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Abstract

To explore novel genetic abnormalities occurring in myelodysplastic syndromes (MDS)

through an integrative study combining array-based comparative genomic hybridization

(aCGH) and next-generation sequencing (NGS) in a series of MDS and MDS/myeloprolifer-

ative neoplasms (MPN) patients. 301 patients diagnosed with MDS (n = 240) or MDS/MPN

(n = 61) were studied at the time of diagnosis. A genome-wide analysis of DNA copy num-

ber abnormalities was performed. In addition, a mutational analysis of DNMT3A, TET2,

RUNX1, TP53 and BCOR genes was performed by NGS in selected cases. 285 abnormali-

ties were identified in 71 patients (23.6%). Three high-risk MDS cases (1.2%) displayed

chromothripsis involving exclusively chromosome 13 and affecting some cancer genes:

FLT3, BRCA2 and RB1. All three cases carried TP53mutations as revealed by NGS. More-

over, in the whole series, the integrative analysis of aCGH and NGS enabled the identifica-

tion of cryptic recurrent deletions in 2p23.3 (DNMT3A; n = 2.8%), 4q24 (TET2; n = 10%)

17p13 (TP53; n = 8.5%), 21q22 (RUNX1; n = 7%), and Xp11.4 (BCOR; n = 2.8%), while

mutations in the non-deleted allele where found only in DNMT3A (n = 1), TET2 (n = 3), and

TP53 (n = 4). These cryptic abnormalities were detected mainly in patients with normal

(45%) or non-informative (15%) karyotype by conventional cytogenetics, except for those

with TP53 deletion and mutation (15%), which had a complex karyotype. In addition to well-

known copy number defects, the presence of chromothripsis involving chromosome 13

was a novel recurrent change in high-risk MDS patients. Array CGH analysis revealed the
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presence of cryptic abnormalities in genomic regions where MDS-related genes, such as

TET2, DNMT3A, RUNX1 and BCOR, are located.

Introduction

The progressive accumulation of genetic aberrations such as copy number abnormalities, in
the form of gains or losses of genetic material affecting certain regions of the genome, and par-
ticular gene mutations, provide the basis for cancer development [1,2]. However, recent studies
have revealed the presence of an alternative mechanism, termed chromothripsis, in which mas-
sive chromosome rearrangements occur in a one-step catastrophic event, indicating that chro-
mosome instability is a central aspect of cancer cell biology. A key feature of chromothripsis is
the occurrence of tens to hundreds of clustered genomic rearrangements usually in one or, in
some instances, several chromosomes. This complex abnormality can affect an entire chromo-
some, a chromosome arm, or be confined to a single region of a chromosome [2–9]. These
rearrangements usually appear crisscrossing the involved regions [4], and chromosomes
affected by chromothripsis show a characteristic pattern of copy number oscillations between
two (or occasionally three) copy number states [4,8]. By far the simplest explanation of such
rearrangements is that, at some stage during cancer development, distinct chromosomes or
chromosomal regions are broken into many segments and then inaccurately stitched back
together by DNA repair mechanisms [2,7,10]. Chromothripsis was initially observed in chronic
lymphocytic leukemia (CLL), but it is present in a wide range of human cancers, including
multiple myeloma (MM), acute lymphoblastic leukemia (ALL), acute myeloid leukemia
(AML), Hodgkin lymphoma, bone cancers, medulloblastoma, neuroblastoma, colorectal can-
cer and melanoma. Some congenital disorders also show chromothripsis [3–17].

Myelodysplastic syndromes (MDS) are a clinically heterogeneous group of clonal hemato-
poietic stem cell disorders characterized by morphological dysplasia, ineffective hematopoiesis
and peripheral blood cytopenias [18]. MDS and chronic myelomonocytic leukemia (CMML),
an entity sharing features of myelodysplastic syndromes and chronic myeloproliferative neo-
plasms (MPN) [19], have a highly variable clinical course [20]. The presence of chromosomal
abnormalities is a recurrent hallmark of bothMDS and CMML patients, with consequences for
their diagnosis, risk stratification and prognosis [18,21,22]. In fact, these genetic changes are
directly incorporated into the Revised International Prognostic Scoring System (IPSS-R) for
MDS and the CMML-Specific Prognostic Scoring System (CPSS) [21,22]. In addition, gene
mutations are also very frequent (80–90%) in MDS and related myeloid neoplasms [23,24].
These mutations affect transcription factors such as RUNX1 and BCOR, epigenetic modulators
such as TET2,DNMT3A, IDH1/2,ASXL1 and EZH2, tumor suppressor genes such as TP53,
several components of the RNA-splicing machinery such as SF3B1, SRSF2,U2AF1, and ZRSR2,
genes involved in DNA replication such as SETBP1, and genes of the cohesin complex such as
STAG2, RAD21, SMC1A, and SMC3. The list of genes carryingmutations involved in the path-
ogenesis of MDS is still growing [18,23–25].

Conventional metaphase cytogenetics (CC) is still the gold standard for karyotypic studies;
however, diagnosis and prognosticationmay be difficult in the 10–15% of patients with non-
informative cytogenetics, due to the absence of mitosis, or the 40–60% with a normal karyotype
[26,27]. Additionally, the presence of complex karyotypes with three or more chromosomal
abnormalities may hinder the identification of the chromosomes involved in these changes
[28]. Therefore, these CC techniques are not sufficient for a thorough study of these myeloid
malignancies. The use of molecular genome-wide scanning techniques allows the identification
of cryptic abnormalities in patients with a normal karyotype and the better characterization of
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unbalanced genetic changes [23,24,26,27,29,30]. Thus, array-based karyotyping revealedMDS
and related myeloid neoplasms with a normal karyotype to have one or more genomic abnor-
malities, including deletions of TET2 and RUNX1 genes (40%) [26,27,29]. These studies sug-
gest the potential clinical utility of such genome-wide scanning techniques for the
management of MDS and related diseases.

To gain insight into the characterization of the molecular changes in MDS and to explore
novel genetic abnormalities occurring in these disorders, an integrative study combining array-
based comparative genomic hybridization (aCGH) and next-generation sequencing (NGS) in a
series of MDS and MDS/MPN patients was carried out. The results demonstrated the presence
of infrequent but recurrent chromothripsis involving chromosome 13 in these diseases and
also showed that aCGH could be used in a clinical setting as a complementary method to con-
ventional cytogenetics for identifying copy number changes in MDS and CMML patients.

Materials and Methods

Patients

A total of 301 patients diagnosedwith MDS (n = 240) or MDS/MPN (n = 61) at the time of
diagnosis were studied. The main clinical characteristics of the patients are summarized in
Table 1. The median age was 77 years (range, 11–93 years), and 191 patients (63.5%) were
male. Diagnoses were established according to the 2008 World Health Organization criteria
[31] (Table 1). This study was performed in accordance with the Declaration of Helsinki guide-
lines, and was approved by the Local Ethical Committees “Comité Ético de Investigación Clín-
ica, Hospital Universitario de Salamanca”. All patients provided written informed consent.

Array-based comparative genomic hybridization studies

Genome-wideDNA copy number abnormalities (CNAs) were analyzed in bone marrow sam-
ples from all patients using the Human CGH 12x135KWhole-Genome Tiling v3.0 Array
(Roche NimbleGen, Madison,WI, USA). For sample preparation and hybridization the Nim-
bleGen CGH array standard protocol was followed [32] (See S1 Methods). All detected CNAs
were carefully reviewed to identify regions overlapping those previously reported to be copy
number variants (CNVs) in the Database of Genomic Variants (http://dgv.tcag.ca/); these were
excluded from subsequent analysis. Genomic abnormalities were interpreted and reported in
accordance with the International System for Human Cytogenetic Nomenclature (ISCN 2013)
guidelines [33]. All the array data discussed in this publication have been deposited in NCBI's
Gene Expression Omnibus and are accessible through GEO Series accession number
GSE67682.

Additionally, conventional metaphase cytogenetic results were available from all patients.
Based on CC results, patients were divided into three groups: patients with non-informative
cytogenetics (n = 40, 13.3%) due to the absence of mitosis, patients with an abnormal karyotype
(n = 45), and patients with a normal karyotype (n = 216, 71.7%). The latter group was further
divided into three categories according to the number of good-qualitymetaphases evaluated:
�20 metaphases (n = 164), between 11 and 19 metaphases (n = 38), and�10 metaphases
(n = 14). Detailed information about the cytogenetic groups is summarized in Table 1, and the
cytogenetic abnormalities found in the whole series are listed in S1 Table.

All genomic changes found by aCGH but not detected by conventional metaphase cytoge-
netics were validated by interphase fluorescence in situ hybridization (FISH), in the case of
large recurrent deletions and gains, or by using an independent genome-wide analysis of DNA
copy number changes with the SurePrint G3 Human CGHMicroarray (8x60k) (Agilent Tech-
nologies, Palo Alto, CA, USA) for small recurrent and individual abnormalities.
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Next-generation sequencing studies

Mutations inDNMT3A, TET2, RUNX1, TP53 and BCOR genes were screened by amplicon-
based next-generation sequencing (NGS) in selected cases using 454 Titanium amplicon

Table 1. Main characteristics of the whole series of patients included in the study.

Variables Median [Range]

Number of patients 301

Gender (Male/Female) 191 / 110

Age (years) 77 [11–93]

Peripheral blood values

Hemoglobin level (g/dl) 10 [4–17]

Neutrophil count (x109/L) 2.5 [0.1–90]

Platelet count (x109/L) 125 [5–1018]

Bone marrow blasts (%) 1.4 [0–20]

WHO 2008 classification

MDS 240

RCUD 20

RARS 11

RCMD 147

RAEB-1 23

RAEB-2 23

MDS-U 9

MDS del(5q) 7

MDS/MPN 61

CMML-1 51

CMML-2 7

RARS-T 3

Conventional cytogenetics

Normal 216

� 10 metaphases 14

11–19 metaphases 38

� 20 metaphases 164

Abnormal 45

-5/del(5q) 9

double including del(5q) 1

-7/del(7q) 1

+ 8 3

del(11q) 2

del(20q) 1

-Y 8

complex (�3 abnormalities) 12

any other single abnormality 8

Non-informative 40

Abbreviations: WHO, World Health Organization; MDS, myelodysplastic syndromes; RCUD, refractory

cytopenia with unilineage dysplasia; RARS, refractory anemia with ringed sideroblasts; RCMD, refractory

cytopenia with multilineage dysplasia; RAEB, refractory anemia with excess of blasts; MDS-U, MDS

unclassified; MDS del(5q), MDS associated with isolated del(5q); MDS/MPN, myelodysplastic/

myeloproliferative neoplasms; CMML, chronic myelomonocytic leukemia; RARS-T, RARS with

thrombocytosis; del, deletion.

doi:10.1371/journal.pone.0164370.t001
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chemistry (454 Life Sciences, Branford, CT, USA). Briefly, all coding exons of TET2, RUNX1
and BCOR, exons 7–23 of DNMT3A and exons 4–11 of TP53were covered by 27, 7, 29, 16 and
8 amplicons, respectively (S3 Table). Amplicon libraries were prepared following the manufac-
turer’s recommendations and previously describedmethods [34] (See S1 Methods).

For the detection of variants, all amplicon reads were analyzed with the Sequence Pilot soft-
ware (v3.5.2; JSI medical systems, Kippenheim, Germany) and GS Amplicon Variant Analyzer
Software (v2.9; 454 Life Sciences). Single nucleotide polymorphisms (SNPs) (http://www.ncbi.
nlm.nih.gov/SNP/) and variants within introns were not scored. In addition, all mutations
were validated by resequencing of PCR products from new independent PCRs.

Results

Chromothripsis on chromosome 13 is a recurrent abnormality in high-
risk MDS

The analysis of copy number profiles derived from aCGH data identified complex genomic
rearrangements on the aCGH chromosome plots, showing multiple non-contiguous CNAs,
with the hallmarks of chromothripsis. Based on previous studies, evidence of chromothripsis
was defined as the presence of at least ten changes in segmental copy number between two or
three copy number states on an individual chromosome [6]. Using these criteria, three MDS
cases (1.2%) exhibited chromothripsis (Fig 1A and 1B), with more than 11 copy number
changes involving exclusively chromosome 13. The copy number states rapidly alternate
between one (deletion), two (normal) and three (gain) copies. The patterns of genomic alter-
ation were different between the three high-riskMDS patients. However, it should be pointed
out that involvement of a total of 91 genes mapping on chromosome 13 were common to the
three patients. As examples XPO4, FLT3 and FLT1 were commonly amplified genes; BRCA2
and RB1were commonly deleted genes (S6 Table). All these results were validated using an
independentmicroarray (SurePrint G3 Human CGHMicroarray, 8x60k, Agilent Technolo-
gies). The three patients with chromothripsis were diagnosed as high-riskMDS (RAEB 3/40;
7.5%), two of them were RAEB-1, with 6% and 8% of BM blasts, respectively, and the remain-
ing patient was RAEB-2, with 12% of BM blasts. All three patients died within one year. All of
them had a complex karyotype revealed by aCGH (3/17; 17.6%; patients #026, #027, #072; Fig
1A), with a median of 21 CNAs (range, 19–33) throughout the whole genome. The three
patients showed genomic losses on 5q23.2-q35.3, two of them also carried losses on
7q22.3-q36.3 and 15q11.1–21.2 (S1 Table).

All cases showing chromothripsis carriedTP53mutations as revealed by NGS (Fig 1C). Spe-
cifically, two missensemutations (p.Lys132Arg, p.Pro278Leu) and two nonsense mutations
(p.Gln136�, p.Gln167�) were identified. The p.Gln167� and p.Lys132Arg mutations, located in
exon 5, were observed in one patient each with a variant allele frequency (VAF) of 93.5% and
92.5%, respectively. However, the p.Gln136� and p.Pro278Leu mutations were observed in the
same patient with VAFs of 46.5% and 43.5%, and were located on exon 5 and exon 8, respec-
tively. Taken together, most of these mutations affected exon 5 of TP53, and all of them were
located in the sequence-specificDNA binding domain, which plays a central role in transcrip-
tional transactivation (Table 2).

aCGH and NGS allow the identification of hidden recurrent genetic
CNAs and gene mutations in MDS

A total of 285 abnormalities were identified (1–33 changes per patient) in 71 of the entire series
of 301 patients (23.6%): 61 of 244 (25%) were MDS patients, while 10 of 58 (17.3%) had a
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Fig 1. Recurrent chromothripsis on chromosome 13 in high-risk MDS. (A) Whole genome view ratio plots derived
from aCGH data of MDS patients (#026, #027 and #072) showing chromothripsis on chromosome 13, indicated by the
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diagnosis of CMML. Copy number losses (72.6%) were more frequent than gains (27.4%). The
detectedCNAs were distributed amongst all chromosomes except for chromosomes 14 and 16.

Among the global series, CNAs were present in 9.3% of the normal karyotype patients, in
86.7% of cases with abnormal cytogenetics, and in 30% of patients with unsuccessful cyto-
genetic analyses (Fig 2A). The most frequent large recurrent aberrations were del(5q) (35.2%),
del(20q) (18.3%), -Y (14.1%), trisomy 8 (14.1%), del(7q) (12.7%), +1/+1q (7%), -18/del(18p)
(5.6%), del(17p) (5.6%), del(11q) (5.6%), del(4q) (4.2%), del(15q) (4.2%), and del(12q) (4.2%)
(Fig 2B). The most frequent aberrations in CMMLwere–Y (5.2%) and gains on 1q (3.4%),
while in RCMD losses on 5q (6.1%), 20q (5.4%), and–Y (3.4%) predominated. By contrast, in
RAEB patients, losses involving 5q (21.7%), 7q (13%) and 17p (6.5%), and trisomy 8 (10.9%)
were frequently observed (Fig 2B). In addition, in 38 of 301 cases (12.6%), aCGH revealed the

red-shaded box. The three patients had complex karyotypes: patient #026 had 33 aberrations and affecting seven
chromosomes; patient #027 had 19 abnormalities affecting five chromosomes; patient #072 had 21 aberrations
affecting six chromosomes. The Y-axis represents the log2 ratio values of MDS:control signal intensities for each probe.
The X-axis illustrates all the probes in the array sorted by chromosome and physical mapping position. Chromosome
numbers are indicated below the X-axis. (B) Detailed view of the whole chromosome 13 in patients #026, #027 and
#072 showing a complex pattern of alternating copy number gains and losses. The grey area represents the thresholds
of signal values (log2 ratio) to call CNAs, red lines indicate segmented copy number profiles, and boxes shaded in pale-
red and pale-blue depict copy number losses and gains, respectively. Patient #026 had 18 alternating copy number
changes, patient #027 had 11, and patient #072 had 16 changes along the whole chromosome 13. Copy number
profiles differed between these patients. The Y-axis represents log2 ratios and the X-axis shows all probes of
chromosome 13 sorted by chromosome position. Genomic location (Mb) is indicated below the X-axis. (C) Distribution
of TP53mutations identified by amplicon-based deep sequencing in the three MDS patients with chromothripsis. All
TP53mutations were located in the sequence-specific DNA binding domain. One patient had two mutations in
heterozygosis, while the other two patients had one mutation each in homozygosis. The variant allele frequencies
(VAFs) are represented in brackets. Each circle represents a mutation found in one patient. Green and red circles depict
missense and nonsense mutations, respectively. Each patient is illustrated by a different-colour triangle. The complete
coding region of TP53 is illustrated and the respective exons and amino acid (AA) positions are indicated at the bottom.
The following protein domains are shown: TAD1 and TAD2, amino-terminal transactivation domains 1 and 2; DBD,
sequence-specific DNA-binding domain; NLS, nuclear localization signalling domain; 4D, carboxy-terminal
tetramerization domain; Neg, negative regulation domain. Gene variants were represented using the R package
“R453PlusToolbox” [53].

doi:10.1371/journal.pone.0164370.g001

Table 2. Summary of mutations found in the analyzed genes.

Sample ID Gene Nucleotide change AA change Mutation type VAF (%) COSMIC ID

#132 DNMT3A c.1961G>A p.Gly654Asp Missense 73.5 NA

#217 TET2 c.1648C>T p.Arg550* Nonsense 96.5 COSM41644

#033 TET2 c.3851C>T p.Ser1284Phe Missense 3.5 COSM120177

#140 TET2 c.5562delT p.Leu1855Trpfs*32 Frameshift deletion 89 NA

#074 TP53 c.824G>A p.Cys275Tyr Missense 52 COSM165084

#172 TP53 C.583A>T p.Ile195Phe Missense 76.5 COSM129840

#130 TP53 c.821T>A p.Val274Asp Missense 45 COSM165076

#171 TP53 c.659A>C p.Tyr220Ser Missense 54 COSM251427

#072 TP53 c.395A>G p.Lys132Arg Missense 92.5 COSM308311

#027 TP53 c.406C>T p.Gln136* Nonsense 46.5 COSM126985

#027 TP53 c.833C>T p.Pro278Leu Missense 43.5 COSM129831

#026 TP53 c.499C>T p.Gln167* Nonsense 93.5 COSM121081

Abbreviations: AA, amino acid; VAF, variant allele frequency; COSMIC, catalogue of somatic mutations in cancer; NA, not available; Gly, Glycine; Asp,

Aspartic acid; Arg, Arginine; Ser, Serine; Phe, Phenylalanine; Leu, Leucine; Trp, Tryptophan; fs, frameshift; Cys, Cysteine; Tyr, Tyrosine; Ile, Isoleucine;

Val, Valine; Lys, Lysine; Gln, Glutamine; Pro, Proline

*, the indicated amino acid is changed to a stop codon.

doi:10.1371/journal.pone.0164370.t002
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presence of 81 small aberrations (�5 Mb), which were below the detection limit of CC. In 21 of
these cases only one cryptic CNA was detected: 17 deletions and four gains. In the other 17
cases, two or more cryptic aberrations were observed, consisting of 49 deletions and 11 gains.
Notably, these cryptic CNAs involved regions such as 2p23.3, 4q24, 5q33.1, 7q22.1, 21q22.12,
21q22.3 and Xp14, where genes implicated in the pathogenesis of MDS and MDS/MPN are
located, includingDNMT3A, TET2, SPARC, CUX1,RUNX1, U2AF1 and BCOR, respectively
(Fig 2B).

Furthermore, an in-depth analysis by NGS of the regions with genomic deletions of>100
kb by aCGH, where recurrently mutated genes in MDS and CMML are located, was carried
out. Thus, aCGH analysis identified two cases with a deletion in 2p23.3 (DNMT3A) (Fig 3A),
seven cases with a deletion in 4q24 (TET2) (Fig 3E), six cases with a 17p13 deletion (TP53) (Fig
3G), five cases with a deletion in 21q22 (RUNX1) (Fig 3C) and two cases with an Xp11.4 dele-
tion (BCOR) (Fig 3D). NGS studies detected that one patient with a DNMT3A deletion carried
a missensemutation (p.Gly654Asp) in the other allele with a VAF of 73.5%. This mutation was
located in the methyltransferase domain (Fig 3B). Three patients harboring a TET2 deletion
carried one nonsense mutation (p.Arg550�), one missensemutation (p.Ser1284Phe) and one
frameshift deletion (p.Leu1855Trpfs�32) each in the non-deleted allele. The variant allele fre-
quencies were 96.5%, 3.5% and 89%, respectively. The latter two mutations affected the two
evolutionarily conserveddomains in the TET family proteins (Fig 3F). Of the six patients with
a 17p13 deletion affecting the TP53 locus, four carried one missensemutation each (p.
Cys275Tyr, p.Ile195Phe, p.Val274Asp, p.Tyr220Ser) with VAFs of 52%, 76.5%, 45% and 54%,
respectively. These TP53mutations were located in the sequence-specificDNA binding
domain. None of the other studied genes showed mutations in those patients with losses in the
regions of interest (Fig 3H). All mutations are summarized in Table 2.

Relationship between cytogenetic results and aCGH data

Array CGH results were compared with the cytogenetic data from each patient. 56 of 83 chro-
mosomal imbalances previously identified by CCwere detected by aCGH. A remarkably high
correlation betweenCC and aCGH results was observed in this series. In addition, given that
patients from different groups ascertained by CCwere included in the study, we decided to
analyze the concordance betweenCC and aCGH, but considering each cytogenetic group of
patients separately: the non-informative cytogenetic, normal and abnormal karyotype groups.

Fig 2. Summary of recurrent CNAs found in the global series. (A) Proportion of the whole series of patients with normal and abnormal aCGH
profiles. Each aCGH category is then divided by the cytogenetic subgroups detected by CC studies: normal, abnormal and non-informative karyotype.
Percentages represent the proportion of patients from the total number of patients within each cytogenetic subgroup. (B) Frequency of large recurrent
genomic abnormalities and frequency of cryptic recurrent CNAs involving genes of known significance in MDS and MDS/MPN patients only seen by
aCGH. All abnormalities are classified by MDS and MDS/MPN subtypes and color-coded as indicated on the right panel of the figure.

doi:10.1371/journal.pone.0164370.g002
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Focusing on the 216 patients with a normal karyotype as determined by CC, the aCGH
results were in excellent agreement with the cytogenetics of those patients with�20 and 11–19
metaphases studied (92.1 and 89.5%, respectively). However, only 78.6% of those patients with
�10 successfulmetaphases and no changes by CC displayed no copy number changes by
aCGH (S1 Fig). Thus, 20 patients (9.3%) with a normal karyotype as determined by CC showed
at least one genomic abnormality by aCGH. Only one chromosome was affected in 16 of these
patients. Considering those patients with an aberrant karyotype, aCGH revealed the same
genomic abnormalities as previously identified by CC in 86.7% of cases. Indeed, only six of the
45 (13.3%) cases with an abnormal karyotype established by G-banding analysis showed no
copy number abnormalities with aCGH. One of these patients had a balanced translocation,
which was not detectable by aCGH, and four patients had chromosomal abnormalities in three
metaphases of the analyzed cells, clonal cell populations below the detection limit of the aCGH.
Detailed information about these discordant cases is presented in S1 Table. With respect to the
patients with unsuccessful cytogenetic analyses, 70% of cases displayed a normal aCGH profile,
while 30% had at least one copy number aberration. Four patients (three high-riskMDS and
one CMML) had a complex karyotype, defined by the presence of at least five copy number
changes, as revealed by aCGH.

In addition, a correlation study between the aCGH profile and age, as well as WHO-based
risk category, and risk stratification following the IPSS-R for MDS cases and the CPSS for the
CMML patients was carried out. We found that age (P = 0.662) was not statistically associated
with the presence of normal or abnormal aCGH findings, and that the presence of an abnormal
aCGH profile was associated with high-riskMDS cases (P<0.05).

Discussion

The presence of specific chromosomal abnormalities and genetic changes is a hallmark of MDS
[18,23–25,35,36]. In this study, we analyzed a large cohort of MDS patients by integrating two
genetic methodologies: array-based comparative genomic hybridization (aCGH) and ampli-
con-based deep sequencing (NGS). Our results demonstrated the presence of chromothripsis,
inferred from aCGH profiles, as an infrequent but recurrent genomic abnormality in high-risk
MDS. In addition, our results showed that the combination of these conventional and genome-
wide scanning approaches enables a better characterization of MDS and related neoplasms,
and provides new information that could improve the current diagnostic and treatment of
these patients.

Fig 3. Combination of aCGH and NGS analysis for regions with frequently mutated genes in MDS and MDS/MPN. (A, C, D, E,G)
Detailed view of the whole chromosomes 2, 4, 17, 21 and X, where recurrent regions of deletion where found by aCGH, indicated by the
red-shaded box. A magnified view of the minimal deleted regions with a schematic diagram showing the genes included within the
deletion. For all figures, genomic locations are indicated in Mb, and the chromosome position (bp) and size (kb) of the minimal deleted
regions are indicated in the upper part of each chromosome view ratio plots. The Y-axis represents the log2 ratio values and all probes
for each chromosome are sorted by genomic position along the X-axis. (A) A 533.4-kb deletion on 2p23.3 affecting the DNMT3A locus.
(C) A 298.7-kb deletion on 21q22.12 affecting the RUNX1 locus. (D) A 697.1-kb deletion on Xp11.4 affecting the BCOR locus. (E) A
381.2-kb deletion on 4q24 affecting the TET2 locus. (G) An 11.14-Mb deletion on 17p13.3-p12 affecting the TP53 locus. Genes were
represented using the R package “GenomeGraphs”. (B, F, H) Distribution of DNMT3A, TET2 and TP53mutations identified by targeted
amplicon-based deep sequencing. The variant allele frequencies (VAFs) are represented in brackets. The complete coding regions of
DNMT3A, TET2 and TP53 are illustrated and the respective exons and amino acid (AA) positions are indicated below. Each circle
represents a mutation found in a single patient. Green, red and blue circles depict missense, nonsense and frameshift mutations,
respectively. (B) One patient carried a DNMT3Amissense mutation located in the MTase domain. The following protein domains are
shown: PWWP, proline-tryptophan-tryptophan-proline domain; ZNF, zinc finger domain; MTase, methyltransferase domain. (F) Three
patients with a TET2 deletion harbored one nonsense, one missense and one frameshift mutation each. The two evolutionarily
conserved domains, boxes 1 and 2, are shown. (H) Four patients carried one TP53missense mutation each. The following protein
domains are shown: TAD1 and TAD2, amino-terminal transactivation domains 1 and 2; DBD, sequence-specific DNA-binding domain;
NLS, nuclear localization signalling domain; 4D, carboxy-terminal tetrame-rization domain; Neg, negative regulation domain. Gene
variants were represented using the R package “R453PlusToolbox” [53].

doi:10.1371/journal.pone.0164370.g003
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Chromothripsis is a genetic abnormality in which tens to hundreds of clustered genomic rear-
rangements occur in a one-step catastrophic event. [2–9]. In the present study, chromothripsis
was observed in three cases of high-riskMDS (two cases of RAEB-1 and one patient with RAEB-
2), two entities known to progress gradually to a more aggressive disease. The occurrenceof chro-
mothripsis in myeloid malignancies has been demonstrated in AMLs by SNP array-based copy
number profiling, in which 8% of AML patients carriedmassive and complex rearrangements
consistent with chromothripsis [6,37]. The molecular basis of this genomic chaos has been long
studied in the last years. Therefore severalmechanisms such as ionizing radiation, premature
chromosome compaction, DNA replication stress, telomere shortening, abortive apoptosis, TP53
mutations, micronuclei collapse, and hyperploidy formation have been suggested as implicated in
this chromothripsis. [2,6–8,10,38–42]. In addition, approximately 50% of AML patients carrying
TP53mutations and approximately 40% of complex karyotypeAML patients displayed chromo-
thripsis, while only 1% of AMLwith wild-typeTP53 and no cases with non-complex karyotype
showed this aberration [6,37]. Moreover, it was also demonstrated that almost all medulloblasto-
mas showing evidence of chromothripsis had TP53mutations [6]. These findings reinforce the
link between somatically acquired TP53mutations and the presence of complex karyotypeswith
chromothripsis. It is of particular interest that the threeMDS cases with chromothripsis reported
in this study had complex karyotypes as revealed by aCGH and carriedTP53mutations, a previ-
ously describedassociation [6]. Additionally, the outcome of the three cases was poor, a feature
that is in accordance with high-riskMDS patients, the presence of a complex karyotype or TP53
mutations [18,21]. This complex genomic abnormality has not previously been comprehensively
described inMDS patients, perhaps because the previous high-resolution copy number studies in
MDSmainly concerned cases with a normal karyotype [23,26,27,29]. Other copy number studies
inMDS with abnormal and complex karyotypes have been reported. These studies aimed to ana-
lyze the relationship of copy number to the CC data and their prognostic impact, and they did
not show the presence of chromothripsis [28,30,43–45]. It should be noted that, in our study,
chromothripsis was seen exclusively to affect the entire chromosome 13 in all threeMDS patients.
The presence of this genomic chaos restricted to a single chromosome has been described.Chro-
mothripsis is typically found to affect different chromosomes at random, but was reported to
involve chromosome 16p in 3/7MM patients, and chromosome 21 in 5/9 iAMP21 ALL patients
[5,17]. However, the presence of chromothripsis involving chromosome 13 has not been previ-
ously reported in myeloid malignancies [6,12,37,46]. In this study, chromothripsis affected only
chromosome 13, with patterns of genomic alteration differing between the three high-riskMDS
patients. FLT3 was commonly amplified, while BRCA2 and RB1were commonly deleted in the
cases with chromothripsis. FLT3 is an oncogene that regulates hematopoietic stem cell differenti-
ation, proliferation and survival.FLT3-activating mutations were recurrently described in mye-
loid malignancies,mainly in AML, and are associatedwith poor prognosis [47]. RB1 and BRCA2
abnormalities play a role in the development of several cancers and are considered to be tumor
suppressor genes [48,49]. In addition, two non-chromothripsis MDS cases (#074 and #126)
showed CNAs affecting chromosome 13. One of these cases, diagnosed as RAEB-1, carried a
deletion involving the RB1 locus.Our results suggest the involvement of the FLT3 gene and
BRCA2 and RB1 inactivation in the pathogenesis of some cases of MDS.

The present study revealed the presence of cryptic abnormalities that were not targeted by
FISH and that were below the threshold of resolution by conventional cytogenetics. In fact,
12.6% of MDS patients showed cryptic changes. Some of these submicroscopic CNAs involved
regions with genes of known significance in MDS pathogenesis and were deletions in 2p23.3
(DNMT3A), 4q24 (TET2), 5q33.1 (SPARC), 7q22.1 (CUX1), 21q22.12 (RUNX1) and Xp11.4
(BCOR), and gains in 21q22.3 (U2AF1), that were detected in 19 patients [18,25,26,30]. These
regions were equally likely to be involved in low- and high-riskMDS or CMML. In addition,
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the genes included in these recurrent cryptic deletions were further investigated by NGS to
identify whethermutations occurred in the other allele. The sequencing results showed that
only two of the seven cases with the TET2 deletion carriedTET2mutations, while only one of
the two cases with losses in 2p23.3 showedDNMT3Amutations. Our results did not indicate
any correlation between the presence of deletions and mutations in theseMDS patients, which
is in accordance with previously reported data [23]. Therefore, our results support the idea that
conventional cytogenetic and aCGH studies could be complemented by the sequencing of
multi-gene panels, which have already been described for MDS and related myeloid neoplasms,
instead of single genes, in routine workflows for the study of these group of patients.

The presence of cytogenetic changes is a keystone in the prognosis of MDS and CMML
patients. In fact, conventional cytogenetics is essential in most prognostic systems to stratify these
hematological disorders [18,21,22]. However, in some subsets of MDS and CMML, conventional
cytogenetic techniques fail to provide any results due to a lack of cell growth during culturing,
and consequently some aberrationsmay bemissed,making the diagnosis and prognostic stratifi-
cation very difficult.Our study showed that 30% of karyotype failures carried genomic abnormal-
ities revealed by aCGH. Four patients had complex karyotypes, two had trisomy 8 and one
showed a del(5q), while the others showed deletions in 9p, 12q, 17p, 21q22, and -Y, and gains in
1q and 15q (S1 Table). Therefore, identifying these clinically relevant lesions is significant in
patients with failed CC results. The clinical utility of SNP-A as a karyotyping tool in a series of
MDS patients with unsuccessful cytogenetics has been previously demonstrated [50]. This
methodwas also useful in thoseMDS patients with a normal karyotypewhen fewer than 20
good-qualitymetaphases are available for analysis. We demonstrated that in 10% of cases with
11–19 successfulmetaphases and in 21% of those with�10 harbored genomic aberrations aCGH
will provide additional information that could redefine the prognostic risk of these patients, as
previously suggested [51]. Thus, at least 20 metaphases need to be analyzed for a karyotype to be
considered normal [52]. Therefore, the use of aCGH enabled the prognostic stratification accord-
ing to the IPSS-R that could change the clinical management of this group of patients. Addition-
ally, the presence of an abnormal aCGHprofile was associatedwith high-risk patients.

In summary, the present report describes the presence of a high incidence of genomic
changes in MDS and CMML patients by the integrative analysis of several molecular genetic
methodologies. In addition to well-known copy number defects, the presence of chromothrip-
sis involving chromosome 13 was a novel recurrent change in high-riskMDS patients. More-
over, aCGH analysis revealed the presence of cryptic abnormalities in genomic regions where
MDS-related genes, such as TET2,DNMT3A, RUNX1 and BCOR, are located. Thus, the inte-
grative analysis of conventional cytogenetics, aCGH and NGS in MDS will provide a better
understanding of the molecular abnormalities occurring in these patients, and could improve
the clinical management of MDS. The potential diagnostic and prognostic value of these new
genomic abnormalities should be studied in prospective studies.

Supporting Information

S1 Fig. Relationship between aCGHand CC studies in the normal karyotypegroup. Normal
karyotype patients are divided into three categories on the basis of the number of good-quality
metaphases evaluated:�10, 11–19 and�20. Patients with normal and abnormal aCGH results
within each category are represented by different shades of blue.
(TIF)

S1 Methods. SupplementaryMethods.Additional information on patients, array-based com-
parative genomic hybridization studies and next-generation sequencing studies.
(DOCX)
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19. Such E, Cervera J, Costa D, Solé F, Vallespı́ T, Luño E, et al. Cytogenetic risk stratification in chronic
myelomonocytic leukemia. Haematologica. 2011; 96(3):375–83. doi: 10.3324/haematol.2010.030957
PMID: 21109693

20. Malcovati L, Porta MG, Pascutto C, Invernizzi R, Boni M, Travaglino E, et al. Prognostic factors and life
expectancy in myelodysplastic syndromes classified according to WHO criteria: A basis for clinical
decision making. J Clin Oncol. 2005; 23(30):7594–603. doi: 10.1200/JCO.2005.01.7038 PMID:
16186598

21. Greenberg PL, Tuechler H, Schanz J, Sanz G, Garcia-Manero G, Solé F, et al. Revised international
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