosystems), and eluted into 20 ml solution. Multiple

groups of labeled DNA (1 ml of each group per slide) were further

combined as indicated in Table S1 to generate a paint probe; this

cocktail was dehydrated using a speed vacuum concentrator, then

resuspended in water before applying to the sample.

Sample preparation. Dissected gonads were incubated with

dissection buffer [31] containing 10% Tween-20 for 10 minutes at

room temperature, then fixed with 1% formaldehyde for 5 min.

Fixed samples were frozen in liquid nitrogen and then processed in

95% ethanol at220uC for 10 minutes. After washing in 2X SSCT

(2X SSC containing 0.5% Tween-20), the concentration of

formamide was increased to 50% in a stepwise manner. After

pre-hybridization in 2XSSCT containing 50% formamide at 37uC

for two hours, hybridization solution [31] containing a paint probe

was added to the sample and slides were processed using a flat bed

thermal cycler (OmniSlide, Thermo Fisher). Heat denaturation

and subsequent hybridization were done at 77uC for 10 minutes

and at 37uC over night, respectively. Slides were washed twice in

2XSSCT containing 50% formamide at 37uC for 30 minutes,

followed by gradual removal of formamide from 2XSSCT. Slides

were then incubated with 2XSSCT containing DAPI for

15 minutes, washed in 2XSSCT, and mounted with SlowFade

Gold mounting medium (Invitrogen).

Imaging. All images were collected as 5-channel optical

sections in increments of 0.1 mm, using a confocal microscope SP2

(Leica Microsystems). For Figure 1, Figure 2, Figure 3, Figure 4,

Figure 5, and Figure 6, volume renderings were generated using

the Volocity 4 Visualization software (PerkinElmer). For Figure 8A

and Figure 9A, maximum-intensity Z-projections were generated

with Priism/IVE software [56].

Image analysis of chromosome paint
To evaluate the spatial distribution (Figure 2) alignment state

(Figure 3, Figure 4, Figure 5, Figure 6, Figure 8, and Figure 9) and

morphology (Figure 5, Figure 6, Figure 7, Figure 8, and Figure 9)

of chromosome territories, we generated 3D volume renderings of

nuclei from the relevant zones within the germ line using the

Volocity 4 program. Each nucleus was examined individually by

rotating the nucleus to allow assessment of the shapes of and

spatial relationships between specified chromosome territories. All

nuclei in the relevant zone that were well separated from

neighboring nuclei were included in the analyses.

For quantitative analysis of alignment states in the syp-1 mutant,

zones were defined as follows. The gonad was first subdivided to

two parts: pre-meiotic and meiotic (beginning at the transition

zone). The total number of rows of nuclei (N) in the meiotic zone

was divided by 5 and the quotient was rounded to the nearest

integer (n); the width of zones 2–5 was set to n rows of nuclei,

whereas the width of zone 6 was set to N-4n (usually a little smaller

than n) rows. Data from 5 gonads were pooled.

For quantitation of ‘‘painted chromosomal segments’’ (Figure 6,

Figure 7, Figure 8, Figure 9), segments were defined as objects that

were distinctively segmented from other parts of territories in 3D

renderings, i.e., peaks of high signal intensity separated by gaps or

regions of reduced signal intensity and/or spatially resolved signals

from fluorophores painting different regions of the chromosome.

For these analyses of the wild type (and the corresponding

quantitation of alignment), nuclei were score in zones defined as

follows: ‘‘pre-meiotic’’, comprising nuclei within the first 10 rows

from the distal tip; ‘‘transition zone’’, which included all nuclei

within the transition zone; ‘‘pachytene’’, comprising nuclei in a

15–20 row zone beginning 5 rows from the proximal end of the

transition zone. The length of the transition zone for the analyses

presented in Figure 8 and Figure 9 was defined based on the status

of alignment of chromosome I (see Results). The lengths of the

transition zones defined in this manner were very similar among

the wild type and mutants analyzed (Figure S1): 1161, 8.662,

Caenorhabditis elegans Meiotic Chromosome Organization

PLoS Genetics | www.plosgenetics.org 18 August 2011 | Volume 7 | Issue 8 | e1002231



10.661.1 and 861 (mean 6 SD) rows of nuclei for the wild type,

him-8(e1489), him-8(me4) and mnDp66; meDf2 respectively.

Statistical analyses were performed using the InStat program

(Graphpad). A two-tailed Chi-square test was used for analysis of

the data presented in Figure 2. A two-tailed Mann-Whitney test

was used to analyze the ‘‘painted chromosome segment’’ data

presented in Figure 6C, Figure 7B, Figure 8C and Figure 9C. A

two-tailed Fisher exact test was used to analyze the data presented

in Figure 8D and Figure 9D.

Immunofluorescence
Immunofluorescence was performed essentially as described in

[31,57]. The following primary antibodies (dilutions) were used:

guinea pig anti HIM-8 (1:500) [21]; chicken anti HTP-3 (1:250)

[20]); rabbit anti SYP-1 (1:250) [19]; mouse monoclonal anti

H3K9me2 (1:400) (Abcam). Alexafluor 488, 555, or 647-

conjugated secondary antibodies were used at a dilution of 1:500

(Invitrogen). Images were collected as 0.1 mm optical sections

using the DeltaVision microscopy system and deconvolved using

SoftWoRx 4.0.0 software (Applied Precision); we note that HIM-8

speckles were readily visible prior to deconvolution. Registration

was corrected for chromatic shift and images were rendered using

Volocity 5.5 software (PerkinElmer).

Supporting Information

Figure S1 Spatial extents of transition zones as defined for

analysis of X territory elongation. Maximum intensity projections

of regions of DAPI-stained gonads encompassing the transition

zone, from wild type, him-8(e1489), him-8(me4) and mnDp66; meDf2

worms; images shown were generated from confocal images used

for the chromosome elongation analysis. The distal end of each

gonad is towards the left. The region between the two dashed lines

in each panel corresponds to the transition zone as operationally

defined by the criteria described in the text. The length of the

transition zone was similar among these strains, ruling out the

possibility that the observed differences in chromosome elongation

resulted from difference in the lengths of the zone of nuclei that

were scored. Scale bar; 5 mm.

(TIF)

Figure S2 Illustration of multiple painted chromosome segments

without a high degree of territory extension in an X-PC deletion

homozygote. Three-dimensional rendered paint images of X
chromosomes in a wild type pachytene nucleus (left) and a

pachytene nucleus from a worm homozygous for meDf2, which is

deleted for the X-PC(right). The left half of the X chromosome is

painted by Alexa-594 (red) and the right half is painted by Alexa-

647 (blue). DAPI is white (top). For each nucleus depicted, in the

bottom panels, visually discernable painted chromosomal seg-

ments are marked with dots, which are connected by a line tracing

the path of the chromosome territory. In the meDf2 nucleus, both

X chromosomes have 4 discernable painted segments. However,

while one of the X chromosome territories has a more extended

linear organization, the other X chromosome (arrow) has a more

compact territory that reflects a folded configuration of the

chromosome. Scale is shown by the square grid in the background

of each panel, with 3.8 mm as the length of each side of the unit

square.

(TIF)

Table S1 Summary of YAC clones used to generate the

indicated paint probes. LE: The distance from the left end of

the chromosome to the left end of the clone (Mb). RE: The

distance from the left end of the chromosome to the right end of

the clone (Mb). Label: The fluorophore used to label the indicated

YAC or group of YACs.

(PDF)

Video S1 Quantitation of painted segments for chromosome I.

A movie of a rotating three-dimensional rendered paint image of

the nucleus shown in the bottom panel of Figure 6A, depicting a

partially aligned chromosome I pair. The left half of chromosome

I is painted by Alexa-488 (green) and the right half is painted by

Alexa-532 (yellow). Individual segments counted in the assay are

marked by purple cubes, which are connected by solid lines tracing

the paths of the chromosomes.

(MOV)

Video S2 Quantitation of painted segments for the X chromo-

some. A movie of a rotating three-dimensional rendered paint

image of the nucleus shown in the bottom panel of Figure 6B,

depicting an unaligned pair of X chromosomes. The left half of the

X chromosome is painted by Alexa-594 (red) and the right half is

painted by Alexa-647 (blue). DAPI is shown in white. Individual

segments counted in the assay are marked by green or orange

cubes, which are connected by solid lines tracing the paths of the

chromosomes.

(MOV)
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