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Abstract 

Extensive research within the last several decades has revealed that the major risk factors for most chronic diseases are 
infections, obesity, alcohol, tobacco, radiation, environmental pollutants, and diet. It is now well established that these 
factors induce chronic diseases through induction of inflammation. However, inflammation could be either acute 
or chronic. Acute inflammation persists for a short duration and is the host defense against infections and allergens, 
whereas the chronic inflammation persists for a long time and leads to many chronic diseases including cancer, car-
diovascular diseases, neurodegenerative diseases, respiratory diseases, etc. Numerous lines of evidence suggest that 
the aforementioned risk factors induced cancer through chronic inflammation. First, transcription factors NF-κB and 
STAT3 that regulate expression of inflammatory gene products, have been found to be constitutively active in most 
cancers; second, chronic inflammation such as pancreatitis, prostatitis, hepatitis etc. leads to cancers; third, activation 
of NF-κB and STAT3 leads to cancer cell proliferation, survival, invasion, angiogenesis and metastasis; fourth, activation 
of NF-κB and STAT3 leads to resistance to chemotherapy and radiation, and hypoxia and acidic conditions activate 
these transcription factors. Therefore, targeting these pathways may provide opportunities for both prevention and 
treatment of cancer and other chronic diseases. We will discuss in this review the potential of various dietary agents 
such as spices and its components in the suppression of inflammatory pathways and their roles in the prevention and 
therapy of cancer and other chronic diseases. In fact, epidemiological studies do indicate that cancer incidence in 
countries such as India where spices are consumed daily is much lower (94/100,000) than those where spices are not 
consumed such as United States (318/100,000), suggesting the potential role of spices in cancer prevention.
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Background
Chronic diseases, also called as non-communicable dis-
eases that include Alzheimer’s disease, arthritis,  cancer, 
cardiovascular disease (CVD), diabetes  and  Parkinson’s 
disease, remain the primary root cause of death and dis-
ability worldwide [1–3]. �e major risk factors associated 
with these diseases are unhealthy lifestyle including lack 
of physical activity, poor diet, stress, excessive tobacco 

and alcohol consumption, exposure to radiation, and 
infection with pathogenic microorganisms. It is now well 
established that these agents induce inflammation and 
dysregulate inflammatory pathways, which lead to the 
development of chronic diseases [1–3].

Inflammation, which means, “to set on fire” is a body’s 
natural response against harmful pathogen and stim-
uli that occurs in two stages namely, acute and chronic 
inflammation [4]. Acute inflammation is a part of innate 
immunity initiated by the immune cells that persists only 
for a short time. However, if the inflammation continues, 
the second stage of inflammation called chronic inflam-
mation commences which instigates various kinds of 
chronic diseases, including arthritis, cancer, cardiovascu-
lar diseases, diabetes, and neurological diseases via dys-
regulation of various signaling pathways such as nuclear 
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factor kappa-B (NF-κB), signal transducer and activator 
of transcription 3 (STAT3) etc. [5]. Hence, targeting the 
inflammatory pathways has high potential in preventing 
and eradicating these deadly diseases [1]. However, most 
of the drugs developed till today for the treatment of 
chronic diseases are highly expensive and associated with 
adverse side effects [1]. �erefore, there is an urgent need 
to develop novel, safe, affordable, and highly efficacious 
agents for the management of these diseases.

Congregate evidence suggests that a diet rich in plant-
based agents including spices has the ability to prevent 
most of the chronic diseases. �e earliest evidence of 
the use of spices by humans dates back to 5000 B.C., and 
till today their biological activities have been extensively 
studied [6]. “Spice” originates from the Latin word, “spe-

cies”, which means a commodity of special distinction or 
value [7]. Spices have been extensively used since ancient 
times as means of remedy, coloring agent, flavoring 
agent, and preservative. Subsequently, tremendous stud-
ies have shown that nutraceuticals derived from spices 
such as clove, coriander, garlic, ginger, onion, pepper, tur-
meric, etc., remarkably prevent and cure various chronic 
diseases by targeting inflammatory pathways [8]. �is 
review emphasizes the association between inflammation 
and chronic diseases and the benefits of spices in warding 
off these global major health issues.

Molecular pathways linked to inflammation
Aforementioned, inflammation is essentially an immune 
response to infection or injury in the body that helps to 
maintain tissue homeostasis under stressful conditions 
[9]. Eventually, it was discovered that transcription fac-
tors such as NF-κB and STAT3, inflammatory enzymes 
such as cyclooxygenase-2  (COX-2), matrix metallopro-
teinase-9 (MMP-9), and inflammatory cytokines such as 
tumor necrosis factor alpha (TNF-α), interleukins  (IL) 
such as IL-1, -6, -8, and chemokines are the main molecu-
lar mediators of this response. Amongst these mediators, 
ubiquitous transcription factor NF-κB is the key media-
tor of inflammation as it regulates large arrays of genes 
encoding cytokines, cytokine receptors, and cell adhesion 
molecules that are involved in triggering inflammation 
[10, 11]. In normal condition, NF-κB exists in the cyto-
plasm in the form of a heterotrimer that comprises of 
the subunit p50, p65, and inhibitory subunit IκBα. Upon 
activation by certain inflammatory stimuli, cytokines, 
carcinogens, free radicals, tumor promoters,  UV-light, 
γ-rays, and x-rays, the subunits p50 and p65 translocate 
into the nucleus, bind to the promoters region of various 
genes, and activate more than 400 genes that are involved 
in inflammation and other chronic diseases [12] (Fig. 1). 
Activation of NF-κB is also known to instigate cancer cell 

proliferation, survival, invasion, angiogenesis, metastasis, 
chemoresistance, and radiation resistance.

NF-κB regulates the expression of inflammatory medi-
ators such as COX-2, inducible nitric oxide synthase 
(iNOS), TNF-α, and interleukins [11]. Overexpression of 
the cytokine, TNF-α, the most potent pro-inflammatory 
cytokine so far discovered, can lead to various chronic 
diseases, including cancer, via the activation of NF-κB. 
�erefore, the blockers of TNF-α have high potential for 
the prevention and management of chronic diseases and 
the global market for  TNF-α blockers is approximately 
$20 billion. However, most of these blockers that have 
been approved for the treatment of chronic diseases are 
very expensive and have numerous adverse  side effects. 
Interleukins are a group of cytokines that are released 
by macrophages. Interleukins such as IL-1β, IL-6 and 
IL-8 also play pivotal roles in inducing inflammatory 
response [10]. Upregulation of COX-2, iNOS, and aber-
rant expression of TNF-α and IL-1, IL-6 and IL-8 have 
been reported to play important roles in oxidative stress 
that leads to inflammation [5].

IL-6 is a key NF-κB-dependent cytokine that induces 
the activation of STAT3. STAT3 is a cytoplasmic pro-
tein that acts as a transcriptional factor and induces 
several types of immune and inflammatory responses. 
�e activation of STAT3 involves tyrosine phosphoryla-
tion, homodimerization, nuclear translocation where 
it binds to the DNA and regulates gene transcription 
[6, 13]  (Fig.  1). Protein kinases such as Janus-activated 
kinase (JAK) 1, 2, and 3 were found to phosphorylate 
STAT3 and induce its nuclear translocation [6].

Besides these, other transcription factors such as acti-
vator protein-1 (AP-1), hypoxia-inducible factor-1α 
(HIF-1α), nuclear factor of activated T cells (NFAT) and 
nuclear factor erythroid 2–related factor 2 (Nrf2) are also 
modulated by inflammatory cytokines and play crucial 
function for mediating cellular stress responses [5]. �e 
mitogen-activated protein kinase (MAPK) family con-
sisting of three different stress-activated protein kinase 
pathways namely p38, JNK and ERK, has been found to 
modulate the level of IL-5 and other cytokines during 
inflammation. �erefore, MAPK pathway can also be 
used as a potential molecular target for the treatment of 
chronic inflammatory diseases [14] (Fig. 1).

Chronic diseases and inflammation
Chronic diseases are the leading cause of mortality in the 
world accounting for approximately 60% of all deaths. 
Aforementioned, various inflammatory biomarkers are 
altered in chronic diseases such as transcription factors 
(NF-κB, STAT3) and their downstream products such 
as inflammatory cytokines (TNF-α, IL-1, IL-6, IL-8) and 
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pro-inflammatory enzymes such as COX-2, MMP-9, cell 
adhesion molecules (CAM), vascular endothelial growth 
factor (VEGF) etc. [1, 15].

Amongst the chronic diseases, cancer is one of the 
major diseases caused by chronic inflammation. In 2009, 
Colotta et  al. proposed inflammation as the seventh 
hallmark of cancer [16]. Both inflammation and can-
cer are linked through intrinsic and extrinsic pathways 
i.e. oncogenes regulate the inflammatory microenviron-
ment intrinsically, whilst the inflammatory microenvi-
ronment facilitates the development and progression 
of cancer extrinsically [17]. Specifically, the inflamma-
tory response positively aids in tumor development and 
increases the risk of malignancy [18]. Approximately 
15% of the cancer cases are caused by persistent infec-
tion and chronic inflammation [19]. It has been well 
established that NF-κB is constitutively activated in vari-
ous cancers such as cancers of the breast, colon, liver, 
lung, pancreas etc. in response to carcinogens such as 
tobacco, alcohol, and exposure to radiation etc. Upregu-
lation of NF-κB subsequently activates hundreds of pro-
inflammatory gene products including TNF-α, IL-1, 
IL-6, chemokines, MMP-9, 5-LOX, VEGF, and COX-2 
[20]. �ese pro-inflammatory cytokines play a  vital role 
in inflammation-induced cancer cell proliferation, angio-
genesis, invasion, metastasis, and suppression of apop-
tosis. In addition, even in cancers that are not instigated 
by inflammation, inflammatory cells enter the tumor 
stroma and consequently induce cancer development 
[21]. More importantly, an in  vivo study has illustrated 
that NF-κB activation via the IκB kinase (IKK) complex 
acts as a molecular link between inflammation and can-
cer [22]. Moreover, NF-κB activation also leads to radi-
oresistance and chemoresistance. �ese observations 
suggest that NF-κB plays an important role in inflamma-
tion and cancer. �erefore, anti-inflammatory agents that 
target NF-κB and its regulated products may have high 
efficacy in both the prevention and treatment of cancers.

Inflammatory cytokines IL-1 and IL-6 also modu-
late pro-oncogenic transcription factor STAT3, thereby 
increasing survival, proliferation, angiogenesis, inva-
sion, and metastasis of cancer cells [23]. STAT3 was also 
known to be upregulated in many cancer patients, and the 
level of STAT3 was directly correlated with poor progno-
sis [1]. In case of oral cancer, oral submucous fibrosis or 
oral lichen planus are precancerous conditions implicated 
with immuno-inflammatory processes that may transform 
to cancer [24]. Besides, chronic inflammation in various 
organs or tissues leads to different types of cancers. For 
example, chronic obstructive pulmonary disease (COPD) 
leads to lung cancer, colitis leads to colon cancer, gastritis 
leads to stomach cancer, pancreatitis leads to pancreatic 
cancer, prostatitis leads to prostate cancer, etc. [25–28].

Aforesaid, unresolved inflammation of the pancreas, 
pancreatitis leads to pancreatic cancer. It has been dem-
onstrated that O-GlcNAc transferase (OGT)—mediated 
O-GlcNAcylation activated NF-κB signaling pathway 
and inflammation in pancreatic acinar cells, ultimately 
leading to the progression of acute pancreatitis [29]. T 
helper cell-mediated inflammation also has been found 
to be associated with pancreatic β-cell dysfunction and 
leads to chronic pancreatitis [30]. COPD is an epidemic 
chronic inflammatory disease of the lung [31, 32]. Inter-
leukin-33 enhances the production of the inflammatory 
cytokine such as IL-6 and IL-8 in chronic airway inflam-
mation, thus contributing to COPD development [33]. It 
has also been reported that inflammatory responses in 
COPD promote  lung tumor initiation and progression 
[34]. Another inflammation induced chronic disease 
is rheumatoid arthritis (RA) which is an autoimmune 
disease characterized by the  production of the pro-
inflammatory cytokine IL-17 [35]. Studies suggested 
that pro-inflammatory cytokines such as IL-1β, IL-6 
and TNF-α also  play pathological roles in the develop-
ment of RA [36]. In addition, it has been demonstrated 
that STAT3 also caused chronic inflammation and joint 
destruction in RA [36]. Hence, targeting inflammatory 
pathways can be used for the prevention and treatment 
of RA.

In Alzheimer’s disease (AD), which is the prevalent 
chronic  neurodegenerative  disease, inflammation has 
an essential role in the disease pathogenesis. Studies 
have indicated that microRNAs, astrocytes, microglia, 
and infiltrating immune cells from the peripheral region 
might affect the development of neuroinflammation 
and neurodegeneration in AD patients  [37]. Accumu-
lated evidence has depicted that deposition of extracel-
lular amyloid beta (Aβ) in AD leads to upregulation of 
pro-inflammatory mediators IL-1β, IL-6 and TNF-α, by 
the activated immune cells, which promote additional 
inflammatory pathways via instigation of COX-2 and 
NF-κB [37].

Inflammatory bowel disease (IBD) is a group of 
inflammatory disorders of the digestive tract, which 
mainly includes Crohn’s disease and ulcerative colitis. 
Studies have shown that IBD patients have high sus-
ceptibility to develop colorectal cancer. Inflammatory 
mediators including cytokines (TNF-α, IL-1β, IL-6, IL-17, 
and IL-21), eicosanoids, and reactive oxygen metabolites 
play a vital role in causing the chronic inflammatory con-
dition in IBD [13, 38]. In addition, activation of STAT3 
signaling pathway is associated with colitis and colorectal 
cancer [39].

Allergic asthma is an airway inflammatory disease 
caused due to exposure to allergens causing broncho-
constriction. Asthma is characterized by an imbalance 
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between the T helper type 1 (�1) and T helper type 
2 (�2) responses and excessive production of reac-
tive oxygen species (ROS) [40]. �2 cells release several 
cytokines such as IL-4 and IL-13 that in turn produces 
immunoglobulin, IgE resulting in allergic response [41]. 
Numerous studies also indicate that attenuation of the 
Type 2 inflammatory pathway caused a clinically sub-
stantial reduction in asthma exacerbations. �us, it is 
now evident that type 2 inflammation is an imperative 
mechanism of susceptibility to asthma exacerbation [42].

Diabetes mellitus (DM) is a predominant metabolic 
chronic disease that affects more than 170 million people 
globally. Type 1 DM is induced by the chronic inflamma-
tion of pancreatic islets, while type 2 DM is associated 
with insulin resistance resulting in elevated production of 
inflammatory markers such as C-reactive protein (CRP), 
IL-6, and TNF-α [43]. Patients with type 2 diabetes have 
a higher chance of developing atherosclerosis, which is a 
disease wherein plaque accumulates in arteries. Arachi-
donic acid derived eicosanoids such as prostaglandin  E2 
 (PGE2) and leukotriene B4 (LTB4) are the potential pro-
inflammatory mediators in atherosclerosis and are regu-
lated by NF-κB [43].

Collectively, it is apparent that dysregulation of inflam-
matory pathways is the underlying mechanism of various 
chronic diseases. �erefore, many drugs have been devel-
oped that target inflammatory pathways for the manage-
ment of these diseases. However, most of these drugs 
developed so far are highly expensive and are not devoid 
of adverse side effects. Hence, there is an urgent need to 
develop safe, affordable, and efficacious drugs for the pre-
vention and treatment of these chronic diseases. It has 
been well established that the population who consume 
spices are less susceptible to the development of chronic 
diseases. �e components present in these spices have 
the ability to inhibit inflammatory pathways that lead to 
chronic inflammation, which contributes to the biologi-
cal properties of these spices.

Spices and their active components
Mother nature has bestowed us with a profuse source of 
remedies to treat various kinds of ailments. Since time 
immemorial, phytochemicals, both in their natural as 
well as synthetic forms have been used for the treatment 
of various chronic diseases [12]. �e root, leaf, bud, seed, 
bark, berry, stigma of a plant or flower used for the culi-
nary purpose are generally called as spices. Spices not 
only add flavor and taste to food, but also exhibit tremen-
dous health benefits [44]. Numerous results from preclin-
ical and clinical studies over the past several decades have 
ascertained the efficacious role of spices and their active 
components in preventing and combating various dis-
eases including arthritis, asthma, cancer, cardiovascular 

diseases,  diabetes,  and neurodegenerative diseases [45]. 
�e most commonly used spices for culinary purpose 
that shows biological activities are black pepper, carda-
mom, cinnamon, clove, cumin, fenugreek, fennel, garlic, 
ginger, onion, rosemary, turmeric etc.

Turmeric (Curcuma longa) is the most commonly used 
spice in the world. Curcumin, the main component of 
turmeric (2–5%), obtained from rhizomes of this plant, is 
a yellow colored compound, which gives the golden color 
to turmeric, was first isolated by Vogel in 1842. In 1910, 
the structure of curcumin was determined as diferuloyl-
methane and later synthesized and cocrystallized with 
5-LOX in 2003 [46]. �is ‘golden spice’ is recognized for 
its anti-inflammatory, antimicrobial, insecticidal, anti-
mutagenic, radioprotective, and anticancer properties. 
Over ten thousand studies have been reported in the lit-
erature about the biological activities of this compound 
including more than 120 clinical trials. Besides curcumin, 
the other active components of turmeric include demeth-
oxycurcumin, bisdemethoxycurcumin, sesquiterpenes, 
diterpenes, triterpenoids, [47, 48]. Black pepper (Piper 

nigrum), another commonly used spice is widely known 
for its immunomodulatory, anti-oxidant, anti-asthmatic, 
anti-carcinogenic, anti-inflammatory and anti-ulcer 
properties [49]. Other than its main component piperine, 
black pepper also contains β-caryophyllene, limonene, 
δ-3-carene, α-pinene, β-pinene, α-phellandrene, 
myrcene, terpinolene, etc. [50]. Another extensively used 
spice, ginger (Zingiber officinale) is reported to have dif-
ferent biological properties such as antioxidant, anti-
inflammatory and antiproliferative properties. 6-gingerol 
is the main component of this spice, which is responsi-
ble for its biological properties [51]. Other than gingerol, 
ginger also contains 6-paradol, 6-gingerdiol, gingerdione, 
shogoal, zingiberene, citral (neral and geranial), bisab-
olene, cineol, α-farnesene, β-phellandrene, zingerone 
etc. [52]. �e most commonly used spice for cardiovas-
cular diseases in the  ancient system of medicine is gar-
lic (Allium sativum). It also possesses anti-inflammatory, 
gastroprotective and anti-cancer properties due to the 
presence of phytochemicals such as diallyl sulfides, dial-
lyl disulfides, ajoene, allicin, alliin, diallyl trisulfide, 
S-allylcysteine, methiin, isoalliin, cycloalliin, S-allylmer-
captocysteine [53, 54]. Another spice that is widely used 
all over the world to enhance the spice level of dishes is 
red pepper (Capsicum). Apart from capsaicin, red pepper 
also contains β-carotene, zeaxanthin, lutein, caffeic acid 
and capsanthin [55]. �e other commonly used spices 
and their active components include cardamom (1,8-cin-
eole, α-terpinyl acetate, limonene, linalool, linalyl acetate, 
terpinolene and myrcene) [4, 56]; cinnamon (cinnamal-
dehyde, cinnamyl acetate, cineole, coumarin, ethyl cinna-
mate, linalool, humulene, β-caryophyllene, τ-cadinol) [57, 
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58]; clove (eugenol) [4]; fenugreek (diosgenin, yamogenin, 
choline, resins, trigonelline) [59]; black cumin (thymo-
quinone, cuminaldehyde, γ-terpinene, β-pinene, p-men-
tha-1, 3-diene-7-al, p-mentha-1, 4-dien-7-al, p-cymene) 
[60]; kokum (garcinol, xanthochymol, isoxanthochymol, 
1,2-dihydroxypropane-1,2,3-tricarboxylic acid) [61]; 
rosemary [bornyl acetate, rosmarinic acid, carnosol, car-
nosic acid, camphor, limonene, camphene, borneol, cin-
eole, α-pinene, (Z)-linalool oxide] [62]; saffron (crocetin 
and crocin) [63]; star anise (estragole, trans-anethole, 
limonene) etc. [64]. Hence, it is evident that spices con-
tain a diverse range of active components that provide 
tremendous health benefits. Table 1 shows a list of spices, 
their common names, scientific names, and their active 
components. Figure  2  depicts the structures of active 
components of spices. 

Active components of spices, inflammatory 
pathways, and chronic diseases
Increasing lines of evidence have established the efficacy 
of the principal components of spices in preventing as 
well as alleviating different types of chronic diseases. �e 
main components of spices and their curative potentials 
are discussed below:

1,8-Cineole

1,8-Cineole (Cin) is a monoterpene oxide found in vari-
ety of spices such as basil, cardamom, and sage [4]. Cin 
has been used to treat multiple inflammatory disorders 
such as bronchitis, sinusitis, chronic rhinitis, and asthma 
(Table 2). Cin has been shown to downregulate NOS-2, 
COX-2, and NF-κB, hence showing its potential as an 
anti-inflammatory agent [60]. Moreover, Cin also attenu-
ated the colonic damage in trinitrobenzene sulfonic acid 
(TNBS)-induced colitis in rats; decreased acute pulmo-
nary inflammation in  vivo; ameliorated acute pancrea-
titis in  vivo via downregulation of cytokines, oxidative 
stress and NF-κB [38, 65, 66]. In AD, insoluble amyloid β 
deposits induced inflammation. However, it has been 
found that 1,8-cineole significantly lowered the expres-
sion of proinflammatory cytokines TNF-α, IL-1β and 
IL-6 in amyloid β toxicated PC12 cells [67]. In addition, 
numerous studies also showed its potential in preventing 
different chronic diseases such as asthma, colitis, COPD, 
pancreatitis,  etc. by modulation of inflammatory path-
ways including TNF-α, COX-2, NF-κB, IL-1β, etc. [66–
69] (Table 2) (Fig. 3).

6-Gingerol

6-Gingerol, the main active component of ginger, is 
shown to possess different biological activities such as 
anti-oxidative, anti-inflammatory and anti-proliferative 
properties [51]. Its therapeutic effect was observed 

against various chronic diseases such as AD, colorec-
tal cancer and diabetes  [70–72] (Table  2)  (Fig.  3). For 
example, 6-Gingerol can induce downregulation  of 
inflammatory cytokines such as monocyte chemoat-
tractant protein-1 (MCP-1), TNF-α, and IL-6, and 
NF-κB thereby, ameliorating steatohepatitis in  vivo 
[73]. 6-gingerol also has a protective role against colitis 
in vivo through the activation of adenosine monophos-
phate-activated protein kinase (AMPK) pathway [74]. 
Studies have shown that this nutraceutical is a poten-
tial candidate for the treatment of diabetes. Diabetic rat 
treated with a ginger extract containing 5% of 6-gingerol 
significantly attenuated the expression of NF-κB and 
inhibited the activity of TNF-α and VEGF [71]. More-
over, 6-gingerol possesses anti-tumorigenic and pro-
apoptotic properties. For instance, 6-gingerol promoted 
cell apoptosis in human colorectal cancer cells via the 
upregulation of nonsteroidal anti-inflammatory drug 
(NSAID)-activated gene-1 (NAG-1) [70]. Another study 
also demonstrated that 6-gingerol suppressed cytokine 
production for T cell activation and proliferation, hin-
dering B cell and mast cell activation, thereby alleviating 
symptoms of allergic rhinitis (AR) [75].

α-Pinene

α-Pinene is a monoterpene, found mainly in eucalyp-
tus oils and oils of aromatic plants such as rosemary. It 
is known to possess antimicrobial, apoptotic, antimeta-
static, and antibiotic properties [76]. α-pinene is one 
promising agent for treatment of various inflammatory 
diseases as it has been found to suppress MAPKs and 
NF-κB pathway [77]  (Fig.  3). �e inflammation associ-
ated with acute pancreatitis is considerably reduced by 
treatment with α-pinene in vivo via the downregulation 
of TNF-α, IL-1β, and IL-6 [78]. Furthermore, treatment 
of AR mouse model with α-pinene significantly inhibited 
receptor-interacting protein 2 (RIP2), IκB kinase (IKK)-β, 
NF-κB, and caspase-1, thereby making α-pinene an anti-
allergic agent against AR [76].

Diallyl sulphide (DAS)

Diallyl sulphide (DAS) is the major organo sulphur com-
pound of garlic. It is a potential agent for treatment of 
airway inflammation such as asthma through its ability 
to regulate nuclear factor-E2-related factor 2/haemoxy-
genase-1 (Nrf2/HO-1) and NF-κB pathway [40]. Like-
wise, in vivo studies have also shown that DAS alleviated 
ovalbumin (OVA)-induced allergic asthma by inhib-
iting inflammatory factors such as ROS, NF-κB and 
8-hydroxy-2′-deoxyguanosine, 8-iso-prostaglandin F2α, 
and increasing the activation of Nrf2 [79]. In case of oste-
oarthritis, DAS was reported to inhibit the expression of 
COX-2 potentially via NF-κB pathway [80]. In vivo study 
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confirmed that DAS protected the cartilage in the devel-
opment of osteoarthritis by inhibiting the expression of 
MMP-1, MMP-3, MMP-13, and IL-1β as well as enhanc-
ing the production of collagen II [81]. DAS has also been 

demonstrated to have anticancer properties against dif-
ferent cancers such as colon cancer, prostate cancer, skin 
cancer, etc. via modulation of inflammatory pathways 
[82–84].

Table 1 Spices and their major components

Spice Scientific name Major components References

Anise Pimpinella anisum Anethole, estragole, γ-hymachalen, para-anisaldehyde, methyl cavicol [164]

Asafoetida Ferula asafetida Ferulic acid, umbel-liferone, asaresinotannols, farnesiferols A, B, C, glucose, galactose, 
l-arabinose, rhamnose, glucuronic acid, 2-butyl propenyl disulfide

[165]

Basil Ocimum basilicum Estragole, linalool, 1, 8-cineole, eugenol, methyl cinnamate, α-cubebene, α-farnesene, caryo-
phyllene, β-ocimene

[166]

Bay leaves Laurus nobilis 1,8-cineole, α-pinene, limonene, alpha-terpinyl acetate, terpinene-4-ol [167, 168]

Black cumin Nigella sativa Thymoquinone, cuminaldehyde, γ-terpinene, β-pinene, p-cymene, p-mentha-1,3-diene-7-al, 
p-mentha-1,4-dien-7-al

[60, 169]

Black pepper Piper nigrum Piperine, β-caryophyllene, limonene, δ-3-carene, α-pinene, β-pinene, α-phellandrene, 
myrcene, terpinolene

[50]

Cardamom Elettaria cardamomum 1,8-cineole, α-terpinyl acetate, limonene, linalool, terpinolene, myrcene, linalyl acetate [56]

Celery seed Trachyspermum ammi 2 Isopropyl-5-methyl-phenol, octadecanoic acid, lupeol acetate, hexadecanoic acid, (3β, 24S)-
stigmast-5-en-3-ol, stigmasta-5,22-dien-3β-ol, lup-20(29)-en-3-yl acetate

[170]

Cinnamon Cinnamomum zeylanicum Cinnamaldehyde, cinnamyl acetate, cineole, eugenol, coumarin, linalool, humulene, ethyl 
cinnamate, β-caryophyllene, τ-cadinol

[58]

Clove Syzygium aromaticm Eugenol, eugenyl acetate, α-humulene, β-caryophyllene [171]

Coriander Corriandrum sativum Petroselinic acid, linoleic acid, oleic acid, palmitic acid, stearic acid, vaccenic acid, myristic acid [172]

Dill Anethum graveolens α-Phellandrene, limonene, dill ether, sabinene, α-pinene, n-tetracosane, neophytadiene, 
n-docosane, n-tricosane, n-nonadecane, n-eicosane, n-heneicosane, β-myrcene, α-tujene

[173]

Fennel Foeniculum vulgare Estragole, trans-anethole, fenchone, limonene, anisaldehyde, sabinene, β-myrcene, α-pinene, 
β-pinene, camphene

[174]

Fenugreek Trigonella foenum-graecum Diosgenin, yamogenin, gitogenin, tigogenin, neotigogens, carpaine, trigonelline, gentianine, 
4-hydroxyisoleucine, fenugreekine, choline

[59]

Garlic Allium sativum Diallyl sulfides, diallyl disulfides, diallyl trisulfide, ajoene, allicin, alliin, methiin, S-allylcysteine, 
isoalliin, cycloalliin, S-allylmercaptocysteine

[51]

Ginger Zingiber officinale [6]-gingerol, [6]-paradol, shogoal, 6-gingerdiol, gingerdione, zingiberene, citral (neral and 
geranial), bisabolene, α-farnesene, β-phellandrene, cineole, zingerone

[52, 175]

Kokum Garcinia indica Garcinol, xanthochymol, isoxanthochymol, 1,2-dihydroxypropane-1,2,3-tricarboxylic acid [61]

Mint Mentha spp. Carvone, limonene, 1, 8-cineole [176]

Mustard Sinapis alba Allyl isothiocyanate, phenethyl isothiocyanate [177]

Nutmeg Myristica fragrans Eugenol, methyleugenol, methylisoeugenol, elemicin, myristicin, safrole [178]

Onion Allium cepa Quercetin, allyl propyl disulphide, protocatechuic acid, quercetin dimer, quercetin trimer, 
quercetin 4-o-β-glucoside, quercetin 3,4-o-β-diglucosides

[54, 179]

Parsley Petroselinum crispum Apiole, apigenin, p-1,3,8-menthatriene, β-phellandrene, myrcene, rutin, myristicin [180]

Red pepper Capsicum Capsaicin, β-carotene, zeaxanthin, lutein, caffeic acid, capsanthin [55]

Rosemary Rosmarinus officinalis Ursolic acid, carnosol, rosmarinic acid, carnosic acid, α-pinene, camphor, limonene, cam-
phene, borneol, cineole, (Z)-linalool oxide, bornyl acetate

[62]

Saffron Crocus sativus Safranal, picrocrocin, crocetin, crocin [181]

Sage Salvia officinalis 1,8-cineole, camphor, α-thujone, β-thujone, viridiflorol, borneol [182]

Sesame Sesamum indicum Sesamin, sesamolin, sesamol, sesamolinol, γ-tocopherol, phytic acid, linoleic acid, oleic acid, 
β-sitosterol, campesterol, stigmasterol, ∆5-avenasterol, palmitic acid, stearic acid

[183]

Star anise Illicium verum Estragole, aretrans-anethole, limonene, phenylpropanoids [64]

Thyme Thymus vulgaris Thymol, carvacrol, p-cymene, gamma-terpinene, linalool, borneol, β-caryophyllene, carvacrol 
methyl ether, caryophyllene oxide

[184]

Turmeric Curcuma longa Curcumin (diferuloylmethane), demethoxycurcumin, bisdemethoxycurcumin [48]

Vanilla Vanilla planifolia Vanillin, ethyl vanillin, vanillyl alcohol, vanillic acid, p-coumaric acid, ferulic acid, 4-hydroxy-
benzyl alcohol, 3, 4-dihydroxybenzaldehyde, 4-hydroxybenzoic acid, 4-hydroxybenzalde-
hyde, piperonal

[185]
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Curcumin

Curcumin, an active component of turmeric, is the most 
widely studied nutraceutical. It is known to possess anti-
antioxidant, anti-bacterial,  anti-cancer,  , anti-fungal, 
anti-inflammatory  and  anti-viral activities. �us, it is a 
potential agent against various chronic illnesses. It has 
been shown to modulate various inflammatory media-
tors including IL-6, TNF-α, PI3K/Akt, STAT3, IL-27, 
NF-κB, MAPK, etc. in various preclinical and clinical 
studies (Table  2)  (Fig.  3). For example, inflammation of 
microglia cells prompts central nervous system (CNS) 
disorders. Interestingly, curcumin attenuates PI3K/Akt 
phosphorylation, NF-κB activation, and iNOS in lipopol-
ysaccharide (LPS)-induced inflammatory responses in 
microglial cells [85]. �is nutraceutical also effectively 
reduced the inflammatory responses in mastitis mice 
model via suppression of TLR4-mediated NF-κB sign-
aling pathway [86]. Furthermore, curcumin was shown 
to ameliorate the insulin signaling in  the brain of AD 
in  vivo, thus showing its feasibility for treatment of AD 
[87]. Additionally, curcumin also alleviated chronic non-
bacterial prostatitis by downregulating TNF-α, IL-6, and 
IL-8 in vivo [88]. Furthermore, it has been demonstrated 
that curcumin reduced asthmatic airway inflammation by 
activating Nrf2/HO-1 signaling pathway [89]. In case of 

human non-small cell lung cancer, this potent compound 
induced apoptosis via the upregulation of micro RNA, 
miR-192-5p and downregulation  of PI3K/Akt signaling 
pathway [90]. Also, this compound was reported as a pro-
tectant against severe acute pancreatitis via attenuation 
of NF-κB in vivo [91]. �is compound is known to inhibit 
cancer cell proliferation, survival, invasion, angiogenesis, 
metastases, chemoresistance, and radiation resistance in 
different types of cancers via modulation of different sign-
aling pathways including NF-κB. Approximately, over 120 
clinical trials have proven  its potential to treat different 
chronic diseases without showing any adverse side effects. 
Curcumin has been shown to inhibit IBD, colitis, rhini-
tis, oral lichen planus, psoriasis, and prostatitis in vari-
ous clinical trials. It has also been shown to inhibit cancer 
alone or in combination with standard chemotherapeutic 
agents in many clinical trials. So far, curcumin is the most 
extensively studied spice derived component for the treat-
ment of different chronic diseases in both preclinical and 
clinical settings.

Diosgenin

Diosgenin is a bioactive compound obtained from 
the spice Trigonella foenum-graecum L. (fenugreek). 
Over the years, this spice has been known for its 
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Table 2 Spice derived compounds and their mechanism of actions against different chronic diseases

Compound Chronic diseases Mechanism of action References

1,8-cineole Alzheimer’s disease ↓NOS-2, ↓COX-2, ↓NF-κB [67]

Bronchial asthma ↓PGE2, ↓LTB4 [186]

Colitis ↓Myeloperoxidase [38]

COPD – [69]

Pancreatitis ↓NF-κB [66]

Ulceration ↓Myeloperoxidase [38]

6-gingerol Allergic rhinitis ↓T cell activity [75]

Alzheimer’s disease ↑Nrf2 [72]

Colorectal cancer ↑NAG-1 [70]

Diabetes ↓VEGF [71]

Osteoporosis ↓TNF-α [187]

Steatohepatitis ↓NF-κB, ↓TNF-α, ↓IL-6 [73]

α-Pinene Acute pancreatitis ↓TNF-α, ↓IL-1β, ↓IL-6 [78]

Arthritis ↓JNK, ↓iNOS, ↓MMP-1, ↓MMP-13 [188]

Rhinitis ↓IKK-β, ↓Caspase-1 [76]

Allicin Ankylosing spondylitis ↓IL-6, ↓IL-8, ↓TNF-α [189]

Alzheimer’s disease ↑Nrf2 [190]

Chronic kidney disease ↑Nrf2 [191]

Gastric cancer ↑G2/M arrest, ↑ER stress [192]

Glioblastoma multiforme ↓ERK [193]

Hypercholesterolemia ↓TNF-α, ↓NF-κB [194]

Recurrent aphthous ulcer ↓TNF-α [195]

Type 1 diabetes – [196]

Ulcerative colitis ↓IL-6, ↓STAT3 [18]

Anethole Breast cancer ↓NF-κB [197]

Bronchial dysplasia – [198]

Capsaicin Atherosclerosis ↑TRPV1 [199]

Alzheimer’s disease ↑Synapsin I; ↑PSD93 [112]

Bladder cancer ↓FOXO3a [110]

Cholangiocarcinoma ↑PI3K/Akt/mTOR [200]

Colon cancer ↑Caspase-8, -9, -3 [201]

Gastrointestinal disorders – [202]

Lung cancer ↓E2F [114]

Cardiac hypertrophy and fibrosis ↑TRPV1 [199]

Pancreatitis ↓ERK, ↓c-Jun, ↓Hedgehog [203]

Prostate cancer ↓p27 [113]

Carvacrol Arthritis ↓Myeloperoxidase [204]

Asthma ↓IL-4, ↓TGF-β, ↓IL-17 [205]

Atherosclerosis ↓MAPK [206]

Colon cancer ↓iNOS, ↓IL-1β [207]

COPD ↑IL-8 [31]

Gastric ulcers ↓Prostanoids [208]

Intestinal mucositis ↑TRPA1 receptor [209]

Pancreatitis ↓AST, ↓ALT, ↓LDH [210]

Periodontitis ↓Myeloperoxidase [211]

Cardamom Colon cancer ↓COX-2, ↓iNOS [212]

Forestomach cancer ↑GSH, ↓LDH [213]
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Table 2 continued

Compound Chronic diseases Mechanism of action References

Carnosol Brain damage by chronic stress ↑MDA [214]

Colon cancer – [215]

Lymphoma – [215]

Cinnamon Arthritis ↓IL-2,-4, ↓IFNγ [120]

Alzheimer’s disease ↑p21rac [121]

Colitis ↓COX-2 [216]

Diabetes ↓AP-1 [217]

Hyperglycemia ↑PPARγ [218]

Inflammatory disorders ↓p38, ↓JNK, ↓ERK1/2, ↓STAT4 [219]

Melanoma ↓AP-1 [217]

Multiple sclerosis ↑Tregs [119]

Parkinson’s disease ↓ Aβ polypeptide [122]

Coriander Alzheimer’s disease ↓Aβ42-induced ROS, ↓ERK [220, 221]

Atherosclerosis – [222]

Colitis – [223]

Dermatitis ↓IgE, ↓TNF-α, ↓INFγ, ↓IL-1,-4,-13 [224]

Diabetes ↑Insulin release [225]

Rheumatism – [226]

Crocin Alzheimer’s disease ↓Aβ peptide [227]

Asthma ↓p-ERK, ↓p-JNK, ↓p-p38 [228]

Colitis ↓INFγ, ↓COX-2 [16]

Diabetes ↓TNF-α, ↓IL-1β [229]

Liver cancer ↓NF-κB, ↓TNF-α, ↓IL-6, -10 [230]

Rheumatoid arthritis ↓iNOS, ↓TNF-α, ↓IL-1β, -6 [231]

Curcumin Alzheimer’s disease ↑PI3K, ↑Akt [87]

Asthma ↑Nrf2/HO-1 [89]

Atherosclerosis ↓IL-1β, -6, ↓TNF-α, ↑PPARγ [232]

Cancer ↓Multiple pathways [160, 161]

Chagas myocarditis ↓NFAT/COX-2/PGE2 [233]

COPD ↓p66Shc [234]

Colitis ↓STAT3 [235]

Diabetes ↓NF-κB, ↓NO [236]

Epilepsy ↓IL-1β, ↓IL-6, ↓TNF-α [237]

Gastric ulcer ↓Acetylation of histone H3 [238]

Hepatitis ↓PGC-1α [239]

Irritable bowel disease ↓p38 MAPK, ↓IL-1β, -10 [240]

Lupus nephritis ↓IgG1, ↓IgG2a [241]

Oral lichen planus – [240]

Psoriasis ↓TNF-α, ↓IFN-γ, ↓IL-2, -12, -22, [242]

Prostatitis ↓IL-8, ↓TNF-α [88]

Ulcerative proctitis – [240]

Uveitis – [240]

Diallyl sulphide Asthma ↑Nrf2 [79]

Colon cancer – [82]

Prostate cancer ↑Caspases-3,-9,-10, ↓Bcl-2 [84]

Osteoarthritis ↓MMP-1,-3,-13, ↓IL-1β [81]

Skin cancer ↑Apoptosis [83]
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Table 2 continued

Compound Chronic diseases Mechanism of action References

Diosgenin Alzheimer’s disease ↑1,25D3-MARRS [243]

Breast cancer ↓Vav2 [93]

Chronic myeloid leukemia ↓PI3K/Akt/mTOR [94]

Diabetes – [244, 245]

Graves’ disease ↓IGF-1, ↓NF-κB, ↓cyclin D1, ↓PCNA [246]

Hepatitis C ↓STAT3 [96]

Liver cancer ↑Caspase-3, -8,-9 [97]

Osteoarthritis ↓IL-1β [95]

Osteoporosis ↓RANKL, ↑OPG [247]

Prostate cancer ↓PI3K/Akt/mTOR [98]

Eugenol Asthma ↓NF-κB [101]

Atherosclerosis ↓ALP, ↓LDH, ↓HMG-CoA [248]

Breast cancer ↓E2F1/survivin [103]

Cervical cancer ↓Bcl-2, ↓COX-2, ↓IL-1β [102]

Depression ↑MTT-III [249]

Diabetes ↓AST, ↓ALT, ↓LDH, ↓ALP [100]

Gastric cancer ↓NF-κB [104]

Hepatic steatosis and fibrosis ↓SREBP1 [250]

Hyperglycemia ↓Glycogen phosphorylase b [251]

Skin cancer ↓NF-κB, ↓iNOS, ↓IL-6, ↓TNF-α, ↓PGE2 [252]

Garcinol Allergy ↓STAT3 [106]

Breast cancer ↓Caspase-3, ↓NF-κB [125]

Cardiovascular diseases ↓STAT3 [106]

Colon cancer ↓PK 1/2, PI3K/Akt/p70 ribosomal S6 kinase [123]

Diabetes ↓STAT3 [106]

Head and neck cancer ↓STAT3, ↓NF-κB [126]

Lung cancer ↓p38-MAPK [127]

Oral squamous cell carcinoma ↓NF-κB [116]

Pancreatic cancer ↓Wnt/β-catenin, ↓miR-200s [128]

Prostate cancer ↑mTOR, ↑Akt [253]

Limonene Asthma ↓IL-5, -13, ↓MCP-1 [254]

Breast cancer – [255]

Colitis ↓NF-κB [256]

Colorectal cancer – [255]

Skin cancer ↓Ras-ERK [257]

Linalool Diabetes ↓TGF-β1 [258]

Skin cancer ↓IL-6, ↓COX-2, ↓VEGF, ↓Bcl-2 [259]

Leukemia ↑p53, ↑p21, ↑p27, ↑p16, ↑p18 [260]

Cervical cancer ↑p53, ↑p21, ↑p27, ↑p16, ↑p18 [260]

Colon cancer ↑Hydroxy radical [261]

Menthol Pancreatic cancer ↓Focal-adhesion kinase [262]

Depression ↑IL-1β,-6, ↑TNF-α [263]

Skin cancer ↓NF-κB, ↓ERK, ↓p38 [264]

Napkin dermatitis – [265]

Neuropathic pain ↑TRPM8 [266]

Macelignan Alzheimer’s disease – [267]

Asthma ↓IL-4, ↓GATA3 [268]

Type 1 allergy ↓Akt, ↓TNF-α, ↓MAPK, ↓c-Jun [269]
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Table 2 continued

Compound Chronic diseases Mechanism of action References

Piperine Alzheimer’s disease – [270]

Arthritis ↑IL-10 [151]

Asthma ↓IL-4, -5, ↓NF-κB [150]

Breast cancer ↑p53, ↓MMP-9,-2, ↓c-Myc, ↓VEGF [271]

Chronic gastritis ↓IL-1β, ↓IFN-γ, ↓IL-6, ↓iNOS [272]

Colorectal cancer – [273]

Depression ↑BDNF [274]

Endometritis ↓NF-κB, ↓MAPK [148]

Fibrosarcoma ↓MMP-9 [275]

Gastric cancer ↓STAT3 [154]

Parkinson’s disease ↓IL-1β, ↓TNF-α [276]

Triple negative breast cancer ↓Survivin, ↓p65 [277]

Ulcerative colitis – [278]

Quercetin Arthritis ↓NF-κB, ↓1β, ↓MCP [139]

Atherosclerosis ↑Akt [147]

Atopic dermatitis ↓JAK-STAT [142]

Breast cancer ↓Twist [140]

Diabetes mellitus – [143]

Hepatitis ↑Nrf2 [138]

Inflammatory bowel disease ↑GSH [141]

Periodontitis ↓IL-1β, ↓TNF-α, ↓RANKL, ↓iCAM-1 [279]

Psoriasis – [144]

Rosmarinic acid Asthma ↓ERK, ↓JNK, ↓p38MAPK [19]

Amyotrophic lateral sclerosis ↓HNE [280]

Colitis ↓NF-κB, ↓STAT3 [281]

Colorectal cancer ↓IL-6/STAT3 [282]

Gastric cancer ↓IL-6/STAT3 [283]

Hepatocellular carcinoma ↓NF-κB [284]

Leukemia – [285]

Neuropathic pain ↓COX-2, ↓PGE2, ↓IL-1β, ↓MMP-2 [286]

Osteoporosis ↓NFATc1 [287]

Pancreatitis ↓NF-κB [288]

Psoriasis ↓IL-1β, ↓IL-6, -8, ↓CCL20, ↓TNF-α [289]

Rhinoconjunctivitis ↓iCAM-1, ↓VCAM-1, ↓COX-2, ↓MIP-2 [290]

Sesamin Asthma ↓IκB-α, ↓NF-κB [291]

Atherosclerosis ↓MCP-1, ↓IL-1α, ↓IL-6, ↓CXCL-16 [292]

Breast cancer ↓VEGF, ↓MMP-9 [293]

Diabetes ↓FBS, ↓HbA1C, ↓TNF-α [294]

Gall bladder carcinoma ↓NF-κB-IL-6-Stat3-Twist [295]

Osteoarthritis ↑Nrf2 [296]

Prostate cancer ↓p38-MAPK, ↓NF-κB [297]

Sulforaphane Alzheimer disease ↑NLRP3 [298]

Atherosclerosis – [299]

Breast cancer ↓Bcl-2, ↑Caspase-3,-9 [158]

Cardiovascular diseases ↑Nrf2 [155]

Colorectal cancer ↑AP-1 [158]

Diabetes ↓RAGE [157]

Lung cancer ↓Bcl-2, ↑Caspase-3, ↑Bax [158]

Multiple sclerosis ↑Nrf2 [159]
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anti-carcinogenic,  anti-diabetic, anti-oxidant, hypo-
cholesterolemic and immunological properties. 
Because of its anti-inflammatory activities, dios-
genin is a potential agent for various chronic diseases 
including AD, breast cancer,  chronic myeloid leuke-
mia, and  osteoarthritis [92–95] (Table  2)  (Fig.  3). For 
instance, it has been shown to inhibit the expression 
of MMP-3, MMP-13, iNOS, and COX-2 on human 
osteoarthritis (OA) in  vivo, thus, making diosgenin a 
suitable agent for OA therapy [95]. Additionally, dios-
genin was found to exhibit anti-viral activity against 
hepatitis C in vitro; induce apoptosis in hepatocellular 
carcinoma  and  prostate cancer and inhibit migration 
of human breast cancer in vitro [93, 96–98]. Diosgenin 
also enhanced ROS-dependent autophagy and cytotox-
icity in chronic myeloid leukemia cells via inhibition 
of mammalian target of rapamycin (mTOR) signaling 
pathway [94]. This compound was also reported to 
prevent bone loss on retinoic acid-induced osteoporo-
sis in vivo [99].

Capsaicin

Aforementioned, capsaicin (trans-8-methyl-N-vanillyl-
6-nonenamide) is a principal component of the spice red 
pepper (Capsicum) [100, 101]. It is highly efficacious in 
ameliorating several chronic diseases such as asthma, 
diabetes,  cancers of breast, cervical,  stomach, etc. via 
the inhibition of STAT3, NF-κB, PGE2, IL-6, TNF-α, etc. 
[102–107] (Table 2)  (Fig. 3). Additionally, capsaicin also 
exhibits anticancer activity against cancer of the colon, 
lung,  prostate, skin and tongue [46]. Studies revealed 
that capsaicin inhibits inflammatory cytokines such as 
IL-1β, IL-6, and TNF-α by upregulating Liver X receptor 
α (LXRα) [108]. Capsaicin can also reduce inflammation 
in salivary glands via inhibition of NF-κB pathway [109]. 
�is efficient compound also effectively induced cell 
cycle arrest in bladder cancer cells via forehead box O3a 
(FOXO3a)-mediated pathway [110]. In vitro and in vivo 
studies also revealed that capsaicin ameliorated chronic 
diseases such as AD, skin inflammation, small cell lung 
cancer, etc. [111–114].

Table 2 continued

Compound Chronic diseases Mechanism of action References

Tocopherol Atherosclerosis ↓IL-6,-10, ↓MCP-1, ↓TNF-α [300]

Colitis ↓IL-6 [301]

Colon cancer ↓8-HDOG, ↓γ-H2AX [302]

Lung cancer ↓8-HDOG, ↓γ-H2AX [302]

Mammary hyperplasia ↓PCNA, ↓COX-2, ↑PPARγ, ↑Nrf2 [303]

Thymol Asthma ↓NF-κB [304]

Endometritis ↓TNF-α, ↑IL-1β, ↑iNOS, ↑COX-2 [305]

Gastric ulcer ↑ PGEs, ↑ATP K(+) channels [306]

Mastitis ↓IκBα, ↓NF-κB, ↓ERK, ↓JNK [307]

Thymoquinone Allergic conjunctivitis ↓Eosinophils, ↓IgE, ↓histamine [133]

Asthma ↓CD31, ↓α-SMA [131]

Bladder cancer ↓NF-κB, ↓XIAP [134]

Cholangiocarcinoma ↓PI3K/Akt, ↓NF-κB [308]

Depression ↓TBARS, ↑GSH [309]

Diabetes mellitus ↓p44/42, ↓p38-MAPKs [310]

Gastric cancer ↓STAT3, ↓JAK2, ↓c-Src [137]

Lung cancer ↓PCNA, ↓CD1, ↓MMP-2, ↓ERK1/2 [135]

Multiple myeloma ↓Ki-67, ↓VEGF, ↓Bcl-2, ↓p65 [311]

Myeloid leukemia ↓NF-κB, ↓CD1, ↓COX-2, ↓MMP-9 [312]

Osteoarthritis ↓IL-1β-induced MMP-1,-3,-13 [130]

Ovarian cancer ↑pH2AX, ↓NF-κB [136]

Rheumatoid arthritis ↓ASK1 [132, 313]

Rhinosinusitis – [314]

Ursolic acid Asthma ↓IL-5, -13 [315]

Colitis ↓NF-κB [316]

Prostate cancer ↑Caspase-3,-9, ↓ROCK/PTEN [317]

Rheumatoid arthritis ↓PGE2 [318]
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Eugenol

Eugenol, the active principle from clove extract, is well 
known for its anti-inflammatory properties via modula-
tion of inflammatory biomarkers such as TNF-α, IL-1, 
IL-6, COX-2, PGE2, NF-κB, etc. [115] (Table 2)  (Fig. 3). 
In addition, it has been shown to inhibit various chronic 
diseases in preclinical studies (Table  2). For instance, 
eugenol was shown to restrict the progression of asthma 
in vivo by inhibition of NF-κB pathway [101]. �is com-
pound also inhibited cell proliferation in gastric cancer 
in vivo by suppressing NF-κB pathway [104]. Eugenol was 
found to enhance the efficacy of anti-cancer drug, gem-
citabine and exert anti-inflammatory activity in human 
cervical cancer cells [102]. In addition, eugenol was 
shown to inhibit skin cancer via attenuation of c-Myc, 
H-ras and induction of p53 dependent apoptosis and 
induction of apoptosis in breast cancer cells via E2F1/
survivin downregulation [103, 116]. Numerous investiga-
tions further revealed that eugenol exhibits anti-depres-
sant as well as anti-diabetic activities [100, 117].

Cinnamaldehyde

Cinnamaldehyde (CM) is the active component of the 
spice cinnamon (Cinnamomum zeylanicum). �is com-
ponent is widely known for its  anti-inflammatory, anti-
microbial, anti-oxidant, anti-tumor, cholesterol lowering 
and immunomodulatory properties [57]. CM exerted 
its anti-inflammatory effect in gastric inflammation by 
inhibiting NF-κB activation [118]. Cinnamon can also 
reduce allergic encephalomyelitis in  vivo via regulatory 
T cells [119]. Cinnamon bark has a prominent action 
in reducing inflammation in arthritis model in  vivo via 
inhibiting cytokines such as  IL-2, IL-4, and interferon γ 
(IFNγ), hence may be regarded as a potent anti-rheu-
matic agent [120]. Moreover, cinnamon is also effective 
for the treatment of neurodegenerative diseases such as 
AD [121, 122] (Table 2).

Garcinol

Garcinol is a polyisoprenylated benzophenone isolated 
from the plant Garcinia indica (Kokum) [106]. A func-
tional  investigation has revealed the anti-carcinogenic, 
anti-inflammatory and  anti-oxidative properties of gar-
cinol [123]. Studies showed that garcinol inhibited the 
proliferation of breast cancer  cells in  vitro [124]. Addi-
tionally, it also sensitized breast cancer cells to a chem-
otherapeutic agent, taxol  via downregulation of NF-κB/
Twist1 and caspase-3/iPLA(2) signaling pathways in a 
mouse 4T1 breast tumor model [125]. �is active com-
ponent also inhibited inflammation-associated colon 
carcinogenesis in  vivo [123]. Furthermore, garcinol 

also mediated anti-tumor effect by inhibiting the consti-
tutive activation of STAT3 and NF-κB in squamous cell 
carcinoma of the head and neck [126]. It has also been 
reported that garcinol exerted its anti-cancer activity by 
inducing downregulation of p38-MAPK signaling in lung 
cancer; NF-κB inhibition in oral cancer; modulation of 
epithelial–mesenchymal transition (EMT) and Wnt sign-
aling in breast cancer [105, 127, 128].

Thymoquinone

�ymoquinone is isolated from black cumin (Nigella 

sativa). It has been shown to possess anti-inflamma-
tory,  anti-oxidant,  and chemopreventive activities [129]. 
A recent report has depicted that this bioactive compo-
nent inhibited IL-1β-induced inflammation via down-
regulating NF-κB and MAPKs signaling in human 
osteoarthritis chondrocytes [130]. It also prevented 
inflammation, neoangiogenesis, and vascular remod-
eling in asthma in vivo [131]. �ymoquinone also inhib-
ited TNF-α-induced inflammation and cell adhesion in 
RA, thus making it a promising anti-inflammatory agent 
[132]. Studies also reported the ameliorative activity of 
thymoquinone against ovalbumin-induced allergic con-
junctivitis in  vivo [133]. Additionally, it was also found 
to be effective against cancer of the bladder, lung, ovar-
ian, gastric, etc. �ymoquinone portrayed its anti-tumor 
function via inactivation of PI3K/Akt, ERK, NF-κB and 
STAT3 pathways [134–137] (Table 2) (Fig. 3).

Quercetin

Quercetin is a dietary flavonoid obtained from onions. �e 
anti-cancer,  anti-inflammatory, and anti-oxidant proper-
ties of this phytochemical are  demonstrated by numer-
ous studies. Quercetin is effective against various chronic 
diseases including arthritis, breast cancer, dermatitis, 
diabetes, IBD, hepatitis, psoriasis, etc. due to its ability to 
inhibit the dysregulated inflammatory pathways involved 
in these  chronic diseases (Table  2) [138–144]. �e anti-
inflammatory properties of quercetin is attributed to  its 
ability to  downregulate NF-κB and MAPK pathways 
and enhance PI3K/Akt and Nrf2 pathways [145–147] 
(Table 2) (Fig. 3).

Piperine

Piperine is the principal plant alkaloid isolated from black 
pepper (Piper nigrum) and long pepper (Piper longum). 
Piperine has several biological properties including anal-
gesic, anti-convulsant, anti-tumor and anti-inflammatory 
activities [148]. Several studies  have shown that piper-
ine could attenuate the inflammatory response associ-
ated with chronic diseases such as AD, asthma, arthritis, 
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chronic gastritis, endometritis,  Parkinson’s disease, etc. 
[149–151] (Table  2). �e anti-inflammatory activity of 
piperine in these chronic diseases is achieved via down-
regulation of inflammatory pathways such as NF-κB, 
MAPK, AP-1, COX-2, NOS-2, IL-1β, TNF-α, PGE2, 
STAT3, etc. [148, 149, 151–154] (Table 2) (Fig. 3).

Sulforaphane

Sulforaphane is an isothiocyanate (sulphur contain-
ing compounds) distributed amongst cruciferous veg-
etables including mustard. Studies have shown that 
sulphoraphane possesses anti-cancer and cardiopro-
tective activities [155]. It elicits protection against car-
diovascular diseases via activation of Nrf2 [155]. Studies 
also reported that sulforaphane represents a promising 
agent for treatment of chronic diseases such as AD, blad-
der cancer, colorectal cancer, diabetes, and   lung cancer 
[156–158] (Table  2). Another study has also suggested 
that sulforaphane inhibit pro-inflammatory signaling 
through inhibition of NF-κB pathway [159] (Fig. 3).

Besides these active components, other compounds 
found in spices includes allicin (garlic), anethole (fen-
nel), carnosol (rosemary); linalool (coriander), crocin 

(saffron), sesamin (sesame seed), ursolic acid (basil), 
carvone (mint), myristicin (nutmeg),  etc. �ese potent 
ingredients of diverse spices have been found to aid 
in preventing and alleviating various chronic diseases 
(Fig.  4), mostly by downregulating signaling pathways 
such as NF-κB, STAT3 and ERK/MAPK pathways [129, 
146, 148, 159–163].

Conclusion
Overall, it is evident from these studies that the allure of 
spices is attributed not only to their aroma, but also more 
importantly, to their wellness power. �e spice-derived 
compounds can interact with multiple targets and alter 
the dysregulated inflammatory pathways and mediators 
associated with chronic diseases. Hence, with the fatal 
side effects and inflating cost of modern therapeutics, 
spices and their active components hold a huge guar-
antee for the development of affordable, novel and safe 
drugs against chronic diseases. However, in-depth scien-
tific investigations are required to completely determine 
the potential of the spice-derived nutraceuticals and 
open new avenues for the better management of patients 
with chronic diseases. 
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