

Loyola University Chicago

Master's Theses

Theses and Dissertations

2018

# Chronic Circadian Misalignment Leads to Reduced Longevity and Largescale Changes in Gene Expression in Drosophila Melanogaster

Alex Christ Boomgarden

Follow this and additional works at: https://ecommons.luc.edu/luc\_theses

Part of the Neuroscience and Neurobiology Commons

#### **Recommended Citation**

Boomgarden, Alex Christ, "Chronic Circadian Misalignment Leads to Reduced Longevity and Largescale Changes in Gene Expression in Drosophila Melanogaster" (2018). *Master's Theses*. 3981. https://ecommons.luc.edu/luc\_theses/3981

This Thesis is brought to you for free and open access by the Theses and Dissertations at Loyola eCommons. It has been accepted for inclusion in Master's Theses by an authorized administrator of Loyola eCommons. For more information, please contact ecommons@luc.edu.



This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 License. Copyright © 2018 Alex Christ Boomgarden

### LOYOLA UNIVERSITY CHICAGO

# CHRONIC CIRCADIAN MISALIGNMENT LEADS TO REDUCED LONGEVITY AND LARGESCALE CHANGES IN GENE EXPRESSION IN DROSOPHILA MELANOGASTER

# A THESIS SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL IN CANDIDACY FOR THE DEGREE OF MASTER OF SCIENCE

PROGRAM IN BIOLOGY

 $\mathbf{B}\mathbf{Y}$ 

ALEX C. BOOMGARDEN

CHICAGO, IL

DECEMBER 2018

Copyright by Alex C. Boomgarden, 2018 All rights reserved.

#### ACKNOWLEDGMENTS

Our project was made possible through the aid and support of others. I would like to give special thanks to my Principal Investigator, Dr. Daniel Cavanaugh and my thesis committee, Dr. Jennifer Mierisch and Dr. Wei-Ming Yu. I would also like to mention those in the Cavanaugh lab that were essential to my projects success, including Dr. Austin Dreyer, Gabriel Sagewalker, Pramathini Patel, and Halle Chen. I would finally like to thank director Dr. Terry Grande and Loyola University Chicago for giving me the opportunity to conduct this research.

## TABLE OF CONTENTS

| ACKNOWLEDGMENTS                                                                                                                                                                                             | iii                                          |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|
| LIST OF TABLES                                                                                                                                                                                              | v                                            |
| LIST OF FIGURES                                                                                                                                                                                             | vi                                           |
| ABSTRACT                                                                                                                                                                                                    | viii                                         |
| INTRODUCTION                                                                                                                                                                                                | 13                                           |
| CHAPTER ONE: ASSESSING THE CONSEQUENCES OF CHRONIC<br>CIRCADIAN MISALIGNMENT<br>Background<br>Methods<br>Results<br>Discussion and Conclusions<br>Future Directions<br>Figures                              | 14<br>16<br>17<br>21<br>23<br>24<br>30       |
| CHAPTER TWO: MOLECULAR INVESTIGATION INTO THE CONSEQUENCES OF<br>CHRONIC CIRCADIAN MISALIGNMENT<br>Background<br>Methods<br>Results<br>Discussion and Conclusions<br>Future Directions<br>Figures<br>Tables | 31<br>34<br>36<br>42<br>46<br>47<br>50<br>53 |
| APPENDIX A: LIST OF GENES DISPLAYING DIFFERENTIAL EXPRESSION                                                                                                                                                | 61                                           |
| APPENDIX B: LIST OF GO TERMS                                                                                                                                                                                | 66                                           |
| REFERENCE LIST                                                                                                                                                                                              | 72                                           |
| VITA                                                                                                                                                                                                        | 73                                           |

## LIST OF TABLES

| Table 1. Overrepresented GO terms among downregulated genes.                  | 61 |
|-------------------------------------------------------------------------------|----|
| Table 2. Overrepresented GO terms among downregulated genes (nervous system). | 62 |
| Table 3. Overrepresented GO terms among upregulated genes.                    | 63 |

## LIST OF FIGURES

| Figure 1. The molecular negative feedback loop mechanism                                               | 6  |
|--------------------------------------------------------------------------------------------------------|----|
| Figure 2. Chronic circadian misalignment decreases fly longevity                                       | 25 |
| Figure 3. Locomotor activity behavior is altered by CCM                                                | 26 |
| Figure 4. Chronic circadian misalignment leads to a reduction in locomotor rhythmicity                 | 27 |
| Figure 5. Baseline sleep duration is correlated with longevity in male flies                           | 28 |
| Figure 6. Sleep and activity amounts between treatments                                                | 29 |
| Figure 7. Sleep matched flies maintain reduction in longevity                                          | 30 |
| Figure 8. Differential expression correlation analysis for week 2 differentially expressed genes       | 48 |
| Figure 9. Differential expression correlation analysis for week 3 differentially expressed genes       | 49 |
| Figure 10. Exposure to CCM fails to produce changes in whole-body stress gene reporter line expression | 50 |

#### ABSTRACT

As a result of earth's orientation toward the sun producing day and night, organisms have evolved an endogenous circadian timing system that is responsible for the 24-hour oscillation of most physiological and behavioral processes. This timing system is constantly synchronized to the external environment to adapt to and anticipate changes in light, temperature, food, and mate availability. In modern society, social and work constraints cause people to live schedules that are out of sync with their internal circadian clocks, producing a chronic circadian misalignment (CCM). While epidemiological studies in humans point to potentially damaging metabolic and cognitive consequences of CCM, the full extent of these negative effects is unknown. Furthermore, very little is known about the molecular and cellular mechanisms that lead to the negative effects. Here, we model and investigate the consequences of CCM in the powerful model system of the fruit fly, *Drosophila melanogaster*, by exposing the flies to a 28-hour day comprised of 14-hours of light and 14-hours of dark (compared to control flies that are exposed to a standard 24-hour day). Consistent with previous results, we demonstrate that exposure of flies to the 28-hour schedule led to a 14.78% reduction in median lifespan in the females and a 14.72% reduction in males. Previously, it was unknown whether the reduced longevity that results from CCM is due to direct effects of circadian misalignment or whether it occurs secondary to changes in overall sleep or activity levels of misaligned flies. To differentiate between these possibilities, we used the Drosophila Activity Monitoring (DAM) system tocontinuously monitor fly locomotor activity and sleep while simultaneously conducting our

longevity analysis. This allowed us to assess the effect of long-term CCM on agingassociated changes in locomotor activity and sleep levels, and to correlate these measures with fly lifespan. While misaligned flies exhibited aberrant patterns of locomotor activity, evidenced by reduced rest:activity rhythm strength, overall sleep and activity levels were largely unchanged. Furthermore, the CCM-induced reduction in longevity persisted when we matched flies for sleep and activity levels, indicating that the reduction in lifespan was independent of these behaviors. To uncover potential molecular mechanisms of CCM-induced reduction in lifespan, we conducted whole body RNA-sequencing to assess differences in gene transcription between control and misaligned flies. Through this analysis, we identified several groups of genes that displayed altered expression under CCM conditions. These include upregulation of genes associated with cellular stress and downregulation of genes involved in the nervous system. This indicates that CCM induces endogenous stress in animals, potentially leading to reduced neuronal function.

#### INTRODUCTION

#### **History and Early Work**

The Earth's rotation and orientation toward the sun produce daily periods of light and dark which repeat every 24-hours. As a result, organisms have evolved endogenous timekeeping systems that enable them to anticipate such environmental changes instead of simply reacting to them. Because of this, most behavioral and physiological processes oscillate depending on the time of day. Jean Jacques d'Ortous de Mairan, a geophysicist and astronomer, was one of the first to study this phenomenon in a specific plant model, *mimosa pudica*. Mairan observed that plant leaves would raise and fall every day at specific times. While it was previously believed that this was simply the plant's reaction to sunlight, Mairan noticed these same daily rhythms occurred even in the absence of environmental cues (De Mairan, 1729). In the 1900s, chronobiology expanded and grew through work done by Jürgen Walther Ludwig Ashoff, a German physician, biologist, and behavioral physiologist. Ashoff's early work began through self-experimentation, in which he identified his own body's 24-hour rhythm in temperature (Daan and Gwinner, 1998). This work was continued by others including physiologist Nathaniel Kleitman. During his research, Kleitman subjected himself and another individual to Kentucky's Mammoth Cave, a location that was shielded from environmental lighting cues (Kleitman, 1963). Despite the use of lamps to self-impose a 28-hour lighting cycle, both Kleitman and the subject displayed normal rhythmic body temperatures that oscillated near a 24-hour fashion following one month's time in the cave. These studies contributed to early evidence uncovering

the innate endogenous circadian timing system which allows for the rhythmic, 24-hour oscillation of behavioral and physiological processes in nearly all organisms. These processes we now refer to as circadian rhythms (circa meaning "around", diem meaning "day").

#### **Molecular Clock**

Growing evidence of this endogenous circadian timing system and the identification of circadian rhythms lead to its investigation at the molecular level. Much of this work and current research today involves the model organism, Drosophila melanogaster. For over a century, Drosophila, or more commonly referred to as the "fruit fly" has proven to be one of the more useful model organisms to study behavior, physiology, and human diseases. This is due to several factors, including its short life cycle, ability to produce large quantities of offspring at a high rate, ease of maintenance, and its fully sequenced genome leading to simplicity in genetic manipulations (Hales et al, 2015). Through the years of circadian research, the fruit fly has been found to display robust rhythmic behaviors, including locomotor activity rhythms and eclosion rates (Tataroglu and Emery, 2014). Fly locomotor activity rhythms involve two peaks in activity during morning and evening hours, along with a siesta in the afternoon. In addition, flies begin to ramp-up their activity in anticipation to the lighting transitions. Similar patterns are seen in fly eclosion rhythms, in which a high rate of flies emerge from their pupae case during earlier hours, followed by a decrease in the afternoon and evening. These rhythms were also studied in constant darkness (DD) to allow for the behavior to free run in the absence of environmental influence. As both locomotor activity and eclosion maintained circadian rhythmicity, it became evident that an endogenous mechanism was present. Furthermore, these simple yet robust circadian rhythms became a useful tool in investigating the underlying molecular mechanisms dictating such behaviors.

In one of the earliest studies to investigate such molecular mechanisms, Konopka and Benzer conducted mutagenesis on flies and screened for eclosion rhythms outside the normal 24hour period (Konopka and Benzer, 1971). They reasoned that characterizing mutants that expressed rhythms outside the 24-hour pattern would identify genes involved in the circadian mechanism. Through this screen, they identified three independent mutants with aberrant rhythms. Genetic mapping determined that these phenotypes were the result of different mutations of a single gene, which they named *period* (per). The first mutant expressed arrhythmic eclosion rhythms, (*per<sup>0</sup>*); the second mutant expressed rhythmic behaviors, but with a 19-hour period (per<sup>S</sup>); the third mutant also expressed rhythmic behaviors, but with a 28-hour period ( $per^{L}$ ). It was also later determined that the protein it transcribes for, PERIOD (PER), undergoes robust circadian oscillation, suggesting its role in dictating behavioral rhythms (Zerr et al, 1990). This research was groundbreaking in that it identified and characterized the first clock gene and protein involved in the endogenous circadian timing system. Subsequent studies involved cloning of these clock genes, including *per* (Hall, 1995), now available and frequently used in chronobiogical research.

Over 20 years later, a breakthrough in circadian research was made by the identification of a second clock gene, *timeless (tim)* (Sehgal et al, 1994). Similar to previous work, a mutagenesis screen was performed to identify mutants with aberrant eclosion rhythms. Presence of arrhythmicity in eclosion rates and locomotor activity in constant darkness (DD) lead to the discovery of the *tim* gene. This gene not only showed a circadian rhythm in expression, but its translated protein was found to function in conjunction with PER (Vosshall et al, 1994).

Around the same time, Vitaterna et al. conducted a forward genetic screen in mice and identified the first mammalian clock gene, which they called mClock (mClk) (Vitaterna et al,

1994). The subsequent demonstration that mutations in the Drosophila homolog (*dClk*) produced a similar arrhythmic phenotype provided evidence that the circadian mechanism was well conserved. Importantly, *dClk* was shown to regulate *per* and *tim* levels in flies (Allada et al, 1998). This influence was explained through the discovery of a fourth clock protein, CYCLE (CYC), which together with CLOCK (CLK) forms a heterodimer that binds to *per* and *tim* promoter E-box (Rutila et al, 1998) As *per* and *tim* proteins were later confirmed to function as heterodimers to inhibit transcription of CLK:CYC (Darlington et al, 1998), the formation of the negative feedback loop model explaining the interaction of these four clock proteins came to fruition.

In summary, this mechanism begins by CLK/CYC heterodimer binding to a E-box promoter region, driving transcription of *per* and *tim* in the nucleus during morning hours. These genes are then translated in the cytoplasm, allowing PER and TIM proteins to accumulate and dimerize during evening hours. PER/TIM are then phosphorylated by a number of different kinases, including DOUBLETIME (DBT) (Price et al, 1998), which regulate their degradation and nuclear entry. This kinase regulation is absolutely essential to ensure that the molecular clock cycles with a ~24-hr period. Accumulated PER/TIM containing bound DBT then re-enters the nucleus and binds to CLK/CYC, inhibiting its function at around midnight. This inhibition leads to the reduction and degradation of PER and TIM levels, closing the negative feedback loop and resetting the mechanism. (Allada and Chung, 2010). In addition to regulating *per* and *tim* transcription, the CLOCK/CYCLE complex also regulates the expression of thousands of other gene targets, thus establishing rhythmic expression of many genes involved in various functions in the cell. These targets are especially involved in pathways leading to locomotor activity rhythms and eclosion rates.

#### **Entrainment and Input Pathways**

While the development of the negative feedback loop mechanism began to explain the oscillation and rhythmicity of certain behaviors during specific times of day, the understanding of how circadian timing systems synchronizes to the external environmental cues was lacking. This gap in our knowledge was filled through the identification of Cryptochrome (CRY). Early work found evidence to suggests its role as photoreceptor in specific tissues of the brain that is necessary for the entrainment and maintenance of the circadian rhythms (Emery et al, 1998; Emery et al, 2000). Today, we know that CRY functions as a photoreceptor that binds and degrades TIM when activated, resetting and synchronizing the phase of the negative feedback loop mechanism within specific neurons of the fly brain (Allada and Chung, 2010). Furthermore, we know that CRY, as well as the other molecular clock components, are also expressed in peripheral tissues, explaining the ability of many of these peripheral tissues to entrain to environmental cues independent of the brain. These mechanisms compose the flies input pathways, in which their endogenous clock can use external information to entrain their endogenous circadian timing system.

Taken together, we see the mechanisms dictating the molecular clock is the product of 6 core proteins: PER, TIM, CLK, CYC, DBT, and CRY. Through their interaction and coordination, these proteins produce the oscillatory mechanism that dictates circadian rhythms seen in biochemical, physiological, and behavioral pathways (**figure 1**).



Figure 1. The molecular negative feedback loop mechanism

CLK and CYC form a heterodimer and bind to a specific E-box that drives transcription of *per* and *tim*. Translated proteins PER and TIM are then phosphorylated by kinase phosphorylation (e.g. DBT), which regulates protein levels and nuclear localization. PER and TIM accumulation causes their binding and entrance into the nucleus, further inhibiting the function of CLK/CYC. Photoreceptor CRY is activated by light and causes degradation of TIM, resetting and entraining this mechanism to the environmental cues.

#### **Core Clock Neurons**

As the details of the molecular clock mechanism were uncovered, researchers became interested in its location and coordination within the *Drosophila* CNS. This research began in a study that transplanted *Drosophila* brains of short-period (*per<sup>S</sup>*) mutants to arrhythmic (*per<sup>o</sup>*) mutant hosts to determine if a phenotypic rescue occurred (Handler and Konopka, 1979). Following this procedure, they found that *per<sup>o</sup>* flies expressed the phase in activity rhythms of the donor, in this case *per<sup>S</sup>* flies. This, combined with similar results found in later mammalian studies (Ralph et al, 1990), provided early evidence that the brain acts as the central pacemaker controlling the circadian timing system. An important turning point in this work occurred when researchers chose to use immunohistochemistry and *in situ* hybridization to identify cells in the brain that express the clock genes. Today, it is understood that the fly brain contains ~150 neurons that are responsible for controlling circadian rhythmicity. These clock cells are categorized into three subcategories, which include small and large ventral lateral neurons ( $sLN_v$ and  $lLN_v$ ), the dorsal lateral neurons ( $LN_d$ ), and the three types of dorsal neurons (DN1, DN2, and DN3) (Nitabach and Taghert, 2008). These neurons, containing the molecular mechanism which maintain circadian rhythmicity, make up the core clock of the circadian timing system located throughout the fly brain. In mammals, a homologous set of core clock neurons are located in the suprachiasmatic nucleus (SCN) (Landgraf et al, 2014).

Once the different groups of clock cells were identified, researchers began to investigate whether different subsets of clock neurons played unique roles in establishing behavioral rhythms. This began in work that found *per* expression in certain locations of the brain to be more important for driving circadian rhythmicity compared to others, specifically those containing LNs (Ewer et al, 1992). Through the use of a *disco* mutant, which lack LNs, others confirmed the presence of just one ventral lateral neuron  $(LN_y)$  to be enough to maintain normal activity rhythms, identifying a specific group of neurons involved in maintaining circadian rhythmicity (Helfrich-Förster, 1998). Shortly following, a second subset of cells were identified that appeared to share this role in the circadian timing system, being the dorsal lateral neurons (LNds) (Stoleru et al, 2004). Here, researchers found that while the LNvs were required for morning anticipation in activity, LNds were needed for evening anticipation. Furthermore, subsequent research indicating clock restoration in LNds associated with the rescue of evening anticipation confirmed these results (Grima et al, 2004). Other work has also pointed to an important contribution of the dorsal neurons (DN1s) that appeared to function in maintaining behavioral rhythms at specific times of day (Murad et al, 2007). These studies, among many others, have contributed to our current, more in-depth understanding of the different roles of each clock group within the Drosophila brain (Dubowy et al, 2017).

#### **Output pathways**

Though the clock neurons are able to keep time independently, in order to produce rhythmic behavioral and physiological processes they must be connected to downstream brain regions, referred to as output pathways. These neuronal networks are subject to several ongoing studies that look to map the specific constituents involved in eliciting circadian behaviors signaled by the core clock. Important advancements in this field involve the work done by Cavanaugh et al, in which GFP reconstitution across synaptic partners (GRASP) identified a functional connection between core clock neurons and cells of the pars intercerebralis (PI) (Cavanaugh et al, 2014). Continuing to map this pathway, King et al later determined that these PI cells connect to hugin+ SEZ neurons, which then extend to the ventral nerve cord to control locomotor activity rhythms (King et al, 2017). Another example of this involves work by Cavey et al, in which they identified the connection between core clock neurons and a Leucokinin neuropeptide circuit, as well as DH44-expressing neurons (Cavey et al, 2016). Together, these studies represent recent hallmark findings in the pursuit of mapping the output pathways linked to the core clock.

In summary, the fruit fly contains an endogenous circadian timing system composed of input pathways, a core clock, and output pathways which function in harmony with one another to produce behavioral and physiological rhythms. It is through the ability to synchronize to the environment where we are able to see this system functioning correspondently with the natural world.

#### **Chronic Circadian Misalignment (Humans)**

While the circadian timing system synchronizes to cycles of light and dark, this process is not immediate. If placed in altered lighting conditions, the timing system must re-synchronize to the new schedule, producing a period of misalignment (or desynchronization). Due to social and work constraints, humans subject themselves to environmental cues (typically lighting) that are out of synchrony with their endogenous clock. This creates misalignment between the endogenous rhythms of core clock neurons in the SCN and the external environmental cues, as well as the discoordination of SCN rhythms and peripheral tissue rhythms. If this misalignment is maintained and repeated over a prolonged period, the condition is referred to as chronic circadian misalignment (CCM).

CCM has become common in modern society and is associated with negative health effects. A growing number of epidemiological studies have shown that people experiencing CCM are prone to developing different diseases, disorders, and physiological and behavioral aberrations. CCM is especially prevalent in careers involving frequent transmeridian travel (such as pilots and flight attendants). Flight attendants and pilots must travel through different time zones on a weekly basis, requiring exposure to varying lighting schedules. In doing so, these people are experiencing a form of CCM commonly known as chronic jetlag. As a result, researchers have found these people to be at a higher risk of developing malignant melanoma, breast cancer, spontaneous abortions, and cognitive deficits (Tokumaru et al, 2006; Stevens, 2009; Aspholm et al, 1999; Cho et al, 2000). Chronic circadian misalignment is also very common in those practicing shift work, which involves work outside the typical 9:00am-5:00pm workday. This includes those working night shifts or work schedules that change throughout the week. Combined with social obligations, these workers don't allow the body to properly align to the different lighting schedules. Similar to flight attendants and pilots, shift work is associated with a number of different physiological changes and pathological disorders. A study that exemplifies this identified changes in melatonin levels and elevated sleep disruptions in shift workers (Bursch et al, 2005). Others have also identified an association between night shift workers and the incidence of breast cancer (Schernhammer et al 2006; Stevens, 2009). Furthermore, an epidemiological review of this work indicates reoccurring themes of gastrointestinal and cardiovascular disorders following exposure to shift work (Costa, 1996). Taken together, these studies suggest that CCM increases the risk of negative health effects in humans.

CCM is not restricted to these select occupations. In fact, many individuals follow irregular schedules and thus expose themselves to CCM. This results in what has been termed social jetlag, which is a form of circadian misalignment that is brought upon when individuals sleep and wake during times that are not in sync with their circadian timing system. An example of this includes students who have a specific sleep-wake schedule during the weekday, but then stay out and sleep in late during the weekend. Like chronic jetlag, social jetlag has also been found to produce CCM, resulting in negative health effects such as cognitive deficits and memory loss in students and other individuals (Wittmann et al, 2009; Lau et al, 2013).

While these epidemiological studies indicated a potential connection between CCM and negative health effects, an assessment of cause and effect was lacking. This lead researchers to begin conducting controlled lab studies in human subjects to uncover the underlying mechanisms behind CCM and its associated effects. One study that did so subjected 10 individuals to either a control 24-hour day (12 hours light:12 hours dark) or a 28-hour day (14 hours light: 14-hour dark) (Scheer et al, 2008). During and after the 10-day experiment, subjects exposed to the 28-

hour day experienced several metabolic and cardiovascular changes, all of which known to be precursors to more harmful disorders. These include changes is metabolic and stress hormones, increased mean arterial pressure, reduced sleep efficiency, and prediabetic symptoms in 3 of the 10 individuals. These effects, combined with the aforementioned epidemiological studies, indicate the consequences and relevancy of CCM.

#### **Chronic Circadian Misalignment (Mammalian Models)**

In an attempt to further assess the effects and underlying mechanisms behind CCM, researchers have developed animal models that have allowed for a more in depth analysis (Golombek et al, 2013). In one of the earlier studies, researchers exposed mice to three different lighting schedules. This included a control 12:12 light-dark schedule and either a 6-hour phase advance or phase delay every seven days. Under such conditions, aged mice expressed a profound decrease in lifespan under phase advancing conditions compared to control conditions. To further test this effect, they increased shift frequency to every four days instead of seven, which lead to an even greater reduction in longevity (Davidson et al, 2006). Due to the large amount of epidemiological studies indicating an association between cancer incidence in humans and CCM, studies also began assessing tumorigenesis in mammalian species under similar conditions. In one set of experiments, researchers subjected mice to either a control 12:12 lightdark schedule or an 8-hour phase advance every 2 days following inoculation of Glasgow osteosarcoma, and found that tumors grew faster in the phase advancing mice compared to the controls (Filipski et al, 2004). This effect they attributed to disrupted clock gene expression, such as mPer2, which displays anti-tumor growth properties (Fu et al, 2002). These studies, and many others, indicate that model organisms produce consistent adverse effects when experiencing CCM. Additional examples of these include accelerated aging, increased weight gain, and

cognitive deficits (Vinogradova et al, 2010; Fonken et al, 2010; Gibson et al, 2010). While these studies have enlightened scientists and the public of these negative consequences, researchers continue to push this work forward in invertebrate models.

#### Chronic Circadian Misalignment (Drosophila melanogaster)

In addition to these mammalian studies, researchers have also modeled CCM in fruit flies to utilize the many benefits and advantages mentioned previously. In early work, predating most mammalian studies, researchers exposed flies to 4 different environmental conditions: a control 24-hour day (12 hours light: 12 hours dark), a 21-hour day (10.5 hours light: 10.5 hours dark), a 27-hour day (13.5 hours light: 13.5 hours dark), or constant light, and found that flies exposed to altered environmental conditions expressed a reduction in lifespan compared to the control 24hour day (Pittendrigh and Minis, 1972). Others conducted a similar study in which they identified specific fly lines that experienced a reduction in longevity when exposed to a random light-dark regime (RLD) (Ringo et al, 1986). Both studies attributed the reduced lifespans to a lack of resonance between the endogenous period of the animal and the environmental cycle. More recently, researchers conducted a study to further characterize the effects of CCM. Here, they assessed locomotor aging and longevity in flies containing genetically or environmentally disrupted circadian timing systems (Vaccaro et al, 2016). Two period gene mutant animals were compared:  $per^{01}$  which eliminates circadian rhythms, and  $per^{T}$  which expressed 16-hour endogenous rhythms. When these flies were exposed to a 24-hour light: dark schedule, the  $per^{T}$ mutants had reduced longevity and decreased startle-induced locomotion (accelerated locomotor aging) when compared to wild-type flies. The change in startle induced locomotion was identified using the SING assay, in which the amount of time it took the flies to climb up a vial after being startled was impaired. When these flies were then placed in a 16-hour light:dark

schedule, wild-type flies now had a decrease in startle-induced locomotion, while they saw a rescue of this in the *per*<sup>T</sup> mutants. This indicated that the reduction in health span of the fruit fly was the result of the misalignment of the endogenous circadian timing system to environmental cues, not a lack of overall health in mutant flies. Furthermore, this study paved the way for further assessment of the overall consequences of CCM. Due to the large number of behavioral and physiological processes in the fruit fly that are regulated by the circadian timing system, studying the effect of CCM on these various processes provides an opportunity to learn the extent of the harmful effects of CCM.

#### **Research Aims**

Prior to experimentation, we began this study by first creating a model for assessing CCM using *Drosophila melanogaster*. This was achieved by exposing the flies to a 28-hour light:dark "chronic jetlag" schedule (14-hours light; 14-hours dark), which does not allow for proper alignment of the flies' internal clock with the environmental cues. This brings us to the first goal of our study, which was to conduct a more in-depth analysis of the behavioral and physiological consequences of chronic jetlag. This involved observing locomotor activity and rhythmicity, sleep duration, and longevity simultaneously. The second goal of this study was to investigate the molecular changes brought about by CCM that could lead to negative health consequences such as reduced longevity. This was achieved through RNA sequencing and stress reporter lines, which indicates changes in gene expression associated with the effects of CCM.

#### CHAPTER ONE

# ASSESSING THE CONSEQUENCES OF CHRONIC CIRCADIAN MISALIGNMENT <u>Central Hypothesis</u>: Chronic circadian misalignment leads to an overall reduction in health and well-being in *Drosophila melanogaster*.

**Specific Aim 1**: Assess locomotor activity, sleep, and longevity in *Drosophila melanogaster* exposed to a jetlag schedule to determine if chronic circadian misalignment leads to changes in behavior and physiological health.

- <u>Hypothesis</u>: Exposure of flies to a 28-hour chronic jetlag schedule consisting of daily
  4-hr phase delays will reduce locomotor activity rhythm strength and longevity
  compared to flies exposed to a normal 24-hour schedule.
- <u>Approach</u>: Use the DAM monitoring system to continuously measure locomotor activity while simultaneously assessing lifespan during exposure of flies to either a 28-hour chronic jetlag schedule or a 24-hour control schedule. This constant monitoring of fly locomotor activity will allow us to determine effects of chronic circadian misalignment on longevity, locomotor activity and sleep and to correlate changes in longevity with overall sleep and activity levels.

#### Background

Several studies have assessed the effects of CCM, produced through exposure to aberrant lighting schedules, by measuring changes in longevity. This involved work done by Pittendrigh

and Minis, who observed decreased longevity following chronic exposure to either a short, 21hour day or a long, 27-hour day (Pittendrigh and Minis, 1972). Similarly, Ringo et al. exposed flies to a random light-dark regime (RLD) and found a subsequent reduction in longevity (Ringo et al, 1986). Building upon this, researchers have also investigated CCM through the use of clock gene mutations that either changed the endogenous period to reduce resonance with normal 24-hr lighting cues, or left flies completely arrhythmic. For example, under normal 24-hour conditions, both *per*<sup>T</sup> mutants, which have extremely short endogenous periods, and *per*<sup>L</sup> flies, which have long endogenous periods, have reduced longevities compared to the wild type (Klarsfeld and Rouyer, 1998). Subsequent work confirmed that per mutations shortened longevity, and further demonstrated that the negative consequences of short period mutations could be mitigated by raising flies under short period lighting regimes (Vaccaro et al, 2016). This, along with other research indicating reductions in longevities among other clock mutants (*cyc*<sup>0</sup> and *tim*<sup>0</sup>), has suggested the importance of alignment between clock and environmental cues in maintaining physiological health (Vaccaro et al, 2017).

Despite the effective use of longevity as a measure of overall health, it remains unclear as to why CCM is associated with reduced longevity and whether or not it is secondary to other behavioral changes such as sleep or activity levels. This uncertainty demands a more accurate assessment of such behaviors to fully characterize the effects of CCM on health. Here, we chose to simultaneously monitor fly locomotor rhythmicity, locomotor activity and sleep amount, and longevity while exposing flies to CCM.

To achieve a CCM schedule, we exposed flies to a 28-hour (14-hours light; 14-hours dark), chronic jetlag schedule. This was compared to a 24-hour (12-hour light; 12-hour dark), control schedule. We used the DAM monitoring system to quantify differences in locomotor

rhythmicity, locomotor activity, sleep amount, and longevity (further explained in methods section). In doing so, we demonstrate reduced median lifespan in both male and female flies exposed to our chronic jetlag schedule, consistent with previous results. We find that this occurs in the absence of obvious decrement in function of the core molecular clock. Finally, we demonstrate that despite the fact that CCM slightly reduces total sleep duration and increases activity levels (specifically in males), reduced longevity was independent of these behavioral changes.

#### Methods

#### **Longevity Analysis**

Male and female iso31 flies were collected within 2 days of eclosion. Individual flies were loaded into glass tubes containing a 5% sucrose/2% agar food source and placed in Drosophila Activity Monitors (DAMs). Humidity and temperature-controlled incubators were used to expose flies to either a 24-hour schedule (12-hours light, 12-hours dark; control group), or a 28hour experimental schedule (14-hours light, 14-hours dark; chronic jetlag group). Incubator temperature was held constant at 25°C and humidity levels were kept between 70% and 80%. Flies were transferred to new tubes each week to supply fresh food. Locomotor activity of male and female flies was monitored using the Drosophila Activity Monitoring System (Trikenetics). DAMs contain an infrared beam shot directly through the center of each tube. Activity was recorded when the fly crossed the tube's midpoint and interrupted the beam. Longevity was determined by identifying the fly's last activity time in DAM data. Occasionally we observed "ghost" readings, where single beam breaks were detected even after flies had died. Thus, we removed an activity bin that was identified  $\geq$  12-hours after previous activity. Data were collected until all flies in the experiment were dead.

#### Locomotor Activity and Sleep Analysis

Analysis of locomotor activity was done with ClockLab software (Actimetrics). Rhythmicity of activity was determined by using  $X^2$  periodogram analysis, which was done in 7 day bits to assess weekly locomotor rhythmicity. Sleep was identified and counted if 5 consecutive bins of inactivity occurred (Ho and Sehgal, 2005) as determined by a custom-developed Excel formula. For full life sleep, we removed the last three days from analysis because flies reduce activity during this time, making it difficult to separate sleep from an age-induced decrease in locomotor activity.

#### Results

#### **CCM Reduces Lifespan**

Fly longevity was initially assessed to determine large-scale consequences of CCM. **Figure 2** demonstrates that flies exposed to the 28-hour (jetlag) schedule experienced a reduction in longevity compared to those exposed to a 24-hour (control) schedule. Male jetlag flies had a 14.72% reduction in median longevity compared to male control flies (median longevity for jetlag males was 19.6 days compared to 23.0 days for controls; p=2.65e-07, LogRank Test). We observed similar results in females, in which jetlag flies had a 14.78% lifespan reduction compared to controls (20.2 days compared to 23.7 days; p=1.56e-04, LogRank Test). These results are consistent with those found in previous work (Pittendrigh and Minis, 1972; Vaccaro et al, 2016), confirming the consequential impact of CCM on physiological health.

#### **CCM Causes Aberrant Locomotor Activity Patterns**

We chose to house flies in DAMs for the duration of the experiment so that we could simultaneously assess locomotor activity. Male and female flies exposed to jetlag conditions expressed aberrant locomotor activity patterns during each week of the experiment. More specifically, jetlag flies displayed early anticipation to lighting transitions during early weeks, and also seemed to lose their characteristic activity bout in transition to lights-off during later weeks, especially males (**fig. 3**).

Perhaps due to mistimed morning and evening anticipation, jetlagged flies also displayed reduced locomotor activity rhythm strength throughout the duration of the experiments, as seen in **figure 4**. While both experimental and control female flies showed natural reductions in locomotor rhythmicity as they aged ( $F_{(3,652)} = 66.83$ , p=0.000; 2-way ANOVA; main effect of time), jetlag flies overall expressed significantly reduced locomotor activity rhythm strength for the duration of the experiment compared to controls ( $F_{(1,652)} = 28.93$ , p=0.000; 2-way ANOVA; main effect of treatment). Similarly, jetlag male flies also exhibited reduced locomotor activity rhythm strength compared to controls ( $F_{(1,611)} = 25.64$ , p=0.000; 2-way ANOVA; main effect of treatment).

This reduced rhythmicity could be due either to the misalignment between internal and external rhythms or due to CCM-induced damage to core clock neurons or molecular cycling. To test for the latter, we assessed locomotor rhythmicity of flies in DD following exposure to varying amounts of time in either jetlag or control conditions (**fig. 4C-D**). Our data suggest the central clock and associated output pathways maintain proper functionality following exposure to chronic jetlag. In male flies, no differences in rhythmicity were identified between control and jetlag groups ( $F_{(1, 60)} = 0.25$ , p=0.616; 2-way ANOVA; main effect of treatment). Despite female jetlag flies appearing to display increased rhythmicity in DD compared to the controls ( $F_{(1, 66)} = 5.48$ , p=0.022; 2-way ANOVA; main effect of treatment), post hoc analysis found no statistical difference in rhythmicity between jetlag and control flies for any given week (Tukey's HSP)

p>0.05; **fig. 4D**). The fact that jetlagged flies have normal rhythm strength in DD demonstrates a functional central clock and further suggests that the reduced rhythm strength observed under LD conditions is a result of the difference in the endogenous period of the fly and the environmental conditions.

## CCM Decreases Longevity Independent of Changes in Locomotor Activity or Sleep Duration

While our results indicating a reduction in longevity among flies exposed to an aberrant lighting schedule are consistent with previous work (Pittendrigh and Minis, 1972; Ringo et al, 1986), how misalignment is affecting physiological health remains unknown. While we ruled out damage to molecular cycling and the core clock, one remaining possibility is that the CCMinducing schedule elicit altered locomotor behaviors. In doing so, this could shift the metabolic output through elevated activity and reduced sleep, which have been found to result in reduced longevity in previous work (Bushey et al, 2010). To investigate whether changes in sleep or activity are causing the reduced lifespan, we began by initially determining whether sleep amount was correlated with longevity in our experiments. Interestingly, we found that sleep amount in male flies was positively correlated with longevity. For the control males, correlations were seen between lifespan and sleep in first week of life (p=0.000, rho=0.454; Spearman rank test), as well as between lifespan and total lifetime sleep (p=0.002, rho=0.269; Spearman rank test) (fig. 5F, B). This was also true in the jetlag males, in which the first week of life (p=0.000, rho=0.419; Spearman rank test) and total lifetime sleep (p=0.002, rho=0.275; Spearman rank test) displayed positive correlations with longevity (fig. 5H, D). In contrast, we found no correlative relationships between sleep and longevity in the female flies (figure 5A, C, E, G).

Due to this identified relationship between sleep and longevity in the males, we next sought to determine whether jetlagged flies had reduced sleep amount, which could potentially explain their early death. Interestingly, we found significant reductions in jetlag males during week 1 (mean of  $44.72 \pm 0.5$  min sleep/hour compared to  $47.71 \pm 0.3$  for controls), week 2 (mean of  $39.17 \pm 0.6$  min sleep/hour compared to  $44.11 \pm 0.4$  for controls), and the full lifetime (mean of  $41.93 \pm 0.5$  min sleep/hour compared to  $45.04 \pm 0.3$  for controls) (**fig. 6A-C**). The jetlag females only displayed reduced sleep amount during week 1 (**fig. 6B**). Due to sleep amount being a relative inverse of locomotion, we found similar differences between groups regarding locomotor activity amounts as well, in that jetlagged flies had increased activity (**fig. 6D-F**). Despite these differences, it is important to note that jetlag flies still obtain a substantial amount of daily sleep, and that the magnitude of reduction was less than 5 min. sleep/hour.

Because the correlation results indicated no relationship between sleep and longevity in female flies, we can conclude that the reduction in longevity seen in jetlag flies was not the result of the reduced sleep identified in week 1. However, male flies did show a correlation between sleep and longevity. Furthermore, jetlag flies displayed reduced sleep during whole life and week 1, indicating a potential factor effecting their reduced longevity. To address this, we compared the median longevities of flies matched for total sleep amount by pairing each control fly with a matching jetlag fly that exhibited an average sleep amount within 1 min. sleep/hour of the control fly. This enabled us to compare longevities between control and jetlag flies that had no statistical difference in sleep (p-value >0.05, 2-tailed t-test; fig. 7E, F). We determined that both male and female jetlag flies maintained their reduction in longevity compared to the controls even when sleep amounts were normalized (p-value <0.05, LogRank Test), although the magnitude of reduction in longevity was partially reduced in males (**fig. 7B, D**). This

demonstrated that the reduced longevity resulting from CCM is independent of the minor changes in activity and sleep that are associated with the 28-hour (chronic jetlag) schedule.

#### **Discussion and Conclusions**

Simply by exposing flies to a 28-hour (chronic jetlag) schedule, we see both males and females experience reduced longevities. Firstly, this phenotype confirms data from previous work, in which flies exposed to aberrant lighting schedules also display reductions in longevity (Pittendrigh and Minis, 1972; Ringo et al, 1986). Second, these results are in line those obtained from mammalian and human studies, in which different forms of CCM have been extensively shown to negatively affect health (Evans and Davidson, 2013), thus providing evidence for a conserved function of the circadian timing system across species.

While previous work has shown reductions to longevity in CCM-inducing environments, it was unknown whether this was a direct result of misalignment, or secondary to behavioral changes (such as altered locomotor activity and sleep behaviors) that are produced from such schedules. While some have assessed the effects of CCM on the climbing ability of flies (Vacarro et al, 2016), these experiments were conducted following exposure to CCM, not during. Thus, we chose to use the DAM monitoring system to, for the first time, simultaneously monitor locomotor activity and sleep behaviors of flies experiencing CCM.

Through these studies, we report several important findings. First, we found that flies exposed to chronic jetlag exhibited aberrant locomotor activity indicative of the need to continually phase shift their circadian clocks in order to remain synchronized to the 28-hour day. This was evidenced by the fact that jetlag flies expressed early anticipation to the lighting transitions, which is likely a result of the 2-hour delay to each lighting transition within the 28hour schedule. However, flies displayed partial entrainment to the 28-hour schedule, seen through the absence of a free running locomotor activity response. This suggests that the flies were most likely experiencing daily disruption and adjustment of their molecular clock as a result of the lack of resonance between endogenous and environmental rhythms. During later life flies also showed reduced activity bouts at lighting transitions, particularly in the males. Because flies have an innate reaction to lighting transitions, its absence in jetlag flies is indicative of reduced physiological health compared to controls.

Due to altered locomotor activity behaviors, we found that CCM reduced locomotor rhythm strength in LD conditions in both male and female jetlag flies compared to controls. When these flies were then placed in DD, no changes in rhythmicity were seen between control and jetlag groups when comparing each week. This determined that the endogenous clock of flies exposed to chronic jetlag was still functioning properly, and that direct damage to core clock neurons or molecular cycling had not occurred. This also suggested that the reduction in longevity was more likely the result of the misalignment between the internal clock and the external environment.

Second, we discovered a positive correlation between sleep duration and longevity in both control and jetlag males, while no relationship was identified in the females. These results suggest a higher level of importance of sleep in male flies compared to females, specifically during early life. While other studies have also identified an effect of sleep changes on longevity (Bushey et al, 2010), none have identified or addressed the differences between males and females. Subsequent work focusing on these differences may help explain the effect of gender on sleep disorders in humans (Mallampalli et al, 2014).

Third, we demonstrated that chronic jetlag using a daily phase-delay paradigm causes reduced sleep, specifically in the males. Sleep aberrations in the jetlag flies are likely due to early and sustained anticipatory increases in activity prior to lights on and off. Furthermore, jetlag flies have 2 peaks in activity during evening hours. The first occurs as flies anticipate lights-off near ZT12, and the second by the startle response induced by the lights turning off 2 hours later, potentially producing some level of sleep disruption (**fig. 3C and D**). Because sleep was calculated using the activity data, we identified similar results when quantifying locomotor activity amounts (**fig. 6**).

Finally, we indicate that the reduced longevity that results from CCM occurs independent of changes in sleep or activity among both sexes. Our sleep matching analysis accounted for this, in which we showed that chronic jetlag flies experiencing the same amount of sleep as controls maintained a reduction in longevity. Furthermore, we determined that these flies selected also had no differences in activity. However, we did find that the lifespan reduction was slightly decreased in the males after accounting for changes in sleep amount. This may suggest the behavioral changes may be an additional consequence of CCM in the males, but not the determining factor producing reduced longevity. Nevertheless, this data indicates that CCM, and not minor changes in sleep and activity, produced the reduction in longevity. The mechanism behind this phenotype was investigated in our second aim, which is discussed in chapter 2.

Overall, our results are consistent with both mammalian and human epidemiological studies (Golombek et al, 2013; Costa, 1996). The reduction in longevity independent of changes in sleep or activity have large implications to human behavior, in that those experiencing chronic jetlag may not be alleviating themselves from the negative consequences by simply increasing sleep amount. For those frequently experiencing CCM (through social and occupational obligations), this stresses the importance to seek light therapeutics to achieve resonance of endogenous and external clocks.

#### **Future Directions**

In future experiments, we will conduct additional behavioral assays to fully characterize the consequences of CCM. The first involves an assessment of fly cognition and memory. The circadian timing system is known to govern the neural circuits involved in learning and memory (Smarr et al, 2015), providing an opportunity to determine another physiological process effected by CCM. In previous epidemiological studies, CCM has been associated with cognitive disorders and memory deficits (Cho et al, 2000). While similar results have been indicated in mammalian studies (Loh et al, 2010), little to no work has been done involving the fruit fly. We will use olfactory conditioning paradigms (Malik and Hodge, 2014) to determine if flies exposed to chronic jetlag experience subsequent changes in learning and memory.

We are also very interested in determining the consequences of social jetlag, which occurs when individuals follow irregular sleep/wake cycles, resulting in negative health effects (Wittmann et al, 2009; Lau et al, 2013). We will study the effects of social jetlag in fruit flies by exposing them to a 9am to 9pm LD schedule during the week (Monday through Thursday), followed by a 1am to 1pm LD schedule during the weekend (Friday through Sunday). In doing so, we can determine if this form of CCM produces similar changes in health span of the fruit fly. Furthermore, we can conduct memory assays under social jetlag conditions as well.

#### **Figures**



Figure 2. Chronic circadian misalignment decreases fly longevity

(A-B) Percent of flies surviving during exposure to either a control 24-hour day (blue line) or a chronic jetlag 28-hour day (orange line) throughout a 40-day period. Chronic jetlag results in decreased longevity for both female (A; 14.78% reduction,  $n_{control}=124$ ,  $n_{jetlag}=126$ , p=1.56e-04; LogRank test) and male (B; 14.72% reduction,  $n_{control}=125$ ,  $n_{jetlag}=120$ , p=2.65e-07; LogRank test) flies.



Figure 3. Locomotor activity behavior is altered by CCM

(A-H) Weekly average locomotor activity, containing mean number of beam breaks/min during 30-minute blocks of time. The white bars correspond to light periods and the black bars correspond to dark periods. Error bars represent +/- standard error measure. (A-D) Average activity during the first week of either control (A-B) or jetlag (C-D) schedules. Both male (C) and female (D) jetlag flies experienced early anticipation of activity to light transitions (indicated by red arrows). (E-H) Average locomotor activity during their third week of life in either the control (E-F) or jetlag (G-H) condition. Jetlag female (G) and male (H) flies maintain early anticipation behaviors while having a reduced activity bout at lights-off (indicated by blue arrows) compared to control females (E) and males (F).



Figure 4. Chronic circadian misalignment leads to a reduction in locomotor rhythmicity

(A-B) Average locomotor activity rhythm strengths of flies exposed to either a control (24-hour) day (blue line) or a chronic jetlag (28-hour) day (orange line). Data points correspond to the average locomotor rhythm strength of each group during that week of the experiment. Different letters indicate data points that are statistically different than one another (Tukey's HSD test, p<0.05). Locomotor activity rhythmicity was reduced in jetlag flies for both females (A;  $n_{control}=124$ ,  $n_{jetlag}=126$ , p=0.000; 2-way ANOVA; main effect of treatment) and males (B;  $n=n_{control}=125$ ,  $n_{jetlag}=120$ , p=0.000; 2-way ANOVA; main effect of treatment) throughout the entire lifespan compared to control flies. (C-D) Average locomotor activity rhythm strengths of flies placed in DD following exposure to varying durations of either condition. Neither females (C;  $n_{control}=14$ ,  $n_{jetlag}=15$ ) nor males (D;  $n_{control}=16$ ,  $n_{jetlag}=15$ ) showed differences in rhythm strength when comparing week to week (Tukey's HSD test, p<0.05).


Figure 5. Baseline sleep duration is correlated with longevity in male flies

(A-H) Scatterplot of longevity against sleep. Each dot represents an individual fly. (A-D) average sleep/hour during the full lifetime of the fly is plotted against longevity for flies exposed to either control (A-B) or jetlag (C-D) conditions. While female control (A) and jetlag (C) showed no relationship, both control (B) and jetlag (D) males expressed significant, positive correlations (p<0.05; Spearman Rank). (E-H) Week 1 average sleep/hour against longevity for control (E-F) and jetlag (G-H) flies. Female control (E) and jetlag (G) flies expressed no correlation, while control (F) and jetlag (H) males did (p<0.05; Spearman Rank).



Figure 6. Sleep and activity amounts between treatments

(A-C) Sleep amounts (average min. sleep/hour) of control and jetlag flies for full life (A), week 1 (B), and week 3 (C). Males had differences in whole life (p=0.000, 2-tailed t-test) and week 1 sleep (p=0.000, 2-tailed t-test), while this wasn't maintained into week 3 (p= 0.616, 2-tailed t-test). Females had altered sleep during week 1 (p=0.002, 2-tailed t-test), while no changes were seen in whole life and week 3 (p >0.05, 2-tailed t-test). (D-F) Activity amounts (average beambreaks/min.) of control and jetlag flies for full life (D), week 1 (E), and week 3 (F). Similarly, males displayed whole life (p=0.002, 2-tailed t-test) and week 1 (p=0.013, 2-tailed t-test) changes in activity, which wasn't maintained into week 3 (p=0.863, 2-tailed t-test). Females had no differences in activity (p>0.05; 2-tailed t-test). \*p<0.05.



Figure 7. Sleep matched flies maintain reduction in longevity

(A-D) longevities of flies matched for full life sleep (A-B) and week 1 sleep (C-D). Both females (A,  $\chi^2 = 13.7$ , p=0.0002, LogRank; C,  $\chi^2 = 14.3$ , p=0.00016, LogRank) and males (B,  $\chi^2 = 8.4$ , p= 0.004, LogRank; D,  $\chi^2 = 4.3$ , p= 0.037, LogRank) maintained reductions in longevity. (E-F) Sleep amounts (min. sleep/hour) of flies included in longevity analysis. Sleep matching produced no significant differences in full life (E) and week 1 (F) sleep (p>0.05, 2-tailed t-test).

#### CHAPTER TWO

# CIRCADIAN MISALIGNMENT INDUCES LARGESCALE CHANGES IN GENE EXPRESSION IN DROSOPHILA

<u>Central Hypothesis</u>: Chronic circadian misalignment leads to an overall reduction in health and well-being in *Drosophila melanogaster*.

**Specific Aim 2:** Investigate changes in gene transcription of *Drosophila melanogaster* exposed to a chronic jetlag schedule.

- <u>Hypothesis</u>: Exposing flies to a 28-hour (chronic jetlag) schedule will induce changes in gene transcription, specifically for genes involved in stress response pathways.
- <u>Approach</u>: Conduct whole-body RNA sequencing to assess changes in gene expression during exposure to a 28-hour (chronic jetlag) schedule. Conduct fluorescent microscopy with specific stress gene reporter lines to confirm these results.

#### Background

Epidemiological studies in humans have consistently demonstrated an association between CCM-inducing schedules and disease (Tokumaru et al, 2006; Stevens, 2009; Aspholm et al, 1999; Cho et al, 2000, Costa, 1996). To understand the connection between CCM and disease, researchers have used mammals to model and investigate the physiological consequences of CCM in controlled laboratory conditions (Golombek et al, 2013). While these studies have confirmed many of the negative health effects of CCM in humans such as increased instance of cancer, obesity, and cognition deficits (Filipski et al, 2004; Fonken et al, 2010; Gibson et al, 2010), few have attempted to characterize the molecular mechanism behind such phenotypes. One recent study, however, assessed changes in gene transcription in the liver of mice following exposure to CCM, which was termed "chronic circadian rhythm disruption" (Van Dycke et al, 2015). In doing so, they identified changes in the transcription of specific genes, including CD36, which is a biomarker suggested to be indicative of metabolic syndrome and increased risk of human breast tumorigenesis (Handberg et al, 2006; Uray et al, 2004). These data indicate that the consequences of CCM may involve changes in overall gene expression.

Results from Chapter 1 indicated a reduced longevity independent of behavioral changes and a damaged core clock. Thus, our investigation shifted towards an assessment of changes occurring at the cell and molecular level. We hypothesized that by focusing on changes in gene expression in jetlagged flies, identifying specific genes and associated pathways would further explain the reduced longevity phenotype. This approach began by using RNA sequencing to compare gene expression levels of flies experiencing CCM (28-hour schedule) compared to a normal schedule (24-hour schedule). While flies exposed to 2 weeks only exhibited 7 genes displaying differential expression, the majority involved lipid metabolism. Interestingly, when we then assessed changes following 3 weeks exposure, we identified 351 genes displaying differential expression, including those involved in cellular stress and neuronal/synaptic function and maintenance.

Because results from RNA sequencing indicated an increased cellular stress response in flies exposed to CCM, we conducted fluorescent microscopy on transgenic reporter lines associated with various stress response pathways in an attempt to independently corroborate the association between CCM and the stress response. This included the use of reporter lines in which green fluorescent protein (GFP) fluorescence should reflect the expression of the stress-related genes heat shock protein 22 (hsp22), hsp70, and glutathione S-transferase D (gstD), as well as an additional reporter line in which dsRed fluorescence should reflect the activation of the stress-related Jun Kinase pathway (TRE-dsred).

Both hsp22 (heat shock protein 22) and hsp70 (heat shock protein 70) genes have been found to be upregulated during normal aging, heat and oxidative stress, and hsp22-GFP and hsp70-GFP lines have been constructed which contain GFP downstream each of the genes promotor region (Yang and Tower, 2009). The TRE-dsred line involves the red fluorescent protein downstream of TRE (tetradecanoylphorbol acetate reponse element), which is activated in response to oxidative stress through Jun-N-terminal Kinase (JNK) signaling (Santabárbara-Ruiz et al, 2015; Chatterjee and Bohmann, 2012). Also involved in oxidative stress pathways, the gstD-GFP line contains an antioxidant response element (ARE) that is activated through Nrf2 signaling (Sykiotis and Bohmann, 2008). We reasoned that the use of these lines would allow us to assess whether chronic jetlag induced changes in expression of these genes and pathways in a manner similar to that observed following acute oxidative or heat stress, further confirming RNA sequencing data.

Our fluorescence microscopy involved the exposure of flies to either control (24-hour) or chronic jetlag (28-hour) conditions. In doing so, we generally found natural increases in fluorescence as flies aged, but no differences in reporter gene expression in flies exposed to CCM. This result in seemingly at odds with the upregulation of stress response genes observed in our RNA sequencing (which identified increased expression of both hsp22 and hsp70 following three weeks of exposure to CCM). One possibility is that changes in expression were occurring in a tissue-specific manner which was undetected by our microscopy. Nevertheless, our results overall indicate large-scale changes in gene expression when flies are exposed to a CCM-inducing schedule, providing information about candidate molecular mechanisms leading to a reduction in longevity.

#### **Methods**

#### **RNA Extraction**

Iso31 flies were loaded into DAM monitors in control or chronic jet lag conditions. RNA extractions were done from ZT0-ZT3 after 2 or 3 weeks of control or jet lag exposure. Flies were anesthetized on CO<sub>2</sub>, followed by the collection of 10 males and 10 females from each monitor in each condition into Eppendorf tubes on ice. We then added 200 uL TRI Reagent to each tube and homogenized with pestles. An additional 800 uL TRI Reagent was then added for a total of 1000 uL. To help with phase separation, 50 uL of 4-bromoanisole was added to each tube. The samples were then vortexed vigorously for 15 seconds. To produce a sample with greater purity, we centrifuged each sample for 15 minutes at 12,000 x g at 4°C in cold centrifuge. Upon centrifuge completion, 500 uL of the aqueous phase was transferred to a new eppendorf tube. We then added 500 uL 100% ethanol and inverted tubes ~10x to thoroughly mix. Roughly 500 uL (half of the solution) was transferred to a Zymo-Spin IIC Column and centrifuged for 30 seconds at 16,000xg at RT. This step was repeated for the remaining 500 uL while discarding flowthrough. We then treated samples with DNAse directly on the Zymo-Spin IIC column to remove any genomic DNA (according to the manufacturers instruction). Following DNAse treatment, we added 400 uL Direct-zol RNA PreWash. Tubes were centrifuged for another 30 seconds and this step was repeated. We then added 700 uL RNA Wash Buffer and centrifuged again for 1 minute at 16,000xg at RT. We discarded the flow through and centrifuged for another 2 minutes to

ensure the Wash Buffer was completely removed. To elute RNA, we added 60 uL

DNase/RNase-Free Water directly to column matrix and centrifuged 30 seconds at 15,000xg at RT. OD readings for each individual sample were conducted to assess purity. Finally, we separated out 40 uL of each sample into new eppendorf tubes, which were stored at -80°C and sent to Novogene for RNA sequencing.

## **RNA Sequencing**

Library preparation and 150 base pair, paired-end RNA sequencing were conducted by Novogene (Davis, CA). >20 million reads were obtained per sample.

#### **Differential Gene Expression Analysis**

We conducted a differential gene expression analysis to determine whether specific genes displayed a significant difference in read counts (expression) between control and jetlag flies. We used RNA Star to map reads to the fly genome, mmquant to quantify number of reads mapped to each gene in each sample, and DEseq2 for differential expression analysis. Fold changes (FC) were expressed in log2 form, allowing positive and negative FC values to be equidistant to 0. Up- or downregulated genes were determined by DEseq2 with a false discovery rate (FDR) of 0.1. We did not filter genes based on fold change.

#### **GO Term Analysis**

We conducted Gene Ontology (GO) term analysis with the Princeton GO-term finder (https://go.princeton.edu/cgi-bin/GOTermFinder) to identify functional gene categories among biological processes that were over- or underrepresented among our differentially expressed genes. Analysis was done separately for up- and down-regulated genes from each week. The Bonferonni adjusted p-value cutoff was set to 0.05 to determine over- or underrepresented GO terms. The resulting lists were then passed through REVIGO (http://revigo.irb.hr) with an allowed similarity of 0.7 to remove redundant terms. For tables, we further filtered the GO term list to remove highly generic GO terms. To do this, we determined the maximum distance to root term for each term and only included terms with a maximum distance of 4 or greater. Only 16 terms were included in these tables that held the lowest, most significant p-values.

#### **Reporter Line Outcrossing**

To control for the differences in genetic background, genetic outcrossing was conducted on the transgenic strains. These lines carry a *w* allele closely linked to their reporter transgene, which allowed for eye color to determine presence of our desired transgene after 8 successive outcrosses. Following the 8<sup>th</sup> outcross, virgin females were selected and crossed to either a *sco/cyo* or *TM2/TM6C,sb* balancer depending on the chromosomal location of the transgene.

### **Fluorescent Microscopy**

Reporter flies were loaded into DAM monitors and placed in either control or chronic jetlag conditions. Following 1, 2, 3, or 4 weeks of exposure to either condition, males and females were removed from monitors and anesthetized using FlyNap for 60 seconds. Anesthetized flies were placed in a petri dish and positioned with the dorsal side facing up. No adhesive tape was used during the flies positioning. Flies were imaged under an Axiocam 503 mono microscope. Blue or green light was used to activate fluorescence, and images were taken and recorded under varying lighting exposures. These images were then analyzed using ImageJ, in which fluorescence was measured by pixel intensity in outlined abdomen, thorax, and heads of the flies.

#### Results

#### CCM induces largescale changes in gene expression

Our sleep matching analysis indicated that the reduction in longevity associated with CCM is independent of changes in behavior (including activity and sleep amounts). We therefore

hypothesized that the physiological consequences must be occurring due to molecular changes brought upon by CCM. To investigate this, we assessed levels of gene transcription by conducting whole fly RNA sequencing on combined male and female flies following both 2 and 3 weeks of jetlag or control exposure.

To assess overall changes in gene transcription between conditions, we conducted a differential expression analysis between control and jetlagged flies. By comparing control and jetlag groups following 2 weeks exposure, 7 genes were found to display differential expression (6 upregulated and 1 downregulated) (FDR <0.1) (**appdx. A**). While this list was small, the majority involved lipid metabolism. When we conducted the same analysis between control and jetlag flies at 3 weeks exposure, we found 351 genes exhibiting differential expression (245 downregulated and 106 upregulated) (adj. p <0.1) (**appdx. A**). Some hallmark examples of upregulated genes involve the stress response, such as hsp22 and hsp70. The significant increase in the number of genes from week 2 to week 3 indicates prolonged exposure to CCM leads to greater molecular consequences.

While our differential expression analysis determined that CCM produced changes in gene expression, the mechanism leading to such changes in gene expression and whether they were maintained throughout the experiment remains unclear. To investigate this, we determined whether genes exhibiting differential expression at weeks 2 and 3 were correlated with their expression during the opposite week. For week 2, despite the fact that we didn't find a statistically significant correlation between the 7 genes that displayed differential expression and their fold change in expression at week 3 (adj. p=0.101, Pearson's Correlation), the data appeared to be trending toward a positive correlation (**fig.8A**). Furthermore, three of the six downregulated genes in week 2 were also determined to be significantly downregulated in week

3, while the remaining showed the same up- and downregulatory trends. This suggests that CCM may be producing immediate changes in gene expression that remain present throughout the remainder of the fly's life. Interestingly, when we assess fold change in expression of these same genes in control flies from weeks 2 to 3, 3 genes that were strongly downregulated in jetlagged flies at week 2 were actually upregulated in controls during aging (**fig. 8B**). This indicates that chronic jetlag may be effecting the fly's ability to modulate gene expression during natural aging.

Due to the large number of genes displaying differential expression at week 3, we conducted separate correlation analyses for those expressing up- and downregulation. When assessing differentially downregulated genes at week 3, we found no correlative relationship in expression of these genes during week 2 (adj. p=0.481, Pearson's Correlation) (fig. 10A). However, when we conducted this same analysis in differentially upregulated genes, we identified a positive correlation (adj. p=0.002, Pearson's Correlation; fig. 10B). This demonstrates that the specific genes that are strongly upregulated following three weeks of jetlag exposure are already showing signs of upregulation by week 2, though these changes are not statistically significant at the 2-week time point. Furthermore, when comparing differentially upand downregulated genes in week 3 jetlagged flies to their fold change in expression among normal aged flies, several genes were found to exhibit an opposite effect following exposure to jetlag compared to natural aging. (fig. 10C, D). We identified 11 genes that were upregulated by CCM that exhibited a natural downregulation in expression in control aged flies (**fig. 10D**). Similarly, 22 genes that were differentially downregulated in week 3 jetlagged flies displayed an upregulation in control aged flies (fig. 10C). This, along with our week 2 data, determines that CCM produces adverse changes in gene expression that are opposite, in some cases, to those that

occur during a flies natural aging process. Further investigation of these genes may lead to a deeper understanding of the mechanisms behind the CCM-induced reduction in longevity. Go term analysis displays reoccurring themes of gene expression consistent with reduced longevity

To determine whether the differentially expressed genes were enriched for specific functional categories, we conducted a GO term analysis. This allow for a more rationalized and simplified version of which processes and pathways were being effected following exposure to chronic jetlag. Despite only identifying 7 genes displaying differential expression at week 2, GO term analysis on the 6 downregulated genes identified 4 GO terms that mainly involved the fly's lipid metabolism. When this analysis was then conducted on week 3 genes, we identified 18 GO terms associated with week 3 upregulated genes and 178 GO terms associated with week 3 downregulated genes (**appdx. B**).

Table 1 shows the top 16 most statistically significant GO terms among downregulated genes during week 3. This list revealed several GO terms that may explain the reduced longevity in jetlagged flies, including "Regulation of Gene Expression, "Cell Development", and "System Development." We also noticed that 2 of the 16 involved the nervous system. This included "Nervous System Development" and "Neurogenesis" (**table 1**). When we then assessed all overrepresented GO terms (appendix B), we identified 10 additional terms related to the nervous system (**table 3**), thus suggesting some level of neurological damage in jetlagged flies.

Table 3 shows the top 16 most statistically significant GO terms among upregulated genes. Interestingly, many of these terms are involved in cellular stress response, including "Response to Oxidative Stress", "Response to Hypoxia", and "Response to Unfolded Proteins". Genes that fell into these categories included hsp70 and hsp22. These data suggest that chronic

jetlag may be inducing some level of endogenous stress, potentially leading to a damaged nervous system.

#### Use of reporter lines to assess physiological consequences of CCM

To further assess changes in gene expression, and to potentially confirm results from RNA sequencing, we determined the effect of CCM on the expression of specific transgenic reporter lines by conducting whole-fly fluorescence microscopy. These reporter lines included the following: hsp22-GFP, hsp70-GFP, gstD-GFP, and TRE-dsred. We began by initially testing the functionality and responsiveness of these lines to normal stressors, and found that all lines exhibited increased whole-body fluorescence following exposure to acute heat stress (**figure 8A-C**). Due to these lines' responsiveness to such stress, we reasoned that we could use them to determine whether some level of endogenous stress was occurring during CCM.

We assayed for reporter gene expression following varying amounts of time in either a 28-hour (jetlag) or a 24-hour (control) schedule. We generally found gradual increases in fluorescence as flies aged in both groups, consistent with previous work indicating age-associated increases in cellular stress (Yang and Tower, 2009). However, CCM didn't appear to produce changes in expression in any of our stress gene reporter lines. The first line we assayed was hsp22-GFP, in which female and males showed increased fluorescence intensity as flies aged (females,  $F_{(3, 92)}$ =1448.05, p=0.000; males,  $F_{(3, 106)}$ =947.44, p=0.000, 2-way ANOVA; main effect of week; **fig. 8D-E**). While females did show a main effect of treatment ( $F_{(1, 92)}$ =13.38, p=0.000, 2-way ANOVA), jetlag flies only displayed a significant elevation in fluorescence at week 4 (Tukey's HSD, p=0.000, **fig. 8E**). Furthermore, a main effect of treatment was not seen in the males ( $F_{(1, 106)}$ =0.00, p=0.954, 2-way ANOVA), overall indicating limited changes in fluorescence between control and jetlag conditions among males and females.

We conducted the same experiment on hsp70 flies. Surprisingly, both sexes lacked natural increases in fluorescence as they aged, despite the fact that these flies have previously been reported to undergo age-associated increases in reporter gene expression (Yang and Tower, 2009). Furthermore, this line lacked a significant effect of treatment (females,  $F_{(1,94)} = 2.34$ , p=0.13; males,  $F_{(1,84)} = 0.13$ , p=0.722, 2-way ANOVA, main effect of treatment), as well as a lack of difference in fluorescence between control and jetlag groups at each week of exposure for both sexes (Tukey's HSD p>0.05; **fig. 8F-G**). Thus, these results failed to confirm data from RNA sequencing, in which hsp70 and hsp22 expressed a significant upregulation in CCM conditions, specifically at 3 weeks exposure (**appdx. A**). This could potentially result from tissue specific changes in hsp70 and hsp22 expression, which would not be detected by our whole-fly fluorescence imaging.

Results for both the TRE-dsred and gstD-GFP lines demonstrated that both sexes underwent natural increases in fluorescence as flies aged (female TRE-dsred,  $F_{(3, 106)} = 54.95$ , p<0.05; female gstD-GFP,  $F_{(3, 118)} = 147.65$ , p<0.05; male TRE-dsred,  $F_{(3, 95)} = 44.19$ , p<0.05; male gstD-GFP,  $F_{(2, 74)} = 70.15$ , p<0.05, 2-way ANOVA; main effect of week). However, as was the case for the hsp lines, we observed no differences in fluorescence when comparing the different treatments each week (Tukey's HSD p>0.05; **fig. 8H-K**). It should be noted that we only analyzed 3 weeks of data for male gstD-GFP flies due to mortality.

Overall, these data indicate that while expression of these stress genes and pathways increased as flies aged, the effect of CCM did not lead to a greater level of gene expression. These data, especially for hsp70 and hsp22, were unexpected when considering results from RNA sequencing. This may be due to the limitations of our fluorescence analysis, in which we are observing expression changes in the whole body (abdomen and thorax), instead of using a

tissue-specific approach that may indicate such changes elsewhere. On the other hand, our RNA sequencing results may have partial inaccuracy due to false positives generated when determining genes expression changes at the level of significance. However, this is unlikely given that RNA sequencing showed the upregulation of a number of genes associated with stress responses.

#### **Discussion and Conclusions**

Results from chapter 1 ruled out several possibilities that could have produced the reduction in longevity produced by CCM, including damage to molecular cycling and changes in locomotor activity and sleep amounts. To continue this investigation, we chose to investigate changes occurring at the cellular and molecular level, which included the assessment of gene expression in flies exposed to CCM. In this chapter, we report several important findings that bring us one step closer to fully characterizing the mechanisms behind reduced longevity and physiological health following exposure to aberrant lighting schedules.

Firstly, we indicate largescale changes in gene transcription in flies exposed to prolonged exposure to a 28-hour (chronic jetlag) schedule. While only 7 genes exhibited differential expression following 2 weeks of CCM, this increased to 351 differentially expressed genes after 3 weeks, thus indicating a larger effect following a longer period of misalignment. These are consistent with epidemiological studies, in which those exposed to years of chronic jetlag are more likely to develop cancer and cardiovascular disease (Tokumaru et al, 2006; Stevens, 2009; Costa, 1996). Furthermore, it suggests those working in CCM-inducing occupations are more prone to physiological changes compared to infrequent transmeridian travel and lighting aberrations. Repeating this experiment in mammals that have a greater median lifespan would

allow us to assess RNA expression at more time intervals, potentially producing more evidence to support prolonged exposure to CCM results in greater gene expression changes.

We then chose to conduct correlation analyses between genes exhibiting differential expression and their fold changes in expression during the opposite week of the experiment. This showed that despite a lack of statistical significance (potentially due to low N; p=0.101, Peason's correlation), a scatterplot of the gene expression for the 7 genes exhibiting differential expression in week 2 appeared to be trending toward a positive correlation with their fold change in expression during week 3 (**fig. 8A**). These data suggest that chronic jetlag and CCM may be producing immediate molecular consequences, which are maintained into prolonged exposure. When we compared fold change of these differentially expressed genes with their fold changes during normal aging, we determined 3 genes to have the opposite effect in expression, indicating that the genetic changes induced by jetlag are not simply caused by an advanced aging process.

We found that many more genes were significantly differentially expressed following 3 weeks of jetlag compared to only 2 weeks. However, subsequent analysis demonstrated a positive correlation between fold change in week 3 compared to week 2 for those genes that were upregulated by jetlag. Thus, many of these genes were already trending towards increased expression in week 2. What this showed was that a gene that expresses CCM-induced upregulation during later life exhibited signs of these changes during early exposure to misalignment. When we then compared up- and downregulated genes at week 3 to their fold change in expression during normal aging, we determined several genes that exhibited the opposite effect in expression (**fig. 9C, D**). This tells us that CCM may be inhibiting or disrupting later life changes in gene expression, potentially contributing to the fly's reduced longevity (**fig. 2**).

We also conducted a GO term analysis to understand the changes in gene expression in a categorical manor and identify functional gene categories that are overrepresented among our differentially expressed genes. In doing so, we determined a large portion of these genes are involved in general biological processes, indicating a broad consequence of CCM. Regarding week 2 differentially downregulated genes, we found that despite only 4 GO terms generated, the majority involved lipid metabolism. When considering previous work reporting evidence to suggest a relationship between fly lipid metabolism and aging (Hansen et al, 2013), it is possible that early changes in fly lipid metabolism brought upon by CCM may be leading to its reduced longevity. When we then observed differentially upregulated genes during week 3, we found several overrepresented GO terms involved in cellular stress, which has previously been shown to produce a reduction in lifespan (Fleming et al, 1992). Finally, when assessing downregulated genes, we identified overrepresented GO terms associated with the nervous system, thus suggesting some level of damage to be occurring. Collectively, these findings suggest that CCM may be producing early changes in lipid metabolism, causing an increase in cellular stress, further leading to an effected or damaged nervous system that could explain reduced longevity in jetlagged flies. Furthermore, because the endogenous clock functions through the nervous system, this could be predictive of aberrations of other behaviors dictated by the circadian timing system when experiencing CCM. Additional analyses could involve the assessment of flies mating behaviors following exposure to our 28-hour (chronic jetlag) schedule.

As a method to confirm our results from RNA sequencing, we chose to conduct wholebody fluorescence microscopy on flies as a visual indication of gene expression. In doing so, we selected 4 transgenic lines (hsp22-GFP, hsp70-GFP, gstD-GFP, TRE-dsred) that were known to be involved in both heat and oxidative stress. Surprisingly, we found no significant changes in expression of these lines when exposed to CCM. Because gstD and the jun kinase pathway had not be implicated by our RNA sequencing, these results did not come to a surprise. Furthermore, these lines represent a small fraction of pathways involved in the flies stress response. Today, several more transgenic reporter lines are available involving other genes associated with the fruit flies stress response. One of which includes STAT-GFP, which is activated through JAK/STAT signaling involved in the flies' immune response (Zeidler and Bausek, 2013). The use of these going forward may determine whether the changes in a fly's stress response is among the consequences of CCM.

Genes reported in RNA sequencing to be upregulated significantly were hsp70 and hsp22, specifically at week 3 (**appdx. A**). Despite these results, neither hsp22 and hsp70 reporter flies showed a jetlag-related increase in expression. Furthermore, hsp70-GFP line failed to show an age-related increase in fluorescence as well. The absence of increased GFP fluorescence with age contradicts both our RNA sequencing results, which showed strong upregulation of hsp70 in control flies when comparing weeks 2 and 3, and also previous studies that observed increased hsp70-GFP expression with age (Tower, 2011). This absence in aged flies may be due to mortality during later weeks (weeks 3 and 4), such that only relatively healthy and unaffected flies are left for imaging. The lack of increased fluorescence among jetlagged flies in both hsp70 and hsp22 may be the result of either two possibilities. Firstly, upregulation may be occurring in a tissue specific manor that is undetected through our fluorescence microscopy. When considering the brain as the location of core clock neurons directly influenced by the 28-hour day (Allada and Chung, 2010), one would suspect changes in transcription centered to that area. Secondly, hsp22 and hsp70 may have been found significant due to false positives generated

during RNA sequencing. To investigate either theory, we must repeat fluorescence microscopy to increase N, following by a tissue-specific approach.

#### **Future Directions**

Data presented in chapter 1, including aberrant locomotor activity behaviors, suggested the 28-hour (jetlag) schedule was producing misalignment between endogenous and environmental clocks. To confirm misalignment, it would be wise to assess oscillation of specific clock genes including *per* and *tim* in fly brains. Building upon this, assessing oscillation of these proteins in peripheral tissues may indicate a second level of misalignment between core clock neurons and peripheral neurons.

Due to the results from fluorescent microscopy failing to confirm RNA sequencing data, we would also like to conduct a tissue specific investigation going forward. Despite negative results form gstD-GFP and TRE-dsred, oxidative stress may be occurring directly in the brain, being the location of the central clock and light-input pathways (Allada and Chung, 2010). This can be assessed using a red mitochondrial superoxide indicator (MitoSox), which fluorescently labels areas of increased oxidative stress (Muliyil and Narasimha, 2014). Results would confirm RNA sequencing data and further suggest that the brain is the main cite of molecular consequences when experiencing CCM.

This tissue specific approach involving the brain may also include the investigation of specific genes that were either up or downregulated following exposure to CCM. One example includes brp, which codes for a specific bruchpilot (BRP) protein. Because of BRPs vital role in maintaining presynaptic active zones (AZs) (Kittel et al, 2006), its apparent downregulation in RNA sequencing data suggests neuronal/synaptic loss (**appdx. A**), potentially explaining reduced fly longevity. Using a monoclonal brp antibody, nc82 (Wagh et al, 2006), we can

determine whether levels of BRP are in fact reduced, further confirming RNA sequencing data and a damaged CNS.

#### **Figures**



Figure 8. Differential expression correlation analysis for week 2 differentially expressed genes.

(A-B) Scatterplot of log2 fold change in gene expression between different groups, in which each dot represents a specific gene. (A) Week 2 jetlag induced log2 fold change (x-axis) of differentially expressed genes plotted against the log2 fold change for the same gene at week 3 (y-axis; adj. p=0.101, Pearson's Correlation). (B) Week 2 jetlag-induced log2 fold change (x-axis) plotted against its log<sub>2</sub> fold change in aged control flies. Red dots refer to genes that exhibited opposite regulation in jetlag (downregulation) vs aging (upregulation). Note that not all fold changes in figure 8 were statistically significant.



Figure 9. Differential expression correlation analysis for week 3 differentially expressed genes.

(A-D) Scatterplot of log2 fold changes in expression among genes between different groups, in which each dot represents a specific gene. (A-B) Week 3 jetlag-induced log2 fold changes in genes exhibiting differential upregulation (A, 106 genes; adj. p<0.1) and downregulation (B, 245 genes; adj. p<0.1) (y-axis) plotted against their jetlag-induced log2 fold changes during week 2 (x-axis). While week 3 downregulated genes showed no correlative relationship (adj. p=0.481, Pearson's Correaltion), week 3 upregulated genes displayed a positive correlation with their fold changes in week 2 (adj. p=0.002, Pearson's correlation). (C-D) Week 3 jetlag-induced log2 fold changes for the same genes. Red dots refer to genes that exhibited opposite regulation in jetlag vs aging. Note that not all fold changes in figure 10 were statistically significant.



Figure 10. Exposure to CCM fails to produce changes in whole-body stress gene reporter line expression

(A-B) Mean whole-body fluorescence for female (A) and male (B) reporter flies, indicating an increase in fluorescence when exposed to 34°C heat shock (\*p<0.05, 2-tailed t-test). (C) Fluorescent image of TRE-dsred line representative of flies following 24-hour exposure to either 25°C or 34°C conditions. (D-K) Mean whole-body fluorescence of reporter lines exposed to either 24-hour (control; blue line) or 28-hour (jetlag; orange line) schedules for 1-4 weeks. (D) hsp22-eGFP females (n; control=13, jetlag=11), hsp22-GFP males (n; control=16, jetlag=10), (F) hsp70-GFP females (n; control=14, jetlag=16), (G) hsp70-GFP males (n; control=14, jetlag=16), (H) TRE-dsred females (n; control=15, jetlag=14), (I) TRE-dsred males (n; control=14, jetlag=16), jetlag=14), (J) gstD-GFP females (n; control=16, jetlag=14), (K) gstD-GFP males (n; control=16, jetlag=16). Different letters indicate data points that are statistically different from one another (p<0.05, Tukey's HSD test).

|              |                               |                              | Downregulati             | ed GO Terms      |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|--------------|-------------------------------|------------------------------|--------------------------|------------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| GO ID        | TERM                          | CLUSTER FREQUENCY            | GENOME FREQUENCY         | CORRECTED PVALUE | FDR RATE | GENE NAME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 00:0049469   | cell development              | 07 out of 340 gapper 40.4%   | 1207 out of 12000 10 1%  | 1.035.23         | 0.00%    | Paro dio mask p120cto Es(2)Ket Not1 pudE Ptp59D porp4 Svi pso staj Galphao S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 40.0048468   | cell development              | 97 Out 01 240 genes, 40.4%   | 1397 001 01 13900, 10.1% | 1.026-52         | 0.00%    | w1A Evi5 nod1 tud tin Ten-a Myr DI CG41099 Rho5 mei-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|              |                               |                              |                          |                  |          | 975 chif non fay Anni che dally Pka                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1            |                               |                              |                          |                  |          | P2B, chir, poe, rax, wppt, sng, daily, Pka-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 1            |                               |                              |                          |                  |          | C1,Kug,Syp,Ini,eir-vaz,Inini,Kinoak-1007,Wbp,puni,Itz-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 1            |                               |                              |                          |                  |          | ACOL shan Ten1 she ash in-1 Mak Dire A Miral nai sif dam Dire.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|              |                               |                              |                          |                  | 1        | PAGO1, shep, rop1, shin, osk, mi2, whk, PREA, MiLai, riej, sh, outh, Pka-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|              |                               |                              |                          |                  | 1        | R2,2m1,Fad,bun,eb,dig1,eiF4G1,Cam,snot,Hrb27C,Sog,So,Spoon,pigs,rg,gisn,orb,t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|              | 11 1244 12 12                 |                              |                          |                  | N/       | Pare die elektreek e 130 te 5 (3) ver Net3 en die Net200 eres 1 Fel een stel Gelek                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| GO:0030154   | cell differentiation          | 106 out of 240 genes, 44.2%  | 1688 OUt of 15900, 12.1% | 1.15E-52         | 0.00%    | Parp, arp, ski, mask, pizotin, rs(z) ker, Nori, node, Pipeso, norpik, ski, psq, stat, daiph                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 1            |                               |                              |                          |                  |          | ab, syx14, evis, abeca15F, pod1, tod, zip, Ten-a, Wyc, DI, tho, c. a+1099, Abp6, rost, men-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 1            |                               |                              |                          |                  |          | rzb,chir,poe,rax,wppt,srg,daity,rka-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|              |                               |                              |                          |                  | 1        | C1, Kug, Syp, rin, einwa2, rinn, knoawn 100n, wisp, pum, rtz-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|              |                               |                              |                          |                  | 1        | P. Bim AGO1 chen Ton1 che ock low? Web Black Mical nel sif dom Bka.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|              |                               |                              |                          |                  | 1        | 97 rfh1 Tao hun od dig1 olEAG1 Cam chot Hirb370 clu con rd rooco pigr ra gich o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1            |                               |                              |                          |                  |          | the sector Elbert kines Bidee's Est's hale Ben and Mehf0025 has's hit family and unk et-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|              | 1.2 10 1 1                    |                              |                          |                  |          | Population and a sector of the |
| GO:0007275   | multicellular organism        | 123 out of 240 genes, 51.3%  | 2346 OUT OF 13900, 16.9% | 1.02E-51         | 0.00%    | Parp, dip, skd, mask, p120cth, nude, PtpB9D, dpy, horp A, ski, eir 4EHP, Ackksoc, psq, st                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 1            | development                   |                              |                          |                  |          | ar,daiphau,sykiA,setz,cd14075,dbeta159,p001,50(1pi),td0,zip,rein-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 1            |                               |                              |                          |                  |          | a, nuy, myc, or, chu, covieto o, chi, rici, pue, rip, rai, Appr, sing, anis A, dany, wub, rka-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 1            |                               |                              |                          |                  |          | <ol> <li>a Abo heat CBB mei Tef3 mu edit dae eta Ban3 lalal tim kie hth lid CCA3658 auf.</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|              |                               |                              |                          |                  | 1        | PhoGABo190 Sohrin Plays Rim Booh AGO1 chen Too1 che ork lov? Web PlayA M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|              |                               |                              |                          |                  | 1        | ical nei sif omo chrh dom Rica.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1            |                               |                              |                          |                  |          | 97 sfb1 Tao hup od diel sdy Cam shot mel Co190 Mrb37C du akisin CaMXII son s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|              |                               |                              |                          |                  | 1        | d ronoo ra aich scul och tex rota Elbal kirra Bhfox1 Sut1 bdc Bra Srda rod Wrb08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|              |                               |                              |                          |                  | 1        | DE Emr1 and too unk ct                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 0.0.00000553 | an attained attained and      | 00                           | 4543                     | 4 305 30         | 0.00%    | Pare die skid mark e130ste Er/3Wet aude Dte680 dev eereñ ere Arec2 Galebae                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| GO:0009655   | anatomical structure          | 98 OUt of 240 genes, 40.8%   | 1512 000 07 15900, 10.9% | 1.296-50         | 0.00%    | Sucial Sheta13E and 1 vio Ten-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|              | morphogenesis                 |                              |                          |                  | 1        | a Myr. Di con CG41099 rost chif noe Pin fay Anni she dally Pka-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              |                               |                              |                          |                  | 1        | C1 kug Sun din MVRT-750 RhoGAR100E num ftr-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|              |                               |                              |                          |                  | 1        | f1 påbe brat CIBP Trf2 Ekjaleba selk der eta Ban1 Jobi kis bib CG43658 BboGAPe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 1            |                               |                              |                          |                  |          | 190 Enbrin Bleve AGO1 cho ock inv2 Wok BlevA Mical nai cif nmo chrb dom Bka-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|              |                               |                              |                          |                  | 1        | 92 rfh1 hup ad dla1 rdy Cam shot wrh270 Slik sog ad spoon pigs re sish sod orb t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1            |                               |                              |                          |                  |          | ry rate kize Bhfoy1 bdc Bra cad Wrb000E hou1 bt Smr1 aud unk ct                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 00-0040774   | surfaces development          | 400 ave of 240 and 40 FM     | 4777                     | 7 365 30         | 0.00%    | dla skd mark p130sto pud5 Pto690 dov parot Svi Nskv300 pro stal Galebao Sve                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| GO:0048/51   | system development            | 102 OUt 01 240 genes, 42.5%  | 1/22 001 01 15900, 12.4% | 7.506-29         | 0.00%    | 14 Set2 CG14073 Gheta13E pod1 Su(Tpl) zin Ten-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 1            |                               |                              |                          |                  |          | a Mur. Di con chif Bel non fay Anni sha Sin2A dally Bka-C1 kun Sun rin MVRT-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|              |                               |                              |                          |                  | 1        | 75D perce BhoGAP1005 cen puer fts.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 1            |                               |                              |                          |                  | 1        | f1 påbe brat CIBP msi Trf2 sdk dec Bap1 Jolal kis btb lid CG43658 puf BboG4Po1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 1            |                               |                              |                          |                  | 1        | 90 Enbrin Plex8 Bim Benh AGO1 shen shn inx2 Wok PlexA Mical nei sif nmo dom                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 1            |                               |                              |                          |                  |          | Pka                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1            |                               |                              |                          |                  | 1        | R2 zfh1 Tan hun ed dig1 rdy Cam shot Hrb27C du akirin CaMKii sog sd rg gish try                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              |                               |                              |                          |                  |          | reto Elby) kirre Bbfoy1 bdc Bra kirb98DE Emc1 rod tou unk ct                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 00.0040543   | animal come development       | 75                           | 4407                     | 4 305 34         | 0.00%    | dla skd mark p170sto dou pomA Svi Nekv20C pro Galebao Suc16 Sat2 CG14022                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| GO:0048515   | animai organ development      | 76 out of 240 genes, 51.7%   | 119/000015900, 8.6%      | 1.596-21         | 0.00%    | Chatal 25 SulToll vio Ten-a Mar. Di con Rei Anni cha Sin 26 dalla Bka.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 1            |                               |                              |                          |                  |          | C1 kug sin MVRT-75D PhoGAB100E con fea-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 1            |                               |                              |                          |                  |          | f1 påbe brat CHR mri Trf2 rdk Rap1 lolal bib lid kir CG43658 RhoGåRe190 ruf E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 1            |                               |                              |                          |                  | 1        | nhrin shn Wnk nei nmo dom zihi Tao hun ed diel Cam rdy shot akirin son eish r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 1            |                               |                              |                          |                  | 1        | g sd try reto E(by) kirre Rhfoy1 bdc Hrb98DE Emr1 oud unk ct                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 00:0007200   | poryous system doubloomont    | 73 out of 340 gappar - 80.0% | 1083 out of 12000 7.8%   | 2 155.21         | 0.00%    | rlin mask p120ctn pudE Ptp69D stai Galphao Gbeta13E pod1 zin Ten-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 00.0007555   | nervous system development    | 72 Out of 240 genes, 50.0%   | 1082 001 01 13900, 7.870 | 2.150-21         | 0.0070   | a Myc. Dl. cno.chif. Pcl. poe.fax.Appl.she.Sin3A.dally.Pka-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 1            |                               |                              |                          |                  |          | C1 Syn rin nym BhoGAP100E num ftz-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 1            |                               |                              |                          |                  | 1        | f1. pAbp.brat.sdk.cinc.hth.kis.RhoGAPp190.Plex8.Ephvin.Rim.Reph.shep.AGO1.sh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1            |                               |                              |                          |                  | 1        | n.Wnk.PlexA.nei Mical.nmo.sif.dom.Pka-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 1            |                               |                              |                          |                  | 1        | R2.zfh1.Tao.bun.ed.dlg1.Cam.shot.Hrb27C.CaMKII.clu.gish.rg.trx.retn.Rbfox1.hdc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 1            |                               |                              |                          |                  | 1        | .Bsg.Fmr1.tou.unk.ct                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 00:0010469   | regulation of gone expression | R4 out of 240 gappart RE 0%  | 1402 out of 12000 10 7%  | 7.035.31         | 0.00%    | Paro Edd3 skd Not1 dov Svl elE4EHP oso mub Atf6 Set2 AGO3 SulToli Pdo1 Mvc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 00.0010400   | regulation of gene expression | of our of 240 genes, 55.070  | 1452 04001 15500, 10.770 | 7.022-22         | 0.00/0   | srl Pcl sort Sin3A dally Pka-C1 Syn rin Usp7 cm CG2926 pum ftz-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              |                               |                              |                          |                  | 1        | f1,mamo,pAbp,brat,Su(z)2,CtBP,msi,Trf2,gw,Tis11,lolal,tim,hth,lid,kis,CG11486,p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              |                               |                              |                          |                  | 1        | uf.AGO1.shn.osk.Tob.MED26.nei.nmo.upSET.dom.zfh1.bun.dig1.eiF4G1.Ncoa6.C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1            |                               |                              |                          |                  | 1        | p190, Hrb27C, gpp, akirin, CG16779, sog, sd, DCP2, orb, fne, trx, Mnt, retn, E(bx), CG3276                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|              |                               |                              |                          |                  |          | 7, Rbfox1, hdc, Nup153, 5sdp, sqd, Hrb98DE, bru1, Fmr1, CG4612, tou, ct                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 00:0000888   | tissue development            | 60 out of 240 gapper 38 8%   | 1047 out of 12000 7 5%   | 4 725-20         | 0.00%    | Parp dip skd Fs(2)Ket Not1 nudE dpv Svl psp staj Galphao Svr1A Set2 Evi5 CG140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 00.0005000   | assue development             | 00 000 01 240 genes, 28.870  | 1047 001 01 13500, 7.370 | 4.726-20         | 0.0070   | 73,Gbeta13F,Su(Tpl),zip,Myc,Dl,cno,CG41099,chif,shg,Sin3A,dally,Pka-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1            |                               |                              |                          |                  | 1        | C1, kug, Syp, rin, MYPT-75D, ftz-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 1            |                               |                              |                          |                  | 1        | f1,Ct8P,cta,Rap1,hth,kis,CG43658,puf,shn.inx2.Wnk.nei.nmo.dom.zfh1.Tao.bun.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 1            |                               |                              |                          |                  | 1        | ed,dlg1,rdx,shot,Hrb27C,gish,pigs,spoon,sd,sog,orb,trx,Rbfox1,kirre,hdc.sod.Fmr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              |                               |                              |                          |                  |          | 1,bt,pyd,unk,ct                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| GO:0032989   | cellular component            | 55 out of 240 genes, 22 9%   | 668 out of 13900. 4 8%   | 1.11E-19         | 0.00%    | kis,dlp,RhoGAPp190,Ephrin,PlexB,mask,p120ctn,nudE,Ptp69D,shn,Arpc2,Wnk,Pl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|              |                               |                              | 4.07                     |                  |          | exA,Mical,sif,dom,Pka-R2,zfh1,pod1,bun,ed,zip,Ten-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 1            | morphogenesis                 |                              |                          |                  | 1        | a, Dl, cno, Cam, CG41099, chif, shot, fax, Hrb27C, Appl, shg, Slik, dally, spoon, pigs, Syp, try                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1            |                               |                              |                          |                  | 1        | retn,RhoGAP100F,pum,ftz-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|              |                               |                              |                          |                  |          | f1,hdc,Bsg,brat,Ckialpha,dnc,bru1,bt,Fmr1,pyd,cta,Rap1,ct                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| GO:0022008   | neurogenesis                  | 62 out of 240 genes, 25.8%   | 862 out of 13900. 6.7%   | 1.51E-19         | 0.00%    | kis,hth,dlp,RhoGAPp190,Ephrin,PlexB,mask,p120ctn,Rim,shep,nudE,Ptp69D,shn,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|              |                               |                              |                          |                  |          | stai, Wnk, Galphao, PlexA, Mical, nej, sif, dom, Pka-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 1            |                               |                              |                          |                  | 1        | R2,zfh1,Gbeta13F,pod1,bun,ed,zip,Ten-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 1            |                               |                              |                          |                  | 1        | a,dlg1,Myc,Dl,cno,Cam,chif,shot,poe,fax,Hrb27C,Appl,shg,clu,dally,rg,gish,Pka-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 1            |                               |                              |                          |                  | 1        | C1,rin,trx,retn,nrm,RhoGAP100F,pum,ftz-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|              |                               |                              |                          |                  |          | F1,hdc,pAbp,Bsg,brat,sdk,dnc,Fmr1,unk,ct                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| GO:0009790   | embryo development            | 49 out of 240 genes, 20.4%   | 544 out of 13900, 3.9%   | 7.70E-19         | 0.00%    | kis,hth,dlp,p120ctn,AGO1,Top1,shn,osk,psq,inx2,Syx1A,chrb,zfh1,Gbeta13F,tud,z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|              |                               |                              |                          |                  |          | p,ed,dlg1,Myc,Dl,cno,rdx,CG41099,shot,Plp,Cp190,Hrb27C,shg,dally,sog,sd,scyl,o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|              |                               |                              |                          |                  |          | rb,Pka-C1,retn,kirre,Syt1,pum,ftz-f1,Ssdp,sqd,CtBP,gw,Fmr1,pyd,Rap1,cta,ct,Iolal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 60:0009889   | regulation of biosynthetic    | 74 out of 240 genes 30 8%    | 1307 out of 13900. 9.4%  | 7.12E-18         | 0.00%    | Parp,skd,Not1,dpy,Sxl,eIF4EHP,psq,Atf6,Set2,Su[Tpl],Pdp1,Myc.srl.chif.Pcl.scrt.Si                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 00.0000000   | Baracion of biosynchetic      |                              | 1137 00101 13500, 5.470  | 7.44L-10         | 0.0070   | n3A, dally, Pka-C1, Syp, Usp7, crp, wisp, pum, ft2-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1            | process                       |                              |                          |                  | 1        | f1,mamo,pAbp,brat,Su(z)2,CtBP,Trf2,msi.ew.Tis11.lolal.tim.hth.lid.kis.AGO1.shn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 1            |                               |                              |                          |                  | 1        | osk,MED26,PlexA,nej,upSET,zfh1,bun,dlg1,eIF4G1,Ncoa6,Cp190,Hrb27C,gpp,akiri                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 1            |                               |                              |                          |                  | 1        | n, CG16779, sd, sog, orb, trx, Mnt, retn, E(bx), CG32767, Rbfox1, Nup153, Ssdp, sod, Hrb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|              |                               |                              |                          |                  |          | 98DE,bru1,Fmr1,CG4612,tou,ct                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 60.0007380   | nattern specification process | 46 out of 240 senses 19 7%   | 501 out of 13000 3 6%    | 7 83F-18         | 0.00%    | kis,Parp,hth,dlp,skd,AGD1,shn,osk,psq,Sw1A.nmo.dom.CG14073.SulToll bun tu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 00.0007389   | particility and a process     | 40 00t 01 240 genes, 19.2%   | 551 501 01 15900, 5.870  | 7.036-10         | 0.00%    | d.zip.ed.dlg1.Mvc.Dl.cno.rdx.Hrb27C.shg.dally.sog.spoon.gish.orb.Pka-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|              |                               |                              |                          |                  |          | C1, Syp, rin, retn, Rbfox1, Syt1, pum, ftz-f1, pAbp, Ssdp, brat, sod, CtBP, Fmr1, ct Iolal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 60:0051129   | regulation of cellular        | 56 out of 240 genes 32 2%    | 777 out of 13900 5 6%    | 2 56E-17         | 0.00%    | kis.CG43658.CG11486.puf.RhpGAPp190.Plex8.mask.p120ctn.pudF.nornA.oso.Ar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 00.0001128   | - cgulation of cendial        | 50 000 01 240 genes, 25.5%   | ,,,, out of 15500, 5.0%  | 2.302-17         | 0.0070   | pc2.stai.Galphao.PlexA.Syx1A.nej.upSET.sif.nmo.Gbeta13F.bun.Tao.ed.zin.Ten-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 1            | component organization        |                              |                          |                  | 1        | a.die1.Mvc.cno.srl.Pcl.shot.mel.Cp190.Ncoa6.CaMKII.Slik.spopn.gich.DCP2.Pka-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1            |                               |                              |                          |                  |          | and a second sec |

#### Table 1. Overrepresented GO terms among downregulated genes.

List contains the 16 most statistically significant overrepresented GO terms associated with genes that were downregulated by jetlag. GO terms have been filtered for redundancy and specificity (see methods and results). Cluster frequency refers to the number of genes corresponding to the GO term out of the total genes differentially downregulated (listed in rightmost column). Genome frequency refers to the relative number of genes in the fly genome associated with the corresponding GO term. False Discovery Rate (FDR) represents the likelihood of falsely identifying the GO term as overrepresented. Terms are listed from lowest p-value to highest. Comparison between cluster and genome frequency illustrates overrepresentation.

|            |                                    | Downregulat                | ed GO Terms (Nervous Sy | /stem)           |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|------------|------------------------------------|----------------------------|-------------------------|------------------|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| GO_ID      | TERM                               | CLUSTER FREQUENCY          | GENOME FREQUENCY        | CORRECTED_PVALUE | FDR_RATE | ANNOTATED_GENES                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| GO:0007399 | nervous system development         | 72 out of 240 genes, 30.0% | 1082 out of 13900, 7.8% | 2.15E-21         | 0.00%    | dip, mask, p. 120 ctn, nu dE, Pt p69 D, stal, Galphao, Gbeta<br>13 F, pod 1, ap, Ten-<br>Ayke, D. Lonco, Johl JP, Lipoe, fax, App J, shg, Sin3 A, dally, P<br>Iar, C. Sayo, Johl JP, Lipoe, fax, App J, shg, Sin3 A, dally, P<br>Iar, Dang, Janaka, Guo, Chin Ja, Michael P 200, Pleak, Ep<br>Jran, Wim, Japh, shep, AGO 21, shn, Wink, Pleak, Ap, JMcal,<br>Z. Jihi 1. Tao Japano digi 1, cam, Moh Ph 27 CC AMUL,<br>u, glishr, gtrav, retor, RBfox3, Jndc, Bisg, Frm 1, Lou, unk, et |
| GO:0022008 | neurogenesis                       | 62 out of 240 genes, 25.8% | 862 out of 13900, 6.2%  | 1.51E-19         | 0.00%    | Nis, hth, dip, RhoGAPp 190, Ephrin, Plex8, mask, p 120ctm<br>Rim, shep, nudë, Ptp690, htn, stal, Wmk, Galphao, Plex<br>A, Micalan, eji, dicham, Piaa-<br>R2, mb, JGbeta 131; pod L, kun, ed. zip, Ten-<br>a, edit, JMve, OLCon, cam, chif, shcheo, Ra, Htb27C, Ap<br>pl, shg, clu, clailly, rg, gibh, Rea<br>C, Init, rucet num, RhoGAP 1200; pum, Ita-<br>fl, hdc, pAbp, Bog, brat, scik, dnc, Fmr1, umk, ct                                                                          |
| GO:0061564 | axon development                   | 30 out of 240 genes, 12.5% | 326 out of 13900, 2.3%  | 9.25E-11         | 0.00%    | kis,dlp,Cam,chif,shot,fax,Hrb27C,RhoGAPp190,Ephri<br>n,shg,PlaxB,dally,nudE,Ptp690,Pka-<br>C1,trx,retn,Wnk,RhoGAP100F,PlexA,Mical,hdc,sif,br<br>at,Pka-R2,zfh1,dnc,pod1,Fmr1,Ten-a                                                                                                                                                                                                                                                                                                     |
| GO:0050808 | synapse organization               | 23 out of 240 genes, 9.6%  | 283 out of 13900, 2.0%  | 1.13E-06         | 0.00%    | kis,dlp,p120ctn,Appl,unc-<br>13,GaMMUAGO3,rg,Syp,dpr9,stal,RhoGAP100F,Galp<br>hao,pum,Mical,nej,nmo,brat,pod1,Fmr1,Ten-<br>a,brp,clig1                                                                                                                                                                                                                                                                                                                                                 |
| GO:0050890 | cognition                          | 17 out of 240 genes, 7.1%  | 159 out of 13900, 1.1%  | 3.34E-06         | 0.00%    | kis,Appl,CaMKII,AGO1,speon,rg,gish,Pka-<br>C1,dikar,osk,Tob,pum,Rbfox1,dnc,Fmr1,CG4612,brp                                                                                                                                                                                                                                                                                                                                                                                             |
| GO:0007420 | brain development                  | 13 out of 240 genes, 5.4%  | 114 out of 13900, 0.8%  | 0.0001272        | 0.00%    | hth, shot, ftz-<br>f1, brat, RhoGAPp 190, Ephrin, Appl, shg, Tao, bun, Fmr1,<br>rg, Ten-a                                                                                                                                                                                                                                                                                                                                                                                              |
| GO:0007416 | synapse assembly                   | 14 out of 240 genes, 5.8%  | 165 out of 13900, 1.2%  | 0.001607909      | 0.00%    | kis,stai,Galphao,pum,Mical,nej,nmo,brat,CaMKII,Fm<br>r1,AGD1,Ten-a,dlg1,Syp                                                                                                                                                                                                                                                                                                                                                                                                            |
| GO:0045475 | locomotor rhythm                   | 9 out of 240 genes, 3.8%   | 69 out of 13900, 0.5%   | 0.004237786      | 0.01%    | Pka-R2,lid,gw,dnc,Fmr1,nej,Pka-C1,dlg1,tim                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| GO:0007417 | central nervous system development | 17 out of 240 genes, 7.1%  | 263 out of 13900, 1.9%  | 0.005049161      | 0.01%    | hth,Pcl,shot,RhoGAPp190,Ephrin,Appl,shg,rg,Galph<br>ao,ftz-f1,brat,bun,Tao,Fmr1,Ten-a,Dl,ct                                                                                                                                                                                                                                                                                                                                                                                            |
| GO:0007268 | chemical synaptic transmission     | 17 out of 240 genes, 7.1%  | 283 out of 13900, 2.0%  | 0.013422348      | 0.01%    | cpo,Rim,unc-13,CaMKII,Pka-<br>C1,Syp,pum,Syx1A,Syt1,nej,pAbp,nAChRalpha4,dnc,<br>Fmr1,Ten-a,brp,dlg1                                                                                                                                                                                                                                                                                                                                                                                   |

## Table 2. Overrepresented GO terms among downregulated genes (nervous system).

List contains 10 GO terms associated with downregulated genes associated with nervous system function. This list was only filtered by Revigo to remove redundant terms (see results). The FDR rate at 0% for all genes illustrates the high level of significance despite being excluded from table 1.

|            |                                                 | Upregulate                 | d Go Terms              |                  |          |                                                                         |
|------------|-------------------------------------------------|----------------------------|-------------------------|------------------|----------|-------------------------------------------------------------------------|
| GO_ID      | TERM                                            | CLUSTER FREQUENCY          | GENOME FREQUENCY        | CORRECTED_PVALUE | FDR_RATE | ANNOTATED_GENES                                                         |
| GO:0009636 | response to toxic substance                     | 10 out of 104 genes, 9.6%  | 148 out of 13900, 1.1%  | 5.59E-05         | 0.00%    | kraken,phu,CG8745,Drat,MtnE,Cyp6g2,Cat,Cy<br>p12d1-p,Hsp70Bc,Cyp6a2     |
| GO:0051186 | cofactor metabolic process                      | 12 out of 104 genes, 11.5% | 247 out of 13900, 1.8%  | 0.000112806      | 0.00%    | CG10365,GstO3,FeCH,GstE3,CG10096,Updo,A<br>OX1,GstE1,Qtzl,Cat,Gnmt,FarO |
| GO:0051085 | chaperone cofactor-dependent protein refolding  | 5 out of 104 genes, 4.8%   | 24 out of 13900, 0.2%   | 0.000294892      | 0.00%    | Hsp70Bb,Hsp70Aa,Hsp70Bc,Hsc70-5,Hsp68                                   |
| GO:0061077 | chaperone-mediated protein folding              | 6 out of 104 genes, 5.8 %  | 44 out of 13900, 0.3%   | 0.000310378      | 0.00%    | Hsp70Bb,Hsp70Aa,Hsp70Bc,Hsc70-<br>5,Hsp22,Hsp68                         |
| GO:0006790 | sulfur compound metabolic process               | 9 out of 104 genes, 8.7%   | 159 out of 13900, 1.14% | 0.001060429      | 0.00%    | CG10365,GstO3,GstE3,CG10096,GstE1,Eip71C<br>D,Qtzl,Gnmt,FarO            |
| GO:0009408 | response to heat                                | 7 out of 104 genes, 6.7%   | 88 out of 13900, 0.6%   | 0.001509776      | 0.00%    | Hsp70Bb,GstE1,Hsp70Aa,Hsp70Bc,Hsc70-<br>5,Hsp22,Hsp68                   |
| GO:0006986 | response to unfolded protein                    | 5 out of 104 genes, 4.8%   | 36 out of 13900, 0.3%   | 0.002435656      | 0.00%    | Hsp70Bb,Hsp70Aa,Hsp70Bc,Hsc70-5,Hsp68                                   |
| GO:0009266 | response to temperature stimulus                | 8 out of 104 genes, 7.7%   | 144 out of 13900, 1.0%  | 0.004440108      | 0.17%    | per,Hsp68,GstE1,Hsp708b,Hsp70Aa,Hsp70Bc,<br>Hsp22,Hsc70-5               |
| GO:0035966 | response to topologically incorrect protein     | 5 out of 104 genes, 4.8%   | 46 out of 13900, 0.3%   | 0.008346132      | 0.27%    | Hsp70Bb,Hsp70Aa,Hsp70Bc,Hsc70-5,Hsp68                                   |
| GO:0008340 | determination of adult lifespan                 | 8 out of 104 genes, 7.7%   | 161 out of 13900, 1.2%  | 0.009976106      | 0.25%    | per,Hsp68,Thor,Eip71CD,Cat,Hsp22,Gnmt,Tsp<br>o                          |
| GO:0035080 | heat shock-mediated polytene chromosome puffing | 3 out of 104 genes, 2.9%   | 9 out of 13900, 0.1%    | 0.012074269      | 0.22%    | Hsp70Bb,Hsp70Aa,Hsp70Bc                                                 |
| GO:0046680 | response to DDT                                 | 3 out of 104 genes, 2.9%   | 9 out of 13900, 0.1%    | 0.012074269      | 0.21%    | FBgn0050489, FBgn0000473, FBgn0033696                                   |
| GO:0035079 | polytene chromosome puffing                     | 3 out of 104 genes, 2.9%   | 10 out of 13900, 0.1%   | 0.017155109      | 0.38%    | Hsp70Bb,Hsp70Aa,Hsp70Bc                                                 |
| GO:0006979 | response to oxidative stress                    | 7 out of 104 genes, 6.7%   | 132 out of 13900, 0.9%  | 0.021427666      | 0.64%    | GstE1,Cat,Eip71CD,per,Hsp22,Thor,Sirup                                  |
| GO:0001666 | response to hypoxia                             | 5 out of 104 genes, 4.8%   | 62 out of 13900, 0.4%   | 0.035838429      | 0.67%    | Hsp708b,phu,Hsp70Aa,Drat,Hsp708c                                        |

Table 3. Overrepresented GO terms among upregulated genes.

List contains the 16 most statistically significant overrepresented GO terms associated with genes that were upregulated by jetlag. GO terms have been filtered for redundancy and specificity (see methods and results). Cluster frequency refers to the number of genes corresponding to the GO term out of the total genes differentially downregulated (listed in rightmost column). Genome frequency refers to the relative number of genes in the fly genome associated with the corresponding GO term. False Discovery Rate (FDR) represents the likelihood of falsely identifying the GO term as overrepresented. Terms are listed from lowest p-value to highest. Comparison between cluster and genome frequency illustrates overrepresentation.

# APPENDIX A

# LIST OF GENES DISPLAYING DIFFERENTIAL EXPRESSION,

# WEEKS 2 AND 3

|             |           |         |          |          |               |          | Week 2      |                       |        |        |        |        |        |        |  |  |  |
|-------------|-----------|---------|----------|----------|---------------|----------|-------------|-----------------------|--------|--------|--------|--------|--------|--------|--|--|--|
| Ger         | ie        |         |          | Differen | itial Express | ion      |             | Normalized Expression |        |        |        |        |        |        |  |  |  |
| ID          | name      | up/down | log2(FC) | std err  | wald stat     | p-value  | p-adj       | base mean             | J_2W_A | J_2W_B | J_2W_C | C_2W_A | C_2W_B | C_2W_C |  |  |  |
| FBgn0038702 | CG3739    | DOWN    | -1.26    | 0.19     | 6.78          | 1.17E-11 | 1.68E-07    | 3125.9                | 1993.5 | 1049.7 | 1382.7 | 4795.4 | 4666.7 | 4867.6 |  |  |  |
| FBgn0037996 | CG4830    | DOWN    | -1.14    | 0.21     | 5.51          | 3.68E-08 | 0.00026245  | 110.1                 | 72.6   | 30.2   | 38.7   | 152.4  | 190.4  | 176.4  |  |  |  |
| FBgn0024897 | b6        | DOWN    | -1.04    | 0.19     | 5.35          | 9.01E-08 | 0.000428557 | 117.9                 | 65.1   | 46.1   | 73.5   | 168.5  | 211.3  | 142.6  |  |  |  |
| FBgn0034382 | CG18609   | DOWN    | -0.80    | 0.16     | 4.91          | 8.97E-07 | 0.003201612 | 971.7                 | 811.5  | 588.3  | 567.0  | 1330.9 | 1343.9 | 1188.5 |  |  |  |
| FBgn0034629 | Acox57D-d | DOWN    | -0.66    | 0.14     | 4.87          | 1.13E-06 | 0.003236555 | 574.9                 | 429.2  | 436.6  | 422.9  | 655.0  | 719.8  | 786.1  |  |  |  |
| FBgn0038740 | CG4562    | DOWN    | -0.65    | 0.15     | 4.40          | 1.10E-05 | 0.022367609 | 1904.7                | 1478.8 | 1399.3 | 1366.3 | 2198.0 | 2147.3 | 2838.6 |  |  |  |
| FBgn0261925 | CG42792   | UP      | 0.88     | 0.19     | -4.74         | 2.13E-06 | 0.005061661 | 12.7                  | 11.7   | 22.2   | 41.6   | 0.9    | 0.0    | 0.0    |  |  |  |

|              |            |         |          |           |           | Week 3        |             |           |        |        |           |         |         |         |
|--------------|------------|---------|----------|-----------|-----------|---------------|-------------|-----------|--------|--------|-----------|---------|---------|---------|
| Gene         |            |         | D        | ifferenti | al Expres | sion Analysis |             |           |        | Norma  | ized Expr | ession  |         |         |
| ID           | name       | up/down | log2(FC) | std err   | wald stat | p-value       | p-adj       | base mean | J_3W_A | J_3W_B | J_3W_C    | C_3W_A  | C_3W_B  | C_3W_C  |
| FBgn0038702  | CG3739     | DOWN    | -0.90    | 0.11      | 8.42      | 3.68E-17      | 3.70E-13    | 3396.8    | 2230.7 | 2151.0 | 2458.4    | 4170.0  | 4933.2  | 4437.7  |
| FBgn0034382  | CG18609    | DOWN    | -0.80    | 0.10      | 8.25      | 1.54E-16      | 7.72E-13    | 1212.6    | 818.9  | 881.6  | 889.2     | 1554.6  | 1611.1  | 1519.9  |
| FBgn0010052  | Jhe        | DOWN    | -0.99    | 0.15      | 6.40      | 1.51E-10      | 5.06E-07    | 259.2     | 140.8  | 147.4  | 170.8     | 421.8   | 299.5   | 374.8   |
| FBgn0036316  | CG10960    | DOWN    | -0.67    | 0.11      | 6.19      | 5.93E-10      | 1.49E-06    | 9800.3    | 7191.3 | 6969.7 | 7933.3    | 13629.3 | 11464.6 | 11613.3 |
| FBgn0015778  | rin        | DOWN    | -0.65    | 0.11      | 5.93      | 3.07E-09      | 6.18E-06    | 1716.8    | 1241.3 | 1267.6 | 1396.3    | 2251.1  | 1920.5  | 2224.0  |
| FBgn0052767  | CG32767    | DOWN    | -0.78    | 0.14      | 5.60      | 2.16E-08      | 3.62E-05    | 200.2     | 136.2  | 128.1  | 147.9     | 263.4   | 266.9   | 258.6   |
| FBgn0266557  | kis        | DOWN    | -0.61    | 0.12      | 5.32      | 1.02E-07      | 0.000127851 | 456.2     | 325.1  | 359.7  | 365.5     | 570.0   | 563.4   | 553.7   |
| FBgn0283657  | Tlk        | DOWN    | -0.74    | 0.14      | 5.30      | 1.18E-07      | 0.000132163 | 329.4     | 200.1  | 237.7  | 253.0     | 392.0   | 414.1   | 479.7   |
| FBgn0263396  | sqd        | DOWN    | -0.52    | 0.11      | 4.93      | 8.04E-07      | 0.000577979 | 4690.7    | 3596.1 | 3673.9 | 4063.0    | 6116.6  | 5142.7  | 5552.0  |
| FBgn0037248  | srl        | DOWN    | -0.70    | 0.15      | 4.83      | 1.40E-06      | 0.000738617 | 229.3     | 168.6  | 155.3  | 163.5     | 284.0   | 262.9   | 341.8   |
| FBgn0262124  | uex        | DOWN    | -0.51    | 0.11      | 4.70      | 2.57E-06      | 0.00129163  | 683.2     | 575.3  | 546.5  | 538.3     | 865.3   | 780.8   | 793.0   |
| FBgn0000273  | Pka-C1     | DOWN    | -0.66    | 0.14      | 4.67      | 2.94E-06      | 0.001319355 | 517.0     | 347.4  | 339.5  | 445.7     | 742.8   | 593.0   | 633.5   |
| FBgn0036814  | CG14073    | DOWN    | -0.82    | 0.18      | 4.66      | 3.14E-06      | 0.001319355 | 84.6      | 38.9   | 58.8   | 54.1      | 117.3   | 110.7   | 127.6   |
| FBgn0013733  | shot       | DOWN    | -0.63    | 0.13      | 4.66      | 3.15E-06      | 0.001319355 | 943.0     | 663.3  | 673.7  | 782.0     | 1400.3  | 1072.4  | 1066.4  |
| FBgn0023526  | CG2865     | DOWN    | -0.63    | 0.14      | 4.63      | 3.68E-06      | 0.001447247 | 444.7     | 295.5  | 350.9  | 353.0     | 628.6   | 544.6   | 495.6   |
| FBgn0085209  | CG34180    | DOWN    | -0.75    | 0.16      | 4.61      | 3.97E-06      | 0.001457001 | 146.4     | 106.5  | 84.2   | 103.1     | 196.5   | 168.0   | 219.9   |
| FBgn0038826  | Syp        | DOWN    | -0.66    | 0.14      | 4.61      | 4.06E-06      | 0.001457001 | 862.4     | 663.3  | 536.0  | 685.1     | 1293.3  | 1078.4  | 918.3   |
| FBgn0264493  | rdx        | DOWN    | -0.64    | 0.14      | 4.59      | 4.50E-06      | 0.001558093 | 651.7     | 457.6  | 462.3  | 529.0     | 729.5   | 746.3   | 985.5   |
| FBgn0000479  | dnc        | DOWN    | -0.58    | 0.13      | 4.55      | 5.47E-06      | 0.00177453  | 615.3     | 461.3  | 471.1  | 495.6     | 872.5   | 700.8   | 690.4   |
| FBgn0262656  | Myc        | DOWN    | -0.74    | 0.16      | 4.50      | 6.66E-06      | 0.002080039 | 550.9     | 331.6  | 285.1  | 492.5     | 817.9   | 657.3   | 721.2   |
| FBgn0003015  | osk        | DOWN    | -0.58    | 0.13      | 4.50      | 6.82E-06      | 0.002080039 | 781.9     | 531.7  | 569.3  | 702.8     | 945.5   | 905.4   | 1036.8  |
| FBgn0053196  | dpy        | DOWN    | -0.77    | 0.17      | 4.47      | 7.95E-06      | 0.002221405 | 90.3      | 62.1   | 55.3   | 53.1      | 147.1   | 111.7   | 112.8   |
| FBgn0260634  | elF4G2     | DOWN    | -0.65    | 0.15      | 4.45      | 8.41E-06      | 0.002287151 | 213.9     | 145.4  | 151.8  | 172.8     | 245.9   | 298.5   | 268.9   |
| FBgn0039923  | MED26      | DOWN    | -0.61    | 0.14      | 4.45      | 8.68E-06      | 0.002297637 | 357.1     | 265.9  | 252.6  | 287.4     | 516.5   | 411.2   | 409.0   |
| FBgn0036165  | chrb       | DOWN    | -0.60    | 0.14      | 4.41      | 1.04E-05      | 0.002612017 | 438.6     | 285.3  | 319.3  | 392.6     | 550.4   | 557.5   | 526.4   |
| FBgn0001215  | Hrb98DE    | DOWN    | -0.39    | 0.09      | 4.40      | 1.10E-05      | 0.002627896 | 3136.1    | 2645.7 | 2723.0 | 2692.7    | 3792.4  | 3406.1  | 3557.0  |
| FBgn0031698  | Ncoa6      | DOWN    | -0.67    | 0.15      | 4.31      | 1.61E-05      | 0.003681404 | 215.6     | 141.7  | 145.6  | 173.9     | 278.8   | 234.3   | 319.0   |
| FBgn0035959  | CG4911     | DOWN    | -0.65    | 0.15      | 4.28      | 1.90E-05      | 0.004156803 | 288.8     | 167.7  | 250.9  | 210.3     | 352.9   | 365.7   | 385.1   |
| FBgn0259246  | brp        | DOWN    | -0.77    | 0.18      | 4.24      | 2.23E-05      | 0.004590702 | 77.2      | 43.5   | 37.7   | 58.3      | 126.6   | 103.8   | 93.4    |
| FBgn0261617  | nej        | DOWN    | -0.61    | 0.14      | 4.24      | 2.28E-05      | 0.004590702 | 431.3     | 265.9  | 308.8  | 391.5     | 527.8   | 567.4   | 526.4   |
| FBgn0004198  | ct         | DOWN    | -0.72    | 0.17      | 4.23      | 2.31E-05      | 0.004590702 | 166.6     | 103.8  | 90.4   | 135.4     | 260.3   | 232.3   | 177.7   |
| FBgn0034479  | CG8654     | DOWN    | -0.54    | 0.13      | 4.22      | 2.47E-05      | 0.004787784 | 339.6     | 276.1  | 277.2  | 247.8     | 410.5   | 381.5   | 444.3   |
| FBgn0034662  | CG13492    | DOWN    | -0.62    | 0.15      | 4.18      | 2.88E-05      | 0.005271755 | 638.3     | 396.5  | 426.3  | 588.3     | 894.1   | 731.4   | 793.0   |
| FBgn0039883  | RhoGAP100F | DOWN    | -0.74    | 0.18      | 4.18      | 2.93E-05      | 0.005271755 | 67.2      | 47.2   | 40.4   | 40.6      | 88.5    | 90.9    | 95.7    |
| FBgn0004242  | Svt1       | DOWN    | -0.65    | 0.16      | 4.16      | 3.20E-05      | 0.005638911 | 330.0     | 234.4  | 239.5  | 236.4     | 529.9   | 407.2   | 332.7   |
| FBgn0003415  | skd        | DOWN    | -0.62    | 0.15      | 4.11      | 3.91E-05      | 0.006336354 | 201.0     | 139.9  | 143.9  | 162.4     | 238.7   | 230.3   | 290.5   |
| FBgn0000108  | Appl       | DOWN    | -0.61    | 0.15      | 4.09      | 4.38E-05      | 0.006618558 | 374.1     | 263.1  | 251.8  | 320.7     | 549.4   | 460.6   | 398.8   |
| FBgn0025741  | PlexA      | DOWN    | -0.59    | 0.15      | 4.09      | 4 38E-05      | 0.006618558 | 459.8     | 340.9  | 318.4  | 379.0     | 695.5   | 524.8   | 500.2   |
| FBgn0266521  | stai       | DOWN    | -0.44    | 0.11      | 4.08      | 4 41F-05      | 0.006618558 | 712.9     | 599.3  | 553.5  | 630.0     | 826.2   | 862.9   | 805.5   |
| FBgn0250869  | CG42240    | DOWN    | -0.43    | 0.11      | 4.06      | 4 97E-05      | 0.007136459 | 764.6     | 629.9  | 679.0  | 609.1     | 938.3   | 874.7   | 856.8   |
| FBgn0029932  | CG4607     | DOWN    | -0.48    | 0.12      | 4.04      | 5.23E-05      | 0.007345192 | 3321.5    | 2329.8 | 2648.4 | 3120.6    | 3843.8  | 3899.3  | 4086.8  |
| FBgn0026206  | mei-P26    | DOWN    | -0.61    | 0.12      | 4.04      | 5.33E-05      | 0.007345192 | 259.4     | 200.1  | 166.7  | 211.4     | 343.6   | 359.8   | 274.6   |
| FBgn0028734  | Emr1       | DOWN    | -0.55    | 0.14      | 4.04      | 5.33E-05      | 0.007345192 | 382.2     | 300.1  | 269.3  | 324.9     | 478.4   | 410.2   | 510.4   |
| FBgn0010113  | hdc        | DOWN    | -0.64    | 0.14      | 4.04      | 5.40E-05      | 0.007345192 | 236.4     | 127.8  | 178.1  | 204.1     | 299.4   | 308.4   | 300.8   |
| EBgo00111481 | Sedn       | DOWN    | -0.55    | 0.10      | 4.02      | 5.835-05      | 0.007704013 | 844.1     | 542.8  | 775.5  | 6/0 7     | 063.0   | 1032.0  | 1100.6  |
| EBgp0264270  | syl        | DOWN    | -0.55    | 0.14      | 4.02      | 5.025-05      | 0.007704013 | 725.2     | 560.7  | 554.4  | 61/1 3    | 1009.3  | 817.4   | 786.1   |
| FBgp0028863  | 064587     | DOWN    | -0.51    | 0.13      | 4.02      | 5.926-05      | 0.007704013 | 100.5     | 63.0   | 65.8   | 72.0      | 158.4   | 131.5   | 110.5   |
| FBgn00E1221  | 004387     | DOWN    | -0.09    | 0.17      | 4.02      | 5.952-05      | 0.007704013 | 254.0     | 200.1  | 171.0  | 277.0     | 710.2   | 202 5   | 272.6   |
| FBgn0051221  | 0651221    | DOWN    | -0.75    | 0.18      | 4.01      | 6.052-05      | 0.007704013 | 354.0     | 200.1  | 222.0  | 2/7.0     | /19.2   | 365.5   | 372.0   |
| FBg10011000  | msi        | DOWN    | -0.54    | 0.14      | 4.01      | 0.182-05      | 0.007776791 | 355.4     | 255.7  | 522.0  | 246.9     | 424.9   | 445.8   | 425.0   |
| FBgn0003862  | trx        | DOWN    | -0.71    | 0.18      | 3.99      | 6.59E-05      | 0.008183756 | 151.7     | 90.8   | 69.3   | 135.4     | 215.0   | 196.7   | 202.8   |
| FBgnU262739  | AGOI       | DOWN    | -0.52    | 0.13      | 3.99      | 6.72E-05      | 0.008249932 | 1044.7    | 807.8  | 749.2  | 934.0     | 1443.5  | 1182.1  | 1151.9  |
| FBgn0016694  | Papi       | DOWN    | -0.63    | 0.16      | 3.98      | 6.89E-05      | 0.008354012 | 2023.6    | 1418.2 | 1305.3 | 16/4.3    | 3412.7  | 2198.2  | 2132.8  |
| FBgn0004838  | Hrb2/C     | DOWN    | -0.47    | 0.12      | 3.95      | 7.93E-05      | 0.009382238 | 6820.9    | 5097.7 | 5180.2 | 6436.0    | 8682.6  | /39/.3  | 8131.5  |
| FBgn0025726  | unc-13     | DOWN    | -0.51    | 0.13      | 3.91      | 9.06E-05      | 0.010597344 | 699.0     | 535.4  | 557.9  | 5/6.9     | 979.5   | 823.4   | /21.2   |
| FBgn0000541  | E(bx)      | DOWN    | -0.65    | 0.17      | 3.90      | 9.53E-05      | 0.011024172 | 213.0     | 117.6  | 136.9  | 190.5     | 266.5   | 246.1   | 320.2   |
| FBgn0032946  | nrv3       | DOWN    | -0.64    | 0.16      | 3.90      | 9.68E-05      | 0.011070958 | 1409.3    | 987.5  | 952.7  | 1072.5    | 2450.7  | 1684.3  | 1308.0  |
| FBgn0011230  | poe        | DOWN    | -0.55    | 0.14      | 3.89      | 1.00E-04      | 0.011095692 | 587.8     | 420.6  | 411.4  | 533.1     | 830.3   | 684.0   | 647.1   |
| FBgn0037098  | Wnk        | DOWN    | -0.66    | 0.17      | 3.89      | 0.000101578   | 0.011095692 | 129.5     | 88.0   | 67.5   | 111.4     | 182.1   | 164.1   | 164.1   |
| FBgn0267033  | mamo       | DOWN    | -0.60    | 0.15      | 3.88      | 0.000102762   | 0.011095692 | 426.0     | 306.6  | 276.3  | 363.4     | 663.6   | 473.5   | 472.8   |
| FBgn0053100  | 4EHP       | DOWN    | -0.50    | 0.13      | 3.88      | 0.00010294    | 0.011095692 | 340.6     | 277.0  | 255.3  | 289.5     | 440.4   | 380.5   | 401.0   |
| FBgn0023215  | Mnt        | DOWN    | -0.69    | 0.18      | 3.88      | 0.000104163   | 0.011095692 | 153.3     | 74.1   | 93.0   | 134.3     | 171.8   | 210.5   | 235.8   |
| FBgn0262730  | dtn        | DOWN    | -0.53    | 0.14      | 3.88      | 0.000105446   | 0.011095692 | 208.6     | 170.4  | 155.3  | 164.5     | 268.5   | 248.1   | 245.0   |
| FBgn0036111  | Aps        | DOWN    | -0.50    | 0.13      | 3.88      | 0.000105883   | 0.011095692 | 847.2     | 653.1  | 664.1  | 717.4     | 1125.6  | 845.1   | 1077.8  |
| FBgn0013343  | Syx1A      | DOWN    | -0.67    | 0.17      | 3.85      | 0.000117277   | 0.011917768 | 111.7     | 69.5   | 71.1   | 86.4      | 180.1   | 120.6   | 142.4   |
| FBgn0001105  | Gbeta13F   | DOWN    | -0.51    | 0.13      | 3.85      | 0.000117282   | 0.011917768 | 2911.5    | 2160.2 | 2280.0 | 2534.4    | 4184.4  | 3251.9  | 3058.0  |
| FBgn0038282  | dpr9       | DOWN    | -0.69    | 0.18      | 3.85      | 0.000119637   | 0.011933257 | 99.0      | 59.3   | 62.3   | 69.8      | 175.9   | 104.8   | 121.9   |
| FBgn0014037  | Su(Tpl)    | DOWN    | -0.42    | 0.11      | 3.85      | 0.000119807   | 0.011933257 | 911.0     | 773.5  | 739.5  | 788.2     | 1134.8  | 964.7   | 1065.3  |
| FBgn0033661  | CG13185    | DOWN    | -0.71    | 0.18      | 3.83      | 0.000126986   | 0.012524327 | 65.2      | 31.5   | 33.3   | 53.1      | 87.5    | 80.1    | 106.0   |

| FBgn0030869            | Socs16D    | DOWN  | -0.39 | 0.10 | 3.83  | 0.000130624  | 0.012635382 | 851.8  | 706.8  | 761.5  | 711.2  | 1021.7 | 976.6  | 933.1  |
|------------------------|------------|-------|-------|------|-------|--------------|-------------|--------|--------|--------|--------|--------|--------|--------|
| FBgn0032859            | Arpc2      | DOWN  | -0.37 | 0.10 | 3.82  | 0.000134157  | 0.012853493 | 1048.0 | 884.7  | 908.0  | 925.7  | 1161.6 | 1168.3 | 1239.6 |
| FBgn0041094            | scyl       | DOWN  | -0.63 | 0.16 | 3.80  | 0.000144572  | 0.013374754 | 767.9  | 520.6  | 443.9  | 681.0  | 1257.3 | 797.7  | 906.9  |
| EBgn0014396            | tim        | DOWN  | -0.51 | 0.13 | 3.80  | 0 000144956  | 0.013374754 | 1690.2 | 1455.3 | 1258.9 | 1307.8 | 2384.9 | 1666.5 | 2067.9 |
| FR-=0002500            | -linin     | DOWN  | 0.51  | 0.10 | 2.00  | 0.000146345  | 0.012274754 | 1105.6 | 001.0  | 070.0  | 1005.0 | 1540.5 | 1001.0 | 1464.1 |
| FB810082598            | akirin     | DOWN  | -0.45 | 0.12 | 5.80  | 0.000146245  | 0.015574754 | 1195.0 | 981.9  | 970.2  | 1005.8 | 1549.5 | 1201.9 | 1404.1 |
| FBgn0035016            | CG4612     | DOWN  | -0.44 | 0.12 | 3.79  | 0.000148487  | 0.013457476 | 572.0  | 431.7  | 487.8  | 506.0  | 699.6  | 640.5  | 666.5  |
| FBgn0283499            | InR        | DOWN  | -0.62 | 0.16 | 3.79  | 0.000150353  | 0.013504885 | 268.5  | 191.8  | 168.4  | 221.8  | 423.9  | 333.1  | 272.3  |
| FBgn0031759            | lid        | DOWN  | -0.45 | 0.12 | 3.78  | 0.000155853  | 0.013829177 | 765.3  | 583.6  | 632.5  | 685.1  | 964.0  | 817.4  | 909.2  |
| FBgn0085436            | Not1       | DOWN  | -0.54 | 0.14 | 3.78  | 0.000156712  | 0.013829177 | 918.5  | 658.6  | 677.2  | 811.1  | 1356.0 | 991.4  | 1016.3 |
| EBgp0020504            | 002601     | DOWN  | -0.26 | 0.10 | 2 77  | 0.000165771  | 0.014501201 | 1079.5 | 014.2  | 0/0.2  | 042.2  | 1220.5 | 1172.2 | 1262.0 |
| 1 bg10050504           | CG2091     | DOWN  | -0.30 | 0.10 | 3.77  | 0.000103771  | 0.014301391 | 1078.5 | 514.5  | 545.2  | 542.5  | 705.0  | 706.4  | 1202.4 |
| FBgn0263102            | psq        | DOWN  | -0.42 | 0.11 | 3.75  | 0.000174823  | 0.015031758 | 615.8  | 481.7  | 504.4  | 563.3  | 705.8  | 736.4  | 703.0  |
| FBgn0259212            | cno        | DOWN  | -0.56 | 0.15 | 3.75  | 0.000176801  | 0.015072487 | 342.4  | 247.3  | 228.1  | 307.2  | 410.5  | 372.6  | 488.8  |
| FBgn0011817            | nmo        | DOWN  | -0.59 | 0.16 | 3.75  | 0.000180368  | 0.015072487 | 278.8  | 175.1  | 258.8  | 186.4  | 312.8  | 371.6  | 368.0  |
| EBgn0052479            | Usp10      | DOWN  | -0.50 | 0.13 | 3 74  | 0 000180413  | 0.015072487 | 433.3  | 297.4  | 357.0  | 381.1  | 527.8  | 473 5  | 562.8  |
| FR0261022              | Dog        | DOWN  | 0.50  | 0.10 | 0.74  | 0.000100110  | 0.015072407 | 100.0  | 1010.7 | 1000.0 | 1400.0 | 2670.0 | 1071 4 | 1005.0 |
| rbgn0201822            | DSB        | DOWN  | -0.58 | 0.15 | 5.74  | 0.000181289  | 0.015072487 | 1004.0 | 1210.7 | 1090.0 | 1429.0 | 2070.9 | 10/1.4 | 1905.0 |
| FBgn0020306            | dom        | DOWN  | -0.46 | 0.12 | 3.70  | 0.000213926  | 0.01/4056/6 | 815.8  | 663.3  | 652.7  | 687.2  | 1042.2 | 813.5  | 1035.7 |
| FBgn0052423            | shep       | DOWN  | -0.48 | 0.13 | 3.70  | 0.000216027  | 0.017405676 | 911.7  | 691.1  | 710.6  | 814.3  | 1257.3 | 1018.1 | 978.7  |
| FBgn0010247            | Parp       | DOWN  | -0.52 | 0.14 | 3.69  | 0.000220483  | 0.017603613 | 268.7  | 206.6  | 221.1  | 206.2  | 373.5  | 315.3  | 289.4  |
| EBgn0263706            | CG43658    | DOWN  | -0.38 | 0.10 | 3.69  | 0.000225629  | 0.017872622 | 1077 7 | 931.9  | 891 3  | 947 5  | 1320.0 | 1148 5 | 1227.1 |
| EBgp0022282            | Dka D2     | DOWN  | 0.00  | 0.12 | 2.60  | 0.000223623  | 0.017092725 | 527.0  | 434.2  | 271.1  | 476.0  | 702.7  | 605.0  | EOC O  |
| rbgnuuzz38z            | PKd-KZ     | DOWN  | -0.49 | 0.15 | 5.09  | 0.000227554  | 0.017882755 | 527.9  | 424.5  | 5/1.1  | 470.9  | 702.7  | 005.9  | 300.0  |
| FBgn0003891            | tud        | DOWN  | -0.57 | 0.16 | 3.67  | 0.000244237  | 0.019046732 | 790.7  | 619.7  | 451.8  | 704.9  | 1176.0 | 876.7  | 914.9  |
| FBgn0028397            | Tob        | DOWN  | -0.64 | 0.17 | 3.66  | 0.000247433  | 0.019147502 | 157.0  | 115.8  | 113.2  | 95.8   | 259.3  | 208.6  | 149.3  |
| FBgn0040324            | Ephrin     | DOWN  | -0.47 | 0.13 | 3.66  | 0.000251723  | 0.019330815 | 533.8  | 463.2  | 443.9  | 396.7  | 715.1  | 602.9  | 581.1  |
| FBgn0263987            | spoon      | DOW/N | -0.62 | 0.17 | 3.66  | 0.000254359  | 0.019335176 | 336.4  | 225.1  | 188.6  | 304.0  | 508.3  | 339.0  | 453.5  |
| EPen0027626            | CC0821     | DOWN  | 0.02  | 0.17 | 2.00  | 0.000254555  | 0.010335170 | 1057.5 | 1474 7 | 1140.0 | 1005 5 | 2022.0 | 3133.0 | 2200 4 |
| rognUU3/636            | CG9821     | DOWN  | -0.57 | 0.15 | 3.66  | 0.000255624  | 0.019335176 | 192/.2 | 14/4./ | 1148.3 | 1806.6 | 2923.0 | 2132.0 | 2260.4 |
| FBgn0028704            | Nckx30C    | DOWN  | -0.59 | 0.16 | 3.65  | 0.000259676  | 0.019495064 | 189.8  | 132.5  | 131.6  | 154.1  | 293.2  | 231.3  | 196.0  |
| FBgn0029881            | pigs       | DOWN  | -0.47 | 0.13 | 3.65  | 0.000263372  | 0.019626081 | 381.3  | 321.4  | 295.6  | 311.3  | 511.3  | 417.1  | 430.7  |
| FBgn0000307            | chif       | DOWN  | -0.62 | 0.17 | 3.64  | 0.000275209  | 0.020208787 | 113.8  | 83.4   | 72.8   | 84.3   | 151.2  | 117.6  | 173.2  |
| FBgp0002778            | mnd        | DOWN  | -0.43 | 0.12 | 3.63  | 0.000282376  | 0.020584783 | 013.2  | 682.7  | 736.0  | 859.0  | 1031.0 | 1033.0 | 113/18 |
| FR                     | Com        | DOWN  | 0.40  | 0.12 | 0.00  | 0.000202570  | 0.020304703 | 4220.0 | 2256.2 | 2010.7 | 2070.0 | 6467.4 | 4005.5 | 5142.0 |
| FBgn0000253            | Cam        | DOWN  | -0.54 | 0.15 | 3.62  | 0.000295661  | 0.021094701 | 4329.0 | 3356.2 | 2810.7 | 3870.3 | 6467.4 | 4326.3 | 5143.0 |
| FBgn0035397            | CG11486    | DOWN  | -0.40 | 0.11 | 3.61  | 0.000306073  | 0.021532126 | 1273.7 | 958.8  | 1107.1 | 1166.2 | 1457.9 | 1402.6 | 1549.5 |
| FBgn0011837            | Tis11      | DOWN  | -0.58 | 0.16 | 3.58  | 0.000337556  | 0.023100742 | 657.9  | 492.8  | 400.0  | 563.3  | 1056.6 | 647.4  | 787.3  |
| FBgn0004636            | Rap1       | DOWN  | -0.45 | 0.13 | 3.57  | 0.000360749  | 0.024521188 | 1739.9 | 1364.5 | 1336.9 | 1600.4 | 2312.9 | 1793.0 | 2031.4 |
| EBgp0086675            | fno        | DOWN  | -0.66 | 0.10 | 2 5 6 | 0.000271017  | 0.025090551 | 112.0  | 70.4   | 67 5   | 72.0   | 224.6  | 122.6  | 112.9  |
|                        | me         | DOWN  | -0.00 | 0.15 | 0.50  | 0.000371917  | 0.025089551 | 115.8  | /0.4   | 07.5   | 73.5   | 254.0  | 125.0  | 205.4  |
| FBgn0266098FBgn0029746 | rg         | DOWN  | -0.52 | 0.15 | 3.50  | 0.000374099  | 0.025089551 | 264.4  | 1/9./  | 200.0  | 239.5  | 357.0  | 515.5  | 295.1  |
| FBgn0003961            | Uro        | DOWN  | -0.54 | 0.15 | 3.53  | 0.000414768  | 0.027451118 | 387.1  | 278.8  | 279.0  | 333.2  | 397.1  | 588.1  | 446.6  |
| FBgn0036032            | CG16711    | DOWN  | -0.41 | 0.12 | 3.53  | 0.000421469  | 0.027712258 | 404.5  | 347.4  | 326.3  | 349.9  | 458.9  | 462.6  | 481.9  |
| FBgn0030366            | Usp7       | DOWN  | -0.46 | 0.13 | 3.52  | 0.000427793  | 0.02773972  | 747.8  | 662.3  | 554.4  | 617.5  | 1020.6 | 825.3  | 806.7  |
| EBgn0001235            | hth        | DOWN  | -0.60 | 0.17 | 3.52  | 0.000428206  | 0.02773972  | 350.0  | 234.4  | 196.5  | 316.5  | 577.2  | 400.3  | 374.8  |
| FD 0005447             | -1         | DOWN  | 0.00  | 0.17 | 0.52  | 0.000420200  | 0.027733772 | 050.0  | 204.4  | 100.0  | 000.0  | 050.0  | 400.5  | 070.0  |
| FBgn0085447            | SIT        | DOWN  | -0.51 | 0.15 | 3.51  | 0.00043976   | 0.028178253 | 266.7  | 210.3  | 186.0  | 232.2  | 352.9  | 341.0  | 278.0  |
| FBgn0260799            | p120ctn    | DOWN  | -0.45 | 0.13 | 3.51  | 0.000442812  | 0.028194246 | 759.2  | 634.5  | 582.5  | 654.9  | 1039.2 | 842.1  | 802.1  |
| FBgn0004882            | orb        | DOWN  | -0.51 | 0.15 | 3.51  | 0.000447643  | 0.02832258  | 459.5  | 315.9  | 352.7  | 416.5  | 470.2  | 627.6  | 574.2  |
| FBgn0023213            | elF4G      | DOWN  | -0.56 | 0.16 | 3.51  | 0.000454455  | 0.028485235 | 853.8  | 636.4  | 510.6  | 783.0  | 1311.8 | 926.1  | 954.8  |
| EBgp0086686            | (3) 1231   | DOWN  | -0.47 | 0.13 | 3 51  | 0.000455877  | 0.028485235 | 578.4  | 484.5  | 421.1  | 504.0  | 791.2  | 653.3  | 616.4  |
| 50-0000000             | (J)[1231   | DOWN  | 0.50  | 0.10 | 0.51  | 0.000455077  | 0.020405255 | 105.0  | 400.0  | 400.7  | 460.4  | 242.2  | 000.0  | 010.4  |
| FBgh0262740            | EVIS       | DOWN  | -0.53 | 0.15 | 3.50  | 0.000464526  | 0.028846466 | 185.0  | 139.9  | 130.7  | 160.4  | 242.8  | 201.6  | 234.7  |
| FBgn0260970            | Ubr3       | DOWN  | -0.40 | 0.11 | 3.50  | 0.000468133  | 0.028892129 | 475.0  | 406.7  | 379.8  | 422.7  | 561.8  | 545.6  | 533.2  |
| FBgn0043884            | mask       | DOWN  | -0.52 | 0.15 | 3.50  | 0.00047242   | 0.02890423  | 472.6  | 327.0  | 323.7  | 455.0  | 620.4  | 511.0  | 598.2  |
| FBgn0053181            | CG33181    | DOWN  | -0.42 | 0.12 | 3.49  | 0.000474075  | 0.02890423  | 852.3  | 636.4  | 817.6  | 681.0  | 1003.1 | 1005.2 | 970.7  |
| EBgp0027492            | wdb        | DOWN  | -0.49 | 0.14 | 3.40  | 0.000/185356 | 0.020/13735 | 5171   | 401.1  | 358.8  | 480.0  | 702.7  | 567.4  | 502.5  |
| EPan0027197            | None140    | DOWN  | 0.45  | 0.14 | 2.40  | 0.000405445  | 0.025413735 | 1695.0 | 1222 7 | 1296.0 | 1200.0 | 2011.4 | 1/51.0 | 2002.0 |
|                        | N0000140   | DOWN  | -0.46 | 0.15 | 5.48  | 0.000496143  | 0.02955541  | 1222.2 | 1225.7 | 1230.0 | 1290.1 | 2011.4 | 1451.0 | 2003.0 |
| FBgn0011705            | rost       | DOWN  | -0.51 | 0.15 | 3.48  | 0.000500202  | 0.02955541  | 1015.6 | 698.5  | 751.8  | 944.4  | 1464.1 | 1190.1 | 1044.8 |
| FBgn0000463            | DI         | DOWN  | -0.62 | 0.18 | 3.48  | 0.000502383  | 0.02955541  | 79.9   | 50.9   | 57.0   | 55.2   | 81.3   | 110.7  | 124.2  |
| FBgn0026375            | RhoGAPp190 | DOWN  | -0.41 | 0.12 | 3.47  | 0.000511167  | 0.029732111 | 890.3  | 730.9  | 772.9  | 746.6  | 1166.7 | 988.4  | 936.5  |
|                        | CG8083     | DOWN  | -0.58 | 0.17 | 3.47  | 0.000517477  | 0.02991847  | 332.9  | 188.0  | 246 5  | 293.6  | 443.4  | 500.1  | 325.9  |
| EBg003E0916            | 10000      | DOWN  | 0.50  | 0.10 | 2.40  | 0.000533174  | 0.020607000 | 206.7  | 76.0   | 174.5  | 151.0  | 222.2  | 202.4  | 212.2  |
| rbgil0250610           | AGOS       | DOWN  | -0.64 | 0.18 | 5.40  | 0.0005331/1  | 0.05002/386 | 206.7  | 78.0   | 1/4.0  | 151.0  | 225.5  | 505.4  | 512.2  |
| FBgn0033010            | Atf6       | DOWN  | -0.44 | 0.13 | 3.46  | 0.000538872  | 0.030627386 | 629.4  | 519.7  | 530.7  | 513.3  | 854.0  | 689.9  | 668.8  |
| FBgn0037810            | sle        | DOWN  | -0.63 | 0.18 | 3.41  | 0.000654035  | 0.035758637 | 70.3   | 39.8   | 45.6   | 51.0   | 67.9   | 98.8   | 118.5  |
| FBgn0000547            | ed         | DOWN  | -0.54 | 0.16 | 3.38  | 0.000713002  | 0.038563415 | 341.5  | 236.2  | 217.6  | 325.9  | 480.5  | 361.8  | 427.3  |
| EBgn0033741            | CG8545     | DOWN  | -0 52 | 0.15 | 3 37  | 0.000741257  | 0.039877232 | 514.2  | 420.6  | 354.4  | 420.7  | 738 7  | 477.4  | 673 3  |
| EBan0061200            | Nup152     | DOWN  | -0.42 | 0.14 | 2.57  | 0.000750705  | 0.04000000  | AC0 F  | 256.0  | 264.4  | 420.7  | 620.0  | 4/7.4  | 573.3  |
| 1 Dg110001200          | Nup155     | DOWN  | -0.48 | 0.14 | 3.5/  | 0.000759796  | 0.040229202 | 409.5  | 330.0  | 554.4  | 420.7  | 038.9  | 408.5  | 5/7.0  |
| FBgn0261793            | Trf2       | DOWN  | -0.52 | 0.16 | 3.37  | 0.000765327  | 0.040241305 | 174.1  | 140.8  | 119.3  | 142.7  | 249.0  | 194.7  | 198.2  |
| FBgn0036735            | Edc3       | DOWN  | -0.45 | 0.13 | 3.36  | 0.000788592  | 0.040892978 | 339.5  | 240.9  | 293.0  | 303.0  | 411.5  | 401.3  | 387.4  |
| FBgn0020622            | Pi3K21B    | DOWN  | -0.45 | 0.14 | 3.36  | 0.000793368  | 0.040929669 | 267.0  | 235.3  | 193.0  | 226.0  | 328.2  | 313.3  | 306.5  |
| -<br>FBgn0261934       | dikar      | DOW/N | -0.53 | 0.16 | 3 35  | 0.000814765  | 0.041819026 | 151.6  | 98.2   | 121.1  | 128.1  | 164.6  | 199.7  | 198.2  |
| FR0027244              | 000000     | DOWN  | 0.00  | 0.10 | 0.00  | 0.000014703  | 0.041070050 | 254.0  | 257.2  | 262.2  | 120.1  | 414.0  | 207.5  | 474.0  |
| rbgr10037344           | CG2926     | DOWN  | -0.48 | 0.14 | 3.34  | 0.000826022  | 0.0419/6653 | 354.3  | 257.5  | 263.2  | 332.2  | 411.5  | 387.5  | 4/4.0  |
| FBgn0000114            | bru1       | DOWN  | -0.39 | 0.12 | 3.34  | 0.000831081  | 0.041976653 | 2578.5 | 2058.3 | 2317.7 | 2209.5 | 2587.6 | 3287.5 | 3010.1 |
| FBgn0014007            | Ptp69D     | DOWN  | -0.58 | 0.17 | 3.34  | 0.000831098  | 0.041976653 | 81.9   | 63.9   | 58.8   | 54.1   | 113.2  | 91.9   | 109.4  |
| FBgn0026533            | Dek        | DOWN  | -0.43 | 0,13 | 3,34  | 0.000837139  | 0.041976653 | 1336.4 | 1119.0 | 1092.2 | 1113.1 | 1742.9 | 1275.1 | 1676.0 |
| EBgp0262737            | mub        | DOWN  | -0.20 | 0.12 | 2.24  | 0.000828600  | 0.041076653 | 11/2 / | 1020.0 | 050.7  | 030.0  | 1479 5 | 1289.0 | 1175 0 |
| 1 0g10202737           | nuo        | DOWN  | -0.39 | 0.12 | 3.54  | 0.000858699  | 0.041976653 | 1142.4 | 1020.8 | 309.7  | 930.9  | 14/8.5 | 1206.9 | 11/3.8 |
| FBgn0264495            | gpp        | DOWN  | -0.46 | 0.14 | 3.34  | 0.000851869  | 0.042265003 | 203.2  | 163.0  | 160.5  | 1/2.8  | 251.0  | 237.2  | 234.7  |

| EB0004007               | h.c             | DOWN   | 0.55  | 0.17 | 2.24 | 0.000053063 | 0.040005000 | 150.1   | 117.0   | 00.0   | 120.2   | 200.0   | 100.0   | 167.5   |
|-------------------------|-----------------|--------|-------|------|------|-------------|-------------|---------|---------|--------|---------|---------|---------|---------|
| FBgn0024897             | 00              | DOWN   | -0.55 | 0.17 | 5.54 | 0.000852862 | 0.042265005 | 150.1   | 117.0   | 88.0   | 150.2   | 209.9   | 180.8   | 107.5   |
| FBgn0284408             | trol            | DOWN   | -0.44 | 0.13 | 3.33 | 0.000883588 | 0.043353876 | 675.5   | 530.8   | 500.9  | 638.3   | 890.0   | 736.4   | 756.5   |
| FBgn0029666             | CG10803         | DOWN   | -0.52 | 0.16 | 3.32 | 0.000885154 | 0.043353876 | 152.5   | 107.5   | 122.8  | 123.9   | 169.8   | 178.9   | 211.9   |
| FBgn0003391             | shg             | DOWN   | -0.49 | 0.15 | 3.32 | 0.000890851 | 0.043353876 | 292.8   | 243.6   | 219.3  | 233.2   | 406.4   | 288.6   | 365.7   |
| FBgn0285926             | Imp             | DOWN   | -0.44 | 0.13 | 3.32 | 0.000896382 | 0.043353876 | 326.6   | 286.2   | 241.2  | 279.1   | 401.3   | 350.9   | 401.0   |
| FBgn0029979             | mahe            | DOWN   | -0.52 | 0.16 | 3.30 | 0.000953235 | 0.045664517 | 670.1   | 454.8   | 523.7  | 564.4   | 605.0   | 859.9   | 1012.9  |
| FBgn0261260             | mgl             | DOWN   | -0.36 | 0.11 | 3.30 | 0.000971884 | 0.045727423 | 779.6   | 645.7   | 669.3  | 703.9   | 942.4   | 899.5   | 816.9   |
| EBgn0040531             | CG11741         | DOWN   | -0.56 | 0.17 | 3 30 | 0.00097273  | 0.045727423 | 208.6   | 160.3   | 121.1  | 181.2   | 311.7   | 210.5   | 266.6   |
| EBgn0030486             | Set2            | DOWN   | -0.47 | 0.14 | 3.28 | 0.001024776 | 0.047727993 | 289.4   | 246.4   | 245.6  | 203.0   | 341.6   | 305.4   | 394.2   |
| EB-=0004606             | afe 1           | DOWN   | 0.49  | 0.14 | 2.27 | 0.001057923 | 0.049700303 | 265.4   | 240.4   | 104.7  | 200.0   | 247.0   | 260.0   | 220 5   |
| rbgri0004806            |                 | DOWN   | -0.48 | 0.15 | 5.27 | 0.001057852 | 0.048709505 | 202.7   | 217.7   | 194.7  | 215.5   | 347.8   | 200.9   | 339.5   |
| FBgn0052062             | Rbfox1          | DOWN   | -0.40 | 0.12 | 3.27 | 0.0010/8622 | 0.048890264 | 886.9   | 6//.2   | /65.8  | /98.6   | 1159.5  | 967.7   | 952.5   |
| FBgn0250823             | gish            | DOWN   | -0.37 | 0.11 | 3.27 | 0.001078891 | 0.048890264 | 943.7   | 822.6   | 805.3  | 804.9   | 1150.3  | 1128.8  | 950.2   |
| FBgn0039064             | CG4467          | DOWN   | -0.54 | 0.16 | 3.27 | 0.001085704 | 0.048978415 | 143.1   | 110.2   | 107.9  | 105.2   | 219.1   | 167.0   | 149.3   |
| FBgn0035424             | CG11505         | DOWN   | -0.46 | 0.14 | 3.27 | 0.001092397 | 0.049060314 | 446.3   | 301.1   | 389.5  | 397.8   | 496.9   | 507.1   | 585.6   |
| FBgn0036398             | upSET           | DOWN   | -0.54 | 0.17 | 3.26 | 0.001103056 | 0.049318845 | 167.3   | 108.4   | 109.7  | 158.3   | 183.1   | 215.5   | 229.0   |
| FBgn0020496             | CtBP            | DOWN   | -0.30 | 0.09 | 3.24 | 0.001194474 | 0.052271698 | 3850.8  | 3207.0  | 3544.1 | 3522.5  | 4459.1  | 4282.8  | 4089.1  |
| EBgn0022238             | lolal           | DOWN   | -0.45 | 0 14 | 3 24 | 0.001200013 | 0.052271698 | 845.0   | 740.2   | 672.8  | 661.2   | 1209.9  | 867.8   | 918.3   |
| EBgn0259736             | CG42390         | DOWN   | -0.48 | 0.15 | 3.24 | 0.001202022 | 0.052271698 | 497.8   | 424.3   | 336.9  | 426.9   | 714.0   | 582.2   | 502.4   |
| FB-=0250004             | 0042050         | DOWN   | 0.40  | 0.15 | 3.33 | 0.001202422 | 0.052271050 | 100.0   | 122.0   | 101.1  | 172.0   | 205.2   | 227.2   | 100.1   |
| FBgn0259984             | KUZ             | DOWN   | -0.50 | 0.17 | 5.25 | 0.001216671 | 0.05250647  | 189.8   | 125.2   | 121.1  | 1/2.8   | 295.5   | 257.2   | 189.1   |
| FBgn0020443             | Elf             | DOWN   | -0.30 | 0.09 | 3.23 | 0.001240271 | 0.053013239 | 2802.8  | 2474.3  | 2454.5 | 2551.1  | 3158.6  | 2899.0  | 3279.0  |
| FBgn0028369             | kirre           | DOWN   | -0.51 | 0.16 | 3.20 | 0.001369794 | 0.057899703 | 115.0   | 83.4    | 99.1   | 83.3    | 138.9   | 140.4   | 144.7   |
| FBgn0028743             | Dhit            | DOWN   | -0.52 | 0.16 | 3.19 | 0.00142121  | 0.058971138 | 127.0   | 94.5    | 98.3   | 98.9    | 185.2   | 146.3   | 139.0   |
| FBgn0001994             | crp             | DOWN   | -0.37 | 0.11 | 3.19 | 0.001421232 | 0.058971138 | 1347.7  | 1094.0  | 1194.8 | 1186.0  | 1737.7  | 1453.0  | 1420.8  |
| FBgn0004395             | unk             | DOWN   | -0.38 | 0.12 | 3.19 | 0.001422077 | 0.058971138 | 469.8   | 374.2   | 410.6  | 415.5   | 584.4   | 525.8   | 508.1   |
| FBgn0034087             | clu             | DOWN   | -0.48 | 0.15 | 3.19 | 0.001429042 | 0.058971138 | 492.4   | 428.0   | 342.1  | 404.0   | 720.2   | 488.3   | 571.9   |
| EBgn0010300             | brat            | DOW/N  | -0.55 | 0.17 | 3 19 | 0.001430314 | 0.058971138 | 393.3   | 214.9   | 381.6  | 271.8   | 405.4   | 490.3   | 595.9   |
| EBgn0260780             | wisn            | DOW/N  | -0.60 | 0.10 | 3.19 | 0.001451241 | 0.05958072  | 176.7   | 76.9    | 148.3  | 105.2   | 141.0   | 240.2   | 348.6   |
| FB                      | wisp            | DOWN   | -0.00 | 0.15 | 3.10 | 0.001451241 | 0.05958975  | 707.5   | 70.9    | 140.3  | 450.4   | 141.0   | 240.2   | 548.0   |
| FBgn0005666             | bt              | DOWN   | -0.54 | 0.17 | 3.18 | 0.001459784 | 0.05969686  | /2/.5   | 611.4   | 557.9  | 458.1   | 1002.1  | 1126.8  | 608.4   |
| FBgn0001624             | dlg1            | DOWN   | -0.37 | 0.12 | 3.18 | 0.001476432 | 0.060133222 | 671.9   | 547.5   | 626.4  | 552.9   | 825.1   | 766.0   | 713.2   |
| FBgn0021764             | sdk             | DOWN   | -0.50 | 0.16 | 3.17 | 0.001543    | 0.062591035 | 189.5   | 129.7   | 157.0  | 157.2   | 210.9   | 208.6   | 273.4   |
| FBgn0034570             | CG10543         | DOWN   | -0.52 | 0.17 | 3.16 | 0.001562009 | 0.062670644 | 239.1   | 175.1   | 142.1  | 228.0   | 333.4   | 255.0   | 300.8   |
| FBgn0033638             | CG9005          | DOWN   | -0.30 | 0.10 | 3.16 | 0.001563651 | 0.062670644 | 989.9   | 894.9   | 874.6  | 867.4   | 1094.7  | 1068.5  | 1139.3  |
| FBgn0014163             | fax             | DOWN   | -0.44 | 0.14 | 3.16 | 0.001573487 | 0.062774648 | 4263.6  | 3518.3  | 3292.3 | 3666.2  | 6313.1  | 4374.7  | 4417.2  |
| FBgn0264607             | CaMKII          | DOWN   | -0.43 | 0.14 | 3.16 | 0.001598911 | 0.063078595 | 1346.9  | 1103.3  | 1117.6 | 1113.1  | 1942.5  | 1462.9  | 1342.1  |
| EBgp0265434             | zin             | DOW/N  | -0.52 | 0.16 | 3.15 | 0.001650324 | 0.064852550 | 512.2   | 372.4   | 300.0  | 407.7   | 761.4   | 536.7   | 605.0   |
| EBgn0267001             | Top 2           | DOWN   | 0.40  | 0.10 | 2.14 | 0.00167122  | 0.065419165 | 176.2   | 124.2   | 114.0  | 165.6   | 217.1   | 207.6   | 217.6   |
| FBgn0267001             | ren-a           | DOWN   | -0.49 | 0.16 | 5.14 | 0.0016/122  | 0.065418165 | 1/6.2   | 154.5   | 114.9  | 105.0   | 217.1   | 207.0   | 217.0   |
| FBgn0085412             | CG34383         | DOWN   | -0.51 | 0.16 | 3.13 | 0.001722905 | 0.066920563 | 168.3   | 132.5   | 113.2  | 142.7   | 250.0   | 1/9.9   | 191.4   |
| FBgn0027108             | Inx2            | DOWN   | -0.28 | 0.09 | 3.13 | 0.001744771 | 0.06750922  | 1889.3  | 1653.5  | 1650.1 | 1779.5  | 2105.1  | 2108.3  | 2039.4  |
| FBgn0266101             | CG44838         | DOWN   | -0.45 | 0.15 | 3.12 | 0.001803151 | 0.068954428 | 228.6   | 184.3   | 207.0  | 163.5   | 246.9   | 276.8   | 292.8   |
| FBgn0263354             | CG42784         | DOWN   | -0.54 | 0.17 | 3.12 | 0.001803388 | 0.068954428 | 96.5    | 70.4    | 78.1   | 63.5    | 145.1   | 122.6   | 99.1    |
| FBgn0029672             | CG2875          | DOWN   | -0.52 | 0.17 | 3.12 | 0.001835672 | 0.069585463 | 170.8   | 132.5   | 127.2  | 126.0   | 256.2   | 156.2   | 226.7   |
| FBgn0053208             | Mical           | DOWN   | -0.41 | 0.13 | 3.11 | 0.001839934 | 0.069585463 | 441.7   | 349.2   | 407.0  | 347.8   | 522.7   | 570.3   | 453.5   |
| FBgn0265623             | Su(z)2          | DOWN   | -0.54 | 0.17 | 3.11 | 0.001873435 | 0.070323707 | 85.1    | 52.8    | 68.4   | 65.6    | 121.4   | 93.9    | 108.2   |
| EBgn0003165             | num             | DOWN   | -0.35 | 0.11 | 3 11 | 0.001901753 | 0.070551851 | 1089.5  | 858.7   | 1040.4 | 931.9   | 1213.0  | 1185.1  | 1308.0  |
| EBee0361788 EBee0365084 | CC14105         | DOWN   | 0.55  | 0.10 | 2.10 | 0.001017640 | 0.070551051 | 60.9    | 20.7    | CE 0   | 40.6    | 100.0   | 02.0    | 00.0    |
| FBgn0201788FBgn0205084  | 0644195         | DOWN   | -0.58 | 0.19 | 5.10 | 0.001917649 | 0.070551851 | 09.8    | 20.7    | 100.4  | 40.0    | 100.8   | 92.9    | 90.0    |
| FBgn0039214             | pur             | DOWN   | -0.44 | 0.14 | 3.10 | 0.001930877 | 0.070551851 | 252.9   | 204.7   | 190.4  | 227.0   | 324.1   | 266.9   | 304.2   |
| FBgn0003345             | sd              | DOWN   | -0.46 | 0.15 | 3.10 | 0.001936632 | 0.070551851 | 406.7   | 312.2   | 309.7  | 358.2   | 599.8   | 432.9   | 427.3   |
| FBgn0015024             | Cklalpha        | DOWN   | -0.47 | 0.15 | 3.10 | 0.00194263  | 0.070551851 | 1431.2  | 1150.5  | 942.2  | 1325.5  | 2117.4  | 1420.4  | 1631.5  |
| FBgn0000283             | Cp190           | DOWN   | -0.53 | 0.17 | 3.10 | 0.001959454 | 0.070721824 | 261.2   | 168.6   | 175.4  | 241.6   | 383.8   | 241.2   | 356.6   |
| FBgn0031632             | CG15628         | DOWN   | -0.48 | 0.15 | 3.10 | 0.001961371 | 0.070721824 | 376.7   | 325.1   | 272.8  | 295.7   | 574.1   | 392.4   | 399.9   |
| FBgn0026575             | hang            | DOWN   | -0.48 | 0.16 | 3.09 | 0.001970875 | 0.070810711 | 267.1   | 177.9   | 208.8  | 243.7   | 281.9   | 305.4   | 385.1   |
| FBgn0004880             | scrt            | DOWN   | -0.56 | 0.18 | 3.09 | 0.002030377 | 0.072431182 | 73.3    | 50.9    | 39.5   | 62.5    | 113.2   | 93.9    | 79.8    |
| -<br>FBgn0265297        | pAbp            | DOW/N  | -0.46 | 0 15 | 3 08 | 0.002044874 | 0.072505726 | 14058.0 | 11408 9 | 9565 5 | 12825 1 | 21261 4 | 13801.3 | 15485 9 |
| EBgp0260943             | Pho6            | DOWN   | -0.52 | 0.17 | 3.09 | 0.002050786 | 0.072505726 | 154.5   | 116.7   | 125.4  | 107.2   | 245.0   | 163.1   | 169.6   |
| EPgp0002277             | nupo<br>Dello15 | DOWN   | -0.52 | 0.17 | 3.08 | 0.002059786 | 0.072505726 | 1146.0  | 110.7   | 1070.0 | 107.2   | 243.9   | 103.1   | 100.0   |
| FBgn0003277             | KDII215         | DOWN   | -0.50 | 0.10 | 5.08 | 0.002068505 | 0.072505726 | 1146.9  | 969.9   | 1079.0 | 1005.8  | 1504.6  | 1270.1  | 1252.1  |
| FBgn0036059             | nudE            | DOWN   | -0.45 | 0.15 | 3.08 | 0.002097687 | 0.073273386 | 333.2   | 297.4   | 250.0  | 263.4   | 467.1   | 341.0   | 380.5   |
| FBgn0031030             | Тао             | DOWN   | -0.37 | 0.12 | 3.07 | 0.002108532 | 0.07339736  | 711.8   | 566.0   | 594.8  | 664.3   | 784.0   | 758.1   | 903.5   |
| FBgn0003463             | sog             | DOWN   | -0.37 | 0.12 | 3.07 | 0.002154636 | 0.074550367 | 877.6   | 694.8   | 754.4  | 800.7   | 1137.9  | 952.8   | 925.1   |
| FBgn0041604             | dlp             | DOWN   | -0.45 | 0.15 | 3.07 | 0.002156477 | 0.074550367 | 177.8   | 143.6   | 146.5  | 141.6   | 237.7   | 195.7   | 201.7   |
| FBgn0266347             | nAChRalpha4     | DOWN   | -0.50 | 0.16 | 3.07 | 0.002165631 | 0.074610423 | 117.1   | 88.9    | 102.6  | 80.2    | 150.2   | 148.3   | 132.2   |
| FBgn0266410             | CG45050         | DOWN   | -0.49 | 0,16 | 3,06 | 0.002183836 | 0.074955255 | 1639.0  | 1312.6  | 1027.3 | 1496.3  | 2580.4  | 1698.1  | 1719.3  |
| EBgn0259176             | bun             | DOW/N  | -0.37 | 0.12 | 3.06 | 0.002204868 | 0.074955255 | 2770.8  | 2279 7  | 2180.8 | 2643.7  | 3601.0  | 2899.0  | 3020.4  |
| EBap0000294             | cta             | DOWN   | 0.57  | 0.12 | 2.00 | 0.002204008 | 0.074055355 | £770.0  | AC0 7   | 496.0  | 449.0   | 607.0   | 2005.0  | 5020.4  |
| DB10000304              | c.a             | DOWN   | -0.35 | 0.11 | 3.00 | 0.002205445 | 0.074300200 | 05.7    | 408.7   | 400.0  | 440.0   | 007.0   | 050.4   | 373.4   |
| Fbgn0033984             | Lapi            | DOWN   | -0.51 | 0.17 | 3.06 | 0.002223595 | 0.075064989 | 99.7    | /5.0    | 6/.5   | 85.4    | 116.3   | 118.6   | 135.6   |
| FBgn0051992             | gw              | DOWN   | -0.35 | 0.11 | 3.06 | 0.002241577 | 0.075418944 | 1737.4  | 1531.3  | 1479.0 | 1501.5  | 2255.3  | 1792.0  | 1865.1  |
| FBgn0053547             | Rim             | DOWN   | -0.53 | 0.17 | 3.05 | 0.002256467 | 0.075544799 | 98.7    | 70.4    | 69.3   | 80.2    | 150.2   | 119.6   | 102.5   |
| FBgn0021800             | Reph            | DOWN   | -0.42 | 0.14 | 3.05 | 0.002260336 | 0.075544799 | 335.1   | 260.3   | 251.8  | 319.7   | 429.0   | 370.7   | 379.4   |
| FBgn0039955             | CG41099         | DOWN   | -0.44 | 0.15 | 3.05 | 0.002272012 | 0.075683584 | 598.8   | 525.2   | 436.9  | 498.8   | 868.4   | 605.9   | 657.4   |
| FBgn0041775             | tral            | DOWN   | -0.41 | 0.13 | 3.05 | 0.002310534 | 0.076460419 | 3454.1  | 2545.6  | 3193.2 | 2905.1  | 3342.8  | 4093.0  | 4645.1  |
| FBgn0267912             | CanA-14F        | DOW/N  | -0.29 | 0.09 | 3.04 | 0 002335844 | 0.076698018 | 2363.8  | 1997.2  | 2162.4 | 2183.5  | 2717.2  | 2483.9  | 2638 7  |
| 0.0207312               |                 | 224414 | 3.23  | 0.03 | 0.04 | 5.002000044 | 2.010020010 | 2000.0  | a.131.6 | -102.4 | 0.00    | -111.6  |         | 2000.7  |

| FBgn0037764 | CG9459   | DOWN | -0.35 | 0.11 | 3.03 | 0.002465582 | 0.080395518 | 537.5   | 442.8   | 477.2   | 479.0   | 643.0   | 616.8   | 566.3   |
|-------------|----------|------|-------|------|------|-------------|-------------|---------|---------|---------|---------|---------|---------|---------|
| FBgn0086690 | Plp      | DOWN | -0.45 | 0.15 | 3.03 | 0.002469405 | 0.080395518 | 278.6   | 228.8   | 194.7   | 249.9   | 388.9   | 294.5   | 314.5   |
| FBgn0001078 | ftz-f1   | DOWN | -0.48 | 0.16 | 3.02 | 0.002515842 | 0.081380611 | 389.8   | 250.1   | 267.6   | 400.9   | 511.3   | 456.6   | 452.3   |
| FBgn0261262 | CG42613  | DOWN | -0.51 | 0.17 | 3.02 | 0.002530119 | 0.081580125 | 241.0   | 179.7   | 143.0   | 223.9   | 368.3   | 244.1   | 287.1   |
| FBgn0262509 | nrm      | DOWN | -0.54 | 0.18 | 3.02 | 0.002555466 | 0.081872558 | 80.0    | 68.5    | 52.6    | 50.0    | 126.6   | 88.0    | 94.6    |
| FBgn0051104 | CG31104  | DOWN | -0.42 | 0.14 | 3.01 | 0.002583619 | 0.082227163 | 526.6   | 366.8   | 436.0   | 502.9   | 661.6   | 548.6   | 643.7   |
| FBgn0003016 | osp      | DOWN | -0.49 | 0.16 | 3.01 | 0.002591055 | 0.082227163 | 156.5   | 129.7   | 101.8   | 135.4   | 207.8   | 164.1   | 200.5   |
| FBgn0036816 | Indy     | DOWN | -0.24 | 0.08 | 3.01 | 0.002616043 | 0.082759106 | 4539.0  | 3986.1  | 4233.6  | 4197.3  | 4948.8  | 4952.0  | 4916.2  |
| FBgn0259110 | mmd      | DOWN | -0.51 | 0.17 | 2.99 | 0.002748089 | 0.086663862 | 97.7    | 68.5    | 74.6    | 79.1    | 141.0   | 119.6   | 103.7   |
| FBgn0020633 | Mcm7     | DOWN | -0.55 | 0.18 | 2.99 | 0.002807023 | 0.087889453 | 211.1   | 88.9    | 200.9   | 151.0   | 222.2   | 271.8   | 331.5   |
| FBgn0261574 | kug      | DOWN | -0.54 | 0.18 | 2.99 | 0.002813161 | 0.087889453 | 66.5    | 39.8    | 43.0    | 59.4    | 94.7    | 80.1    | 82.0    |
| FBgn0035001 | Slik     | DOWN | -0.35 | 0.12 | 2.98 | 0.002887155 | 0.089140701 | 656.1   | 591.9   | 543.9   | 564.4   | 823.1   | 676.1   | 737.2   |
| FBgn0052369 | CG32369  | DOWN | -0.38 | 0.13 | 2.98 | 0.002904344 | 0.089140701 | 733.0   | 632.7   | 579.9   | 650.8   | 981.5   | 804.6   | 748.5   |
| FBgn0029996 | UbcE2H   | DOWN | -0.41 | 0.14 | 2.98 | 0.002905616 | 0.089140701 | 1562.5  | 1294.1  | 1171.1  | 1432.8  | 2203.8  | 1566.6  | 1706.7  |
| FBgn0036801 | MYPT-75D | DOWN | -0.35 | 0.12 | 2.98 | 0.002906377 | 0.089140701 | 466.9   | 397.4   | 411.4   | 404.0   | 523.7   | 494.2   | 570.8   |
| FBgn0036534 | DCP2     | DOWN | -0.49 | 0.16 | 2.97 | 0.002950134 | 0.089934374 | 316.3   | 225.1   | 193.9   | 316.5   | 431.1   | 330.1   | 401.0   |
| FBgn0022764 | Sin3A    | DOWN | -0.37 | 0.13 | 2.97 | 0.003018227 | 0.091732215 | 829.0   | 740.2   | 642.1   | 739.3   | 1009.3  | 821.4   | 1022.0  |
| FBgn0033636 | tou      | DOWN | -0.45 | 0.15 | 2.96 | 0.003072034 | 0.093086343 | 188.4   | 138.0   | 143.9   | 171.8   | 207.8   | 210.5   | 258.6   |
| FBgn0004924 | Top1     | DOWN | -0.42 | 0.14 | 2.96 | 0.00310047  | 0.093665863 | 600.7   | 496.5   | 476.3   | 509.2   | 760.3   | 551.5   | 810.1   |
| FBgn0263930 | dally    | DOWN | -0.40 | 0.14 | 2.95 | 0.003142478 | 0.094650687 | 486.3   | 398.3   | 407.0   | 416.5   | 671.8   | 516.0   | 508.1   |
| FBgn0004795 | retn     | DOWN | -0.47 | 0.16 | 2.95 | 0.003181542 | 0.095258128 | 467.1   | 314.0   | 471.1   | 317.6   | 488.7   | 552.5   | 658.5   |
| FBgn0262562 | CG43102  | DOWN | -0.43 | 0.14 | 2.95 | 0.003181584 | 0.095258128 | 340.8   | 306.6   | 254.4   | 279.1   | 474.3   | 370.7   | 360.0   |
| FBgn0001122 | Galphao  | DOWN | -0.48 | 0.16 | 2.95 | 0.003214249 | 0.095950571 | 353.3   | 239.0   | 277.2   | 314.5   | 538.1   | 336.1   | 414.7   |
| FBgn0025740 | PlexB    | DOWN | -0.45 | 0.15 | 2.94 | 0.003254494 | 0.096785869 | 311.2   | 236.2   | 226.3   | 287.4   | 449.6   | 349.9   | 317.9   |
| FBgn0262743 | Fs(2)Ket | DOWN | -0.50 | 0.17 | 2.94 | 0.003265932 | 0.096785869 | 279.7   | 203.8   | 228.1   | 210.3   | 271.6   | 298.5   | 466.0   |
| FBgn0262738 | norpA    | DOWN | -0.41 | 0.14 | 2.94 | 0.003280714 | 0.096785869 | 457.7   | 378.9   | 379.0   | 387.3   | 638.9   | 474.4   | 487.6   |
| FBgn0033000 | CG14464  | DOWN | -0.33 | 0.11 | 2.94 | 0.00332227  | 0.097725245 | 664.6   | 608.6   | 550.9   | 586.2   | 793.3   | 751.2   | 697.3   |
| FBgn0003396 | shn      | DOWN | -0.52 | 0.18 | 2.94 | 0.003332461 | 0.097739237 | 123.3   | 73.2    | 78.1    | 121.8   | 163.6   | 135.4   | 167.5   |
| FBgn0037698 | CG16779  | DOWN | -0.53 | 0.18 | 2.93 | 0.003364052 | 0.098378968 | 74.9    | 48.2    | 52.6    | 61.4    | 111.1   | 101.8   | 74.1    |
| FBgn0030148 | CG3106   | DOWN | -0.44 | 0.15 | 2.93 | 0.003408728 | 0.099027922 | 411.7   | 281.6   | 404.4   | 317.6   | 453.7   | 553.5   | 459.2   |
| FBgn0005777 | PpD3     | DOWN | -0.29 | 0.10 | 2.93 | 0.003433612 | 0.099027922 | 726.0   | 638.3   | 665.8   | 636.2   | 812.8   | 805.6   | 797.5   |
| FBgn0010100 | Acon     | DOWN | -0.30 | 0.10 | 2.93 | 0.003434723 | 0.099027922 | 24387.1 | 20791.9 | 22582.1 | 21522.6 | 29047.9 | 28225.2 | 24152.9 |
| FBgn0034394 | CG15096  | DOWN | -0.46 | 0.16 | 2.93 | 0.003443236 | 0.099027922 | 11980.3 | 7965.7  | 7787.3  | 12759.5 | 14679.8 | 12575.6 | 16113.7 |
| FBgn0003044 | Pcl      | DOWN | -0.42 | 0.14 | 2.92 | 0.003447366 | 0.099027922 | 291.3   | 236.2   | 222.8   | 259.3   | 310.7   | 314.3   | 404.5   |
| FBgn0029903 | pod1     | DOWN | -0.36 | 0.12 | 2.92 | 0.003459647 | 0.099027922 | 527.3   | 409.4   | 495.6   | 450.9   | 553.5   | 636.5   | 617.5   |
| FBgn0263995 | сро      | DOWN | -0.49 | 0.17 | 2.92 | 0.003475629 | 0.099027922 | 399.8   | 299.2   | 305.3   | 324.9   | 625.5   | 503.1   | 340.7   |
| FBgn0262614 | pyd      | DOWN | -0.28 | 0.09 | 2.92 | 0.003483607 | 0.099027922 | 1064.2  | 931.9   | 959.7   | 974.6   | 1213.0  | 1157.4  | 1148.5  |

|                             |                 |         |          |           |            | Week 3       |             |                 |         |         |           |         |         |          |
|-----------------------------|-----------------|---------|----------|-----------|------------|--------------|-------------|-----------------|---------|---------|-----------|---------|---------|----------|
| Gene                        |                 |         | D        | ifferenti | al Express | ion Analysis |             |                 |         | Norma   | ized Expr | ession  |         |          |
| ID                          | name            | up/down | log2(FC) | std err   | wald stat  | p-value      | p-adj       | base mean       | J_3W_A  | J_3W_B  | J_3W_C    | C_3W_A  | C_3W_B  | C_3W_C   |
| FBgn0036110                 | Cpr6/Fb         | UP      | 0.79     | 0.15      | -5.37      | 7.94E-08     | 0.000114131 | 248.0           | 3/7.0   | 307.9   | 299.9     | 158.4   | 159.1   | 185.7    |
| FBgn0063497                 | GSTE3           | UP      | 0.55     | 0.11      | -5.19      | 2.11E-07     | 0.00020348  | 801.3           | 1012.5  | 1011.5  | 1092.3    | 11242.4 | 10160.4 | /33./    |
| FBgn0035670                 | CG10472         | UP      | 0.45     | 0.08      | -5.18      | 2.22E-07     | 0.00020548  | 15910.7         | 15/99.8 | 10035.5 | 15///.0   | 11245.4 | 12168.4 | 11840.0  |
| FBgn0051323FBgn0051086      | CG31086         | UP      | 0.54     | 0.11      | -5.16      | 2.43E-07     | 0.000203667 | 1043.3          | 1332.1  | 1276.4  | 1155.8    | 808.7   | 822.4   | 864.8    |
| FBgn0035335                 | CC16762         | UP      | 0.50     | 0.11      | -4.94      | 7.99E-07     | 0.000577979 | 672.0<br>5723.1 | 708.9   | 7090.0  | 8/0.5     | 2260.2  | 490.5   | 2074.0   |
| FBgn0035343                 | CG10/62         | UP      | 0.85     | 0.17      | -4.91      | 8.9/E-0/     | 0.000598011 | 5/32.1          | 2522.0  | 7089.0  | 11411.1   | 3360.5  | 3044.3  | 3974.0   |
| FBgn0040993FBgn0259201      | CG1/525         | UP      | 0.75     | 0.15      | -4.90      | 9.512-07     | 0.000598011 | 2845.9          | 3522.9  | 3151.1  | 4408.0    | 2028.9  | 1597.5  | 2507.2   |
| FBgn0033189                 | CG18155         | UP      | 0.46     | 0.09      | -4.80      | 1.1/E-06     | 0.000670708 | 24257.7         | 28900.7 | 20800.7 | 00215.0   | 19559.7 | 20545.0 | 200000.0 |
| EBap0042086-EBap0050160     | Drat<br>Teo42Eb |         | 0.44     | 0.09      | -4.60      | 2.71E-06     | 0.000870708 | 1641.2          | 9030.8  | 2279.2  | 2016.0    | 1090.6  | 1207.7  | 1205.4   |
| FBgn0027479                 | 002656          |         | 0.65     | 0.15      | -4.09      | 2.71E-00     | 0.001298929 | 1041.2          | E249.7  | 2376.2  | 2010.9    | 1089.0  | 2022.2  | 2020 1   |
| EBgp0039522                 | 002050          |         | 0.41     | 0.09      | -4.05      | 3.74E-00     | 0.001447247 | 4363.9          | 1620.6  | 1525.0  | 1920 E    | 4025.9  | 1167.2  | 1110 0   |
| EBgn0040775                 | 0013159         |         | 0.48     | 0.11      | 4.40       | 7.045.06     | 0.001338093 | 1411.1          | 1610.0  | 1065.0  | 1114.1    | 067.2   | 950.0   | 714.4    |
| FBgn0052103                 | LG12156         |         | 0.72     | 0.10      | -4.49      | 7.04E-06     | 0.002082    | 227.4           | 1010.9  | 265.0   | 224.2     | 171.0   | 122.4   | 176.6    |
| EBgn0023550                 | CG18031         | LID     | 0.05     | 0.15      | -4.40      | 1.05E-05     | 0.002113738 | 718.2           | 790.2   | 203.0   | 870.5     | 586.5   | 601.0   | 502.5    |
| EBgn0031726                 | CU160001        | LIP     | 0.40     | 0.10      | -4.41      | 1.05E-05     | 0.002612017 | 05.8            | 105.6   | 136.9   | 153.1     | 53.5    | 58.3    | 67.2     |
| EBgn0021277                 | CC12047         | LID     | 0.56     | 0.10      | -4.24      | 1.000-05     | 0.002012017 | 2427.6          | 4069.5  | 2960.5  | 155.1     | 2446.6  | 2429.4  | 2165 1   |
| EBgn0051354EBgn0013279      | Hep70Bc         |         | 0.30     | 0.13      | -4.34      | 1.401-05     | 0.003270404 | 122.4           | 155.6   | 258.8   | 116.6     | 2440.0  | 67.2    | 60.5     |
| EBgn0036381                 | CG87/15         | LID     | 0.55     | 0.13      | -4.23      | 2.265-05     | 0.003571075 | 11/70 0         | 13210.7 | 11871.8 | 160/0 5   | 8579.7  | 07.2    | 8787.7   |
| FBgn0031971                 | Sirun           | LIP     | 0.55     | 0.13      | -4.24      | 2.200-05     | 0.004590702 | 5983.5          | 7825.8  | 6426.7  | 7404.3    | 4888.1  | 4054.5  | 5301.3   |
| EBgn0032097                 | 000568          | LIP     | 0.55     | 0.12      | -4.20      | 2.550.05     | 0.005041332 | 055.7           | 1218.2  | 1222.5  | 1096.0    | 724.6   | 964.0   | 508.2    |
| EBgn0035231                 | Cct2            | LID     | 0.38     | 0.14      | -4.20      | 2.000-05     | 0.005271755 | 10/11 3         | 1210.2  | 11/11 3 | 1221 /    | 806.1   | 857.0   | 807.8    |
| FBgn0250836                 | CG8628          | UP      | 0.41     | 0.10      | -4.15      | 3.31E-05     | 0.005747804 | 605.2           | 717 9   | 724.6   | 679.9     | 526.8   | 491.2   | 496.8    |
| FBgn0043806                 | CG32032         | UP      | 0.43     | 0.11      | -4.13      | 3 55E-05     | 0.006061409 | 1426.0          | 1710.0  | 1508.9  | 1744 1    | 1244.9  | 1171 3  | 1176.9   |
| FBgn0043791                 | nhu             | LIP     | 0.45     | 0.10      | -4.12      | 3.84E-05     | 0.006336354 | 6389.4          | 7230.2  | 6757.4  | 10278.2   | 4115.4  | 4463.7  | 5491.6   |
| EBgn00/0609                 | 063348          | LID     | 0.54     | 0.13      | -4.12      | 3.875-05     | 0.006336354 | 670.7           | 871.7   | 8/18 3  | 758.0     | 464.0   | 617.8   | 518.4    |
| FBgn0051106                 | CG31106         | LIP     | 0.54     | 0.15      | -4.10      | 4.05E-05     | 0.006474805 | 325.6           | 386.3   | 302.1   | 446.7     | 285.0   | 245.1   | 198.2    |
| FBgn0038074                 | Gomt            | LIP     | 0.60     | 0.15      | -4.09      | 4.05E-05     | 0.006618558 | 9866.0          | 12459.4 | 10350.7 | 14198 5   | 6390.3  | 6676.8  | 9120.4   |
| EBgp0000473                 | Cyn6a2          | LIP     | 0.00     | 0.15      | -4.03      | 4.376-05     | 0.006628306 | 681.2           | 705.7   | 760.3   | 702.4     | 578.2   | 569.3   | 582.2    |
| FBgn0029838                 | CG/666          | LIP     | 0.30     | 0.10      | -4.06      | 4.462.05     | 0.007063645 | 1/150 0         | 1637.8  | 1700.5  | 1588.0    | 1258.3  | 1237.5  | 1246.4   |
| FBgn0035926                 | CG5804          | LIP     | 0.55     | 0.10      | -4.00      | 6.01E-05     | 0.007704013 | 2106.2          | 2638.2  | 2570.3  | 2382.4    | 1509.3  | 1528.1  | 2008.7   |
| FBgn0000565                 | Ein71CD         | LIP     | 0.51     | 0.13      | -3.97      | 7.05E-05     | 0.008445497 | 2507.9          | 3864.7  | 2514.2  | 2905.1    | 1818.0  | 1904.7  | 2040.6   |
| EBgn0036024                 | CG18180         | LIP     | 0.44     | 0.14      | -3.86      | 0.000112021  | 0.011617819 | 3405.6          | 3524.8  | 3859.0  | 4538.8    | 2812.9  | 2854.5  | 2843.8   |
| FBgn0033297                 | Mal-A8          | LIP     | 0.57     | 0.11      | -3.83      | 0.000130028  | 0.012635382 | 1534.8          | 1762.8  | 1672.0  | 2264.7    | 1155.4  | 1389.7  | 963.9    |
| EBgn0035189                 | CG9119          | LIP     | 0.56     | 0.15      | -3.81      | 0.000130028  | 0.012035302 | 2673.4          | 2834.6  | 2834.4  | 4257.7    | 1902.4  | 1990.7  | 2220.6   |
| FBgn0039452                 | CG14245         | UP      | 0.50     | 0.15      | -3.80      | 0.000143429  | 0.013374754 | 1340.5          | 1363.6  | 1244.8  | 2850.9    | 859.1   | 883.6   | 840.8    |
| EBgn0029580                 | CG14778         | UP      | 0.53     | 0.14      | -3.76      | 0.000170092  | 0.014751039 | 191.7           | 236.2   | 238.6   | 223.9     | 154.3   | 142.3   | 155.0    |
| FBgn0263621                 | CG43630         | UP      | 0.62     | 0.17      | -3.71      | 0.000205986  | 0.016985368 | 316.6           | 378.9   | 410.6   | 431.1     | 201.7   | 172.0   | 305.3    |
| FBgn0036183                 | CG6083          | UP      | 0.45     | 0.12      | -3.70      | 0.000216273  | 0.017405676 | 362.8           | 446.5   | 435.1   | 397.8     | 309.7   | 298.5   | 289.4    |
| FBgn0267408                 | AOX1            | UP      | 0.38     | 0.10      | -3.65      | 0.000266482  | 0.019711836 | 7539.7          | 7730.4  | 8841.8  | 9296.3    | 6392.3  | 6839.8  | 6137.6   |
| FBgn0050360                 | Mal-A6          | UP      | 0.50     | 0.14      | -3.63      | 0.000287787  | 0.02082836  | 8633.8          | 8459.4  | 10270.8 | 12414.8   | 6555.9  | 7661.2  | 6440.7   |
| FBgn0019928                 | Ser8            | UP      | 0.59     | 0.16      | -3.62      | 0.000290185  | 0.020851894 | 339.8           | 378.9   | 372.8   | 539.4     | 294.3   | 207.6   | 246.1    |
| FBgn0051547                 | CG31547         | UP      | 0.35     | 0.10      | -3.62      | 0.000299239  | 0.021199573 | 1273.0          | 1404.3  | 1451.8  | 1451.5    | 1048.4  | 1157.4  | 1124.5   |
| FBgn0025814                 | Møstl           | UP      | 0.32     | 0.09      | -3.60      | 0.000315054  | 0.022010031 | 3463.5          | 3793.4  | 3819.5  | 3997.4    | 2881.8  | 3134.3  | 3154.8   |
| FBgn0030895                 | CG7135          | UP      | 0.52     | 0.14      | -3.59      | 0.000333416  | 0.023032262 | 234.7           | 257.5   | 275.5   | 323.8     | 197.5   | 169.0   | 184.6    |
| FBgn0261508                 | CG42656         | UP      | 0.53     | 0.15      | -3.59      | 0.000334265  | 0.023032262 | 1468.4          | 1840.7  | 1905.4  | 1650.4    | 928.0   | 1030.9  | 1454.9   |
| FBgn0037166                 | CG11426         | UP      | 0.36     | 0.10      | -3.56      | 0.000377562  | 0.025154103 | 1317.0          | 1406.2  | 1457.1  | 1622.3    | 1154.4  | 1114.9  | 1147.3   |
|                             | lectin-         |         | 0.00     | 0.10      | 0.20       | 0.000077202  | 0.025151200 | 101/10          | 1100.2  | 1.57.11 | TOPELIO   | 110     |         | 110.0    |
| FBgn0053532                 | 37Da            | UP      | 0.64     | 0.18      | -3.52      | 0.000430159  | 0.02773972  | 1008.4          | 1372.9  | 1336.1  | 1346.3    | 820.0   | 838.2   | 337.2    |
| FBgn0031068                 | Alr             | UP      | 0.41     | 0.12      | -3.48      | 0.000498466  | 0.02955541  | 1103.3          | 1456.2  | 1193.9  | 1178.7    | 924.9   | 910.3   | 955.9    |
| -<br>FBgn0051354FBgn0013278 | Hsp70Bb         | UP      | 0.64     | 0.19      | -3.48      | 0.000498838  | 0.02955541  | 140.6           | 191.8   | 271.9   | 113.5     | 84.4    | 90.9    | 91.1     |
| FBgn0033204                 | CG2065          | UP      | 0.50     | 0.14      | -3.47      | 0.000511298  | 0.029732111 | 239.5           | 285.3   | 301.8   | 281.1     | 172.8   | 221.4   | 174.3    |
| FBgn0028978                 | trbl            | UP      | 0.36     | 0.10      | -3.45      | 0.000550402  | 0.031107    | 1163.1          | 1221.9  | 1389.6  | 1345.3    | 997.0   | 969.6   | 1055.0   |
| FBgn0085359                 | CG34330         | UP      | 0.41     | 0.12      | -3.45      | 0.000557974  | 0.031358787 | 2153.0          | 2142.6  | 2692.3  | 2651.0    | 1706.9  | 1943.2  | 1781.9   |
| FBgn0035904                 | GstO3           | UP      | 0.30     | 0.09      | -3.44      | 0.000575536  | 0.032132183 | 2045.6          | 2255.7  | 2247.5  | 2312.6    | 1890.0  | 1751.5  | 1816.1   |
| FBgn0032162                 | CG4592          | UP      | 0.40     | 0.12      | -3.44      | 0.000578124  | 0.032132183 | 720.1           | 783.7   | 842.2   | 864.2     | 597.8   | 560.4   | 672.2    |
| FBgn0027521FBgn0030737      | CG9914          | UP      | 0.53     | 0.16      | -3.42      | 0.000634086  | 0.035048944 | 978.5           | 1144.0  | 930.8   | 1540.0    | 700.7   | 720.6   | 835.1    |
| FBgn0028920                 | CG8997          | UP      | 0.39     | 0.12      | -3.41      | 0.000652495  | 0.035758637 | 2073.5          | 2447.4  | 2059.8  | 2656.2    | 1797.4  | 1713.9  | 1766.0   |
| FBgn0000261                 | Cat             | UP      | 0.29     | 0.09      | -3.39      | 0.00070915   | 0.038562401 | 27729.3         | 30778.9 | 30070.3 | 31184.4   | 26343.0 | 23473.9 | 24525.4  |
| FBgn0039486                 | caix            | UP      | 0.32     | 0.10      | -3.37      | 0.000748941  | 0.040076337 | 1116.7          | 1250.6  | 1258.0  | 1244.3    | 930.1   | 1025.0  | 992.4    |
| FBgn0040060                 | yip7            | UP      | 0.37     | 0.11      | -3.37      | 0.000754431  | 0.040156486 | 12039.2         | 13255.1 | 15713.3 | 12300.3   | 10567.4 | 10035.4 | 10363.4  |
| FBgn0032088                 | CG13102         | UP      | 0.53     | 0.16      | -3.36      | 0.000768025  | 0.040241305 | 169.2           | 216.8   | 206.2   | 204.1     | 156.4   | 107.7   | 124.2    |
| FBgn0037071                 | CG7632          | UP      | 0.34     | 0.10      | -3.36      | 0.000772577  | 0.040270064 | 973.8           | 1162.6  | 1050.1  | 1077.7    | 871.4   | 826.3   | 854.5    |
| FBgn0261560                 | Thor            | UP      | 0.34     | 0.10      | -3.32      | 0.000892747  | 0.043353876 | 10741.5         | 11739.6 | 11431.4 | 13117.7   | 10073.6 | 8760.3  | 9326.6   |
| FBgn0053296                 | CG33296         | UP      | 0.43     | 0.13      | -3.32      | 0.000914419  | 0.044014624 | 261.8           | 298.3   | 302.7   | 320.7     | 214.0   | 203.6   | 231.3    |
| FBgn0031523                 | CG15408         | UP      | 0.54     | 0.16      | -3.30      | 0.000969183  | 0.045727423 | 234.6           | 253.8   | 269.3   | 353.0     | 150.2   | 167.0   | 214.2    |
| FBgn0039109                 | CG10365         | UP      | 0.26     | 0.08      | -3.30      | 0.000971871  | 0.045727423 | 4845.8          | 5285.8  | 5225.8  | 5371.8    | 4335.6  | 4412.3  | 4443.4   |
| FBgn0003068                 | per             | UP      | 0.35     | 0.10      | -3.29      | 0.000989924  | 0.04631924  | 1095.1          | 1194.1  | 1288.7  | 1229.7    | 875.6   | 968.6   | 1014.0   |
|                             | lectin-         |         |          |           |            |              |             |                 |         |         |           |         |         |          |
| FBgn0053533                 | 37Db            | UP      | 0.35     | 0.11      | -3.28      | 0.001053096  | 0.048709303 | 886.0           | 1023.6  | 921.1   | 1065.2    | 756.2   | 757.1   | 793.0    |
| FBgn0034292                 | CG5767          | UP      | 0.45     | 0.14      | -3.27      | 0.001060372  | 0.048709303 | 1279.2          | 1422.9  | 1742.2  | 1366.1    | 1189.4  | 1062.5  | 892.1    |
| FBgn0039184                 | CG6432          | UP      | 0.38     | 0.12      | -3.27      | 0.001069528  | 0.048890264 | 1183.1          | 1172.8  | 1438.7  | 1466.1    | 1047.4  | 981.5   | 992.4    |
| FBgn0004431                 | LysX            | UP      | 0.60     | 0.18      | -3.25      | 0.001143809  | 0.050808323 | 138.6           | 167.7   | 224.6   | 161.4     | 134.8   | 75.1    | 68.4     |

| FBgn0038658            | CG14292   | UP | 0.46 | 0.14 | -3.25 | 0.00114647  | 0.050808323 | 20348.2 | 20182.4 | 21801.4 | 30564.8 | 15876.4 | 16346.4 | 17318.0 |
|------------------------|-----------|----|------|------|-------|-------------|-------------|---------|---------|---------|---------|---------|---------|---------|
| FBgn0031490            | CG17264   | UP | 0.49 | 0.15 | -3.25 | 0.001159162 | 0.051145473 | 264.9   | 309.4   | 332.5   | 319.7   | 238.7   | 225.4   | 164.1   |
| FBgn0032669            | CG15155   | UP | 0.52 | 0.16 | -3.24 | 0.001210667 | 0.052271698 | 144.9   | 171.4   | 209.7   | 155.1   | 102.9   | 110.7   | 119.6   |
| FBgn0001228FBgn0001223 | Hsp22     | UP | 0.55 | 0.17 | -3.23 | 0.001243651 | 0.053013239 | 41505.3 | 71986.6 | 36941.8 | 47796.5 | 28185.7 | 27149.8 | 36971.6 |
| FBgn0030737            | CG9914    | UP | 0.51 | 0.16 | -3.21 | 0.001338108 | 0.056799015 | 3893.0  | 4190.8  | 3816.0  | 6338.1  | 2653.4  | 2850.6  | 3509.2  |
| FBgn0038032FBgn0038033 | CG10096   | UP | 0.41 | 0.13 | -3.19 | 0.001426986 | 0.058971138 | 8913.9  | 11381.1 | 11105.1 | 8568.4  | 7854.3  | 7873.7  | 6700.5  |
| FBgn0050489FBgn0053503 | Cyp12d1-p | UP | 0.42 | 0.13 | -3.16 | 0.001557979 | 0.062670644 | 624.6   | 800.4   | 625.5   | 762.2   | 575.1   | 485.3   | 499.0   |
| FBgn0020545            | kraken    | UP | 0.34 | 0.11 | -3.16 | 0.001579168 | 0.062774648 | 4356.7  | 4645.6  | 4836.3  | 5259.4  | 3447.7  | 3790.6  | 4160.9  |
| FBgn0036136            | Ufd1-like | UP | 0.32 | 0.10 | -3.16 | 0.001584966 | 0.062774648 | 1507.0  | 1793.4  | 1574.7  | 1689.9  | 1366.3  | 1263.2  | 1354.7  |
| FBgn0262146            | MtnE      | UP | 0.50 | 0.16 | -3.14 | 0.001690958 | 0.065934271 | 2480.3  | 2685.5  | 2589.6  | 3832.8  | 1882.8  | 1528.1  | 2363.0  |
| FBgn0034909            | CG4797    | UP | 0.37 | 0.12 | -3.12 | 0.001790475 | 0.068954428 | 1049.7  | 1146.8  | 1130.8  | 1322.4  | 860.1   | 840.2   | 998.1   |
| FBgn0001220            | Hsc70-5   | UP | 0.32 | 0.10 | -3.12 | 0.00180954  | 0.068954428 | 18523.6 | 22587.2 | 21008.4 | 18550.9 | 16417.5 | 16690.4 | 15886.9 |
| FBgn0260747            | CG5010    | UP | 0.27 | 0.09 | -3.11 | 0.001867858 | 0.070323707 | 54581.8 | 61379.9 | 56299.2 | 62139.7 | 50003.7 | 47371.8 | 50296.1 |
| FBgn0034605            | CG15661   | UP | 0.41 | 0.13 | -3.11 | 0.001886326 | 0.070544388 | 561.6   | 665.1   | 551.8   | 746.6   | 466.1   | 460.6   | 479.7   |
| FBgn0051864FBgn0032393 | Qtzl      | UP | 0.36 | 0.12 | -3.11 | 0.001893683 | 0.070551851 | 742.3   | 831.9   | 872.0   | 833.0   | 627.6   | 576.2   | 713.2   |
| FBgn0027564            | CG3149    | UP | 0.29 | 0.09 | -3.10 | 0.001936064 | 0.070551851 | 1482.2  | 1572.9  | 1633.4  | 1710.8  | 1292.3  | 1338.3  | 1345.6  |
| FBgn0260933FBgn0031263 | Tspo      | UP | 0.30 | 0.10 | -3.10 | 0.001940649 | 0.070551851 | 3142.5  | 3586.8  | 3368.6  | 3538.2  | 2726.5  | 2604.5  | 3030.6  |
| FBgn0266268            | FeCH      | UP | 0.30 | 0.10 | -3.09 | 0.002030335 | 0.072431182 | 2559.2  | 2918.9  | 2716.8  | 2910.3  | 2453.8  | 2135.0  | 2220.6  |
| FBgn0038083            | CG5999    | UP | 0.50 | 0.16 | -3.08 | 0.002047075 | 0.072505726 | 126.3   | 141.7   | 169.3   | 153.1   | 99.8    | 108.7   | 85.5    |
| FBgn0010387            | Dbi       | UP | 0.42 | 0.14 | -3.08 | 0.002068363 | 0.072505726 | 5667.4  | 6696.6  | 6026.7  | 7210.7  | 4370.6  | 3965.5  | 5734.3  |
| FBgn0050269FBgn0050273 | CG30269   | UP | 0.30 | 0.10 | -3.06 | 0.002196416 | 0.074955255 | 1301.4  | 1364.5  | 1468.5  | 1512.9  | 1193.5  | 1099.1  | 1170.1  |
| FBgn0037378            | CG2046    | UP | 0.31 | 0.10 | -3.06 | 0.002215114 | 0.075030456 | 1132.8  | 1265.4  | 1251.8  | 1273.4  | 921.9   | 1042.8  | 1041.4  |
| FBgn0041607            | AsnS      | UP | 0.37 | 0.12 | -3.05 | 0.002284281 | 0.075841159 | 1169.7  | 1220.0  | 1422.9  | 1376.5  | 931.1   | 927.1   | 1140.5  |
| FBgn0001230            | Hsp68     | UP | 0.57 | 0.19 | -3.04 | 0.002335309 | 0.076698018 | 483.0   | 567.9   | 1056.2  | 339.4   | 267.5   | 383.5   | 283.7   |
| FBgn0013275FBgn0013276 | Hsp70Aa   | UP | 0.47 | 0.15 | -3.04 | 0.002340586 | 0.076698018 | 2038.7  | 2813.3  | 6491.6  | 1003.8  | 609.1   | 635.6   | 679.0   |
| FBgn0033428            | Updo      | UP | 0.28 | 0.09 | -3.03 | 0.002479156 | 0.080452616 | 2333.7  | 2652.1  | 2476.5  | 2586.5  | 2043.3  | 2031.2  | 2212.6  |
| FBgn0033928            | Arc2      | UP | 0.30 | 0.10 | -3.02 | 0.00254783  | 0.081872558 | 1400.9  | 1546.1  | 1472.0  | 1654.5  | 1192.5  | 1247.4  | 1293.2  |
| FBgn0083972            | CG34136   | UP | 0.43 | 0.14 | -3.01 | 0.002587644 | 0.082227163 | 445.5   | 552.1   | 445.6   | 577.9   | 420.8   | 343.0   | 333.8   |
| FBgn0016123            | Alp4      | UP | 0.41 | 0.14 | -2.99 | 0.002781981 | 0.087458536 | 4752.7  | 5384.9  | 5141.6  | 6109.0  | 3213.1  | 3956.6  | 4711.2  |
| FBgn0039311            | CG10513   | UP | 0.28 | 0.09 | -2.98 | 0.002841148 | 0.088489004 | 1128.4  | 1228.3  | 1238.7  | 1263.0  | 1042.2  | 993.4   | 1004.9  |
| FBgn0035176            | CG13905   | UP | 0.48 | 0.16 | -2.98 | 0.002873022 | 0.089140701 | 2066.9  | 2029.6  | 2222.9  | 3286.2  | 1678.1  | 1864.2  | 1320.5  |
| FBgn0028583            | lcs       | UP | 0.47 | 0.16 | -2.97 | 0.002930364 | 0.089603216 | 54219.9 | 69820.8 | 56296.6 | 70219.8 | 37855.9 | 33991.6 | 57134.4 |
| FBgn0033696            | Cyp6g2    | UP | 0.46 | 0.16 | -2.94 | 0.003271791 | 0.096785869 | 315.2   | 365.9   | 323.7   | 447.7   | 264.4   | 204.6   | 284.8   |
| FBgn0036831            | CG6839    | UP | 0.46 | 0.16 | -2.92 | 0.00345883  | 0.099027922 | 10515.8 | 12564.1 | 10312.9 | 15208.5 | 8086.9  | 6431.6  | 10491.0 |
| FBgn0259992            | CG42489   | UP | 0.49 | 0.17 | -2.92 | 0.00348468  | 0.099027922 | 101.7   | 128.8   | 113.2   | 132.2   | 84.4    | 68.2    | 83.2    |

APPENDIX B

LIST OF GO TERMS,

WEEK 3

| 60.0         Constant         Constant <thconstant< th="">         Constant         <thc< th=""><th></th><th>Dow</th><th>nregulated Go Ter</th><th>ms (Full List)</th><th></th><th></th><th></th></thc<></thconstant<>                                                                                                                                                                                                                                                                                       |            | Dow                                                | nregulated Go Ter  | ms (Full List)              |                          |                  |          |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|----------------------------------------------------|--------------------|-----------------------------|--------------------------|------------------|----------|
| 0.004889         automical structure development         1         120 cord 320 genes, 57.8, 120 cord 13000, 32.04         53.54.77         0.005           0.0028092         developmental process         3         100 cord 320 genes, 84.8, 1274 cord 13000, 32.04         55.54.8         0.005           0.0028092         regulation of biological process         3         130 cord 320 genes, 84.8, 1274 cord 13000, 32.04         1416.13         0.005           0.0028092         regulation of biological process         3         130 cord 320 genes, 82.8, 1275 cord 13000, 32.04         140.803         0.005           0.0028092         regulation of biological process         3         130 cord 320 genes, 62.8, 1275 cord 13000, 1246         140.804         140.804         140.804         140.804         140.804         140.804         140.804         140.804         140.804         140.804         140.804         140.804         140.804         140.804         140.804         140.804         140.804         140.804         140.804         140.804         140.804         140.804         140.804         140.804         140.804         140.804         140.804         140.804         140.804         140.804         140.804         140.804         140.804         140.804         140.804         140.804         140.804         140.804         140.804 </th <th>GO_ID</th> <th>TERM</th> <th>GO Hierarchy Level</th> <th>CLUSTER FREQUENCY</th> <th>GENOME FREQUENCY</th> <th>CORRECTED_PVALUE</th> <th>FDR_RATE</th>                                                                                                                                                                                                                        | GO_ID      | TERM                                               | GO Hierarchy Level | CLUSTER FREQUENCY           | GENOME FREQUENCY         | CORRECTED_PVALUE | FDR_RATE |
| 0.0003520         developmental process         1         14.0 ord 7 20 genes, 8.1.8         128 cord 7 20 genes, 9.1.8         128 cord 7 20 genes, 9.2.8         12                                                                                                                                      | GO:0048856 | anatomical structure development                   | 3                  | 139 out of 240 genes, 57.9% | 2703 out of 13900, 19.4% | 5.32E-37         | 0.00%    |
| 0.00000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | GO:0032502 | developmental process                              | 2                  | 141 out of 240 genes, 58.8% | 2826 out of 13900, 20.3% | 3.04E-36         | 0.00%    |
| 0.00000748         regulation of relating process         3         120 out 32 arg each, 82.5h         127 and 12800, 24.9h         1.61.6-33         0.00h           0.00000164         eiii development         4         07 out of 320 gerss, 40.4h         127 out of 3200, 10.1h         1.108-52         0.00h           0.00000164         eiii development         4         100 out of 320 gerss, 40.4h         128 out of 3200, 10.1h         1.018-52         0.00h           0.00000167         mutcellater regarism forevelopment         4         120 out of 320 gerss, 42.5h         120 out 3100, 10.5h         1.028-32         0.00h           0.00000162         boltopment         4         120 out of 320 gerss, 42.5h         124 out at 320, 12.6h         128.5h         124.0h         128.5h         128.0h         128.5h                                                                                                                                                                                                                                                                                                                                                                                                                                 | GO:0048869 | cellular developmental process                     | 3                  | 109 out of 240 genes, 45.4% | 1734 out of 13900, 12.5% | 5.90E-34         | 0.00%    |
| 0         Openation of biological process         3         1.94 or of 240 genes, 84.8h         178 or of 1300, 72.78         4.448-93         0.00h           0         00004466         ueil differentation         4         100 or of 240 genes, 44.2h         198 or of 1300, 72.78         4.448-93         0.00h           0         0000515         ueil differentation         4         100 or of 240 genes, 42.5h         124 or of 1300, 72.5h         4.00h         1300, 0.10h         124.8h         0.00h           0.0000505         automical program         5         100 or of 240 genes, 42.5h         122 or of 1300, 72.6h         4.20h         0.00h           0.0000505         multicable organism protest         2         110 or of 240 genes, 42.5h         122 or of 1300, 12.4h         7.28h         4.20h         0.00h           0.0000505         ueinitization to hispensis         2         110 or of 240 genes, 12.7h         1179 or of 1300, 12.5h         1428-21         0.00h           0.0000505         ueinitization to hispensis         2         114 or of 240 genes, 12.7h         1179 or of 1300, 12.5h         1428-21         0.00h           0.0000505         ueinitization or biological process         3         100 or of 240 genes, 12.7h         1179 or of 1300, 12.5h         1428-21         0.00h           0.000050                                                                                                                                                                                                                                                                                                                                                                                                            | GO:0050794 | regulation of cellular process                     | 3                  | 152 out of 240 genes, 63.3% | 3470 out of 13900, 24.9% | 1.61E-33         | 0.00%    |
| 0.004484         Control of a provide stage method         4         0 round rule grants, 44, 24         168 out rules, 01, 136         1.02-32         0.00%           0.0000004         Ge of a rules, 44, 25         168 out rules, 01, 136         1.02-32         0.00%           0.0000057         Multicellular organization development         4         120 out 720 grants, 425         122 out rules, 01, 054         1.02-32         0.00%           0.0000505         Anatomical tructure morphogenesis         4         46 out of 240 grants, 425         122 out rules, 01, 054         1.26-32         0.00%           0.00005050         Columbration development organization or biogenesis         2         124 out of 240 grants, 12, 158         0.00%         0.00%         0.00%         0.00%         0.00%         0.00%         0.00%         0.00%         0.00%         0.00%         0.00%         0.00%         0.00%         0.00%         0.00%         0.00%         0.00%         0.00%         0.00%         0.00%         0.00%         0.00%         0.00%         0.00%         0.00%         0.00%         0.00%         0.00%         0.00%         0.00%         0.00%         0.00%         0.00%         0.00%         0.00%         0.00%         0.00%         0.00%         0.00%         0.00%         0.00% <t< td=""><td>GO:0050789</td><td>regulation of biological process</td><td>3</td><td>158 out of 240 genes, 65.8%</td><td>3783 out of 13900, 27.2%</td><td>4.49E-33</td><td>0.00%</td></t<>                                                                                                                                                                                                                                               | GO:0050789 | regulation of biological process                   | 3                  | 158 out of 240 genes, 65.8% | 3783 out of 13900, 27.2% | 4.49E-33         | 0.00%    |
| 0.030034         all afferentiation         4         100 out 300 grass, 44.25         128 du of 300 grass, 44.25         128 du of 3100 grass, 44.25         128 du of 3100 grass, 42.55         128 du of 3100 grass, 32.55         128 du of 3                                                                                                                             | GO:0048468 | cell development                                   | 4                  | 97 out of 240 genes, 40.4%  | 1397 out of 13900, 10.1% | 1.02E-32         | 0.00%    |
| 0.0007373         multicibilitor organism development         4         113 out of 20 genes, 5137         421 out of 12000, 1046         421 out 712000, 1046         421 out 712000, 1046         421 out 712000, 1046         421 out 712000, 1246         726428         0.000           00.0000073         anatomical structure morphogenesis         2         112 out 71200, 1246         726428         0.000           00.0010731         multicibilitor organesis organismic         2         112 out 71200, 1246         1200, 1246         1200, 1246         1200, 1246         1200, 1246         1200, 1246         1200, 1246         1200, 1246         1200, 1246         1200, 1246         1200, 1246         1200, 1246         1200, 1246         1200, 1246         1200, 1246         1200, 1246         1200, 1246         1200, 1246         1200, 1246         1200, 1246         1200, 1246         1200, 1246         1200, 1246         1200, 1246         1200, 1246         1200, 1246         1200, 1246         1200, 1246         1200, 1246         1200, 1246         1200, 1246         1200, 1246         1200, 1246         1200, 1246         1200, 1246         1200, 1246         1200, 1246         1200, 1246         1200, 1246         1200, 1246         1200, 1246         1200, 1246         1200, 1246         1200, 1246         1200, 1246         1200, 1246         1200, 1246                                                                                                                                                                                                                                                                                                                                                                 | GO:0030154 | cell differentiation                               | 4                  | 106 out of 240 genes, 44.2% | 1688 out of 13900, 12.1% | 1.13E-32         | 0.00%    |
| 0.005507         biological regulation         2         186 out of 202 genes, 83.0         121: out of 13000, 10.96         1.45:0.01           0.0005553         astamical structure morphogenesi         4         08 loud 70 202 genes, 03.05         122: out of 13000, 10.96         1.05:0.07           0.0005530         multicellular regulation all procesi         2         147 out of 20 genes, 03.05         125: out of 13000, 12.55         4.05:0.22         0.005           0.0005530         cellular component regulation to tisgenesis         2         112: out of 20 genes, 03.75         129: out of 13000, 12.55         4.05:0.22         0.005           0.00051322         regulation of metabolic procesis         3         110: out of 20 genes, 03.76         129: out of 13000, 14.75         1.45: etc.11         0.005           0.00051821         regulation divelopment         6         72: out of 1400 genes, 30.76         129: etc.11         0.005           0.00051821         patible regulation divelopment         6         88: out of 1400 genes, 30.76         129: out of 13000, 10.84         14: etc.11         0.005           0.00005881         feast development         4         88: out of 1400 genes, 30.76         129: out of 13000, 10.84         14: etc.11         0.005           0.00005882         regulation of tallular procesa         3         79: out of 2                                                                                                                                                                                                                                                                                                                                                               | GO:0007275 | multicellular organism development                 | 4                  | 123 out of 240 genes, 51.3% | 2346 out of 13900, 16.9% | 1.02E-31         | 0.00%    |
| e0.0000853         matternical structure morphogenesis         4         99.007 420 genes, 42.08         122.007 43000, 12.48         7.264-29         0.00%           00.0004573         muticellular organismal process         2         147 out 74 20 genes, 52.08         252.007 13000, 12.48         7.264-29         0.00%           00.0016453         multicellular organismics         2         124 out 74 20 genes, 52.08         268 out of 13000, 12.56         4.592-22         0.00%           00.0016453         maintain organ development         6         7.60 out 74 20 genes, 52.08         286 out of 13000, 12.56         4.592-22         0.00%           00.0016453         meguitation of metabolic process         3         100 out 74 20 genes, 32.66         1020 out 74 3000, 12.56         4.252-21         0.00%           00.0016483         positive reguitation of biological process         2         83 out 74 2000, 12.56         4.252 out 74 3000, 12.56         4.252-21         0.00%           00.0016483         reguitation of telluar process         3         75 out 74 2000, 255         4.252-21         0.00%           00.0020284         reguitation of telluar proces         3         75 out 74 2000, 255         4.252-22         0.00%           00.0020383         reguitation development         5         35 out 74 2000, 255         4.252-22 <td>GO:0065007</td> <td>biological regulation</td> <td>2</td> <td>164 out of 240 genes, 68.3%</td> <td>4221 out of 13900, 30.4%</td> <td>4.50E-31</td> <td>0.00%</td>                                                                                                                                                                                                               | GO:0065007 | biological regulation                              | 2                  | 164 out of 240 genes, 68.3% | 4221 out of 13900, 30.4% | 4.50E-31         | 0.00%    |
| 00004321         ystem development         5         100 ord 240 genes, 2438         Y22 ord 713000, 12.44         7.046-29         0.00%           00003230         multicellar organization         3         120 ord 240 genes, 5438         Y42 ord 713000, 22.65         1.050-27         0.00%           000031240         celluit component organization         3         121 ord 240 genes, 5478         Y284 ord 713000, 21.65         0.0574         0.00%           000031242         regulation of metabolic process         3         100 ord 7240 genes, 3478         Y284 ord 713000, 1476         1.056-21         0.00%           00004512         positive regulation of biological process         3         100 ord 724 genes, 3464         147 ord 713000, 1476         1.252-21         0.00%           000004523         positive regulation of celluits process         3         76 ord 7240 genes, 3464         147 ord 713000, 1276         7242-22         0.00%           000003528         feasitive development         4         84 ord 7240 genes, 3464         147 ord 73000, 0.2%         7.442-20         0.00%           000003528         positive regulation of cellular process         3         76 ord 7240 genes, 3464         147 ord 7380, 0.2%         7.442-20         0.00%           000003528         positive regulation development         4         8                                                                                                                                                                                                                                                                                                                                                                                          | GO:0009653 | anatomical structure morphogenesis                 | 4                  | 98 out of 240 genes, 40.8%  | 1512 out of 13900, 10.9% | 1.29E-30         | 0.00%    |
| 0.0022301         multicellular component organisation         2         147 out of 240 genes, 31.94         342 out of 13800, 26.24         1.02.247         0.06%           0.00204503         cellular component organisation or biogenesis         2         124 out of 240 genes, 31.74         1997 out of 13800, 26.95         6.606 > 22.0         0.06%           0.00204503         animal organ development         6         76 out of 240 genes, 31.74         1997 out of 13800, 24.95         1.056 out of 340 genes, 31.74         1.056 out of 340 genes, 31.76         1.056 out of 13800, 1.275         1.155 cut oox         0.056           0.0020480         regulation of gene expression         6         46 out of 240 genes, 31.76         1.047 out of 13800, 7.75         7.024 cut 0.056         0.056           0.0020481         regulation of cellular process         3         7.00 out of 240 genes, 21.46         1.000 out 13800, 2.75         1.125 cut 13800, 2.75         1.215 cut                                                                                                                                                                                                                                                        | GO:0048731 | system development                                 | 5                  | 102 out of 240 genes, 42.5% | 1722 out of 13900, 12.4% | 7.36E-29         | 0.00%    |
| 0.0003049         cellular component organization         3         112 out of 240 genes, 1247, 1248 out of 13800, 1249, 64.027.2         0.00%           0.0002140         cellular component organization or biogenesis         12         124 out of 240 genes, 1247, 1295 out of 13800, 1249, 1186 ct         0.00%           0.00031222         regulation of metabolic process         3         100 out of 240 genes, 1244, 1417 ct         021 out of 13800, 1249, 1186 ct         0.00%           0.00030222         perabition of biological process         2         81 out of 240 genes, 1244, 1427 ct         0.00%           0.00030283         traus development         6         64 out of 240 genes, 1244, 1427 ct         0.00%           0.00003084         tragetistion of sellular process         3         76 out of 240 genes, 1244, 1427 ct         0.00%           0.00003859         cellular process         3         76 out of 240 genes, 1244, 1427 ct         0.00%           0.00003859         cellular process         3         76 out of 240 genes, 1244, 1207 out of 13800, 2448, 11161:9         0.00%           0.00003859         cellular process         3         76 out of 240 genes, 1244, 120 out of 13800, 2458, 11161:9         0.00%           0.00003859         cellular process         3         70 out of 240 genes, 1244, 120 out of 13800, 2458, 1126:4         0.00%           0.00000                                                                                                                                                                                                                                                                                                                                                    | GO:0032501 | multicellular organismal process                   | 2                  | 147 out of 240 genes, 61.3% | 3642 out of 13900, 26.2% | 1.80E-27         | 0.00%    |
| 0.0023400         cellular component orpipaneris         2         14 out of Au genes, 13.7. 1924 out of 13000, 14.9.         6.805-222         0.005           0.002322         regulation of metabolic process         3         100 out of Au genes, 13.7. 1927 out 13000, 14.9.         1.845-21         0.005           0.00207290         nervous system development         6         7.0 out of 240 genes, 14.0.9.         1.800 out of 13000, 14.7.         1.845-21         0.005           0.00207290         nervous system development         6         8 out of 240 genes, 13.0.9.         1.847 out of 13000, 14.7.         7.245-21         0.005           0.00203280         trasus development         4         66 out of 240 genes, 13.0.9.         1.847 out of 13000, 2.75.         7.245-21         0.005           0.0020380         trasus development         7.6 out of 240 genes, 13.0.9.         1.847 out of 13000, 2.84.         1.151-19         0.006           0.0020380         celluir component morphogenesis         5         7.5 out of 240 genes, 12.49.         1.868 out of 13000, 2.84.         1.151-19         0.006           0.0020381         negative regulation of celluir process         2         7.9 out of 240 genes, 12.49.         1.800 au f 13000, 12.84.         5.415-19.         0.006           0.0004512         negative regulative of celluir process         2                                                                                                                                                                                                                                                                                                                                                                  | GO:0016043 | cellular component organization                    | 3                  | 122 out of 240 genes, 50.8% | 2866 out of 13900, 20.6% | 1.82E-22         | 0.00%    |
| 00.004813         animal organ development         6         76 out of 240 genes, 1478, 1208 out of 3800, 8458, 138-521, 0.0056           00.001222         regulation of metabolic process         10 out of 240 genes, 1478, 1208 out of 3800, 1478, 1418-11, 0.0056           00.001221         regulation of metabolic process         2         81 out of 240 genes, 32456, 1147-001 d13800, 1205, 1428-114, 0.0056           00.001232         regulation of delider process         2         81 out of 240 genes, 1245, 1147-001 d13800, 1265, 1424-1516, 0.0056           00.001233         cellular component monogenesis         5         55 out d2 00 genes, 12556, 86 out of 13800, 426, 1515, 151, 0.0056           00.000481         metrogenesis         5         15 out d2 00 genes, 12556, 86 out of 13800, 426, 1515, 151, 0.0056           00.0004823         metrogenesis         2         76 out d2 00 genes, 12556, 86 out of 13800, 426, 141, 0.0056           00.0004823         metrogenesis         2         77 out d2 00 genes, 12566, 150, 0.576, 1.151, 0.0056           00.0004824         metrogenesis         2         77 out d2 00 genes, 12566, 100, 0.356, 77, 78, 192         0.0566           00.0004824         metrogenesis         2         170 out d1 240 genes, 1257, 114, 141, 0.0056         0.00576           00.0004824         metrogenesis         2         170 out d1 240 genes, 12356, 110 out d1 13800, 346, 77, 784, 141         0.0566                                                                                                                                                                                                                                                                                                   | GO:0071840 | cellular component organization or biogenesis      | 2                  | 124 out of 240 genes, 51.7% | 2994 out of 13900, 21.5% | 6.80E-22         | 0.00%    |
| 00.00222         regulation of metabolic process         3         100 out of 240 genes, 30.0%         102 out of 3800, 14.7%         18.84.7.1         0.00%           00.002789         nerous system development         6         70 out of 240 genes, 30.0%         102 out of 3800, 73.6%         2.18.7.1         0.00%           00.00288         itsue development         6         84 out of 240 genes, 32.6%         182 out of 3800, 75.6%         2.72.2.0         0.00%           00.00288         itsue development         4         60 out of 240 genes, 32.6%         182 out of 3800, 75.6%         2.72.2.0         0.00%           00.00289         cellular component morphogenesis         5         55 out of 240 genes, 32.6%         68 out of 12000, 45.8%         1.18.4.3         0.00%           00.002809         cellular component morphogenesis         5         7.8 out of 240 genes, 32.6%         142.00 (ar8.4%, 12.4.2.4.2.4.2.4.2.4.2.4.2.4.2.4.2.4.2.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | GO:0048513 | animal organ development                           | 6                  | 76 out of 240 genes, 31.7%  | 1197 out of 13900, 8.6%  | 1.39E-21         | 0.00%    |
| 00.002999         menous system development         6         72 out of 240 gens, 34.0%         142 out of 13800, 74.8%         12.15.21         0.00%           00.002183         positive regulation of folgone systems         2         80 out 07 240 gens, 34.6%         142 out of 13800, 10.7%         72.85.1         0.00%           00.002183         Siste development         4         60 out 7240 gens, 22.8%         160 out 73800, 60.7%         72.84.7         0.00%           00.00283         cellular process         5         5 out 7240 gens, 22.8%         160 out 73800, 42.8%         11.81.9         0.00%           00.002832         negative regulation of cellular process         5         7 out of 240 gens, 22.8%         162 out 71.3800, 82.8%         11.81.9         0.00%           00.002823         negative regulation of cellular process         2         7 out of 240 gens, 22.8%         12.00 of 13800, 10.2%         6.41.61.80         0.00%           00.002823         negative regulation of cellular process         2         17 out of 240 gens, 22.8%         12.00 of 13800, 10.2%         6.41.61.80         0.00%           00.002839         nettrin specification of cellular process         2         13 out of 240 gens, 22.8%         12.20 out f 13800, 10.2%         11.41.41         0.00%           00.0002939         patterm specification process </td <td>GO:0019222</td> <td>regulation of metabolic process</td> <td>3</td> <td>100 out of 240 genes, 41.7%</td> <td>2038 out of 13900, 14.7%</td> <td>1.86E-21</td> <td>0.00%</td>                                                                                                                                                                                     | GO:0019222 | regulation of metabolic process                    | 3                  | 100 out of 240 genes, 41.7% | 2038 out of 13900, 14.7% | 1.86E-21         | 0.00%    |
| 00.00833         positive regulation of biological process         2         81 out of 240 genes, 364h         1447 out of 3800, 10.4%         4.212-21         0.00%           00.00888         tissue development         4         64 out of 240 genes, 326h         1047 out of 13800, 7.3%         4.722-20         0.00%           00.00883         genes, 127h         1270 out of 13800, 7.3%         4.722-20         0.00%           00.00853         genes, 127h         1270 out of 13800, 4.3%         1.111-19         0.00%           00.00853         negative regulation of cellular process         3         75 out of 240 genes, 2.2%         1280 out of 13800, 4.3%         1.111-19         0.00%           00.008533         negative regulation of cellular process         3         75 out of 240 genes, 2.2%         1421 out of 13800, 6.2%         1.111-19         0.00%           00.008970         eellular process         2         17 out of 240 genes, 2.2%         1421 out of 13800, 6.2%         1.114-18         0.00%           00.008977         eellular process         3         147 out of 240 genes, 2.2%         1421 out of 13800, 5.2%         1.144-18         0.00%           00.008978         pattern specification process         5         4 6 out of 240 genes, 2.2%         1200 out of 240 genes, 2.2%         1200 out of 240 genes, 2.2%         1200                                                                                                                                                                                                                                                                                                                                                                                  | GO:0007399 | nervous system development                         | 6                  | 72 out of 240 genes, 30.0%  | 1082 out of 13900, 7.8%  | 2.15E-21         | 0.00%    |
| GO.000488         regulation of game expression         6         # 4 out of 240 games, 28.8         D420 out of 13900, 10.7%         7.022-21         0.00%           GO.000488         posible regulation of cellular process         3         7 fout of 240 games, 22.8%         D420 out of 13900, 42.8%         7.942-20         0.00%           GO.000483         cellular component morphogenesis         5         55 out of 240 games, 22.9%         G8 out of 13900, 42.8%         1116-19         0.00%           GO.0004857         neurogenesis         7         G2 out of 240 games, 22.9%         G8 out of 13900, 6.7%         1122-19         0.00%           GO.0004857         negulation of cellular process         2         76 out of 240 games, 22.9%         G8.20 out 73 000, 6.7%         1122-19         0.00%           GO.00069570         embryo development         5         46 out of 240 games, 22.8%         D300 out 75 6         412-19         0.00%           GO.00069570         embryo development         5         46 out of 240 games, 12.8%         D300 out 75 8         7.702-19         0.00%           GO.00069570         embryo development         5         46 out of 240 games, 12.8%         D300 out 75 8         7.702-19         0.00%           GO.0005805         regulation of development process         15         7.000 out 72.000 games                                                                                                                                                                                                                                                                                                                                                                                          | GO:0048518 | positive regulation of biological process          | 2                  | 83 out of 240 genes, 34.6%  | 1447 out of 13900, 10.4% | 4.21E-21         | 0.00%    |
| CO-0008988         tissue development         4         6 put of AdQ genes, 12.8.%         1047 out of J3000, 75.%         4.72E-20         0.0%           CO-0004522         pointine regulation of cellular process         3         76 out of J40 genes, 12.2.%         685 out of J4000, 92.8         7.74E-20         0.0%           CO-0005220         neurogenesis         5         55 out of J40 genes, 12.8.%         682 out of J40 genes, 12.8.%         105 out of J40 genes, 12.8.% </td <td>GO:0010468</td> <td>regulation of gene expression</td> <td>6</td> <td>84 out of 240 genes, 35.0%</td> <td>1492 out of 13900, 10.7%</td> <td>7.02E-21</td> <td>0.00%</td> | GO:0010468 | regulation of gene expression                      | 6                  | 84 out of 240 genes, 35.0%  | 1492 out of 13900, 10.7% | 7.02E-21         | 0.00%    |
| GC0008322         positive regulation of cellular component corphogenesis         3         Fo und 7.40 genes, 12.7%         1272 round 7.1500, 9.2%         7.944-20         0.0%           GC0002320         cellular component corphogenesis         5         95 out of 240 genes, 25.8%         862 out of 1300, 4.8%         1.116-19         0.00%           GC00023200         negative regulation of cellular process         2         79 out of 240 genes, 12.0%         1422 out of 1300, 10.2%         6.416-19         0.00%           GC0008457         negative regulation of biological process         2         79 out of 240 genes, 12.0%         1422 out of 1300, 3.0%         7.706-19         0.00%           GC0009870         eellular process         2         19 out of 240 genes, 12.0%         1422 out of 1300, 3.4%         7.126-18         0.00%           GC0009889         regulation of biolynthetic process         4         74 out of 240 genes, 12.3%         150 out of 1300, 3.4%         7.326-18         0.00%           GC0009709         regulation of cellular component organization         4         95 out of 240 genes, 12.3%         150 out of 1300, 3.4%         7.326-18         0.00%           GC0009709         regulation of ellular component organization         2         50 out of 240 genes, 12.3%         150 out of 1300, 3.4%         7.326-16         0.00%                                                                                                                                                                                                                                                                                                                                                                   | GO:0009888 | tissue development                                 | 4                  | 69 out of 240 genes, 28.8%  | 1047 out of 13900, 7.5%  | 4.72E-20         | 0.00%    |
| CO.002399         cellular component morphogenesis         5         45 out of 240 genes, 22.9%         685 out of 21900, 4.8%         1.11E-19         0.0%           GO.002000         neurogenesis         7         62 out of 240 genes, 22.8%         682 out of 13900, 6.2%         1.31E-19         0.00%           GO.0048513         negative regulation of hological process         2         79 out of 240 genes, 20.4%         1268 out of 31900, 0.3%         7.00-12         0.00%           GO.000997         cellular process         2         197 out of 240 genes, 20.4%         1268 out of 31900, 9.4%         7.32E-18         0.00%           GO.0009987         regulation of bioinythetic process         2         197 out of 240 genes, 10.2%         137 out of 13000, 9.4%         7.32E-18         0.00%           GO.0009789         pattern specification process         5         46 out of 240 genes, 12.2%         101 out of 13900, 3.6%         7.32E-18         0.00%           GO.0000006         developmental process         3         55 out of 240 genes, 12.2%         101 out of 13900, 3.6%         7.32E-18         0.00%           GO.000001         Locomotion         2         50 out of 240 genes, 21.4%         102 out of 13900, 3.6%         2.38E-17         0.00%           GO.000001         Locomotion         2         50 out of 240 genes,                                                                                                                                                                                                                                                                                                                                                                                           | GO:0048522 | positive regulation of cellular process            | 3                  | 76 out of 240 genes, 31.7%  | 1277 out of 13900, 9.2%  | 7.94E-20         | 0.00%    |
| GO 002008         meurogenesis         7         62 out of 240 genes, 23.8%         S82 out of 13800, 6.2%         15.81:9         0.0%           GO 0048523         negative regulation of biological process         2         79 out of 240 genes, 32.8%         142 out of 13900, 10.2%         6.41:61:9         0.0%           GO 0048521         negative regulation of biological process         2         179 out of 240 genes, 32.8%         1442 out of 13900, 2.7%         6.41:61:9         0.0%           GO 0008970         enlular process         2         170 out of 240 genes, 32.4%         724 out of 13900, 3.4%         7.70:1:8         0.00%           GO 0008989         regulation of biorynthetic process         4         74 out of 240 genes, 32.3%         77 out of 13900, 3.6%         7.85:6-13         0.00%           GO 0007939         regulation of evelopmental process         3         53 out of 240 genes, 32.3%         72 out of 13900, 5.6%         3.88:6-17         0.00%           GO 0005005         developmental process         3         53 out of 240 genes, 32.4%         124 out of 13900, 5.6%         3.88:6-12         0.00%           GO 0005010         regulation of evelopmental process         5         65 out of 240 genes, 32.4%         124 out of 13900, 5.6%         124 bit 15         0.00%           GO 0005005         regulation of evelopmen                                                                                                                                                                                                                                                                                                                                                                        | GO:0032989 | cellular component morphogenesis                   | 5                  | 55 out of 240 genes, 22.9%  | 668 out of 13900, 4.8%   | 1.11E-19         | 0.00%    |
| G0.0049333         negative regulation of biological process         3         7 p out of 240 genes, 30.4%         100 out of 1900, 8.7%         9.122-19         0.00%           G0.0049513         negative regulation of biological process         2         79 out of 240 genes, 32.4%         1422 out of 1900, 10.2%         6.418-19         0.00%           G0.000970         enthryd development         5         49 out of 240 genes, 32.4%         732 rout of 1300, 3.4%         7.70c-13         0.00%           G0.0009736         regulation of biolymethic process         2         147 out of 240 genes, 32.4%         732 rout of 1300, 3.4%         7.122-18         0.00%           G0.0009738         regulation of cellular component organization         4         46 out of 240 genes, 32.3%         710 out of 13900, 3.6%         7.352-16         0.00%           G0.0009738         regulation of developmental process         3         55 out of 240 genes, 23.5%         720 out of 13900, 5.9%         1.982-16         0.00%           G0.0005708         developmental process include in reproduction         3         57 out of 240 genes, 23.5%         1282 out of 13900, 5.9%         1.982-16         0.00%           G0.0005070         RNA metabolic process         5         68 out of 240 genes, 23.5%         1282 out of 13900, 3.5%         1.982-15         0.00%           G0.0                                                                                                                                                                                                                                                                                                                                                               | GO:0022008 | neurogenesis                                       | 7                  | 62 out of 240 genes, 25.8%  | 862 out of 13900, 6.2%   | 1.51E-19         | 0.00%    |
| G0:008513         negative regulation of biological process         2         79:001 62 aug ens., 32:98         1422 cur of 13900, 10:28         6:416-19         0.00%           G0:000970         embryo development         5         49:001 62 aug ens., 20:48         5:44:001 61 3900, 3.9%         7.70E-19         0.00%           G0:0009887         regulation of biolynthetic process         2         157:001 62 aug ens., 20:48         1142-18         0.00%           G0:0009889         regulation of biolynthetic process         4         74:001 62 aug ens., 20:48         1107:001 73:00, 5.4%         7.112-18         0.00%           G0:0005793         pattern specification process         5         44:001 62 aug ens., 20:48         770:001 51800, 5.6%         7.252-13         0.00%           G0:0005039         regulation of developmental process         5         35:001 of 240 gens., 20:48         710:001 71900, 5.6%         1.252-16         0.00%           G0:0005032         regulation of muticellular component organization         2         50:001 674 aug ens., 20:48         53:001 61200, 5.6%         1.252-16         0.00%           G0:000502         regulation of muticellular component organization         2         50:001 674 aug ens., 20:48         53:001 61200, 5.6%         1.254-15         0.00%           G0:0000502         regulation of muticellular compo                                                                                                                                                                                                                                                                                                                                                               | GO:0048523 | negative regulation of cellular process            | 3                  | 73 out of 240 genes, 30.4%  | 1208 out of 13900, 8.7%  | 3.12E-19         | 0.00%    |
| G0:0009790         embryo development         5         49 out of 240 genes, 20.4%         544 out of 13900, 3.9%         77.0E-19         0.00%           G0:000987         regulation of biosynthetic process         2         137 out of 240 genes, 20.4%         712 rout of 13900, 3.0%         77.0E-19         0.00%           G0:000989         regulation of cellular process         5         44 out of 240 genes, 22.1%         501 out of 13900, 3.6%         7.382-4.38         0.00%           G0:0005128         regulation of developmental process         5         53 out of 240 genes, 22.1%         701 out of 13900, 5.6%         2.382-77         0.00%           G0:0003006         developmental process         5         53 out of 240 genes, 22.1%         701 out of 13900, 5.6%         1.282-16         0.00%           G0:0003006         developmental process         5         68 out of 240 genes, 22.1%         701 out of 13900, 8.6%         1.212-16         0.00%           G0:0003007         RNA metabolic process         5         68 out of 240 genes, 28.3%         1225 out of 13900, 3.6%         1.382-15         0.00%           G0:0003026         regulation of multicellular organismal development         5         44 out of 240 genes, 1.16%         34 out of 13900, 3.5%         4.862-15         0.00%           G0:0003026         regulation of multicellular                                                                                                                                                                                                                                                                                                                                                                        | GO:0048519 | negative regulation of biological process          | 2                  | 79 out of 240 genes, 32.9%  | 1422 out of 13900, 10.2% | 6.41E-19         | 0.00%    |
| CO-000987         cellular process         2         197 out of Aug genes, 82.1%         727 out of 13000, 52.7%         1.142-18         0.00%           GO-000989         regulation of bioxynthetic process         4         74 out of 240 genes, 12.8%         1007 out of 13900, 9.4%         7.12E-18         0.00%           GO-000789         pattern specification process         5         4 dout of 240 genes, 12.8%         101 out of 13900, 9.4%         7.12E-18         0.00%           GO-0005093         regulation of developmental process         3         30 out of 240 genes, 22.8%         7.07 out of 13900, 5.6%         2.58E-17         0.00%           GO-0005093         developmental process         3         30 out of 240 genes, 22.8%         123 out of 13900, 5.9%         1.02E-16         0.00%           GO-0005095         regulation of advelopmental process         5         60 out of 240 genes, 22.8%         123 out of 13900, 4.6%         1.21E-16         0.00%           GO-0005096         response to stimulus         2         111 out of 240 genes, 23.8%         123 out of 13900, 2.5%         4.51E-15         0.00%           GO-0005097         RNA metabolic process         6         8 du out of 240 genes, 21.3%         7.30 out of 13900, 2.5%         4.51E-15         0.00%           GO-00000026         regulation of multicellular organisma proc                                                                                                                                                                                                                                                                                                                                                                        | GO:0009790 | embryo development                                 | 5                  | 49 out of 240 genes, 20.4%  | 544 out of 13900. 3.9%   | 7.70E-19         | 0.00%    |
| GO:0009889         regulation of biosynthetic process         4         74 out of 240 genes, 30.8%         1307 out of 13900, 9.4%         7.12E-18         0.00%           GO:0007389         pattern specification process         5         46 out of 240 genes, 12.3%         77 out of 13900, 3.6%         7.38E-18         0.00%           GO:0005123         regulation of eliver component organization         4         55 out of 240 genes, 22.3%         77 out of 13900, 5.6%         2.58E-17         0.00%           GO:0005123         regulation of developmental process         3         57 out of 240 genes, 22.8%         70 out of 13900, 5.9%         1.00%         60.005%           GO:0005125         regulation of NA metabolic process         5         68 out of 240 genes, 26.8%         588 out of 13900, 4.6%         1.21E-16         0.00%           GO:0005007         RNA metabolic process         5         68 du ot of 240 genes, 32.8%         122 sout of 13900, 3.8%         1.39E-15         0.00%           GO:0005020         regulation of multicellular organismal process         5         44 out of 240 genes, 1.38%         54 du ot of 13900, 3.8%         4.8E-15         0.00%           GO:0005020         regulation of multicellular organismal process         5         8 du ot of 240 genes, 1.1%         44 du ut of 13900, 3.3%         5.68E-15         0.00% <t< td=""><td>GO:0009987</td><td>cellular process</td><td>2</td><td>197 out of 240 genes, 82,1%</td><td>7327 out of 13900, 52.7%</td><td>1.14E-18</td><td>0.00%</td></t<>                                                                                                                                                                                              | GO:0009987 | cellular process                                   | 2                  | 197 out of 240 genes, 82,1% | 7327 out of 13900, 52.7% | 1.14E-18         | 0.00%    |
| GO:0007386         pattern specification process         5         46 out of 240 genes, 19.2%         501 out of 11900, 3.6%         7.83E-18         0.00%           GO:00057387         regulation of cellular component organization         4         55 out of 240 genes, 23.5%         777 out of 11900, 5.6%         2.86E-17         0.00%           GO:0005708         developmental process         3         35 out of 240 genes, 23.6%         829 out of 13900, 5.6%         3.89E-17         0.00%           GO:0005708         developmental process         5         68 out of 240 genes, 23.6%         638 out of 13900, 4.6%         1.21E-16         0.00%           GO:00050896         regulation of RNA metabolic process         5         68 out of 240 genes, 30.6%         122S out of 13900, 3.8%         1.39E-15         0.00%           GO:0005070         RNA metabolic process         6         84 out of 240 genes, 31.6%         536 out of 13900, 3.8%         4.18E-15         0.00%           GO:0005020         regulation of multicellular organismal development         5         44 out of 240 genes, 17.3%         44 out of 13900, 3.8%         5.96E-15         0.00%           GO:0005020         regulation of multicellular organismal process         3         5 out of 240 genes, 17.3%         464 out of 13900, 3.8%         5.96E-15         0.00%           GO:0002020                                                                                                                                                                                                                                                                                                                                                                       | GO:0009889 | regulation of biosynthetic process                 | 4                  | 74 out of 240 genes, 30.8%  | 1307 out of 13900. 9.4%  | 7.12E-18         | 0.00%    |
| GO:0051128         regulation of cellular component organization         4         56 out of 240 genes, 23.3%         777 out of 13900, 5.6%         2.56E-17         0.00%           GO:0050793         regulation of developmental process         3         53 out of 240 genes, 22.1%         701 out of 13900, 5.6%         3.85E-17         0.00%           GO:0050706         developmental process         3         53 out of 240 genes, 22.8%         823 out of 13900, 5.6%         1.25E-16         0.00%           GO:0051252         regulation of RNA metabolic process         5         68 out of 240 genes, 22.8%         1225 out of 13900, 21.5%         2.81E-15         0.00%           GO:005020         regulation of multicellular organismal development         5         48 out of 240 genes, 13.5%         1345 out of 13900, 21.5%         2.81E-15         0.00%           GO:005020         regulation of multicellular organismal development         5         44 out of 240 genes, 13.5%         15300, 3.3%         3.65E-15         0.00%           GO:005020         regulation of multicellular organismal process         3         51 out of 240 genes, 1.73%         484 out of 13900, 3.3%         5.68E-15         0.00%           GO:0050200         regionalization         6         41 out of 240 genes, 1.71%         484 out of 13900, 3.3%         5.68E-15         0.00%                                                                                                                                                                                                                                                                                                                                                                          | GO:0007389 | pattern specification process                      | 5                  | 46 out of 240 genes, 19.2%  | 501 out of 13900. 3.6%   | 7.83E-18         | 0.00%    |
| GO:0050793         regulation of developmental process         3         53 out of 240 genes, 22.1%         701 out of 13900, 5.0%         3.89E-17         0.00%           GO:0002006         developmental process involved in reproduction         3         57 out of 240 genes, 22.8%         828 out of 13900, 4.5%         1.03E-16         0.00%           GO:0002010         locometion         2         50 out of 240 genes, 22.8%         123E out of 13900, 4.5%         1.23E-16         0.00%           GO:00502522         regulation of RNA metabolic process         5         68 out of 240 genes, 52.8%         123E out of 13900, 2.1%         2.3EE-15         0.00%           GO:005070         RNA metabolic process         6         84 out of 240 genes, 18.3%         534 out of 13900, 3.1%         3.57E-15         0.00%           GO:005070         regulation of multicellular organismal development         5         44 out of 240 genes, 1.1%         44 out of 13900, 3.3%         4.18E-15         0.00%           GO:0000026         regulation of multicellular organismal process         3         5 10 ut of 240 genes, 1.7.1%         446 out of 13900, 3.3%         5.68E-15         0.00%           GO:0000200         cell morphogenesis involved in differentiation         6         44 out of 240 genes, 1.7.1%         446 out of 13900, 1.2.7%         6.88E-15         0.00%                                                                                                                                                                                                                                                                                                                                                                    | GO:0051128 | regulation of cellular component organization      | 4                  | 56 out of 240 genes, 23.3%  | 777 out of 13900. 5.6%   | 2.56E-17         | 0.00%    |
| GC:0003006         developmental process involved in reproduction         3         57 out of 240 genes, 23.8%         829 out of 13900, 5.9%         1.03E-16         0.00%           GC:00040011         locomotion         2         50 out of 240 genes, 20.8%         638 out of 13900, 4.6%         1.21E-16         0.00%           GC:0051252         regulation of RAM metabolic process         5         66 out of 240 genes, 28.3%         123 out of 13900, 21.5%         2.91E-15         0.00%           GC:0051267         RNA metabolic process         6         84 out of 240 genes, 35.0%         123 out of 13900, 3.1%         3.67E-15         0.00%           GC:0051239         regulation of multicellular organismal development         5         44 out of 240 genes, 13.3%         723 out of 13900, 3.3%         4.18E-15         0.00%           GC:0000004         cell morphogenesis involved in differentiation         6         44 out of 240 genes, 17.1%         464 out of 13900, 3.3%         5.68E-15         0.00%           GC:0000020         regionalization         6         44 out of 240 genes, 37.1%         464 out of 13900, 14.7%         6.88E-15         0.00%           GC:00002052         signaling         2         81 out of 240 genes, 37.1%         402 out of 13900, 14.7%         6.88E-15         0.00%           GC:00020572         signaling an orphogen                                                                                                                                                                                                                                                                                                                                                                        | GO:0050793 | regulation of developmental process                | 3                  | 53 out of 240 genes, 22.1%  | 701 out of 13900, 5.0%   | 3.89E-17         | 0.00%    |
| G0:0040011         Iocomation         2         50 aut of 240 genes, 20.8%         638 out of 13900, 4.6%         1.21E-16         0.00%           G0:0052322         regulation of RNA metabolic process         5         66 aut of 240 genes, 28.8%         1225 out of 13900, 8.8%         1.39E-15         0.00%           G0:0050596         response to stimulus         2         112 out of 240 genes, 35.0%         1825 out of 13900, 21.5%         2.91E-15         0.00%           G0:0010070         RNA metabolic process         6         84 out of 240 genes, 35.0%         1825 out of 13900, 3.8%         4.81E-15         0.00%           G0:0005002         regulation of multicellular organismal development         5         44 out of 240 genes, 17.3%         464 out of 13900, 3.3%         5.69E-15         0.00%           G0:0005002         regionalization         6         41 out of 240 genes, 37.3%         464 out of 13900, 3.3%         5.69E-15         0.00%           G0:000502         signaling         2         81 out of 240 genes, 37.3%         178 out of 13900, 12.7%         2.62E-14         0.00%           G0:000502         signaling         2         81 out of 240 genes, 37.3%         1580 out of 13900, 12.7%         2.62E-14         0.00%           G0:000502         signaling         2         81 out of 240 genes, 37.3%                                                                                                                                                                                                                                                                                                                                                                                                       | GO:0003006 | developmental process involved in reproduction     | 3                  | 57 out of 240 genes, 23.8%  | 829 out of 13900. 5.9%   | 1.03E-16         | 0.00%    |
| GO:0051252         regulation of RNA metabolic process         5         68 out of 240 genes, 28.3%         1225 out of 13900, 8.8%         1.39E-15         0.00%           GO:0050896         response to stimulus         2         112 out of 240 genes, 28.3%         1255 out of 13900, 21.5%         2.514-15         0.00%           GO:0050070         RNA metabolic process         6         84 out of 240 genes, 35.0%         1255 out of 13900, 3.8%         4.18E-15         0.00%           GO:005020         regulation of multicellular organismal development         5         44 out of 240 genes, 17.3%         464 out of 13900, 3.3%         5.69E-15         0.00%           GO:0005002         regionalization         6         41 out of 240 genes, 17.3%         464 out of 13900, 3.3%         5.69E-15         0.00%           GO:00020304         nucleic acid metabolic process         5         89 out of 240 genes, 37.3%         1250 out of 13900, 12.7%         6.688-15         0.00%           GO:00020302         regionalization         6         41 out of 240 genes, 32.8%         172 out of 13900, 12.7%         6.688-15         0.00%           GO:00020302         signaling         2         81 out of 240 genes, 32.8%         126 out of 13900, 12.7%         2.62E-14         0.00%           GO:00020315         animal organ morphogenesis         7                                                                                                                                                                                                                                                                                                                                                                                        | GO:0040011 | locomotion                                         | 2                  | 50 out of 240 genes, 20.8%  | 638 out of 13900. 4.6%   | 1.21E-16         | 0.00%    |
| GO:005086         response to stimulus         2         112 out of 240 genes, 46.7%         2984 out of 13900, 21.5%         2.91E-15         0.00%           GO:005070         RNA metabolic process         6         84 out of 240 genes, 35.0%         1825 out of 13900, 31.8%         3.87F-15         0.00%           GO:005026         regulation of multicellular organismal process         3         51 out of 240 genes, 18.3%         53 out of 13900, 3.8%         4.18E-15         0.00%           GO:005020         regionalization         6         41 out of 240 genes, 17.1%         446 out of 13900, 3.3%         5.69E-15         0.00%           GO:0050202         regionalization         6         41 out of 240 genes, 17.1%         446 out of 13900, 3.3%         5.69E-15         0.00%           GO:0020302         nucleic aid metabolic process         5         89 out of 240 genes, 37.1%         446 out of 13900, 12.7%         5.8E-15         0.00%           GO:0020302         signaling         2         81 out of 240 genes, 33.8%         1768 out of 13900, 12.7%         5.8E-15         0.00%           GO:00020302         negative regulation of gene expression         6         45 out of 240 genes, 33.8%         1768 out of 13900, 12.7%         5.8E-14         0.00%           GO:00010467         gene expression         5         91 out of                                                                                                                                                                                                                                                                                                                                                                                           | GO:0051252 | regulation of RNA metabolic process                | 5                  | 68 out of 240 genes, 28.3%  | 1225 out of 13900. 8.8%  | 1.39E-15         | 0.00%    |
| GO:0016070         RNA metabolic process         6         84 out of 240 genes, 35.0%         1825 out of 13900, 13.1%         3.67E-15         0.00%           GO:2000026         regulation of multicellular organismal development         5         44 out of 240 genes, 18.3%         54 out of 13900, 3.8%         4.18E-15         0.00%           GO:2000026         regulation of multicellular organismal process         3         51 out of 240 genes, 17.1%         464 out of 13900, 5.2%         4.61E-15         0.00%           GO:2000200         cell morphogenesis involved in differentiation         6         41 out of 240 genes, 17.1%         464 out of 13900, 3.3%         5.69E-15         0.00%           GO:2002052         signaling         2         81 out of 240 genes, 37.1%         269 out of 13900, 12.7%         2.62E-14         0.00%           GO:2002052         nimal organ morphogenesis         7         50 out of 240 genes, 38.8%         1768 out of 13900, 12.7%         3.02E-14         0.00%           GO:20010529         negative regulation of gene expression         5         91 out of 240 genes, 37.9%         1250 out of 13900, 12.9%         8.75E-14         0.00%           GO:20010467         gene expression         5         91 out of 240 genes, 37.9%         1250 out of 13900, 12.9%         8.75E-14         0.00%           GO:20010468 <t< td=""><td>GO:0050896</td><td>response to stimulus</td><td>2</td><td>112 out of 240 genes, 46.7%</td><td>2984 out of 13900, 21.5%</td><td>2.91E-15</td><td>0.00%</td></t<>                                                                                                                                                                                                 | GO:0050896 | response to stimulus                               | 2                  | 112 out of 240 genes, 46.7% | 2984 out of 13900, 21.5% | 2.91E-15         | 0.00%    |
| GO:200026         regulation of multicellular organismal development         5         44 out of 240 genes, 11.3%         534 out of 13900, 3.8%         4.18E-15         0.00%           GO:0002004         cell morphogenesis involved in differentiation         6         41 out of 240 genes, 11.3%         723 out of 13900, 3.3%         5.69E-15         0.00%           GO:0002002         regionalization         6         41 out of 240 genes, 71.1%         464 out of 13900, 3.3%         5.69E-15         0.00%           GO:0002002         nucleic acid metabolic process         5         89 out of 240 genes, 37.1%         2039 out of 13900, 14.7%         6.88E-15         0.00%           GO:0002002         animal organ morphogenesis         7         50 out of 240 genes, 23.8%         1786 out of 13900, 12.7%         2.62E-14         0.00%           GO:00020302         negative regulation of gene expression         6         45 out of 240 genes, 23.8%         1786 out of 13900, 12.7%         2.62E-14         0.00%           GO:000201629         negative regulation of gene expression         5         91 out of 240 genes, 23.8%         180 out of 13900, 12.7%         3.02E-14         0.00%           GO:00007154         cell communication         3         81 out of 240 genes, 37.9%         1200 out of 13900, 14.2%         3.50E-13         0.00%           GO:00010467 <td>GO:0016070</td> <td>RNA metabolic process</td> <td>6</td> <td>84 out of 240 genes, 35.0%</td> <td>1825 out of 13900, 13.1%</td> <td>3.67E-15</td> <td>0.00%</td>                                                                                                                                                                                             | GO:0016070 | RNA metabolic process                              | 6                  | 84 out of 240 genes, 35.0%  | 1825 out of 13900, 13.1% | 3.67E-15         | 0.00%    |
| GO:0051239         regulation of multicellular organismal process         3         51 out of 240 genes, 21.3%         723 out of 13900, 5.2%         4.61E-15         0.00%           GO:0000004         cell morphagenesis involved in differentiation         6         41 out of 240 genes, 17.1%         464 out of 13900, 3.3%         5.69E-15         0.00%           GO:0003002         regionalization         6         41 out of 240 genes, 17.1%         464 out of 13900, 3.3%         5.69E-15         0.00%           GO:0003002         nucleic acid metabolic process         5         89 out of 240 genes, 37.1%         2039 out of 13900, 14.7%         6.88E-15         0.00%           GO:0003002         signaling         2         81 out of 240 genes, 33.8%         1768 out of 13900, 12.7%         2.62E-14         0.00%           GO:000529         negative regulation of gene expression         6         45 out of 240 genes, 20.8%         590 out of 13900, 12.7%         2.62E-14         0.00%           GO:00007154         cell communication         3         81 out of 240 genes, 33.8%         1804 out of 13900, 12.9%         8.75E-14         0.00%           GO:0010467         gene expression         7         26 out of 240 genes, 28.6%         1250 out of 13900, 16.2%         3.50E-13         0.00%           GO:00051704         multi-organism process                                                                                                                                                                                                                                                                                                                                                                                  | GO:2000026 | regulation of multicellular organismal development | 5                  | 44 out of 240 genes, 18.3%  | 534 out of 13900, 3.8%   | 4.18E-15         | 0.00%    |
| G0:0000904         cell morphogenesis involved in differentiation         6         41 out of 240 genes, 17.1%         464 out of 13900, 3.3%         5.69E-15         0.00%           G0:00003002         regionalization         6         41 out of 240 genes, 17.1%         464 out of 13900, 3.3%         5.69E-15         0.00%           G0:0003002         nucleic acid metabolic process         5         89 out of 240 genes, 37.1%         2039 out of 13900, 12.7%         6.88E-15         0.00%           G0:00023052         signaling         2         81 out of 240 genes, 33.8%         1768 out of 13900, 12.7%         2.62E-14         0.00%           G0:00023052         negative regulation of gene expression         6         45 out of 240 genes, 33.8%         1768 out of 13900, 12.7%         2.62E-14         0.00%           G0:0001629         negative regulation of gene expression         6         45 out of 240 genes, 3.8%         1840 out of 13900, 12.7%         2.62E-14         0.00%           G0:0001646         cell communication         3         81 out of 240 genes, 3.8%         1840 out of 13900, 12.3%         5.77E-14         0.00%           G0:0010467         gene expression         7         26 out of 240 genes, 3.79%         220 out of 13900, 16.2%         3.50E-13         0.00%           G0:0001608         posttranscriptional regulation of gene                                                                                                                                                                                                                                                                                                                                                                        | GO:0051239 | regulation of multicellular organismal process     | 3                  | 51 out of 240 genes, 21.3%  | 723 out of 13900, 5.2%   | 4.61E-15         | 0.00%    |
| GO:0003002         regionalization         6         41 out of 240 genes, 17.1%         464 out of 13900, 3.3%         5.69E-15         0.00%           GO:0003004         nucleic acid metabolic process         5         89 out of 240 genes, 37.1%         203 out of 13900, 14.7%         6.88E-15         0.00%           GO:0023052         animal organ morphogenesis         7         50 out of 240 genes, 33.8%         1768 out of 13900, 12.7%         2.62E-14         0.00%           GO:0002052         negative regulation of gene expression         6         45 out of 240 genes, 20.8%         727 out of 13900, 12.9%         8.75E-14         0.00%           GO:00010629         negative regulation of gene expression         5         91 out of 240 genes, 33.8%         180 out of 13900, 12.9%         8.75E-14         0.00%           GO:0010467         gene expression         5         91 out of 240 genes, 37.9%         220 out of 13900, 16.2%         3.50E-13         0.00%           GO:0010467         gene expression         7         26 out of 240 genes, 28.6%         125 out of 13900, 10.9%         2.49E-12         0.00%           GO:0051704         multi-organism process         2         69 out of 240 genes, 28.6%         1453 out of 13900, 1.4%         3.78E-12         0.00%           GO:0051704         multi-organism process         2                                                                                                                                                                                                                                                                                                                                                                                           | GO:0000904 | cell morphogenesis involved in differentiation     | 6                  | 41 out of 240 genes, 17.1%  | 464 out of 13900, 3.3%   | 5.69E-15         | 0.00%    |
| GO:0090304         nucleic acid metabolic process         5         89 out of 240 genes, 37.1%         2039 out of 13900, 14.7%         6.88E-15         0.00%           GO:0023052         signaling         2         81 out of 240 genes, 33.8%         1768 out of 13900, 12.7%         2.62E-14         0.00%           GO:0020887         animal organ morphogenesis         7         50 out of 240 genes, 23.8%         1768 out of 13900, 12.7%         2.62E-14         0.00%           GO:000529         negative regulation of gene expression         6         45 out of 240 genes, 18.4%         59 out of 13900, 14.7%         8.02E-14         0.00%           GO:0010467         gene expression         5         91 out of 240 genes, 33.8%         180 dot of 13900, 16.2%         3.50E-13         0.00%           GO:0010467         gene expression         7         26 out of 240 genes, 13.9%         1200 out of 13900, 16.2%         3.50E-13         0.00%           GO:0010468         posttranscriptional regulation of gene expression         7         26 out of 240 genes, 28.6%         125 out of 13900, 16.2%         3.50E-12         0.00%           GO:00105106         posttranscriptional regulation of gene expression         4         71 out of 240 genes, 28.6%         1453 out of 13900, 10.9%         2.49E-12         0.00%           GO:00051704         multiorganism p                                                                                                                                                                                                                                                                                                                                                                        | GO:0003002 | regionalization                                    | 6                  | 41 out of 240 genes, 17.1%  | 464 out of 13900, 3.3%   | 5.69E-15         | 0.00%    |
| GO:0023052         signaling         2         81 out of 240 genes, 33.8%         1768 out of 13900, 12.7%         2.62E-14         0.00%           GO:0002887         animal organ morphogenesis         7         50 out of 240 genes, 20.8%         72 out of 13900, 5.2%         3.02E-14         0.00%           GO:0002887         negative regulation of gene expression         6         45 out of 240 genes, 18.8%         599 out of 13900, 4.3%         5.77E-14         0.00%           GO:0010467         gene expression         5         91 out of 240 genes, 3.8%         1804 out of 13900, 1.2%         8.735E-14         0.00%           GO:0010467         gene expression         5         91 out of 240 genes, 3.8%         120 out of 13900, 1.2%         8.735E-14         0.00%           GO:0010467         gene expression         7         26 out of 240 genes, 2.6%         125 out of 13900, 1.6.2%         3.50E-13         0.00%           GO:00010608         posttranscriptional regulation of gen expression         7         26 out of 240 genes, 2.6%         125 out of 13900, 1.6.3%         2.48E-12         0.00%           GO:00051704         multi-organism process         2         69 out of 240 genes, 3.42%         1964 out of 13900, 1.4.3%         3.78E-12         0.00%           GO:00052030         cellolair responst o stimulus         3                                                                                                                                                                                                                                                                                                                                                                                              | GO:0090304 | nucleic acid metabolic process                     | 5                  | 89 out of 240 genes, 37.1%  | 2039 out of 13900, 14.7% | 6.88E-15         | 0.00%    |
| GO:0009887         animal organ morphogenesis         7         50 out of 240 genes, 20.8%         727 out of 13900, 5.2%         3.02E-14         0.00%           GO:0010629         negative regulation of gene expression         6         45 out of 240 genes, 18.8%         599 out of 13900, 4.3%         5.77E-14         0.00%           GO:0010629         cell communication         3         81 out of 240 genes, 7.9%         1250 out of 13900, 12.9%         8.75E-14         0.00%           GO:0010467         gene expression         5         91 out of 240 genes, 7.9%         2250 out of 13900, 12.9%         8.75E-14         0.00%           GO:0010460         posttranscriptional regulation of gene expression         7         26 out of 240 genes, 2.9.6%         1250 out of 13900, 10.9%         2.49E-12         0.00%           GO:0010408         posttranscriptional regulation of gene expression         7         26 out of 240 genes, 2.8.6%         1250 out of 13900, 10.9%         2.49E-12         0.00%           GO:0051704         multi-organism process         2         69 out of 240 genes, 2.8.6%         1453 out of 13900, 10.9%         2.48E-12         0.00%           GO:0051704         cell projection organization         4         32 out of 240 genes, 18.3%         59 out of 13900, 0.9%         2.48E-12         0.00%           GO:0005030         cell                                                                                                                                                                                                                                                                                                                                                                        | GO:0023052 | signaling                                          | 2                  | 81 out of 240 genes, 33.8%  | 1768 out of 13900, 12.7% | 2.62E-14         | 0.00%    |
| GO:0010629         negative regulation of gene expression         6         45 out of 240 genes, 18.8%         599 out of 13900, 4.3%         5.77E-14         0.00%           GO:0007154         cell communication         3         81 out of 240 genes, 33.8%         184 out of 13900, 12.9%         8.75E-14         0.00%           GO:0010467         gene expression         5         91 out of 240 genes, 37.9%         2250 out of 13900, 16.2%         3.50E-13         0.00%           GO:0010608         posttranscriptional regulation of gene expression         7         26 out of 240 genes, 10.8%         200 out of 13900, 16.2%         3.50E-13         0.00%           GO:00106168         posttranscriptional regulation of gene expression         7         26 out of 240 genes, 28.6%         1525 out of 13900, 10.9%         2.49E-12         0.00%           GO:0050716         signal transduction         4         71 out of 240 genes, 28.6%         1455 out of 13900, 10.9%         2.49E-12         0.00%           GO:0051704         multi-organism process         2         69 out of 240 genes, 28.4%         145 out of 13900, 14.3%         3.78E-12         0.00%           GO:0051705         taxis         4         32 out of 240 genes, 18.3%         150 out of 13900, 2.4%         6.05E-12         0.00%           GO:0005003         cell projection organization                                                                                                                                                                                                                                                                                                                                                                              | GO:0009887 | animal organ morphogenesis                         | 7                  | 50 out of 240 genes, 20.8%  | 727 out of 13900, 5.2%   | 3.02E-14         | 0.00%    |
| GO:0007154         cell communication         3         81 out of 240 genes, 33.8%         1804 out of 13900, 12.9%         8.75E-14         0.00%           GO:00010467         gene expression         5         91 out of 240 genes, 37.9%         225 out of 13900, 16.2%         3.50E-13         0.00%           GO:0010608         posttranscriptional regulation of gene expression         7         26 out of 240 genes, 10.8%         200 out of 13900, 16.2%         3.50E-13         0.00%           GO:0010508         posttranscriptional regulation of gene expression         7         26 out of 240 genes, 26.8%         1250 out of 13900, 10.9%         2.49E-12         0.00%           GO:0051704         multi-organism process         2         69 out of 240 genes, 28.8%         1450 out of 13900, 10.9%         2.48E-12         0.00%           GO:0051716         cellular response to stimulus         3         82 out of 240 genes, 13.8%         13900, 14.1%         3.78E-12         0.00%           GO:0050030         cell projection organization         4         44 out of 240 genes, 18.3%         55 out of 13900, 14.1%         3.78E-12         0.00%           GO:00050030         cell projection organization         4         44 out of 240 genes, 18.3%         55 out of 13900, 4.7%         6.25E-12         0.00%           GO:00050047         regulation of clal co                                                                                                                                                                                                                                                                                                                                                                        | GO:0010629 | negative regulation of gene expression             | 6                  | 45 out of 240 genes, 18.8%  | 599 out of 13900, 4.3%   | 5.77E-14         | 0.00%    |
| GO:0010467         gene expression         5         91 out of 240 genes, 37.9%         2250 out of 13900, 16.2%         3.50E-13         0.00%           GO:0010608         posttranscriptional regulation of gene expression         7         26 out of 240 genes, 10.8%         200 out of 13900, 16.2%         3.50E-13         0.00%           GO:0010608         posttranscriptional regulation of gene expression         7         26 out of 240 genes, 20.6%         100 out of 13900, 10.9%         2.49E-12         0.00%           GO:0051704         multi-organism process         2         69 out of 240 genes, 28.8%         1453 out of 13900, 10.9%         2.49E-12         0.00%           GO:0051716         cellular response to stimulus         3         82 out of 240 genes, 34.2%         1453 out of 13900, 14.1%         3.78E-12         0.00%           GO:0051716         cellular response to stimulus         3         82 out of 240 genes, 13.3%         39 out of 13900, 2.4%         6.05E-12         0.00%           GO:0042330         taxis         4         32 out of 240 genes, 18.3%         650 out of 13900, 4.4%         6.25E-12         0.00%           GO:004217         regulation of realistion         8         21 out of 240 genes, 18.3%         152 out of 13900, 9.4%         14.2E-11         0.00%           GO:004645         regulation of biological quality                                                                                                                                                                                                                                                                                                                                                                        | GO:0007154 | cell communication                                 | 3                  | 81 out of 240 genes, 33.8%  | 1804 out of 13900, 12.9% | 8.75E-14         | 0.00%    |
| GO:0010608         posttranscriptional regulation of gene expression         7         26 out of 240 genes, 10.8%         200 out of 13900, 1.4%         1.29E-12         0.00%           GO:0007165         signal transduction         4         71 out of 240 genes, 28.6%         1525 out of 13900, 10.9%         2.49E-12         0.00%           GO:0051704         multi-organism process         2         69 out of 240 genes, 28.6%         1453 out of 13900, 10.9%         2.48E-12         0.00%           GO:0051704         cellular response to stimulus         3         82 out of 240 genes, 34.2%         1964 out of 13900, 10.9%         2.46E-12         0.00%           GO:0051705         cellular response to stimulus         3         82 out of 240 genes, 13.3%         1964 out of 13900, 14.4%         3.78E-12         0.00%           GO:0050050         cell projection organization         4         44 out of 240 genes, 18.3%         650 out of 13900, 0.9%         6.25E-12         0.00%           GO:0006417         regulation of translation         8         21 out of 240 genes, 20.4%         819 out of 13900, 0.9%         1.42E-11         0.00%           GO:0005008         regulation of cell communication         4         49 out of 240 genes, 20.4%         819 out of 13900, 9.9%         1.70E-11         0.00%           GO:0005008         regulation of sign                                                                                                                                                                                                                                                                                                                                                                        | GO:0010467 | gene expression                                    | 5                  | 91 out of 240 genes, 37.9%  | 2250 out of 13900, 16.2% | 3.50E-13         | 0.00%    |
| GO:0007165         signal transduction         4         71 out of 240 genes, 29.6%         1525 out of 13900, 10.9%         2.49E-12         0.00%           GO:0051704         multi-organism process         2         69 out of 240 genes, 28.8%         1455 out of 13900, 10.5%         2.66E-12         0.00%           GO:0051705         cellular response to stimulus         3         82 out of 240 genes, 34.2%         1654 out of 13900, 14.3%         3.78E-12         0.00%           GO:00203203         taxis         4         32 out of 240 genes, 13.3%         539 out of 13900, 2.4%         6.05E-12         0.00%           GO:0030030         cell projection organization         4         44 out of 240 genes, 18.3%         650 out of 13900, 4.7%         6.05E-12         0.00%           GO:0006417         regulation of translation         8         21 out of 240 genes, 2.04%         819 out of 13900, 9.9%         1.42E-11         0.00%           GO:005608         regulation of cell communication         4         49 out of 240 genes, 2.04%         819 out of 13900, 9.9%         1.70E-11         0.00%           GO:005008         regulation of signaling         4         49 out of 240 genes, 2.04%         825 out of 13900, 9.9%         1.95E-11         0.00%           GO:0046749         compound eye development         9         32 out of                                                                                                                                                                                                                                                                                                                                                                                           | GO:0010608 | posttranscriptional regulation of gene expression  | 7                  | 26 out of 240 genes, 10.8%  | 200 out of 13900, 1.4%   | 1.29E-12         | 0.00%    |
| GO:0051704         multi-organism process         2         69 out of 240 genes, 28.8%         1453 out of 13900, 10.5%         2.66E-12         0.00%           GO:0051716         cellular response to stimulus         3         82 out of 240 genes, 34.2%         164 out of 13900, 14.1%         3.78E-12         0.00%           GO:005230         taxis         4         32 out of 240 genes, 13.3%         339 out of 13900, 2.4%         6.05E-12         0.00%           GO:005030         cell projection organization         4         44 out of 240 genes, 18.3%         650 out of 13900, 4.7%         6.25E-12         0.00%           GO:006417         regulation of translation         8         21 out of 240 genes, 20.4%         819 out of 13900, 9.9%         1.42E-11         0.00%           GO:005008         regulation of cell communication         4         49 out of 240 genes, 20.4%         819 out of 13900, 9.9%         1.70E-11         0.00%           GO:0020508         regulation of biological quality         3         62 out of 240 genes, 25.3%         125 out of 13900, 9.9%         1.95E-11         0.00%           GO:0023051         regulation of signaling         4         49 out of 240 genes, 20.4%         825 out of 13900, 9.9%         2.26E-11         0.00%           GO:004749         compound eye development         9         32 o                                                                                                                                                                                                                                                                                                                                                                                          | GO:0007165 | signal transduction                                | 4                  | 71 out of 240 genes, 29.6%  | 1525 out of 13900, 10.9% | 2.49E-12         | 0.00%    |
| GO:0051716         cellular response to stimulus         3         82 out of 240 genes, 34.2%         1964 out of 13900, 14.1%         3.78E-12         0.00%           GO:0042330         taxis         4         32 out of 240 genes, 13.3%         39 out of 13900, 2.4%         6.05E-12         0.00%           GO:0042330         cell projection organization         4         44 out of 240 genes, 13.3%         39 out of 13900, 2.4%         6.05E-12         0.00%           GO:004230         cell projection organization         4         44 out of 240 genes, 18.3%         650 out of 13900, 4.7%         6.25E-12         0.00%           GO:00417         regulation of translation         8         21 out of 240 genes, 20.4%         152 out of 13900, 9.9%         1.412E-11         0.00%           GO:005008         regulation of biological quality         3         62 out of 240 genes, 25.8%         125 out of 13900, 9.9%         1.95E-11         0.00%           GO:0045749         compound eye development         9         32 out of 240 genes, 13.3%         357 out of 13900, 2.9%         2.26E-11         0.00%           GO:004643         heterocycle metabolic process         4         92 out of 240 genes, 13.3%         357 out of 13900, 17.7%         3.04E-11         0.00%                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | GO:0051704 | multi-organism process                             | 2                  | 69 out of 240 genes, 28.8%  | 1453 out of 13900, 10.5% | 2.66E-12         | 0.00%    |
| GO:0042330         taxis         4         32 out of 240 genes, 13.3%         339 out of 13900, 2.4%         6.05E-12         0.00%           GO:030030         cell projection organization         4         44 out of 240 genes, 18.3%         650 out of 13900, 4.7%         6.25E-12         0.00%           GO:0006417         regulation of translation         8         21 out of 240 genes, 8.8%         132 out of 13900, 0.9%         1.42E-11         0.00%           GO:000646         regulation of cell communication         4         49 out of 240 genes, 20.4%         819 out of 13900, 0.9%         1.42E-11         0.00%           GO:0005008         regulation of biological quality         3         62 out of 240 genes, 20.4%         819 out of 13900, 9.9%         1.95E-11         0.00%           GO:0023051         regulation of signaling         4         49 out of 240 genes, 20.4%         825 out of 13900, 5.9%         2.26E-11         0.00%           GO:0048749         compound eye development         9         32 out of 240 genes, 13.3%         537 out of 13900, 2.6%         2.62E-11         0.00%           GO:004483         heterocycle metabolic process         4         92 out of 240 genes, 3.8%         2458 out of 13900, 17.7%         3.04E-11         0.00%                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | GO:0051716 | cellular response to stimulus                      | 3                  | 82 out of 240 genes, 34.2%  | 1964 out of 13900, 14.1% | 3.78E-12         | 0.00%    |
| GO:0030030         cell projection organization         4         44 out of 240 genes, 18.3%         650 out of 13900, 4.7%         6.25E-12         0.00%           GO:00050417         regulation of translation         8         21 out of 240 genes, 8.8%         152 out of 13900, 9.9%         1.42E-11         0.00%           GO:0005040         regulation of cell communication         4         49 out of 240 genes, 20.4%         819 out of 13900, 9.9%         1.70E-11         0.00%           GO:0005008         regulation of biological quality         3         62 out of 240 genes, 20.4%         819 out of 13900, 9.9%         1.95E-11         0.00%           GO:0023051         regulation of signaling         4         49 out of 240 genes, 20.4%         825 out of 13900, 5.9%         2.26E-11         0.00%           GO:0048749         compound eye development         9         32 out of 240 genes, 13.3%         537 out of 13900, 2.6%         2.62E-11         0.00%           GO:004483         heterocycle metabolic process         4         92 out of 240 genes, 3.8%         2458 out of 13900, 17.7%         3.04E-11         0.00%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | GO:0042330 | taxis                                              | 4                  | 32 out of 240 genes, 13.3%  | 339 out of 13900, 2.4%   | 6.05E-12         | 0.00%    |
| GO:0006417         regulation of translation         8         21 out of 240 genes,         8.8%         132 out of 13900,         0.9%         1.42E-11         0.00%           GO:0010646         regulation of cell communication         4         49 out of 240 genes,         20.4%         819 out of 13900,         5.9%         1.70E-11         0.00%           GO:005008         regulation of biological quality         3         62 out of 240 genes,         25.8%         125 out of 13900,         9.0%         1.95E-11         0.00%           GO:00203051         regulation of signaling         4         49 out of 240 genes,         20.4%         825 out of 13900,         5.9%         2.26E-11         0.00%           GO:004749         compound eye development         9         32 out of 240 genes,         3.8%         357 out of 13900,         2.6%         2.6E-11         0.00%           GO:0045483         heterocycle metabolic process         4         92 out of 240 genes,         3.8.3%         2458 out of 13900,         17.7%         3.04E-11         0.00%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | GO:0030030 | cell projection organization                       | 4                  | 44 out of 240 genes, 18.3%  | 650 out of 13900, 4.7%   | 6.25E-12         | 0.00%    |
| GO:0010646         regulation of cell communication         4         49 out of 240 genes, 20.4%         B19 out of 13900, 5.9%         1.70E-11         0.00%           GO:005008         regulation of biological quality         3         62 out of 240 genes, 25.8%         1256 out of 13900, 9.0%         1.95E-11         0.00%           GO:0023051         regulation of signaling         4         49 out of 240 genes, 20.4%         825 out of 13900, 9.0%         2.26E-11         0.00%           GO:0048749         compound eye development         9         32 out of 240 genes, 38.3%         357 out of 13900, 17.7%         3.04E-11         0.00%           GO:004483         heterocycle metabolic process         4         92 out of 240 genes, 38.3%         2458 out of 13900, 17.7%         3.04E-11         0.00%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | GO:0006417 | regulation of translation                          | 8                  | 21 out of 240 genes, 8.8%   | 132 out of 13900, 0.9%   | 1.42E-11         | 0.00%    |
| GO:0065008         regulation of biological quality         3         62 out of 240 genes, 25.8%         1256 out of 13900, 9.0%         1.95E-11         0.00%           GO:0065008         regulation of signaling         4         49 out of 240 genes, 20.4%         825 out of 13900, 5.9%         2.26E-11         0.00%           GO:0048749         compound eye development         9         32 out of 240 genes, 13.3%         357 out of 13900, 2.6%         2.62E-11         0.00%           GO:004483         heterocycle metabolic process         4         92 out of 240 genes, 3.8%         2458 out of 13900, 17.7%         3.04E-11         0.00%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | GO:0010646 | regulation of cell communication                   | 4                  | 49 out of 240 genes, 20.4%  | 819 out of 13900, 5.9%   | 1.70E-11         | 0.00%    |
| GO:0023051         regulation of signaling         4         49 out of 240 genes, 20.4%         825 out of 13900, 5.9%         2.26E-11         0.00%           GO:0048749         compound eye development         9         32 out of 240 genes, 13.3%         357 out of 13900, 2.6%         2.62E-11         0.00%           GO:0046483         heterocycle metabolic process         4         92 out of 240 genes, 38.3%         2458 out of 13900, 17.7%         3.04E-11         0.00%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | GO:0065008 | regulation of biological quality                   | 3                  | 62 out of 240 genes, 25.8%  | 1256 out of 13900, 9.0%  | 1.95E-11         | 0.00%    |
| GO:0048749         compound eye development         9         32 out of 240 genes, 13.3%         357 out of 13900, 2.6%         2.62E-11         0.00%           GO:0046483         heterocycle metabolic process         4         92 out of 240 genes, 38.3%         2458 out of 13900, 17.7%         3.04E-11         0.00%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | GO:0023051 | regulation of signaling                            | 4                  | 49 out of 240 genes, 20.4%  | 825 out of 13900, 5.9%   | 2.26E-11         | 0.00%    |
| G0:0046483 heterocycle metabolic process 4 92 out of 240 genes, 38.3% 2458 out of 13900, 17.7% 3.04E-11 0.00%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | GO:0048749 | compound eye development                           | 9                  | 32 out of 240 genes, 13.3%  | 357 out of 13900, 2.6%   | 2.62E-11         | 0.00%    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | GO:0046483 | heterocycle metabolic process                      | 4                  | 92 out of 240 genes, 38.3%  | 2458 out of 13900, 17.7% | 3.04E-11         | 0.00%    |
| GO:0007163 | establishment or maintenance of cell polarity            | 3  | 25 out of 240 genes, 10.4%  | 208 out of 13900, 1.5%   | 3.04E-11 | 0.00% |
|------------|----------------------------------------------------------|----|-----------------------------|--------------------------|----------|-------|
| GO:0035220 | wing disc development                                    | 8  | 32 out of 240 genes, 13.3%  | 362 out of 13900, 2.6%   | 3.87E-11 | 0.00% |
| GO:0044271 | cellular nitrogen compound biosynthetic process          | 5  | 78 out of 240 genes. 32.5%  | 1883 out of 13900. 13.5% | 3.88E-11 | 0.00% |
| GO:0035295 | tube development                                         | 5  | 44 out of 240 genes, 18.3%  | 686 out of 13900. 4.9%   | 4.31E-11 | 0.00% |
| GO:0006725 | cellular aromatic compound metabolic process             | 4  | 93 out of 240 genes, 38.8%  | 2520 out of 13900. 18.1% | 4.84E-11 | 0.00% |
| GO:0034248 | regulation of cellular amide metabolic process           | 6  | 23 out of 240 genes. 9.6%   | 175 out of 13900. 1.3%   | 5.09E-11 | 0.00% |
| 60:0048583 | regulation of response to stimulus                       | 4  | 52 out of 240 genes 21.7%   | 940 out of 13900 6.8%    | 5.29E-11 | 0.00% |
| GO:1901360 | organic cyclic compound metabolic process                | 4  | 94 out of 240 genes, 39.2%  | 2577 out of 13900. 18.6% | 6.69E-11 | 0.00% |
| GO:0007423 | sensory organ development                                | 7  | 36 out of 240 genes, 15.0%  | 472 out of 13900 3.4%    | 7.66F-11 | 0.00% |
| 60:0061564 | axon development                                         | 12 | 30 out of 240 genes 12 5%   | 326 out of 13900 2 3%    | 9 25E-11 | 0.00% |
| 60:0000003 | reproduction                                             | 2  | 66 out of 240 genes 27 5%   | 1448 out of 13900 10.4%  | 9 76F-11 | 0.00% |
| 60:0044260 | cellular macromolecule metabolic process                 | 4  | 108 out of 240 genes 45 0%  | 3249 out of 13900 23.4%  | 1.435-10 | 0.00% |
| 60:0009701 | post-embrication development                             |    | 40 out of 240 genes, 45.0%  | 500 out of 12000 4 2%    | 2.195-10 | 0.00% |
| 60:0021700 | developmental maturation                                 | 3  | 25 out of 240 genes, 10.7%  | 227 out of 13900, 4.5%   | 2.315-10 | 0.00% |
| 60:0031328 | nositive regulation of callular biosynthetic process     | 5  | 36 out of 240 genes, 15.0%  | 496 out of 13900, 3.6%   | 3.435-10 | 0.00% |
| 60:0007166 | cell surface recentor signaling pathway                  | 6  | 43 out of 240 genes, 12.0%  | 700 out of 13900, 5.0%   | 3.935-10 | 0.00% |
| GO:0000050 | macromolecule biosynthetic process                       | 5  | 75 out of 240 genes, 17.3%  | 1800 out of 12000 12 6%  | 0.52E-10 | 0.00% |
| 00:0009039 | macromolecule biosynchecic process                       | 3  | 70 out of 240 genes, 51.7%  | 1350 00t 01 15900, 15.0% | 4.04E-10 | 0.00% |
| 00:0040007 | giowin<br>coll maturation                                |    | 33 out of 240 genes, 15.8%  | 425 000 01 15900, 5.0%   | 3.100-10 | 0.00% |
| G0.0048469 | cen maturation                                           | 0  | 22 out of 240 genes, 9.2%   | 1/9 000 01 15900, 1.5%   | 7.052-10 | 0.00% |
| G0.0009994 | obcyce differentiation                                   | 8  | 21 out of 240 genes, 8.8%   | 105 001 01 15900, 1.2%   | 2.345.09 | 0.00% |
| G0:0054641 | cellular nitrogen compound metabolic process             | 4  | 97 out of 240 genes, 40.4%  | 2864 OUt 01 15900, 20.6% | 2.212-09 | 0.00% |
| GO:0006928 | movement of cell of subcellular component                | 3  | 42 out of 240 genes, 17.5%  | 714 out of 13900, 5.1%   | 3.26E-09 | 0.00% |
| GO:0002064 | epithelial cell development                              | 7  | 29 out of 240 genes, 12.1%  | 350 out of 13900, 2.5%   | 3.57E-09 | 0.00% |
| GO:0048569 | post-embryonic animal organ development                  | 7  | 32 out of 240 genes, 13.3%  | 442 out of 13900, 3.2%   | 9.07E-09 | 0.00% |
| GO:0048737 | imaginal disc-derived appendage development              | 6  | 27 out of 240 genes, 11.3%  | 320 out of 13900, 2.3%   | 1.42E-08 | 0.00% |
| GO:0022607 | cellular component assembly                              | 4  | 56 out of 240 genes, 23.3%  | 1234 out of 13900, 8.9%  | 1.61E-08 | 0.00% |
| GO:0048589 | developmental growth                                     | 3  | 28 out of 240 genes, 11.7%  | 348 out of 13900, 2.5%   | 1.78E-08 | 0.00% |
| GO:0048736 | appendage development                                    | 5  | 27 out of 240 genes, 11.3%  | 325 out of 13900, 2.3%   | 2.03E-08 | 0.00% |
| GO:0032774 | RNA biosynthetic process                                 | 6  | 55 out of 240 genes, 22.9%  | 1210 out of 13900, 8.7%  | 2.44E-08 | 0.00% |
| GO:0006996 | organelle organization                                   | 4  | 73 out of 240 genes, 30.4%  | 1940 out of 13900, 13.9% | 4.30E-08 | 0.00% |
| GO:0044085 | cellular component biogenesis                            | 3  | 59 out of 240 genes, 24.6%  | 1382 out of 13900, 9.9%  | 4.77E-08 | 0.00% |
| GO:0043170 | macromolecule metabolic process                          | 4  | 122 out of 240 genes, 50.8% | 4256 out of 13900, 30.6% | 5.70E-08 | 0.00% |
| GO:0042221 | response to chemical                                     | 3  | 53 out of 240 genes, 22.1%  | 1163 out of 13900, 8.4%  | 5.71E-08 | 0.00% |
| GO:0007010 | cytoskeleton organization                                | 5  | 37 out of 240 genes, 15.4%  | 622 out of 13900, 4.5%   | 5.84E-08 | 0.00% |
| GO:0009605 | response to external stimulus                            | 3  | 47 out of 240 genes, 19.6%  | 950 out of 13900, 6.8%   | 5.92E-08 | 0.00% |
| GO:0007552 | metamorphosis                                            | 5  | 31 out of 240 genes, 12.9%  | 449 out of 13900, 3.2%   | 6.73E-08 | 0.00% |
| GO:0030855 | epithelial cell differentiation                          | 6  | 29 out of 240 genes, 12.1%  | 399 out of 13900, 2.9%   | 8.85E-08 | 0.00% |
| GO:0048646 | anatomical structure formation involved in morphogenesis | 5  | 34 out of 240 genes, 14.2%  | 542 out of 13900, 3.9%   | 9.65E-08 | 0.00% |
| GO:0009058 | biosynthetic process                                     | 3  | 83 out of 240 genes, 34.6%  | 2446 out of 13900, 17.6% | 2.24E-07 | 0.00% |
| GO:0048707 | instar larval or pupal morphogenesis                     | 6  | 29 out of 240 genes, 12.1%  | 422 out of 13900, 3.0%   | 3.37E-07 | 0.00% |
| GO:0051246 | regulation of protein metabolic process                  | 6  | 35 out of 240 genes, 14.6%  | 602 out of 13900, 4.3%   | 3.92E-07 | 0.00% |
| GO:0048599 | oocyte development                                       | 9  | 17 out of 240 genes, 7.1%   | 141 out of 13900, 1.0%   | 5.08E-07 | 0.00% |
| GO:0016071 | mRNA metabolic process                                   | 7  | 27 out of 240 genes, 11.3%  | 375 out of 13900, 2.7%   | 5.29E-07 | 0.00% |
| GO:0018130 | heterocycle biosynthetic process                         | 5  | 59 out of 240 genes, 24.6%  | 1471 out of 13900, 10.6% | 5.77E-07 | 0.00% |
| GO:1901362 | organic cyclic compound biosynthetic process             | 5  | 60 out of 240 genes, 25.0%  | 1521 out of 13900, 10.9% | 7.54E-07 | 0.00% |
| GO:0050808 | synapse organization                                     | 4  | 23 out of 240 genes, 9.6%   | 283 out of 13900, 2.0%   | 1.13E-06 | 0.00% |
| GO:0044237 | cellular metabolic process                               | 3  | 130 out of 240 genes, 54.2% | 4871 out of 13900, 35.0% | 1.23E-06 | 0.00% |
| GO:0009968 | negative regulation of signal transduction               | 5  | 24 out of 240 genes, 10.0%  | 313 out of 13900, 2.3%   | 1.54E-06 | 0.00% |
| GO:0001700 | embryonic development via the syncytial blastoderm       | 5  | 18 out of 240 genes, 7.5%   | 172 out of 13900, 1.2%   | 1.57E-06 | 0.00% |
| GO:0030029 | actin filament-based process                             | 3  | 23 out of 240 genes, 9.6%   | 288 out of 13900, 2.1%   | 1.59E-06 | 0.00% |
| GO:0009792 | embryo development ending in birth or egg hatching       | 6  | 19 out of 240 genes, 7.9%   | 194 out of 13900, 1.4%   | 1.65E-06 | 0.00% |
| GO:0019438 | aromatic compound biosynthetic process                   | 5  | 58 out of 240 genes, 24.2%  | 1473 out of 13900, 10.6% | 1.73E-06 | 0.00% |
| GO:0044238 | primary metabolic process                                | 3  | 131 out of 240 genes, 54.6% | 4956 out of 13900, 35.7% | 1.95E-06 | 0.00% |
| GO:0030036 | actin cytoskeleton organization                          | 4  | 22 out of 240 genes, 9.2%   | 272 out of 13900, 1.9%   | 2.95E-06 | 0.00% |
| GO:0050890 | cognition                                                | 5  | 17 out of 240 genes, 7.1%   | 159 out of 13900, 1.1%   | 3.34E-06 | 0.00% |
| GO:0007611 | learning or memory                                       | 3  | 17 out of 240 genes, 7.1%   | 159 out of 13900, 1.1%   | 3.34E-06 | 0.00% |
| GO:0007267 | cell-cell signaling                                      | 4  | 30 out of 240 genes, 12.5%  | 496 out of 13900, 3.6%   | 3.40E-06 | 0.00% |
| GO:1903311 | regulation of mRNA metabolic process                     | 8  | 15 out of 240 genes, 6.3%   | 120 out of 13900, 0.9%   | 3.46E-06 | 0.00% |
| GO:0051674 | localization of cell                                     | 3  | 25 out of 240 genes, 10.4%  | 359 out of 13900, 2.6%   | 4.95E-06 | 0.00% |
| GO:0051179 | localization                                             | 2  | 75 out of 240 genes, 31.3%  | 2241 out of 13900, 16.1% | 5.13E-06 | 0.00% |
| GO:0010648 | negative regulation of cell communication                | 4  | 24 out of 240 genes, 10.0%  | 334 out of 13900, 2.4%   | 5.62E-06 | 0.00% |
| GO:0023057 | negative regulation of signaling                         | 3  | 24 out of 240 genes, 10.0%  | 334 out of 13900, 2.4%   | 5.62E-06 | 0.00% |
| GO:0006807 | nitrogen compound metabolic process                      | 3  | 125 out of 240 genes, 52.1% | 4755 out of 13900, 34.2% | 1.16E-05 | 0.00% |

| GO:0001738 | morphogenesis of a polarized epithelium                                 | 7   | 14 out of 240 genes, 5.8%   | 115 out of 13900, 0.8%   | 1.70E-05    | 0.00% |
|------------|-------------------------------------------------------------------------|-----|-----------------------------|--------------------------|-------------|-------|
| GO:0007610 | behavior                                                                | 2   | 32 out of 240 genes, 13.3%  | 596 out of 13900, 4.3%   | 1.73E-05    | 0.00% |
| GO:0051130 | positive regulation of cellular component organization                  | 4   | 21 out of 240 genes, 8.8%   | 274 out of 13900, 1.9%   | 1.82E-05    | 0.00% |
| GO:0006402 | mRNA catabolic process                                                  | 8   | 12 out of 240 genes, 5.0%   | 81 out of 13900, 0.6%    | 2.07E-05    | 0.00% |
| GO:0097305 | response to alcohol                                                     | 5   | 14 out of 240 genes, 5.8%   | 123 out of 13900, 0.9%   | 4.09E-05    | 0.00% |
| GO:0007164 | establishment of tissue polarity                                        | 5   | 13 out of 240 genes, 5.4%   | 104 out of 13900, 0.7%   | 4.18E-05    | 0.00% |
| GO:0071704 | organic substance metabolic process                                     | 3   | 134 out of 240 genes, 55.8% | 5344 out of 13900, 38.4% | 4.43E-05    | 0.00% |
| GO:0060828 | regulation of canonical Wnt signaling pathway                           | 8   | 11 out of 240 genes, 4.6%   | 70 out of 13900, 0.5%    | 4.48E-05    | 0.00% |
| GO:0035556 | intracellular signal transduction                                       | 5   | 33 out of 240 genes, 13.8%  | 658 out of 13900, 4.7%   | 5.20E-05    | 0.00% |
| GO:0048585 | negative regulation of response to stimulus                             | 3   | 24 out of 240 genes, 10.0%  | 379 out of 13900. 2.7%   | 6.51E-05    | 0.00% |
| GO:0008283 | cell proliferation                                                      | 2   | 23 out of 240 genes. 9.6%   | 356 out of 13900. 2.6%   | 8.79E-05    | 0.00% |
| GO:0061061 | muscle structure development                                            | 4   | 18 out of 240 genes. 7.5%   | 222 out of 13900. 1.6%   | 8.94E-05    | 0.00% |
| GO:0019827 | stem cell population maintenance                                        | 4   | 12 out of 240 genes. 5.0%   | 92 out of 13900. 0.7%    | 8.96E-05    | 0.00% |
| 60:0098727 | maintenance of cell number                                              | 3   | 12 out of 240 genes 5.0%    | 92 out of 13900. 0.7%    | 8.965-05    | 0.00% |
| 60:0007420 | brain development                                                       | 8   | 13 out of 240 genes 5.4%    | 114 out of 13900 0.8%    | 0.0001272   | 0.00% |
| 60:0044087 | regulation of cellular component biogenesis                             | 4   | 21 out of 240 genes 8 8%    | 309 out of 13900 2.2%    | 0.000145787 | 0.00% |
| 60:0032879 | regulation of localization                                              | 3   | 24 out of 240 genes, 10.0%  | 399 out of 13900 2.9%    | 0.000171217 | 0.00% |
| 60:0040029 | regulation of gang expression, enigenetic                               | 7   | 16 out of 240 genes 6 7%    | 185 out of 13900 1 3%    | 0.000205535 | 0.00% |
| 60:0033043 | regulation of organelle organization                                    | 5   | 24 out of 240 genes, 10.0%  | 408 out of 13900, 2.9%   | 0.000255555 | 0.00% |
| 60:0016224 | establishment or maintenance of polarity of folligular enithelium       |     | 7 out of 240 genes, 10.0%   | 27 out of 12000 0.2%     | 0.000235958 | 0.00% |
| 60:0007028 | cotoplasm organization                                                  |     | 10 out of 240 genes, 2.3%   | 27 out of 13900, 0.2%    | 0.000490334 | 0.00% |
| 60:0040040 | thermosensory behavior                                                  |     | 6 out of 240 genes, 4.2%    | 18 out of 13900, 0.13%   | 0.000609411 | 0.00% |
| 60:0045165 | cell fate commitment                                                    | 5   | 21 out of 240 genes, 2.5%   | 241 out of 12900 2 5%    | 0.000756067 | 0.00% |
| 60:0007040 | cell arch                                                               | 2   | 21 out of 240 genes, 0.070  | 783 out of 12000 E 6%    | 0.000730007 | 0.00% |
| 00:0060233 | bood development                                                        |     | 12 out of 240 genes, 14.2%  | 125 out of 12000, 0.0%   | 0.000939121 | 0.00% |
| 60:0000522 | responses to objection stimulus                                         |     | 24 out of 240 genes, 5.4%   | 150 000 01 15900, 0.9%   | 0.001013117 | 0.00% |
| GO:0009828 | response to about stimulus                                              | ,   | 24 out of 240 genes, 10.0%  | 440 00t 01 13900, 5.2%   | 0.001025549 | 0.00% |
| G0:0048584 | positive regulation of response to stimulus                             |     | 24 out of 240 genes, 10.0%  | 440 000 01 15900, 5.2%   | 0.001025549 | 0.00% |
| G0:1905114 | cell surrace receptor signaling pathway involved in cell-cell signaling |     | 12 out of 240 genes, 5.0%   | 119 OUT OF 15900, 0.9%   | 0.00155411  | 0.00% |
| G0.0008298 |                                                                         |     | 10 001 01 240 genes, 4.2%   | 79 000 01 15900, 0.8%    | 0.001354466 | 0.00% |
| G0:000/416 | synapse assembly                                                        |     | 14 out of 240 genes, 5.8%   | 165 OUT OF 15900, 1.2%   | 0.00160/909 | 0.00% |
| 60.0030884 | regulation of MRNA processing                                           |     | 1100001240 genes, 4.8%      | 101 001 01 13900, 0.7%   | 0.002034777 | 0.00% |
| G0:000/155 | cell adnesion                                                           |     | 15 out of 240 genes, 6.3%   | 194 OUT OF 13900, 1.4%   | 0.002149062 | 0.00% |
| GO:0016333 | morphogenesis of folicular epithelium                                   | - / | 8 out of 240 genes, 3.5%    | 48 out of 13900, 0.5%    | 0.002293308 | 0.00% |
| GO:0048190 | wing disc dorsal/ventral pattern formation                              |     | 8 out of 240 genes, 5.5%    | 48 OUT OF 13900, 0.3%    | 0.002295508 | 0.00% |
| G0.0022810 | biological adresion                                                     | 2   | 15 out of 240 genes, 6.5%   | 196 OUL 01 15900, 1.4%   | 0.002445155 | 0.00% |
| GO:0198758 | cell-cell signaling by writ                                             |     | 12 out of 240 genes, 5.0%   | 125 OUT OF 15900, 0.9%   | 0.00265562  | 0.00% |
| GO:0010647 | positive regulation of cell communication                               | 4   | 21 out of 240 genes, 8.8%   | 369 OUT OF 13900, 2.7%   | 0.002/10/48 | 0.00% |
| GO:0023056 | positive regulation of signaling                                        | 3   | 21 out of 240 genes, 8.8%   | 369 OUT OF 13900, 2.7%   | 0.002/10/48 | 0.00% |
| GO:0046677 | response to antibiotic                                                  | 4   | 10 out of 240 genes, 4.2%   | 85 out of 13900, 0.6%    | 0.003084082 | 0.00% |
| GO:0045995 | regulation of embryonic development                                     |     | 10 out of 240 genes, 4.2%   | 85 OUT OF 13900, 0.6%    | 0.003084082 | 0.00% |
| GO:0003008 | system process                                                          | 3   | 32 out of 240 genes, 13.3%  | /53 OUT OF 13900, 5.4%   | 0.00340709  | 0.00% |
| GO:0008152 | metabolic process                                                       | 2   | 135 out of 240 genes, 56.3% | 5763 OUT OF 13900, 41.5% | 0.003584107 | 0.00% |
| GO:0045475 | locomotor rhythm                                                        | 5   | 9 out of 240 genes, 3.8%    | 69 out of 13900, 0.5%    | 0.004237786 | 0.01% |
| GO:0097435 | supramolecular fiber organization                                       | 4   | 16 out of 240 genes, 6.7%   | 233 out of 13900, 1.7%   | 0.004547182 | 0.01% |
| GO:0051641 | cellular localization                                                   | 3   | 38 out of 240 genes, 15.8%  | 995 out of 13900, 7.2%   | 0.004585394 | 0.01% |
| GO:0007417 | central nervous system development                                      | 7   | 17 out of 240 genes, 7.1%   | 263 out of 13900, 1.9%   | 0.005049161 | 0.01% |
| GO:0051301 | cell division                                                           | 3   | 17 out of 240 genes, 7.1%   | 269 out of 13900, 7.2%   | 0.006840194 | 0.01% |
| GO:0044267 | cellular protein metabolic process                                      | 5   | 60 out of 240 genes, 25.0%  | 1966 out of 13900, 14.1% | 0.007712954 | 0.01% |
| GO:0007224 | smoothened signaling pathway                                            | 6   | 8 out of 240 genes, 3.3%    | 58 out of 13900, 0.4%    | 0.010040063 | 0.01% |
| GO:0031047 | gene silencing by RNA                                                   | 4   | 9 out of 240 genes, 3.8%    | 77 out of 13900, 0.6%    | 0.010700696 | 0.01% |
| GO:1901700 | response to oxygen-containing compound                                  | 4   | 19 out of 240 genes, 7.9%   | 341 out of 13900, 2.5%   | 0.01164929  | 0.01% |
| GO:0017145 | stem cell division                                                      | 4   | 10 out of 240 genes, 4.2%   | 99 out of 13900, 0.7%    | 0.012433405 | 0.01% |
| GO:0090130 | tissue migration                                                        | 3   | 13 out of 240 genes, 5.4%   | 171 out of 13900, 1.2%   | 0.013235904 | 0.01% |
| GO:0007268 | chemical synaptic transmission                                          | 8   | 17 out of 240 genes, 7.1%   | 283 out of 13900, 2.0%   | 0.013422348 | 0.01% |
| GO:0043484 | regulation of RNA splicing                                              | 7   | 10 out of 240 genes, 4.2%   | 101 out of 13900, 0.7%   | 0.014877967 | 0.01% |
| GO:0010033 | response to organic substance                                           | 4   | 25 out of 240 genes, 10.4%  | 557 out of 13900, 4.0%   | 0.019237455 | 0.01% |
| GO:0007167 | enzyme linked receptor protein signaling pathway                        | 6   | 16 out of 240 genes, 6.7%   | 263 out of 13900, 1.9%   | 0.021210771 | 0.01% |

| Upregulated Go Terms |                                                       |                    |                            |                         |                  |          |
|----------------------|-------------------------------------------------------|--------------------|----------------------------|-------------------------|------------------|----------|
| GO_ID                | Term                                                  | GO Hierarchy Level | CLUSTER FREQUENCY          | GENOME FREQUENCY        | CORRECTED_PVALUE | FDR_RATE |
| GO:0009636           | response to toxic substance                           | 4                  | 10 out of 104 genes, 9.6%  | 148 out of 13900, 1.1%  | 5.59E-05         | 0.00%    |
| GO:0051186           | cofactor metabolic process                            | 4                  | 12 out of 104 genes, 11.5% | 247 out of 13900, 1.8%  | 0.000112806      | 0.00%    |
| GO:0051085           | chaperone mediated protein folding requiring cofactor | 5                  | 5 out of 104 genes, 4.8%   | 24 out of 13900, 0.2%   | 0.000294892      | 0.00%    |
| GO:0061077           | chaperone-mediated protein folding                    | 4                  | 6 out of 104 genes, 5.8%   | 44 out of 13900, 0.3%   | 0.000310378      | 0.00%    |
| GO:0006790           | sulfur compound metabolic process                     | 4                  | 9 out of 104 genes, 8.7%   | 159 out of 13900, 1.1%  | 0.001060429      | 0.00%    |
| GO:0009408           | response to heat                                      | 4                  | 7 out of 104 genes, 6.7%   | 88 out of 13900, 0.6%   | 0.001509776      | 0.00%    |
| GO:0006986           | response to unfolded protein                          | 6                  | 5 out of 104 genes, 4.8%   | 36 out of 13900, 0.3%   | 0.002435656      | 0.00%    |
| GO:0009266           | response to temperature stimulus                      | 4                  | 8 out of 104 genes, 7.7%   | 144 out of 13900, 1.0%  | 0.004440108      | 0.17%    |
| GO:0035966           | response to topologically incorrect protein           | 5                  | 5 out of 104 genes, 4.8%   | 46 out of 13900, 0.3%   | 0.008346132      | 0.27%    |
| GO:0008340           | determination of adult lifespan                       | 5                  | 8 out of 104 genes, 7.7%   | 161 out of 13900. 1.2%  | 0.009976106      | 0.25%    |
| GO:0035080           | heat shock-mediated polytene chromosome puffing       | 5                  | 3 out of 104 genes, 2.9%   | 9 out of 13900, 0.1%    | 0.012074269      | 0.22%    |
| GO:0046680           | response to DDT                                       | 5                  | 3 out of 104 genes, 2.9%   | 9 out of 13900, 0.1%    | 0.012074269      | 0.21%    |
| GO:0007568           | aging                                                 | 3                  | 8 out of 104 genes, 7.7%   | 169 out of 13900, 1.2%  | 0.014118762      | 0.30%    |
| GO:0035079           | polytene chromosome puffing                           | 6                  | 3 out of 104 genes, 2.9%   | 10 out of 13900, 0.1%   | 0.017155109      | 0.38%    |
| GO:0006979           | response to oxidative stress                          | 4                  | 7 out of 104 genes, 6.7%   | 132 out of 13900, 0.9%  | 0.021427666      | 0.64%    |
| GO:0055114           | oxidation-reduction process                           | 3                  | 14 out of 104 genes, 13.5% | 571 out of 13900, 4.1%  | 0.031921597      | 0.61%    |
| GO:0001666           | response to hypoxia                                   | 6                  | 5 out of 104 genes, 4.8%   | 62 out of 13900, 0.4%   | 0.035838429      | 0.67%    |
| GO:0042221           | response to chemical                                  | 3                  | 21 out of 104 genes, 20.2% | 1163 out of 13900, 8.4% | 0.043897762      | 0.80%    |

## REFERENCE LIST

- Allada R and Chung BY (2010) Circadian Organization of Behavior and Physiology in *Drosophila*. The Annual Review of Physiology 72: 605-624.
- Allada R, White NE, Venus W, Hall JC, Rosbash (1998) A Mutant *Drosophila* Homolog of Mammalian *Clock* Disrupts Circadian Rhythms and Transcription of *period* and *timeless*. Cell. 93: 791-804.
- Aspholm R, Lindbohm ML, Paakkulainen H, Taskinen H, Nurminen T, Titinen A (1999) Spontaneous abortions among Finnish flight attendants. J Occup Environ Med. 41(6): 486-91.
- Burch JB, Yost MG, Johnson W, Allen E (2005) Melatonin, sleep, and shift work adaptation. J Occup Environ Med. 47(9): 893-901.
- Bushey D, Hughes KA, Tononi G, Cirelli C (2010) Sleep, aging, and lifespan in Drosophila. BMC Neurosci. 11: 56.
- Cavanaugh DJ, Geratowski JD, Wooltorton J RA, Spaethling JM, Hector CE, Zheng X, Johnson EC, Eberwine JH, Sehgal A (2014) Identification of a Circadian Output Circuit for Rest:Activity rhythms in *Drosophila*. Cell. 157: 689-701.
- Cavey M, Collins B, Bertet C, Blau J (2016) Circadian rhythms in neuronal activity propagate through output circuits. Nat Neurosci. 19(4): 587-595.
- Chatterjee N, Bohmann D (2012) A versatile φC31 based reporter system for measuring AP-1 and Nrf2 signaling in Drosophila and in tissue culture. PLoS One. 7(4) e34063.
- Cho K, Ennaceur A, Cole JC, Suh CK (2000) Chronic Jet Lag Produces Cognitive Deficits. The Journal of Neuroscience 20: 1-5.
- Costa G (1996) The impact of shift and night work on health. Appl Ergon. 27(1): 9-16.

Daan S, Gwinner E (1998) Jürgen ASchoff (1913-98) (1998) Nature. 396(6710): 418.

Darlington TK, Wager-Smith K, Fernanda Ceriani M, Staknis D, Gekakis N, Steeves T, Weitz CJ, Takahashi JS, Kay SA (1998) Closing the Circadian Loop: CLOCK-Induced Transcription of Its Own Inhibitors *per* and *tim*. Science. 280: 1599-1603.

- Davidson AJ, Sellix MT, Daniel J, Yaamazaki S, Menaker M, Block GD (2006) Chronic jet-lag increases mortality in aged mice. Curr Biol. 16 (21): R914-R916.
- De Mairan M. Historie de l'Academie Royale des Sciences (1729) Observation botanique. 1.
- Dubowy C, Sehgal A (2017) Circadian Rhythms and Sleep in *Drosophila melanogaster*. Genetics. 205(4): 1373-1397.
- Emery P, Stanewsky R, Helfrich-Förster C, Emery-Le Myai, Hall JC, Rosbash M (2000) Drosophila CRY is a deep brain circadian photoreceptor. Neuron. 26(2): 493-504.
- Emery P, Venus W, Kaneko M, Hall JC, Rosbash M (1998) CRY, a *Drosophila* Clock and Light-Regulated Cryptochrome, Is a Major Contributor to Circadian Rhythm Resetting and Photosensitivity. Cell. 95: 669-679.
- Evans JA, Davidson AJ (2013) Health Consequences of Circadian Disruption in Humans and Animal Models. Prog Mol Biol Transl Sci. 119: 283-323.
- Ewer J, Frisch B, Hamblen-Coyle MJ, Rosbash M, Hall JC (1992) Expression of the *period* clock gene within different cell types in the brain of *Drosophila* adults and mosaic analysis of these cells' influence of circadian behavioral rhythms. J Neurosci. 12: 3321-3349.
- Filipski E, Delaunay F, King VM, Wu MW, Claustrat B, Gréchez-Cassiau A, Guettier C, Hastings MH, Francis L (2004) Effects of chronic jet lag on tumor progression in mic. Cancer Res. 64(21): 7879-85.
- Fleming JE, Reveillaud I, Niedzwiecki A (1992) Role of oxidative stress in Drosophila aging. Mutat Res. 275(3-6): 267-79.
- Fonken LK, Workman JL, Walton JC, Weil ZM, Morris JS, Haim A, Nelson RJ (2010) Light at night increases body mass by shifting the time of food intake. PNAS. 107(43): 18664-18669.
- Fu L, Pelicano H, Liu J, Huang P, Lee C (2002) The circadian gene Period2 plays an important role in suppression and DNA damage response in vivo. Cell. 111(1): 41-50.
- Gibson EM, Wang C, Tjho S, Khattar N, Kriegsfeld LJ (2010) Experimental 'Jet Lag' Inhibits Adult Neurogenesis and Produces Long-Term Cognitive Deficits in Female Hamsters. PLoS One. 5(12): e15267.

- Golombek DA, Casiraghi LP, Agostino PV, Paladino N, Duhart JM, Plano SA, Chiesa JJ (2013) The times they're a-changing: Effects of circadian desynchronization on physiology and disease. Journal of Physiology-Paris. 107(4): 310-322.
- Grima B, Chélot E, Xia R, Rouyer F (2004) Morning and evening peaks of activity rely on different clock neurons of the *Drosophila* brain. Nature. 431: 869-873.
- Hales KG, Korey CA, Larracuente AM, Roberts DM (2015) Genetics on the Fly: A Primer on the *Drosopihla* Model System. Genetics. 201(3): 815-842.
- Handberg A, Levin K, Højlund K, Beck-Nielsen H (2006) Identification of the Oxidized Low-Density Lipoprotein Scavenger Receptor CD36 in Plasma. Circulation. 114: 1169-1176.
- Handler AM and Konopka RJ (1979) Transplantation of a circadian pacemaker in *Drosophila*. Nature. 279: 236-238.
- Hansen M, Flatt T, Aguilaniu H (2013) Reproduction, Fat Metabolism, and Lifespan What is the Connection? Cell Metab. 17(1): 10-19.
- He SL, Green R (2013) Northern blotting. Methods Enzymol. 530:75-87.
- Helfrich-Föster C (1998) Robust circadian rhythmicity of *Drosophila melanogaster* requires the presence of lateral neurons: a brain-behavioral study of disconnected mutants. J Comp Physiol A. 182: 435-453.
- Ho KS, Sehgal A (2005) *Drosophila melanogaster*: An Insect Model for Fundamental Studies of Sleep. Methods in Enzymology. 393: 772-793.
- King AN, Barber AF, Smith AE, Dreyer AP, Sitaraman D, Nitabach MN, Cavanaugh DJ, Sehgal A (2017) A Peptidergic Circuit Links the Circadian Clock to Locomotor Activity. Current Biology. 27: 1915-1927.
- Kittel RJ, Wichmann C, Rasse TM, Fouquet W, Schmidt M, Schmid A, Wagh DA, Pawlu C, Kellner RR, Willig KI, Hell SW, Buchner E, Heckmann M, Sigrist SJ (2006) Bruchpilot promotes active zone assembly, Ca2+ channel clustering, and vesicle release. Science. 312 (5776): 1051-4.
- Kleitman N (1963) Sleep and wakefulness. University of Chicago Press, Chicago, Illinois
- Konopka RJ and Benzer S (1971) Clock Mutants of *Drosophila melanogaster*. Proc. Nat. Acad. Sci. USA. 68(9): 2112-2116.
- Krishnan N, Kretzschmar D, Rakshit K, Chow E, Giebultowicz JM (2009) The circadian clock gene period extends healthspan in aging Drosophila melanogaster. Aging (Albany NY). 1(11):937-48.

- Kuintzle RC, Chow ES, Westby TN, Gvakharia BO, Giebultowicz JM, Hendrix DA (2017) Circadian deep sequencing reveals stress-response genes that adopt robust rhythmic expression during aging. Nature Communications. 8: 14529.
- Lau EYY, Wong ML, Wai Ng EC, Hul CCH, Shui Ying Mok C, Shui Ying Mok D. "Social Jetlag" in Morning-Type College Students Living on Campus: Implications for Physical and Psychological Well-being. The Journal of Biological and Medical Rhythm Research 30: 910-918.
- Landgraf D, Koch CE, Oster H (2014) Embryonic development of circadian clocks in the mammalian suprachiasmatic nuclei. Front Neuroanat. 8: 143.
- Loh DH, Navarro J, Hagopian A, Wang LM, Deboer T, Colwell CS (2010) Rapid Changes in the Light/Dark Cycle Disrupt Memory of Conditioned Fear in Mice. PLoS One. 5(9): e12546.
- Malik BR and Hodge J JL (2014) *Drosophila* Adult Olfactory Shock Learning. J Vis Exp. 90: 50107.
- Mallampalli MP, Carter CL (2014) Exploring Sex and Gender Differences in Sleep Health: A Society for Women's Health Research Report. J Womens Health (Larchmt). 23(7): 553-562.
- Muliyil S, Narasimha M (2014) Mitochondrial ROS regulates cytoskeletal and mitochondrial remodeling to tune cell and tissue dynamics in a model for wound healing. Dev Cell. 28(3): 239-52.
- Murad A, Emery-Le M, Emery P (2007) A subset of dorsal neurons modulates circadian behavior and light responses in *Drosophila*. Neuron. 53(5): 689-701.
- Nitabach MN and Taghert PH (2008) Organization of the *Drosophila* Circadian Control Circuit. Current Biology. 18: 84-93.
- Pittendridg CS and Minis DH (1972) Circadian Systems: Longevity as a Function of Circadian Resonance in *Drosophila melanogaster\**. Proceedings of the National Academy of Sciences 69: 1537-1537.
- Ralph MR, Foster RG, Davis FC, Menaker M (1990) Transplanted Suprachiasmatic Nucleus Determines Circadian Period. Science. 247: 975-978.
- Ringo JM, Dowse HB, Lagasse S, Ezzy S (1986) Genetic Variation in *Drosophilai melanogaster* for the Life-Shortening Effects of Random Lighting Regimes. The Journal of Experimental Zoology. 239: 87-96.

- Rutila JE, Suri V, Le M, Veus W, Rosbash M, Hall JC (1998) CYCLE Is a Second bHLH-PAS Clock Protein Essential for Circadian Rhythmicity and Transcription of *Drosophila period* and *timeless*. Cell 93: 805-814.
- Santabárbara-Ruiz P, López-Santallán M, Martínez-Rodríguez I, Binagui-Casas A, Pérez L, Milán M, Corominas M, Serras F (2015) ROS-Induced JNK and p38 Signaling Is Required for Unpaired Cytokine Activation during *Drosophila* Regeneration. PLoS Genet. 11(10): e1005595.
- Scheer FA, Hilton MF, Mantzoros CS, Shea SA (2009) Adverse metabolic and cardiovascular consequences of circadian misalignment. Proc Natl Acad Sci USA. 106(11): 4453-8.
- Schernhammer ES, Kroenke CH, Laden F, Hankinson SE (2006) Night work and risk of breast cancer. Epidemiology. 17(1): 108-11.
- Sehgal A, Price JL, Man B, Young MW (1994) Loss of Circadian Behavioral Rhythms and *per* RNA Oscillation in the *Drosophila* Mutant *timeless*. Science. 263(5153): 1603-1606.
- Smarr BL, Jennings KJ, Driscoll JR, Kriegseld LJ (2014) A Time a Remember: The Role of Circadian Clocks in Learning and Memory. Behav Neuroscience. 128 (3): 283-303.
- Stevens RG (2009) Light-at-night, circadian disruption and breast cancer: assessment of existing evidence. Int J Epidemiol. 38(4): 930-970.
- Stoleru D, Peng Y, Agosto J, Rosbash M (2004) Coupled Oscillators control morning and evening locomotor behavior of *Drosophila*. Nature. 431: 862-868.
- Sykiotis GP, Bohmann D (2008) Keap1/Nrf2 signaling regulates oxidative stress tolerance and lifespan in *Drosophila*. Dev Cell. 14(1): 76-85.
- Tataroglu O, Emery P (2014) Studying circadian rhythms in *Drosophila melanogaster*. Methods. 68(1): 140-150.
- Tokumaru O, Karuki K, Bacal K, Katagiri T, Yamamato T, Sakurai Y (2006) Incidence of cancer among female flight attendants: a meta-analysis. J Travel Med. 13: 127-32.
- Tower J (2011) Heat shock proteins and Drosophila aging. Exp Gerontol. 46(5): 355-62.
- Uray IP, Liang Y, Hyder SM (2004) Estradiol down-regulates CD36 expression in human breast cancer cell. Science Direct. 207(1): 101-107.

- Vaccaro A, Birman S, Klarself A (2016) Chronic Jet lag impairs startle-induced locomotion in Drosophila. Exp Gerontol 85: 24-27.
- Vaccaro A, Issa AR, Seugnet L, Birman S, Klarself A (2017) Drosophila Clock is Required in Brain Pacemaker Neurons to Prevent Premature Locomotor Aging Independently of Its Circadian Function. PLoS Genet. 13(1): e1006507.
- Van Dycke K CG, Pennings J LA, van Oostrom C TM, van Kerkhof L WM, van Steeg H, van der Horst G TJ, Rodenburg W (2015) Biomarkers for Circadian Rhythm Disruption Independent of Time of Day. PLoS. 10(5): e0127075.
- Vinogradova IA, Anisimov VN, Bukalev AV, IIyukha VA, Khizhkin EA, Lotosh TA, Semenchenko AV, Zabezhinski MA (2010) Circadian disruption indiced by light-at-night accelerates aging and promotes tumorigenesis in young but not in old rats. Aging (Albany NY). 2(2): 82-92.
- Viterna MH, King DP, Chang AM, Kornhauser JM, Lowrey PL, McDonald JD, Dove WF, Pinto LH, Turek FW, Takahashi JS (1994) Mutagenesis and Mapping of a Mouse Gene, Clock, Essential for Circadian Behavior. Science. 265(5159): 719-725.
- Vosshall LB, Price JL, Sehgal A, Saez L, Young MW (1994) Block in Nuclear Localization of *period* Protein by a Second Clock Mutation, *timeless*. Science. 263(5153): 1606-1609.
- Wagh DA, Rasse TM, Asan E, Hofbauer A, Schwenkert I, Dürrbeck H, Buchner S, Dabauvalle MC, Schmidt M, Qin G, Wichmann C, Kittel R, Sigrist SJ, Buchner E (2006) Bruchpilot, a protein with homology to ELKS/CAST, is required for structural integrity and function of synaptic activity zones in Drosophila. Neuron. 49 (6): 833-44.
- Wittmann M, Dinich J, Merrow M, Roenneberg T (2009) Social Jetlag: Misalignment of Biological and Social Time. The Journal of Biological and Medical Rhythm Research 23: 497-509.
- Yang J, Tower J (2009) Expression of hsp22 and hsp70 transgenes is partially predictive of drosophila survival under normal and stress conditions. J Gerontol A Biol Sci Med Sci. 64(8): 828-38.

Zeidler MP and Bausek N (2013) The Drosophila JAK-STAT pathway. JAKSTAT. 2(3): e25353

Zerr DM, Hall JC, Rosbash, Siwicki (1990) Circadian fluctuations of period protein immunoreactivity in the CNS and the visual system of Drosophila. Journal of Neuroscience. 10 (8) 2749-2762. Hall JC (1995) Tripping along the trail to the molecular mechanisms of biological clocks. Trends Neurosci. 18(5): 230-40.

## VITA

Alex C. Boomgarden was born and raised in Naples, Florida. Before attending Loyola University Chicago, Alex attended Carthage College where he obtained a Bachelor of Arts degree in biology from 2012 to 2016. During this time, he earned Cum Laude honors and competed on the men's tennis team.

At Loyola, Alex was elected secretary of the biology graduate school association and graduated with Magna Cum Laude honors from 2016 to 2018. He also presented research at two symposiums and spoke at the Midwest Drosophila Conference.

Going forward, Alex will be attending the University of Notre Dame in pursuit of a Ph.D. in biological sciences. Upon arrival, he plans to conduct research focused primarily on cancer biology.