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Abstract

Background: Niemann-Pick type C (NPC) disease is a fatal neurodegenerative disorder caused most commonly by a defect in
the NPC1 protein and characterized by widespread intracellular accumulation of unesterified cholesterol and glycosphingolipids
(GSLs). While current treatment therapies are limited, a few drugs tested in Npc12/2 mice have shown partial benefit. During a
combination treatment trial using two such compounds, N-butyldeoxynojirimycin (NB-DNJ) and allopregnanolone, we noted
increased lifespan for Npc12/2 mice receiving only 2-hydroxypropyl-b-cyclodextrin (CD), the vehicle for allopregnanolone. This
finding suggested that administration of CD alone, but with greater frequency, might provide additional benefit.

Methodology/Principal Findings: Administration of CD to Npc12/2 mice beginning at either P7 or P21 and continuing every
other day delayed clinical onset, reduced intraneuronal cholesterol and GSL storage as well as free sphingosine accumulation,
reduced markers of neurodegeneration, and led to longer survival than any previous treatment regime. We reasoned that other
lysosomal diseases characterized by cholesterol and GSL accumulation, including NPC disease due to NPC2 deficiency, GM1
gangliosidosis and mucopolysaccharidosis (MPS) type IIIA, might likewise benefit from CD treatment. Treated Npc22/2 mice
showed benefits similar to NPC1 disease, however, mice with GM1 gangliosidosis or MPS IIIA failed to show reduction in
storage.

Conclusions/Significance: Treatment with CD delayed clinical disease onset, reduced intraneuronal storage and secondary
markers of neurodegeneration, and significantly increased lifespan of both Npc12/2 and Npc22/2 mice. In contrast, CD
failed to ameliorate cholesterol or glycosphingolipid storage in GM1 gangliosidosis and MPS IIIA disease. Understanding the
mechanism(s) by which CD leads to reduced neuronal storage may provide important new opportunities for treatment of
NPC and related neurodegenerative diseases characterized by cholesterol dyshomeostasis.
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Introduction

Niemann-Pick type C (NPC) disease is an autosomal recessive

neurodegenerative disorder characterized by accumulation of

unesterified cholesterol and glycosphingolipids (GSLs), such as

GM2 and GM3 ganglioside [1,2]. Patients with this fatal disease

develop an ataxic gait and motor dysfunction, typically preceded by

vertical gaze palsy and organomegaly, and later accompanied by

seizures and dementia. On a cellular level, neurons exhibit complex

disease-related morphological alterations including formation of

meganeurites, ectopic dendrites, and axonal spheroids [3]. NPC

disease is also characterized by neurodegeneration, including

the presence of intracellular protein aggregates in the form of

neurofibrillary tangles, and a well-defined patterned loss of cerebellar

Purkinje cells [4]. Defects in a transmembrane protein, NPC1,

account for approximately 95% of cases with the remainder

involving a soluble protein, NPC2 [2]. Both proteins have been

shown to bind cholesterol [5–8] and are found in the late

endosomal/lysosomal (LE/LY) system. Here they are thought to

function cooperatively in facilitating egress of cholesterol from LE/

LY to other sites in the cell [9,10]. Cholesterol sequestration in NPC

disease is generally believed to be followed secondarily by GSL

accumulation, but restricting synthesis of complex gangliosides has

been shown to reduce cholesterol storage in most neurons [11,12].

Therapeutic options for NPC disease are quite limited.

Substrate reduction therapy (SRT) utilizes drugs that reduce the
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synthesis of metabolic precursors or products which themselves are

known to accumulate in storage diseases [13]. In 2001, Zervas and

colleagues demonstrated that daily administration of an inhibitor of

GSL synthesis, N-butyldeoxynojirimycin (NB-DNJ or miglustat) to

Npc12/2 mice resulted in a reduction in accumulation of GSLs, a

delay in onset of clinical signs, and a 30% increase in lifespan [14].

More recently, miglustat has also been shown in a randomized

controlled study to stabilize or improve clinical markers of NPC

disease in patients treated for 12 months [15] and in January of

2009, miglustat (ZavescaH) was approved by the European

Medicines Agency for use in treatment of neurological symptoms

in patients with NPC disease. A second therapeutic agent tested in

Npc12/2 mice was allopregnanolone, a neurosteroid shown

deficient in the central nervous system (CNS) of Npc12/2 mice

[16]. Administration of allopregnanolone solubilized in

2-hydroxypropyl-b-cyclodextrin (CD) to Npc12/2 mice at postnatal

day 7 (P7) was reported to be beneficial, with treated mice exhibiting

delayed clinical onset, extended life span, and reduced ganglioside

accumulation. This therapeutic approach has been referred to as

by-product replacement therapy or BRT, since the strategy was

thought to replace missing or deficient products needed for normal

cellular functioning [17]. Based on these positive results, we

reasoned that a combination therapy utilizing both miglustat and

allopregnanolone might work synergistically to ameliorate NPC1

disease. While this combination therapy did prove additive, our

studies revealed that the vehicle, CD, also provided significant

benefit. This finding coincided with published observations that

single dose CD increased the lifespan of Npc12/2 mice (18).

Additional studies reported here further establish that CD treatment

alone dramatically ameliorates NPC disease and questions the

efficacy of allopregnanolone administered without CD. A recent

publication investigating the effects of a single injection of CD with

or without allopregnanolone in NPC1 disease reported no additional

benefit of allopregnanolone in reducing cholesterol accumulation in

the liver and brain as well as a reduction in markers of

neurodegeneration, but did reconfirm the increase in lifespan of

CD-treated Npc12/2 mice. [19]. Our current report further

demonstrates that sequestration of GSLs, sphingosine, and choles-

terol is significantly reduced in neurons of CD-treated Npc12/2 mice

and that chronic treatment with CD leads to the most significant

amelioration of NPC disease in the murine model seen to date.

Results

Combination SRT and BRT therapy in Npc12/2 mice
provides synergistic effect

Npc12/2 mice treated with a combination therapy of NB-DNJ

(administered daily starting at P10) and allopregnanolone/CD

(administered weekly starting at P7) showed a 2 week delay in

onset of clinical signs (ataxic gait, tremor) when compared to

untreated (given no injections) or vehicle (saline or CD) treated

Npc12/2 mice. Untreated Npc12/2 mice began a precipitous

weight loss beginning at 6 weeks of age, while combination-treated

Npc12/2 mice gradually lost weight starting at 14 weeks (Fig. 1A).

Combination-treated Npc12/2 mice lived significantly longer than

did untreated or vehicle-injected (saline or CD) Npc12/2 mice

(Fig. 1B). We noted, however, that Npc12/2 mice receiving CD

alone also lived significantly longer than untreated Npc12/2 mice

(median age: untreated Npc12/2 mice: 79 days; CD-treated

Npc12/2 mice: 118 days; p,0.0001). Correspondingly, weight loss

in CD-injected Npc12/2 mice was delayed by approximately 3

weeks. Analysis of cholesterol accumulation by filipin labeling

revealed a decrease in cholesterol storage in neocortical neurons of

combination and CD-treated Npc12/2 mice compared to

Figure 1. Combination treatment using NB-DNJ and allopreg-
nanolone/CD in Npc12/2 mice. (A) Average weight over time for each
treatment group shown for males and females separately. (B) Survival of
each treatment group. Median survival of Npc12/2 mice: no treatment,
79 days; CD (weekly), 118 days; Miglustat (daily), 123 days; Allopregna-
nolone/CD (weekly), 146 days; Combination therapy (Miglustat +
Allopregnanolone/CD), 152 days.
doi:10.1371/journal.pone.0006951.g001
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untreated Npc12/2 mice (Fig. 2A). Like cholesterol, GM2 and

GM3 gangliosides are well characterized storage components of

NPC disease, but their levels in wild-type (WT) brain are

negligible. Immunohistochemical (IHC) analysis of GM2 and

GM3 gangliosides in the neocortex of Npc12/2 mice yielded

similar results in terms of cholesterol storage, with combination

and CD-treated mice exhibiting less ganglioside accumulation

than untreated mice (Fig. 2B, C). Comparison of cerebellum in

age-matched untreated and combination-treated Npc12/2 mice

revealed a striking rescue of Purkinje cells in treated animals as

evidenced by calbindin labeling (Fig. 2D). While surviving

Purkinje cells were confined largely to lobule X in untreated

Npc12/2 mice, those receiving the combination drug treatment

still had Purkinje cells present in all lobules. GM2 accumulation

was present mainly in the granular cell layer of Npc12/2 mice, but

combination-treated Npc12/2 animals had less GM2 staining than

Npc12/2 controls (untreated and saline; data not shown).

Short-term administration of CD alone reduces storage in
Npc12/2 mice

The discovery that CD alone (without allopregnanolone) reduced

intraneuronal storage and increased longevity of Npc12/2 mice led

us to perform a series of studies to address its possible role as a

therapeutic agent in and of itself. Npc12/2 mice were treated

beginning at P7 with injections of CD every other day for 2 weeks.

Route of CD administration was either subcutaneous (SC) or

intraperitoneal (IP) and while both had a similar outcome, SC

administration seemed to be slightly more efficacious (Fig. S1). At 2

weeks of age, mice were terminated to evaluate cholesterol and GSL

storage. Results showed little to no accumulation of cholesterol in

neurons of the cerebral cortex in 22-day old treated Npc12/2 mice,

whereas age-matched untreated Npc12/2 mice exhibited consider-

able filipin-labeling (Fig. 3A). CD treatment also diminished

accumulation of gangliosides, such that GM2 and GM3 storage in

the neocortex of treated Npc12/2 mice was nearly absent compared

to readily detectable storage in untreated Npc12/2 mice (Fig. 3B;

GM3 not shown). A parallel quantitative biochemical study of

gangliosides in cerebrum of these mice revealed strikingly different

patterns in the untreated and treated Npc12/2 animals, with a near

normalization to WT levels in the concentrations of both GM2 and

GM3 after CD treatment (Fig. 3C). At this age, GM2 has already

reached its near maximal level in the untreated mutants, while GM3

is at about 50% of its maximum (unpublished data, MT Vanier).

Ultrastructural analysis revealed that cortical neurons of a 22-day

old CD-treated Npc12/2 mouse had little to no evidence of

polymembranous cytoplasmic bodies (PCBs) characteristic of NPC

disease (Fig. 3D), a finding consistent with the lack of detectable

cholesterol and ganglioside storage.

Analysis of cerebellar cortex from 22-day old untreated Npc12/2

mice revealed that nearly every Purkinje cell, as well as presumptive

neurons in both the granule and molecular cell layers, showed

evidence of cholesterol accumulation by filipin labeling (Fig. 3E).

However, most Purkinje cells in age-matched CD-treated Npc12/2

mice lacked cholesterol storage and only a small number of filipin-

positive neurons were present in the granule cell layer. IHC analysis

of GM2 in the cerebellum of untreated Npc12/2 mice revealed

prominent accumulation throughout the granule cell layer and

occasional storage in the molecular cell layer, while age-matched

CD-treated Npc12/2 mice exhibited less accumulation in both the

granule and molecular cell layers (data not shown). Levels of the

autophagosome marker LC3-II were also affected by CD treatment,

as evidenced by western blot analysis of the cerebellum. Increased

levels of LC3-II have previously been shown in the CNS of Npc12/2

mice suggesting alterations in the degradative mechanism known as

macroautophagy [20,21]. Our results confirmed this increase in

LC3-II and additionally, showed that levels in CD-treated Npc12/2

mice were normalized to those seen in WT controls (Fig. 3F).

These findings indicating that CD significantly limits cholesterol

and ganglioside storage in neurons of young Npc12/2 mice led us

to carry out two additional studies, one examining the ability of

allopregnanolone alone to ameliorate disease progression and the

other to determine the efficacy of long-term CD therapy.

Allopregnanolone without CD does not appear beneficial
The initial combination study suggested not only a beneficial

effect of CD, but also a possible small additional benefit of

allopregnanolone with CD (Fig. 1A; median age: CD-treated

Npc12/2 mice: 118 days; Allopregnanolone/CD-treated Npc12/2

mice: 146 days; p,0.0038). To determine whether there was any

beneficial impact of allopregnanolone alone on Npc12/2 mice, we

administered allopregnanolone using vehicles other than CD

(dimethyl sulfoxide [DMSO] or corn oil) or a reduced concentration

of CD (5% CD solution). Mice were given weekly injections

following the same protocol used in the combination study, with the

exception of allopregnanolone/corn oil (total of three injections

given at P7, P14, and P21). Onset of ataxic gait occurred in all

treated and untreated Npc12/2 mice at 6–7 weeks of age and there

was no increase in lifespan of the allopregnanolone-treated Npc12/2

mice (vehicle: corn oil or DMSO) compared to vehicle injected

Npc12/2 controls. Npc12/2 mice treated with allopregnanolone

solubilized in 5% CD did live significantly longer than mice

receiving the other allopregnanolone solutions or corn oil and

DMSO vehicles, but so too did the control animals receiving only

5% CD (Fig. 4A). Analysis of cholesterol and gangliosides did not

demonstrate detectable storage reductions between the allopregna-

nolone-treated Npc12/2 mice versus their respective vehicle-

injected controls. Collectively, these results suggest that the

beneficial effects observed in the combination trial for allopregna-

nolone-treated Npc12/2 mice are due largely to the vehicle, CD,

and that allopregnanolone may provide only a small additional

benefit when administered in 20% CD.

Chronic CD injections ameliorate NPC1 disease in mice
Using the same treatment regimen described earlier (injections

given every other day), Npc12/2 and WT mice were administered

CD beginning at P7 and continuing to end-stage disease, when

affected mice showed a hunched posture, severe gait disturbance,

and/or weight loss greater than 30% of peak weight. Behaviorally,

onset of ataxia in untreated Npc12/2 mice occurred between 6 and

7 weeks of age, while CD treatment delayed onset by 3 weeks, such

that treated Npc12/2 mice became ataxic between 9 and 10 weeks

of age. Furthermore, abrupt weight loss in untreated Npc12/2

mice began to occur around 7 weeks of age, while treated Npc12/2

mice exhibited a gradual decline in weight beginning at 10 to 13

weeks of age (Fig. 4B). Every-other-day treated Npc12/2 mice on

average lived longer than those on the original combination

therapy, though the difference was not significant (Fig. 1B and 4C;

median age: combination-treated Npc12/2 mice: 152 days; CD-

treated Npc12/2 mice began at P7: 185 days; p,0.2138).

Filipin labeling of neocortical neurons in CD-treated Npc12/2

mice at end-stage revealed less cholesterol storage compared to

their untreated counterparts, in spite of their significant age

differences (Fig. 5A). There was a reduction in both the number of

neurons that showed cholesterol storage and the amount of

cholesterol in individual neurons, some of which appeared to have

little or no accumulation (Fig. 5B). Confocal analysis of treated

Npc12/2 mouse brain showed that many cholesterol negative

Cyclodextrin in NPC Disease
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Figure 2. Cholesterol and ganglioside immunohistochemistry (IHC) of Npc12/2 and WT mice in the combination treatment study. (A)
Filipin labeling of unesterified cholesterol (seen as white areas in image) in the neocortex of age-matched untreated and treated Npc12/2 and WT mice
(all mice between 75 and 81 days of age) revealed less cholesterol accumulation of treated Npc12/2 mice (second, third, and fourth panels) when
compared to control Npc12/2 mice (fifth panel). WT mice do not exhibit cholesterol accumulation (first panel). Each panel here and in (B) and (C) shows
layers II (top) through VI (bottom) of the cerebral cortex. (B) IHC of GM2 ganglioside (visualized as brown punctae within cells) was also characterized by
reduced GM2 storage in all treated Npc12/2 mice. (C) IHC of GM3 ganglioside (again seen as brown punctae within cells) showed results similar to GM2.
(D) Treated Npc12/2 mice had more remaining Purkinje cells (brown areas in cerebellar images) than did untreated Npc12/2 mice; however, treated mice
still had Purkinje cell loss when compared to WT mice. Anti-calbindin antibody labels Purkinje cell bodies and dendritic arbors, while the Nissl
counterstain (purple) labels all neuronal cell bodies. Images taken at 20X (A), 10X (B, C), and 2X (D); scale bars 20 mm (A), 50 mm (B, C), and 400 mm (D).
doi:10.1371/journal.pone.0006951.g002

Cyclodextrin in NPC Disease
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neocortical neurons still exhibited ganglioside accumulation

(Fig. 5C).

IHC staining of both GM2 and GM3 gangliosides revealed

less accumulation in CD-treated Npc12/2 mice compared to age-

matched Npc12/2 controls (Fig. 5D, GM3 not shown). Biochem-

ical analysis of gangliosides (Fig. 5E) corroborated and extended

this finding. In the cerebrum of CD-treated Npc12/2 mice, the

increase in GM2 and GM3 levels, while not significant at 22 days

(Fig. 3C), remained very moderate at 90 days (115 and 76 nmol/g

for GM2 and GM3, respectively, compared with 474619 and

Figure 3. Short term (2 week) CD study in Npc12/2 mice. (A) Filipin labeling of unesterified cholesterol in the neocortex of untreated and CD-
treated Npc12/2 mice revealed dramatically less cholesterol accumulation in CD-treated mice at 22 days of age. Mice were administered SC injections
of CD every other day for 2 weeks starting at P7. (B) IHC of untreated and CD-treated Npc12/2 mice also revealed less GM2 storage present in CD-
treated mice (similar finding for GM3, not shown). (C) Biochemical analysis of ganglioside levels further corroborated the reduction in GM2 and GM3
seen with IHC analysis. (D) Ultrastructural analysis of neocortical neurons in Npc12/2 untreated and CD-treated mice showed remarkably normal
neuronal morphology in CD-treated mice. (E) Filipin labeling of unesterified cholesterol in the cerebellum of untreated and CD-treated Npc12/2 mice
indicated little to no cholesterol accumulation present within Purkinje cells of CD-treated mice; cerebellar layers: molecular cell layer (MCL), Purkinje
cell layer (PCL), and granular cell layer (GCL). (F) Western blot analysis of LC3-II, an autophagosome marker, revealed less LC3-II present in CD-treated
Npc12/2 as compared to untreated Npc12/2 mice. Images taken at 20X (A, E) and 10X (B); scale bars 20 mm (A, E), 50 mm (B), 1 mm (D).
doi:10.1371/journal.pone.0006951.g003

Cyclodextrin in NPC Disease
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429627 nmol/g in age-matched, end-stage untreated Npc12/2

mice; mean 6 SD). The two treated mice at end-stage (190 and

223 days) still showed concentrations of GM2 and GM3

gangliosides approximately half of those in end-stage untreated

Npc12/2 mice. Neuro-inflammation is also an important compo-

nent of many lysosomal diseases [22], and upon IHC staining of

CD68, a CNS inflammatory marker, we noted reduced labeling in

brains of end-stage CD-treated Npc12/2 mice compared to end-

stage untreated Npc12/2 mice (data not shown). Ultrastructurally,

although neurons of CD-treated Npc12/2 mice often had PCBs,

they appeared to be less abundant than in untreated Npc12/2 mice

(Fig. 5F).

Cholesterol storage was observed in all Purkinje cells of the

cerebellum in treated and untreated Npc12/2 mice. At end-stage,

remaining Purkinje cells were observed almost exclusively in lobule

X, whereas in treated Npc12/2 mice (age-matched to end-stage

untreated Npc12/2 mice), rescued Purkinje cells were routinely

observed in other lobules. IHC analysis of GM2 ganglioside

revealed prominent accumulation throughout the granule cell

layer and occasional storage within the molecular cell layer of end-

stage untreated Npc12/2 mice cerebella. CD-treated Npc12/2

mice exhibited this same pattern but with reduced GM2

accumulation (data not shown).

As in the short term study, biochemical analysis of LC3-II in the

cerebellum revealed that CD-treated Npc12/2 mice had levels

similar to WT, while untreated Npc12/2 mice showed an increase

in LC3-II levels compared to WT (Fig. 5G).

In addition to brain analyses, we examined peripheral tissues

including kidney, liver, and lung for changes induced by treatment

with CD. Filipin analysis of kidneys from the chronic CD treatment

study revealed no obvious differences between treated and

untreated Npc12/2 mice, even though CD is thought to be excreted

mainly intact in urine [23] (Fig. S2A). H&E staining of kidney also

revealed no obvious changes with CD treatment in either Npc12/2

or WT mice (Fig. S3A). Cholesterol labeling of the liver of untreated

Npc12/2 mice occurred primarily in hepatocytes, with treated mice

showing a shift in cholesterol sequestration to apparent Kupffer

cells, a change also observed when comparing WT untreated and

treated mice (Fig. S2B). Large, lipid-laden hepatocytes were seen in

the untreated Npc12/2 liver tissue but were largely undetectable in

CD-treated Npc12/2 liver as visualized with H&E staining (Fig.

S3B). A parallel biochemical study of liver lipids revealed a near

normalization of the levels of unesterified cholesterol and

sphingomyelin, as well as of bis(monoacylglycero)phosphate

(BMP) and neutral glycolipids (glucosylceramide and lactosylcer-

amide) in chronic CD-treated Npc12/2 mice (Fig. S4). Filipin

analysis of lung revealed cholesterol laden cells in both untreated

and CD-treated age-matched Npc12/2 mice (87 and 90 days,

respectively), with a seemingly greater number of cholesterol

positive cells present in the CD-treated animal. Lung from a CD-

treated Npc12/2 mouse at end-stage disease (223 days) had a

consolidated appearance with more lipid laden cells and cholesterol

deposits throughout the tissue than either of the previous Npc12/2

mice (Fig. S2C). While H&E staining revealed the occasional

presence of macrophages in untreated Npc12/2 lung, CD-treated

Npc12/2 mouse lung showed more macrophages present and also

increasing macrophage infiltration the longer CD-treatment was

continued (Fig. S3C). Similar lipid-laden macrophages were not

evident in either CD-treated or untreated WT lung.

In addition to starting CD treatment at 7 days of age, some

Npc12/2 mice were treated shortly after weaning (P21–P25; post-

weaning treated). Even with this two week delay, benefits similar to

those seen in Npc12/2 mice treated beginning at P7 were still

evident (Fig. 4C). Onset of clinical signs in Npc12/2 mice in which

Figure 4. Chronic allopregnanolone and chronic CD treatment
studies in Npc12/2 mice. (A) Survival of untreated and allopregna-
nolone-treated Npc12/2 mice using different vehicles for allopregna-
nolone. Median survival of Npc12/2 mice: DMSO, 84 days; Allo/DMSO,
83 days; Corn Oil, 81 days; Allo/Corn Oil, 88 days; 5% CD, 114 days; Allo/
5% CD, 121 days. (B) Average weight over time for untreated and
chronically CD-treated Npc12/2 and WT mice. Weights of untreated and
CD-treated WTs were averaged for each gender as there was no
significant difference between treatments (p,0.8125). (C) Survival of
untreated and CD-treated Npc12/2 and WT mice showing effects of
different start times. Median survival of Npc12/2 mice: no treatment, 83
days; CD (every other day, start at P7), 185 days; CD (every other day,
start at P21), 149 days. Treatment initiated at P7 appeared more
efficacious, although lifespan was not significantly longer when
compared to treatment initiated at P21 (p,0.1870).
doi:10.1371/journal.pone.0006951.g004
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Figure 5. Chronic CD treatment study in Npc12/2 mice. (A) Filipin labeling of unesterified cholesterol in the neocortex of untreated (end-stage,
78 days old) and CD-treated (start at P21; end-stage, 197 days old) Npc12/2 mice showed reduced cholesterol accumulation in a CD-treated mouse.
(B) Higher magnification of neocortex in same CD-treated Npc12/2 animal as previous panel, showed presence of neurons with cholesterol
accumulation while neighboring cells lacked this storage. (C) Confocal microscopy further revealed that gangliosides and cholesterol appeared to
always co-sequester within neurons in an untreated Npc12/2 mouse (end-stage, 78 days old; upper panel). However, some neocortical neurons in a
CD-treated Npc12/2 mouse (start at P7; end-stage, 182 days old; lower panel) had little to no detectable cholesterol accumulation, yet still exhibited
ganglioside storage. Cholesterol (red, visualized with BC Theta), GM2 (blue), and GM3 (green); n denotes nucleus of single neuron shown in each
image. (D) IHC of untreated and CD-treated Npc12/2 mice (same mice as A), revealed less GM2 storage (also GM3, not shown) in the neocortex of a
CD-treated mouse. (E) Biochemical analysis of ganglioside levels further corroborated the reduction in GM2 and GM3 seen with IHC. Data from WT
and untreated mutant mice represent mean 6 SD. (F) Ultrastructural analysis of neocortical neurons in untreated and CD-treated Npc12/2 mice (same
mice as C) revealed presence of PCBs in both groups, but CD-treated mice appeared to have fewer of these storage bodies. (G) Western blot analysis
of LC3-II in 85 day old untreated and CD-treated (start at P21) Npc12/2 and WT mice revealed a reduction in LC3-II levels in the CD-treated Npc12/2

mouse. Images taken at 20X (A), 40X (B), 63X (C), and 10X (D); scale bars 20 mm (A, B), 2 mm (C), 50 mm (D), 1 mm (F).
doi:10.1371/journal.pone.0006951.g005
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CD treatment was started post-weaning was delayed and longevity

increased, although these mice did show greater variability than

mice started at P7. Even though the median lifespan of these

Npc12/2 mice treated post-weaning was less than that of mice

started on treatment at P7, there was no significant difference

(median age: CD-treated Npc12/2 mice starting post-weaning: 149

days; CD-treated Npc12/2 mice starting at P7: 185 days;

p,0.1870). Cholesterol and ganglioside analysis of post-weaning

treated Npc12/2 mice revealed reduction in storage compared to

untreated Npc12/2 controls. This finding was supported by

biochemical analysis of gangliosides in mice treated from P21

(Fig. 5E). Post-weaning treatment rescued Purkinje cells, although

they still showed cholesterol accumulation similar to the Npc12/2

mice started on treatment at P7. Overall comparison of post-

weaning treatment to treatment initiated at P7 suggests that

although the latter seems slightly more effective in ameliorating

NPC disease, initiating treatment at later dates still provides

significant benefit to Npc12/2 mice.

Chronic treatment of Npc22/2 mice with CD ameliorates
storage

Positive results from the CD treatment study in NPC1 disease

led us to hypothesize that Npc22/2 mice might also benefit from

treatment, as NPC2 disease is similarly characterized by

cholesterol and GSL accumulation and the two NPC proteins

may function in the same metabolic pathway [9,10]. Npc22/2 and

WT mice were administered CD following the same protocol used

for Npc12/2 mice receiving chronic, every other day treatment,

albeit at slightly different start dates. Onset of ataxic gait was

delayed from 8 weeks of age in untreated Npc22/2 mice to

approximately 10 weeks of age in treated Npc22/2 mice. Weight

loss in untreated Npc22/2 mice began at approximately 10 weeks

of age, while treated Npc22/2 mice did not show weight loss until

13 to 14 weeks of age (Fig. 6A). The average lifespan of an

untreated Npc22/2 mouse is approximately 21 weeks of age and

treatment with CD increased longevity by 11 weeks, such that on

average, end-stage occurred at 32 weeks (Fig. 6B).

Filipin labeling of neocortical neurons in treated Npc22/2 mice

showed reduced accumulation of unesterified cholesterol and IHC

analysis of gangliosides revealed less GM2 and GM3 storage

(Fig. 6C, D; GM3 not shown). By biochemical quantification

(Fig. 6E), when treatment was initiated between P9 and P22, GM2

and GM3 gangliosides levels studied in mice at 137–150 days of

age were reduced to about half of those in the untreated mice (212

and 241 nmol/g for GM2, 184 and 216 for GM3 in CD-treated

Npc22/2 mice versus 413642 and 401634 nmol/g for GM2 and

GM3, respectively in untreated Npc22/2 mice; mean 6 SD), and a

significant reduction was still sustained in a 272-day old mouse.

Comparison of age-matched CD-treated and untreated Npc22/2

mice revealed less CD68 labeling in brains of treated animals,

suggesting a decrease in neuro-inflammation. Evaluation of end-stage

untreated Npc22/2 mice and age-matched CD-treated Npc22/2 mice

also revealed more surviving Purkinje cells in the cerebellum of

treated animals, although all remaining Purkinje cells still exhibited

cholesterol accumulation (data not shown). The aforementioned

results are analogous to those found in chronically treated Npc12/2

mice and demonstrate that Npc22/2 mice also benefit from treatment

with CD.

Effect of CD treatment on free sphingosine levels in NPC
mice

In normal tissues free sphingoid bases (essentially sphingosine and

sphinganine) are only present in minute amounts, similar to GM2

and GM3 gangliosides in the brain. In NPC patients and animal

models, sequestration of free sphingosine in lysosomes contributes to

the multiple lipid storage pattern, with a many-fold increase in liver,

spleen and fibroblasts, but only a modest increase in brain [11,24–

25]. Free sphingosine is thus another interesting biomarker of NPC

and, due to its free amino group, a putative offending metabolite.

Indeed, Platt and colleagues [26] recently postulated that this

compound might constitute a major factor of cell dysfunction in

NPC. It was therefore also studied in the brains and selected livers of

CD-treated and untreated mice. As shown in Fig. 7A, free

sphingosine levels, already high in the brain of 22-day old Npc12/2

mice, increased further to reach a range of 130–180 pmol/mg

protein, compared to 6066 pmol/mg protein in WT mice (mean 6

SD). Very similar levels were found in brains of Npc22/2 mice

(Fig. 7A). Early chronic CD treatment normalized the free

sphingosine level in brain of the 22-day old Npc12/2 mice, and

significantly reduced values were still observed in mice treated from

the early post-weaning period. A similar (although less pronounced)

trend was found for Npc22/2 mice. The effect of an early one-week

treatment (P7–P14) was, however, not sustained in late stage Npc12/2

mice, and chronic treatment starting at P81 was inefficient in

Npc22/2 mouse brains. Livers from Npc12/2 and Npc22/2 mice

showed 10–20 fold increased levels of free sphingosine (Fig. 7B), as

well as of free sphinganine (data not shown), in good accordance to

previously published data [24]. All chronic treatment regimens, even

with a late start, appeared efficient in reducing free sphingosine

accumulation in liver (Fig. 7B). By contrast, one single week of early

treatment from P7 to P14 or P14 to P21 did not result in decreased

levels in an end-stage mouse (Fig. 7B), a result consistent with the

massive storage of cholesterol and sphingomyelin observed in the

livers of those mice (Fig. S4).

Chronic treatment of MPS IIIA and GM1 gangliosidosis
mice with CD does not improve disease state

In addition to NPC disease, several other lysosomal diseases are

characterized by accumulation of cholesterol and GSLs [27]. We

hypothesized that these diseases might likewise benefit from treatment

with CD. Mucopolysaccharidosis type IIIA (MPS IIIA) is caused by a

deficiency in sulfamidase, a lysosomal enzyme necessary for the

catabolism of the glycosaminoglycan, heparan sulfate [28]. In

addition to heparan sulfate storage, neurons are known to accumulate

GM2 and GM3 gangliosides and cholesterol [29]. GM1 gangliosi-

dosis is also the result of a lysosomal enzymatic deficiency, b-

galactosidase, which catabolizes GM1 to GM2 ganglioside, making

GM1 the primary storage material. Cholesterol accumulation also

occurs secondarily to that of GM1 in these mice [30] which, however,

do not accumulate significant amounts of GM2 and GM3.

Mice with MPS IIIA and GM1 diseases were treated with CD

using protocols similar to the NPC studies. Since onset of clinically-

evident brain dysfunction is documented to occur later in life for

both mouse models (.5 mos) [31–33], analysis was limited to

changes in brain storage of cholesterol and gangliosides. Short term

studies in the MPS IIIA mice (analogous to the two week study

carried out in the NPC1 mice) did not reveal detectable changes in

either cholesterol or ganglioside (data not shown). Longer duration,

chronic injections of CD also showed no evidence of impact on

storage, even when initiated shortly after weaning (P21 or P30) and

continued for over 3 months in both models (Fig. 8A–E).

Overall, treatment of both MPS IIIA and GM1 mice with CD

showed no detectable benefit in reduction of either cholesterol or

GSL storage. These results differed substantially from the

ameliorating effects of CD treatment in NPC mice, which

included a significant reduction of both cholesterol and GSL

accumulation in treated Npc12/2 and Npc22/2 mice.
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Discussion

The use of combination therapy consisting of NB-DNJ and

allopregnanolone in Npc12/2 mice had a synergistic effect in

ameliorating disease progression beyond that seen with either

monotherapy. Additionally, we found that treatment with CD, the

vehicle for allopregnanolone, also provided benefit. As a result, we

re-examined the proposed beneficial effect of allopregnanolone by

utilizing different vehicles or a lower concentration of CD. These

studies showed no significant differences in onset of clinical

disease, in longevity, or in storage of cholesterol and GSLs

between Npc12/2 mice receiving allopregnanolone in DMSO or

corn oil compared to vehicle-only controls. Furthermore, while

Npc12/2 mice treated weekly with allopregnanolone/5% CD or

Figure 6. Chronic CD treatment study in Npc22/2 mice. (A) Average weight over time for untreated and CD-treated Npc22/2 and WT mice.
Weights of untreated and CD-treated WTs were averaged for each gender as there was no significant difference between treatments (p,0.8125). (B)
Survival of untreated and CD-treated Npc22/2 and WT mice. Median survival of Npc22/2 mice: no treatment, 144 days; CD (every other day), 248 days.
CD-treated Npc22/2 mice lived significantly longer than untreated Npc22/2 mice (p,0.0108). (C) Filipin labeling of unesterified cholesterol in
neocortex of untreated (end-stage, 145 days old) and CD-treated (start at P9; 150 days old) Npc22/2 mice revealed less cholesterol accumulation in
the CD-treated mouse. (D) IHC of the same untreated and CD-treated Npc22/2 mice showed reduced GM2 labeling in the neocortex of the CD-
treated mouse (also for GM3, not shown). (E) Biochemical analysis of ganglioside levels confirmed the reduction in GM2 and GM3 storage seen with
IHC. Data from WT and mutant mice represent mean 6 SD. Images taken at 20X (C) and 10X (D); scale bars 20 mm (C) and 50 mm (D).
doi:10.1371/journal.pone.0006951.g006
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5% CD alone did show an increase in lifespan beyond that seen in

untreated Npc12/2 mice, the two groups did not differ significantly

when compared with each other. Overall these data indicate that

administration of CD (even at low concentrations), has a greater

impact on ameliorating disease progression in NPC1 mice than

does the administration of allopregnanolone without CD. These

findings are further supported by recently published work in which

a single injection of allopregnanolone in CD given to Npc12/2

mice did not increase lifespan beyond those mice receiving only

the vehicle, CD [19].

Results from the above studies led us to investigate further the

role of CD in ameliorating disease in treated Npc12/2 mice.

Remarkably, Npc12/2 mice receiving CD at P7 and then every

Figure 7. Free sphingosine concentrations in NPC disease
following CD treatment. (A) Biochemical analysis of sphingosine in
brain of untreated and CD-treated Npc12/2 and WT mice revealed that
chronic CD treatment reduced sphingosine concentrations in affected
mice, even when treatment was initiated post-weaning. Npc22/2 mice
exhibited a similar trend, although the effect was less pronounced. (B)
Biochemical analysis of liver from untreated and CD-treated Npc12/2

and Npc22/2 mice showed that with chronic CD treatment, sphingosine
accumulation was reduced to levels near those found in WT.
doi:10.1371/journal.pone.0006951.g007

Figure 8. Chronic CD treatment study in GM1 and MPS IIIA
mice. (A, B) Filipin labeling of unesterified cholesterol (A) and IHC of
GM1 ganglioside (B) in neocortex of untreated (138 days old) and CD-
treated (start at P21; 138 days old) mice with GM1 gangliosidosis. Brown
punctae indicate GM1 accumulation within cortical neurons. No
differences were observed in either filipin or GM1 labeling between
CD-treated and untreated GM1 mice. (C, D) Filipin labeling of
unesterified cholesterol (C) and IHC of GM2 ganglioside (D) in neocortex
of untreated (140 days old) and CD-treated (start at P30; 140 days old)
MPS IIIA mice. As with GM1 mice, no differences were observed
between CD-treated and untreated MPS IIIA mice. (E) No reductions in
GM1, Asialo-GM1, GM2, or GM3 ganglioside levels were seen in cerebral
homogenates of CD-treated GM1 and MPS IIIA mice compared to
untreated mice as evidenced by the thin-layer chromatography plate.
Images taken at 20X (A, C) and 10X (B, D); scale bars 20 mm (C, also
applicable to A) and 50 mm (D, also applicable to B).
doi:10.1371/journal.pone.0006951.g008
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other day for two weeks revealed little to no intraneuronal

accumulation of either cholesterol or gangliosides. Biochemical

analysis also showed that these treated mice exhibited ganglioside

and sphingosine levels comparable to WT controls. Furthermore,

ultrastructural examination of neurons in treated mice revealed

few to no PCBs and no other detectable morphological alterations.

This apparent normalization of most CNS neurons was also

accompanied by expression of the autophagosome marker, LC3-

II, at a level resembling WT, while untreated Npc12/2 animals

exhibited a nearly two-fold increase.

Studies examining chronic administration of CD initiated at P7

were found to provide the most significant impact on NPC disease

progression. Treated mice showed delayed onset of ataxic gait and

tremor, significantly increased lifespan, and greatly reduced

accumulation of cholesterol, GSLs, and sphingosine. Treatment

with CD also led to the rescue of some cerebellar Purkinje cells

outside of lobule X as well as a decrease in a marker of neuro-

inflammation, CD68, in the brains of treated Npc12/2 mice. LC3-

II levels in the cerebellum of chronically treated Npc12/2 mice

were again decreased when compared to untreated controls and

very similar to WT levels, analogous to results of the short term

study. Importantly, Npc12/2 mice administered CD beginning

post-weaning (P21–P25) instead of P7 also demonstrated similar

beneficial effects. Finally, comparison of CD-treated Npc12/2

mice using different routes of administration suggested that SC

injections were slightly more effective in ameliorating NPC1

disease progression than IP administration. Published research has

shown conflicting results in terms of the benefit of CD in

amelioration of NPC1 disease [16,19,34]. However, our current

results indicate that chronic, every other day treatment with CD,

even when initiated post-weaning, proved significantly more

beneficial than single [16,19] or weekly injections of CD began

at P7 and is the most efficacious of any compound tested to date in

delaying NPC disease.

Confocal analysis of cerebral cortex from chronically-treated

Npc12/2 mice revealed that many neurons were essentially devoid

of cholesterol storage whereas neighboring cells sometimes

exhibited significant accumulation. This finding indicates that

CD may impact brain cells differently depending on their type.

Interestingly, while some neurons without cholesterol storage also

lacked GSL storage, many others displayed numerous GM2 and/

or GM3-labeled storage bodies. Cholesterol-sequestering cortical

neurons without accompanying ganglioside storage were not

observed. What these observations mean in terms of a CD

mechanism, or the function of NPC1 and NPC2 proteins, is not

presently known. However, the finding is remarkably similar to

what was observed in studies in which complex ganglioside

synthesis was genetically blocked in NPC1 mice [11,12]. Here,

lack of gangliosides other than GM3 and GD3 led to dramatically

reduced cholesterol storage in cerebral cortex and other brain

areas. Cortical neurons that did persist with cholesterol storage

were found to always accumulate GM3 ganglioside, whereas those

neurons without GM3 lacked evidence of cholesterol sequestration

[12]. While substantial evidence [8,9] supports a direct role for the

NPC1 and NPC2 proteins in cholesterol homeostasis, the

persistence of ganglioside storage in chronically CD-treated NPC

mice, and the apparent dependence of cholesterol sequestration on

GM3 in the studies mentioned, continues to raise questions about

the overall role of gangliosides in NPC disease in relation to

cholesterol sequestration.

Treatment with CD in the NPC1 mouse model has shown

significant beneficial effects on CNS neurons, yet the mechanism

through which these effects are facilitated is unknown. One

important but unresolved issue involves the permeability of the

blood brain barrier (BBB) to CD. CD is a large molecule

(molecular weight<1396 Da) and there are contradictory findings

in terms of its penetration of the BBB. In vivo studies in which mice

were injected intravenously with radiolabeled CD and terminated

1 hour later have suggested that CD does not cross the BBB [34].

Yet a mechanism by which CD could have such striking effects on

brain cholesterol and GSL storage in NPC disease without gaining

direct access to neurons is difficult to envision. Conceivably, CD

may complex with circulating 24S hydroxycholesterol (24S) or

other sterols in the bloodstream and in turn create a ‘‘sink’’ which

might have the ability to enhance cholesterol egress from brain.

Such a mechanism would suggest a feedback loop in which

cholesterol homeostasis within the brain could be influenced by

levels of 24S or other circulating sterols within the bloodstream,

however, no such mechanism is presently known.

Experiments examining cyclodextrins with regard to perme-

ability using an in vitro model of the BBB have indicated that a

small percentage of CD may be transported across the barrier

[35]. Furthermore, there is evidence that use of cyclodextrins as

vehicles for pharmacologic agents significantly facilitates their

entry into brain [16,36]. If CD does enter the brain, it presumably

could exert its impact on cholesterol and GSL accumulation by

acting at the plasmalemma of brain cells or after being

internalized. One scenario, recently suggested by Dietschy and

colleagues, places CD directly in the E/L system of neurons in

Npc12/2 mice where it may act as a substitute for the defective

NPC1 protein [19]. This idea implies that after crossing the BBB,

HCD is endocytosed by neurons, complexes with cholesterol in

LEs/LYs and together with the NPC2 protein facilitates

movement of stored cholesterol. However, our studies also indicate

that CD treatment is essentially of equal benefit to NPC2-deficient

mice. This suggests that CD can replace the NPC1 protein, the

NPC2 protein, or an entire cholesterol shuttling mechanism

believed controlled conjointly by the two NPC proteins [9].

Perhaps more likely, if CD reaches the E/L system, it can complex

with compounds other than cholesterol, for example, BMP or

other phospholipids [37] and thereby change E/L membrane

dynamics and cholesterol flux. It has been shown, for example,

that BMP controls the cholesterol storage capacity of late

endosomes [38]. CD may also have the ability to modify the

internal environment of the LE/LY compartment in other ways,

for example, by altering pH [39], and in some manner facilitate

cholesterol flux and/or GSL catabolism. Any of these mechanisms

conceivably could lead to normalized trafficking and clearance of

accumulated cholesterol and GSLs, but all require CD to enter the

neuronal E/L system.

Another scenario to explain the remarkable effect of CD on

cholesterol and GSL storage in neurons, but not requiring direct

access to the E/L system, would be an interaction with cholesterol

at the neuronal plasmalemma. CD is known to have the ability to

extract and deplete cholesterol from the cell membranes [23,37],

the result of which could be a redistribution of cholesterol from the

E/L system to the plasmalemma. This would be consistent with

the view that cholesterol accumulation in NPC cells represents a

dynamic and mobile storage pool [40], with presumably,

redistribution of stored cholesterol allowing secondarily for proper

processing of GSLs. Our finding that CD is beneficial in reducing

cholesterol and GSLs in neurons lacking either NPC1 or NPC2

proteins, but not in neurons in GM1 gangliosidosis or MPS IIIA,

may be revealing of the importance of cholesterol’s mobility in the

NPC-affected cell compared with other lysosomal diseases.

A third potential mechanism of action for CD might involve a

partial or modified BBB penetration. In vitro studies examining the

effects of cyclodextrins on cholesterol removal from macrophage
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foam cells have shown that at low concentrations, CD can act as a

shuttle to catalyze the flux of cholesterol between cell membranes

and serum lipoproteins and at high concentrations, it can act as a

sink for cholesterol [41]. Potentially, CD could simply complex

with brain interstitial cholesterol and facilitate its transport into the

circulation. CD could also extract cholesterol from the plasma-

lemma of endothelial cells lining the BBB and either shuttle

cholesterol to acceptor molecules or act as a sink within the

bloodstream as discussed earlier. Alternately, a scenario in which

CD penetrates the BBB but does not enter the neuron could

involve entry into vascular endothelial cells where its effects are

exerted from within these frontline BBB cells, or transcytosis across

these cells followed by endocytosis into adjacent astrocytes.

Astrocytes are known to provide cholesterol to neurons and are

poised to exert significant control over cholesterol homeostasis in

neuronal cells [42–43]. Conceivably, normalization of cholesterol

metabolism within diseased astrocytes could lead to an indirect

normalization of cholesterol pools within neurons. Correction of

the metabolic defect in astrocytes may then allow neurons to

overcome their own metabolic defect, in turn leading to enhanced

processing and trafficking of both cholesterol and GSLs.

Consistent with this scenario, a recent study in which functional

NPC1 protein was expressed in an astrocyte-specific manner in

Npc12/2 mice was reported to lead to increased longevity and

decreased neuronal storage of cholesterol [44].

CD is approved for use as a vehicle for drug delivery by several

different routes of administration, including parenteral, oral,

dermal, and transmucosal [45]. Toxicology studies in animal

models, as well as metabolism and pharmacokinetics studies in

humans, have shown CD to be well tolerated and any

histopathological changes to be reversible [46]. Cyclodextrins

are degraded by a-amylases, but those with substituents on the

hydroxyl groups, such as CD, are more resistant to enzymatic

degradation [23]. Futhermore, when administered parenterally, b-

cyclodextrins are excreted almost completely intact in urine. It is

possible that after complexing with cholesterol, CD travels through

the bloodstream to the kidneys, where it is excreted in urine still

complexed with cholesterol. However there were no noticeable

differences in cholesterol accumulation within the kidneys of

chronically-treated versus untreated Npc12/2 mice. Examination

of cholesterol storage in livers of treated Npc12/2 mice revealed a

shift from hepatocytes, which exhibit remarkable accumulation in

untreated Npc12/2 mice, to apparent Kupffer cells in the livers of

CD-treated mice. The cholesterol accumulation in Kupffer cells of

liver from treated Npc12/2 mice was also noted in liver from

treated WT mice. Indeed, the livers of CD treated Npc12/2 and

WT mice looked remarkably similar in terms of cholesterol

distribution. Analysis of lungs from untreated and CD-treated

Npc12/2 mice revealed that cellular cholesterol storage was

present in both groups. However, lungs from a long-term

chronically treated Npc12/2 mouse at end-stage (approximately

14 weeks older than the Npc12/2 mice mentioned above) had a

consolidated appearance and showed substantial cellular choles-

terol accumulation, raising concerns about possible pulmonary

complications with long-term CD treatment. These studies, as a

whole, suggest that the effects of CD may differ by cell type, for

example, when comparing neurons with hepatocytes or macro-

phage-lineage cells, and that multiple mechanisms of cholesterol

mobilization may be involved.

Although the means by which CD exerts its beneficial effects in

NPC disease are not understood, the outcome of CD treatment is

clearly remarkable. It leads to delay in onset of clinical signs, a

significant increase in lifespan, a reduction in cholesterol and

ganglioside accumulation in neurons, reduced neurodegeneration,

and normalization of markers for both autophagy and neuro-

inflammation. Understanding the mechanism of action for CD will

not only provide key insights into the cholesterol and GSL

dysregulatory events in NPC disease and related disorders, but

may also lead to a better understanding of homeostatic regulation

of these molecules within normal neurons. Furthermore, elucidat-

ing the role of CD in amelioration of NPC disease will likely assist

in development of new therapeutic options for this and other fatal

lysosomal disorders.

Methods

Animals and drug administration
Npc12/2 mice, along with WT littermates, were generated by

crossing Npc1+/2 males and females in-house. The NPC1 mouse

(BALBc/NPCnih) was originally obtained from Peter Penchev at

the National Institutes of Health (Bethesda, MD). Mouse pups

were gentoyped according to published protocols [47] and WT

and Npc12/2 mice were enrolled in the combination treatment

study. Starting at P7 and weekly thereafter, some mice were

injected SC with either 20% CD (control; 4000 mg/kg; H107,

Sigma Aldrich, St. Louis, MO) or allopregnanolone (dissolved in

20% CD; 25 mg/kg; P3800-000, Steraloids, Newport, RI).

Additionally, some mice were injected IP every day starting at

P10 until P23 with either saline (control; 0.9% normal saline;

104 6816, Fisher Scientific, Waltham, MA) or miglustat (dissolved

in saline; 300 mg/kg; a gift from Oxford GlycoSciences,

Abingdon, UK/Celltech UK, Slough, Berkshire, UK). Following

weaning at P23, miglustat and combination treated mice were

housed individually in cages and fed powdered chow (Lab Diet

5058, PMI Nutrition International, LLC, Brentwood, MO) to

which miglustat was added daily (1200 mg/kg) [14]. Npc12/2

mice, along with WT controls, were terminated when mice had at

least two of the three signs considered to be end-stage disease.

Clinical signs of end-stage disease included hunched posture and

reluctance to move about the cage, inability to remain upright

when moving forward, and weight loss greater than 30% of peak

weight (mean end-stage weight = 14.3 g). Npc12/2 and WT mice

placed in the CD treatment studies were administered SC or IP

injections of 20% CD (4000 mg/kg) beginning at either P7 or

shortly after weaning (P21–P25). Injections were continued every

other day until sacrifice. Npc22/2, MPS IIIA, and GM1 mice,

along with WT littermates, were generated by crossing heterozy-

gotes from in-house colonies of each disease model. Like NPC1

mice, the NPC2 mouse model is also on a uniform background

[BALB/c; 10]. The MPSIIIA model is of mixed genetic

background, consisting mainly of C57BL/6 with contributions

from 129SvJ, CD1, and SJL mouse strains [32]. The GM1 colony

also has a mixed genetic background with the major contributing

strain being C57BL/6 [31]. These animals were treated with CD

using the same protocol as for Npc12/2 mice, the only variation

being the date of first injection, which ranged from P7 to P30.

Treated Npc12/2 and Npc22/2 mice, along with WT littermates,

were sacrificed at end-stage or with age-matched untreated controls

for comparison. MPS IIIA and GM1 mice plus WT littermates were

sacrificed after approximately 3 months of treatment with CD,

along with untreated controls. Mice were deeply anesthetized with

an IP injection of sodium pentobarbital (150 mg/kg) and when

insensate, were transcardially perfused with 0.9% saline solution.

Following perfusion, a craniotomy was performed and the right

cerebrum and right half of cerebellum were removed, along with

liver and kidney, which were immediately frozen at 280uC for

biochemical analyses. Mice were re-perfused with 4% paraformal-

dehyde in 0.1M phosphate buffer (PB) and additional tissues were
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collected (remaining half of brain, liver, kidney, spleen, and lung)

and immersion fixed overnight in 4% paraformaldehyde/PB.

Tissues were rinsed the following day and stored in PB at 4uC.

All animal procedures were carried out according to guidelines

approved by the Einstein College of Medicine Institutional Animal

Care and Use Committee.

Statistical analyses
JMPH software (JMPH, Version 7. SAS Institute Inc., Cary, NC)

was used to analyze weight data from Npc12/2 and Npc22/2 mice

in the treatment studies. There were no significant differences in

weight between untreated and CD-treated WT mice, as Repeated

Measures ANOVA revealed no main effect of treatment

(Ftreatment = 0.0027; p,0.8125) and no interactions between

treatment and time (Ftreatment6time = 0.4812; p,0.2041). There

were also no significant differences between untreated and CD-

treated WT weights when individual t-tests were performed at

each time point. To determine if statistically significant differences

between lifespan of treated and untreated groups occurred, a

survival analysis using a Log-rank (Mantel-Cox) Test was

performed in GraphPad Prism (GraphPad Software version

5.01, San Diego California USA).

Antibodies and reagents
The following primary antibodies were purchased for use in

immunohistochemistry and/or immunofluorescence: anti-GM3

ganglioside mAb (DH2, mouse IgG3, cell culture supernatant; 10-

011; GlycoTech); anti-GM1 ganglioside pAb (IgG, serum; G2006-

11; US Biological, Swampscott, MA); anti-CD68 mAb (rat IgG;

MCA1957; AbD Serotec, Raleigh, NC); anti-calbindin mAb

(mouse IgG, C9848) (Sigma-Aldrich, St. Louis, MO); and anti-

LC3 pAb (rabbit IgG, NB100-2220; NOVUS Biologicals,

Littleton, CO). Anti-GM2 ganglioside mAb (Mouse IgM, cell

culture supernatant) was produced in-house from the 10–11

hybridoma line provided by Progenics Pharmaceuticals, Inc.

(Tarrytown, NY). BC-theta was provided by Dr. Y. Ohno-

Iwashita (Cellular Signaling Group, Tokyo Metropolitan Institute

of Gerontology, Japan) (Iwamoto, 1997).

The following secondary antibodies and reagents were pur-

chased for use in immunoperoxidase staining: biotinylated goat

anti-mouse IgM (BA-2020), biotinylated goat anti-mouse IgG (BA-

9200), biotinylated goat anti-rabbit IgG (BA-1000), Vectastain

ABC kit (PK-4000), and DAB Peroxidase Substrate Kit (SK-4100)

from Vector Laboratories (Burlingame, CA). The following

secondary and tertiary antibodies were purchased for use in

immunofluorescence: FITC-conjugated goat anti-mouse IgG (c
specific-Fc, 55517) from MP Biomedicals (Solon, OH); Alexa

Fluor 633-conjugated goat anti-mouse IgM (m chain, A21046),

Alexa Fluor 546-conjugated streptavidin (S11225), and Alexa

Fluor 488 Signal-Amplification Kit for FITC-conjugated probes

(A11053) from Molecular Probes/Invitrogen (Carlsbad, CA).

Filipin complex from Streptomyces filipinensis (F9765) was purchased

from Sigma-Aldrich (St. Louis, MO). Peroxidase-labeled goat anti-

rabbit IgG (PI-1000) was purchased from Vector Laboratories

(Burlingame, CA) for use in western blotting.

Immunohistochemical and filipin staining procedures
Immunoperoxidase staining was carried out according to

previously published protocols [29]. Primary antibody dilutions

were as follows: anti-GM2 (1:5), anti-GM3 (1:50), anti-GM1

(1:5000), anti-calbindin (1:3000), and anti-CD68 (1:200). Second-

ary antibody dilutions were 1:200 for biotinylated goat anti-mouse

IgM, biotinylated goat anti-mouse IgG, and biotinylated goat anti-

rabbit IgG.

Immunofluorescence was carried out according to previously

published protocols [29]. Primary antibodies were diluted

according to: anti-GM2 (1:5), anti-GM3 (1:5), and BC Theta

(8 mg/ml). Secondary antibodies were diluted as follows: FITC-

conjugated goat anti-mouse IgG (1:200), Alexa Fluor 633-

conjugated goat anti-mouse IgM (1:300), Alexa Fluor 546-

conjugated streptavidin (1:750) and Alexa Fluor 488 Signal-

Amplification Kit component A (1:80). To visualize unesterified

cholesterol, sections were incubated with filipin complex (0.005%

dissolved in DMSO and diluted in PBS) or DMSO (control;

diluted in PBS) and labeling was carried out according to

previously cited protocols.

Imaging procedures
Brightfield images were obtained using an upright Olympus

AX70 microscope and MagnaFire camera. Images of filipin

labeling were obtained on the same Olympus microscope but

utilizing settings appropriate for acquisition of fluorescent images.

Laser scanning confocal fluorescence images were obtained on a

Zeiss 510 Duo V2 system using a 63X oil objective (NA = 1.4) and

a zoom setting of 3. A multi-track mode, optimized for each

fluorophore combination, was employed to help ensure no

channel cross-talk. Digital images were further prepared for

presentation using Metamorph software (Molecular Devices) and

Adobe Photoshop.

Electron microscopy
According to published protocols [32], fixed tissues were

transferred to 0.1M cacodylate buffer, post-fixed in 2% glutaral-

dehyde, washed and post-fixed in osmium (1% osmium in 0.1%

cacodylate buffer), dehydrated and embedded in Epon-aryldite.

Ultrathin sections were cut from the plastic embedded blocks,

stained with uranyl acetate and lead citrate, and examined with a

Philips CM10 electron microscope.

Biochemical lipid and protein analyses
Lipid analyses were carried out on frozen cerebral hemispheres

and liver. Total lipid extracts were obtained as in Fujita et al. [48].

The procedures for ganglioside isolation and subsequent quanti-

tation were as in previous studies [10,49]. Analysis of free

sphingoid bases was carried out by high-performance liquid

chromatography as described by Rodriguez-Lafrasse et al. [25]

using eicosasphinganin as an internal standard. Separation of o-

phtalaldehyde derivatives was achieved on a 20064.9 mm, 5 mm

Spherisorb ODS2 column (Waters) and monitored by fluorometry.

Western blot analysis of LC3 was carried out according to the

following method. Frozen brain tissue was homogenized in ice-

cold lysis buffer (50 mM Tris-HCl, pH 7.5, 150 mM NaCl, 1%

Igepal CA-630, 1% deoxycholic acid, 0.1% SDS supplemented

with protease inhibitor cocktail), centrifuged (15000 rpm) for 30

minutes at 4uC and the supernatants (soluble fraction) were

collected. Protein concentrations were determined using a BCA

protein assay kit. For immunoblotting, samples were analyzed by

SDS-PAGE (16% gels) under reducing conditions and transferred

to Immuno-blot PVDF membranes. Membranes were blocked in

1x TBS, 0.1% Tween-20, 5% non-fat dry milk, 1% BSA, followed

by incubation with an antibody to LC3 (2 mg/ml) and subsequent

incubation with Peroxidase Labeled anti-Rabbit IgG secondary

antibody (1:5000). SuperSignal West Pico Chemiluminescent

Substrate was used for protein detection on a KODAK 2000R

imaging station. Protein quantification for each sample was

performed by densitometric analysis using KODAK imaging

software and normalized to actin in the same sample. This analysis
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was represented as LC3-II/Actin normalized to the wild-type

untreated control.

Supporting Information

Figure S1 Route of administration of CD in Npc12/2 mice. (A,

B) Filipin labeling of unesterified cholesterol (A) and IHC of GM2

ganglioside (B) in neocortex of 22 day old Npc12/2 untreated (left

panels) and CD-treated mice injected either SC (middle panels) or

IP (right panels) starting at P7. Results indicated that while both

routes of administration reduced cholesterol accumulation com-

pared to untreated Npc12/2 mice, SC injections seemed to be

more efficacious than IP injections. Images taken at 20X (A) and

10X (B); scale bars 20 mm (A) and 50 mm (B).

Found at: doi:10.1371/journal.pone.0006951.s001 (4.05 MB TIF)

Figure S2 Cholesterol accumulation in visceral tissues from

chronic CD treatment study in Npc12/2 mice. (A, B, C) Filipin

labeling of unesterified cholesterol in kidney (A), liver (B), and lung

(C) from untreated Npc12/2 (end-stage, 87 days old; first column),

CD-treated Npc12/2 (age-matched, 90 days old; second column),

CD-treated Npc12/2 (end-stage, 223 days old; third column),un-

treated (87 days old, fourth column) WT, and CD-treated WT (90

days old; fifth column) mice. No obvious differences were seen

between cholesterol accumulation in kidneys of untreated versus

CD-treated Npc12/2 mice (A). Filipin labeling indicated a shift of

cholesterol storage from hepatocytes in untreated Npc12/2 mice to

presumptive Kuppfer cells in CD-treated Npc12/2 mice, an

observation also noted in CD-treated WT mice (B). Overall, filipin

labeling of lung from both untreated and CD-treated Npc12/2

mice suggested the presence of more cholesterol accumulation

than in lung from WT mice (C). Images taken at 20X; scale bar

20 mm (C, also applicable to A and B).

Found at: doi:10.1371/journal.pone.0006951.s002 (4.65 MB TIF)

Figure S3 H&E staining of visceral tissues from chronic CD

treatment study in Npc12/2 mice. (A, B, C) H&E staining of

kidney (A), liver (B), and lung (C) from untreated and CD-treated

Npc12/2 and WT mice (same mice as in Fig. S2). No obvious

differences were noted in kidney between untreated and CD-

treated mice (A). Staining of liver indicated the presence of lipid

laden hepatocytes within untreated Npc12/2 tissue but these were

not noted in any other mice (B). While macrophages were present

in lung tissue from both untreated and CD-treated Npc12/2 mice,

CD-treated mice showed increasing macrophage infiltration,

especially as CD treatment continued to end-stage disease.

Lipid-laden macrophages were not observed in either untreated

or CD-treated WT tissue (C). Images taken at 20X; scale bar

20 mm (C, also applicable to A and B).

Found at: doi:10.1371/journal.pone.0006951.s003 (8.44 MB TIF)

Figure S4 Effect of chronic CD treatment on lipid storage in

liver of Npc12/2 mice. (A) Thin layer chromatographic profile of

total lipids in liver tissue of Npc12/2 or WT mice, untreated

(Unt’d) or CD-treated for the indicated period, visualized with the

anisaldehyde reagent. Results indicate that chronic CD treatment,

but not 1 week of early CD treatment (far right lane), normalizes

lipid storage (Chol, GlcCer, BMP, and Sph) in Npc12/2 liver to

levels near WT. The amount of lipid extract spotted corresponded

to 2 mg wet tissue. Chol: unesterified cholesterol; GlcCer:

glucosylceramide; BMP: bis(monoacylglycero)phosphate; Sph:

sphingomyelin.

Found at: doi:10.1371/journal.pone.0006951.s004 (1.34 MB TIF)
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