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Abstract

Alcoholism is frequently co-morbid with posttraumatic stress disorder (PTSD) but it is unclear 

how alcohol impacts neural circuits mediating recovery from trauma. We found that chronic 

intermittent ethanol (CIE) impaired fear extinction and remodeled the dendritic arbor of medial 

prefrontal cortical (mPFC) neurons in mice. CIE impaired extinction encoding by infralimbic (IL) 

mPFC neurons in vivo, and functionally downregulated burst-mediating NMDA GluN1 receptors. 

These findings suggest alcohol may increase risk for trauma-related anxiety disorders by 

disrupting mPFC-mediated extinction of fear.

Alcoholism and anxiety disorders are some of the most commonly occurring 

neuropsychiatric disorders, and often co-occur in the same individuals. Current theories 

emphasize the occurrence of anxiety symptoms arising as a result of a history of heavy 

drinking. By comparison, little attention has been paid to the effects of alcohol abuse on the 

subsequent risk for anxiety disorders such as PTSD even though excessive drinking 

increases exposure to traumas such as car accidents and domestic violence1.

Fear extinction, the learned inhibition of a trauma-related fear response, provides a valuable 

assay for translational studies of PTSD. Studies in rodents have found evidence of impaired 

extinction following acute2,3 or repeated4,5 alcohol exposure, but have either been unable to 
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clearly parse effects of alcohol on extinction from fear per se, or have not established the 

mechanisms involved. In this context, fear extinction heavily recruits analogous regions of 

the mPFC across species6. In rodents, IL- inactivation7, stress-induced IL neuronal atrophy8, 

or blockade of mPFC N-methyl-D-aspartate receptors (NMDARs)9 and downstream 

signaling pathways10 impairs fear extinction, whereas activation of the prelimbic cortex 

(PL) correlates with poor extinction11,12 and PL inactivation reduces fear expression7. 

Although extinction deficits have not yet been reported in alcoholism, alcoholics exhibit 

deficits in PFC-mediated cognitive and executive functions13 that are coupled with 

abnormalities in PFC volume, grey matter and activation14. Together, these prior 

observations lead to the hypothesis that chronic alcohol impairs extinction by disrupting 

mPFC function.

To test this idea, we subjected mice to a regimen of chronic intermittent ethanol exposure 

and withdrawal (CIE) (Supplementary Information) that is designed to mimic repeated 

cycles of heavy abuse typifying alcoholism and drives neural adaptations in circuits 

regulating higher-order behaviors. Mice received continuous vaporized alcohol (yoked 

controls received vaporized air) for 16 hr (to achieve 175±25 mg/dL in blood, Fig. S1), 

followed by 8-hr withdrawal, every day for 4 consecutive days. After a longer, 80-hr 

withdrawal, the 4-day cycle was repeated - for a total of 4 cycles. Mice were trained to fear 

an auditory conditioned stimulus (CS) repeatedly paired with footshock 2 days after CIE to 

avoid non-specific behavioral disturbances during acute withdrawal. Extinction acquisition 

was tested the day after (3 days post-CIE) via 50xCS-alone presentations. To evaluate the 

strength of the extinction memory, a retrieval test was conducted 1 day later, followed by a 

context-renewal test. CS-related freezing was measured as an index of fear.

CIE and air groups had equivalent freezing during conditioning and the first trial-block of 

extinction showing that, unlike acute alcohol2, CIE did not disrupt the fear memory 

formation or expression. During extinction training, both groups showed clear decreases in 

freezing, but CIE mice had higher freezing during the second trial-block, indicating a 

modest retardation of extinction learning (CIE × trial-block ANOVA interaction: 

F9,225=2.43, p<.01, post hoc p<.05) (Fig. 1a). Most strikingly, however, CIE significantly 

impaired extinction retention, as evidenced by higher fear relative to air controls during 

extinction retrieval (t-test: t=2.07, df=25, p<.05) (Fig. 1a). Both groups exhibited fear 

renewal although this trended (t-test: t=1.51, df=25, p=0.15) higher in the CIE group. In a 

separate cohort of mice, CIE did not alter unconditioned anxiety-like behavior in the light-

dark test (2 days post-CIE) (t-test: t=0.84, df=24, p=0.41) (Fig. 1b), and did not produce 

tolerance to the rotarod-ataxic (t-test: t=1.40, df=24, p=0.18) or loss of righting reflex (t-test: 

t=0.78, df=24, p=0.44) effects of acute alcohol challenge (3-4 days post-CIE) (Fig. 1b). 

These results demonstrate CIE impaired extinction, and did so in the absence of alterations 

in fear, anxiety or tolerance, at least on the tests employed.

Because impaired extinction is associated with altered dendritic morphology in mPFC 

neurons15, we sacrificed behaviorally-naïve mice 3 days after CIE for visualization of IL 

and PL dendritic arbors from Golgi-Cox impregnated tissue. In IL pyramidal neurons, 

dendritic arborization was not different between groups in the apical (ANOVA distance 

from soma effect: F34,476=3009.58, p<.01, CIE effect: F1,14=0.38, p=.55) (Fig. 2d-f) or 
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basilar (Fig. S3c,d) tree. By contrast, PL neurons of CIE mice had significantly longer 

dendrites than air controls in the apical (Fig. 2a,b), not basilar (Fig. S3a,b) tree. Furthermore, 

this increase was limited to non-terminal branches (t-test: t(14)=3.83, p<.01) and to branches 

relatively distal to the soma, with a corresponding degree of dendritic retraction near the 

soma (ANOVA CIE × distance interaction: F34,476=3.81, p<.01, post hocs p<.05) (Fig. 2c). 

Thus, CIE produced significant dendritic remodeling in mPFC neurons, characterized by PL 

hypertrophy. Underscoring the specificity of remodeling, we observed normal dendritic 

arborization after CIE in other cortical regions (orbitofrontal cortex, Fig. S4) and nodes in 

the extinction circuit (basolateral amygdala, Fig. S5).

Dendritic dysmorphology represents a structural correlate of the CIE-induced extinction 

deficit, but does not reveal changes in vmPFC neuronal function. To more directly examine 

function, we performed in vivo neuronal recordings from multichannel electrode arrays. In 

rat mPFC, an extinction-encoding neuronal signal is characterized by a rapid and transient 

increase in firing16. Replicating this pattern in mouse, we observed a 100-msec increase in 

CS-related firing during early extinction in IL (ANOVA time effect: F29,4466=7.81, p<.01) 

(Fig. 3a) and PL (ANOVA time effect: F29,7192=13.47, p<.01) (Fig. S6a). This was 

equivalent between air and CIE groups. CS-related firing was also evident during late 

extinction and, more strongly still, extinction retrieval, but was significantly attenuated after 

CIE during both late extinction (ANOVA IL=CIE × time interaction: F29,4408=1.42, p=.

066, PL=CIE × time interaction: F29,7192=1.89, p<.01, post hocs p<.05) and retrieval 

(ANOVA IL=CIE × time interaction: F29,4118=1.61, p<.05, PL=CIE × time interaction: 

F29,6177=2.61, p<.01, post hocs p<.05) (Fig. 3a, S6a). These data demonstrate blunting of 

extinction-related neuronal encoding in mPFC neurons.

CIE mice also showed significantly less CS-related burst activity during extinction retrieval. 

Notably, this was specific to IL (t-test: t(143)=2.65, p<.01) (Fig. 3c), with no loss of 

bursting in the PL after CIE (Fig. S6c). Although we did not see IL versus PL differences in 

extinction-related neuronal firing per se, as has been seen in rats7, the subregion dissociation 

in bursting fits well with the prior observation that low bursting in IL, but not PL, predicts 

poor extinction retrieval9.

Post-extinction training antagonism of NMDARs in IL impairs extinction retrieval in 

tandem with reduced IL neuronal buirsting9, while chronic NMDAR blockade produces PL 

apical dendritic hypertrophy17 similar to that produced by CIE. This suggests that CIE may 

have caused loss of mPFC NMDAR. Consistent with this, we found significantly reduced 

expression of the functionally obligatory GluN1 NMDAR subunit in mPFC tissue (IL+PL) 3 

days after CIE (air=100±8%, CIE=61±10% normalized to air, t-test: t(14)=2.96, p<.0, Fig. 

S7). PSD-95 and other NMDAR subunits showed normal expression, indicating no general 

loss of mPFC synapses (Fig. S7). Furthermore, ex vivo slice physiology analysis indicated 

diminished stimulation-evoked excitatory NMDAR-mediated currents in IL and PL neurons 

at the same time point post-CIE (ANOVA IL=CIE × stimulation interaction: F4,52=3.94, 

p<.01, post hocs p<.05, Fig. 3d; PL=CIE × trial-block interaction: F4,48=3.77, p<.01, Fig. 

S6d). Finally, in alcohol naive mice, local bilateral micro-infusion of the NMDAR 

antagonist, AP5 (1 μg, 0.1 μl/side), immediately after extinction training mimicked the 

extinction retrieval deficit produced by CIE (t(13)=2.90, p<.05) (Fig. 3e-f).
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Collectively, these data propose a model whereby CIE drives NMDAR downregulation in 

mPFC, with attendant abnormalities in dendritic morphology and neuronal encoding of 

extinction. A threshold of chronicity appears necessary to produce these effects, as 

subchronic CIE (2 cycles) was insufficient to downregulate mPFC NMDAR expression, 

alter IL/PL dendritic morphology or impair extinction (Fig. S8). The finding that mPFC-

mediated extinction is vulnerable to CIE implies that a chronic history of alcohol abuse may 

increase risk of persistent fear after psychological trauma by degrading PFC-mediated 

capacity for extinction.

Online Methods

(See supplemental file).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. CIE impairs fear extinction
(a) CIE transiently retarded extinction acquisition (higher fear on trial-block 2) and 

significantly impaired extinction retrieval, relative to air controls (air n=10, CIE n=12). (b) 

CIE did not affect anxiety-like behavior in the light-dark exploration test (transitions: 

air=19.8±10.1, CIE=13.8±2.2, p>.05), or produce tolerance to the effects of acute alcohol 

challenge, as measured by rotarod ataxia (=pre versus post acute alcohol) (Fig. S2: rotarod 

training) and the loss of righting reflex (air n=10, CIE n=12). b=baseline, Con=conditioning, 

RT=retrieval, RN=renewal. Data are Means ±SEM. *P<.05 CIE versus air
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Fig. 2. CIE remodels mPFC neurons
(a) Coronal cartoon of PL. Examples of reconstructed neurons. (b) CIE increased overall 

length of PL apical dendrites at non-terminal branches (air n=7, CIE n=9, n=6-8 neurons/

mouse for b,c). (c) Sholl analysis revealed that PL apical dendritic length was lesser close to 

the soma and greater farther from the soma after CIE. (d) Coronal cartoon of IL. Examples 

of reconstructed neurons (scale bar=50 μm). (e) CIE did not alter overall IL apical length 

(air n=14, CIE n=12, n=6-8 neurons/mouse for e,f). (f) Sholl analysis found no alcohol-

induced change in IL dendritic length as a function of distance from the soma. Data are 

Means ±SEM. *P<.05 CIE versus air
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Fig. 3. CIE disrupts mPFC extinction encoding and decreases mPFC NMDAR-mediated 
currents
(a) In vivo freely moving recordings of IL neurons demonstrated CIE decreased neuronal 

activity during the first 100 milliseconds (redrawn in insets) of CS onset during late 

extinction (trial-block 10) and extinction retrieval (air n=7, CIE n=7, n=69-85 neurons, for 

a-c). (b) Coronal cartoon showing electrode placements in IL. Example extracellular 

waveforms and principal components separation of simultaneously recorded neurons. (c) 

CIE decreased CS-related IL neuronal bursting during extinction retrieval. (d) CIE 

decreased stimulation-evoked synaptic NMDAR-mediated currents in IL neurons, with 

example traces (air n=7, CIE n=8). (e) Coronal cartoon showing cannula placements in IL. 

(f) NMDAR antagonist AP5 infused into IL immediately after extinction training impaired 

extinction retrieval in alcohol-naive mice (air n=8, CIE n=7). Data are Means ±SEM. *P<.

05 CIE versus air
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