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Chronic Hypoxia and Tubulointerstitial Injury: A Final
Common Pathway to End-Stage Renal Failure
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Recent studies emphasize the role of chronic hypoxia in the tubulointerstitium as a final common pathway to end-stage renal
failure. When advanced, tubulointerstitial damage is associated with the loss of peritubular capillaries. Associated interstitial
fibrosis impairs oxygen diffusion and supply to tubular and interstitial cells. Hypoxia of tubular cells leads to apoptosis or
epithelial-mesenchymal transdifferentiation. This in turn exacerbates fibrosis of the kidney and subsequent chronic hypoxia,
setting in train a vicious cycle whose end point is ESRD. A number of mechanisms that induce tubulointerstitial hypoxia at an early
stage have been identified. Glomerular injury and vasoconstriction of efferent arterioles as a result of imbalances in vasoactive
substances decrease postglomerular peritubular capillary blood flow. Angiotensin II not only constricts efferent arterioles but, via
its induction of oxidative stress, also hampers the efficient utilization of oxygen in tubular cells. Relative hypoxia in the kidney also
results from increased metabolic demand in tubular cells. Furthermore, renal anemia hinders oxygen delivery. These factors can
affect the kidney before the appearance of significant pathologic changes in the vasculature and predispose the kidney to
tubulointerstitial injury. Therapeutic approaches that target the chronic hypoxia should prove effective against a broad range of
renal diseases. Current modalities include the improvement of anemia with erythropoietin, the preservation of peritubular capillary
blood flow by blockade of the renin-angiotensin system, and the use of antioxidants. Recent studies have elucidated the mechanism
of hypoxia-induced transcription, namely that prolyl hydroxylase regulates hypoxia-inducible factor. This has given hope for the
development of novel therapeutic approaches against this final common pathway.
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O nce renal damage reaches a certain threshold, the
progression of renal disease is consistent, irreversible,
and largely independent of the initial insult. The final

common pathway in this process has been studied closely. The
hyperfiltration theory of Brenner et al. (1), which suggests that
the progression of renal disease results from glomerular hemo-
dynamic changes, has emerged as a popular concept. However,
close pathologic analysis shows that functional impairment of
the kidney is better correlated with the degree of tubulointer-
stitial damage than with that of glomerular injury (2–5), and
this finding in turn has led to the broad recognition that the
final common pathway of kidney failure operates principally in
the tubulointerstitium (6–8).

The tubulointerstitial damage induced by the final common
pathway leads to a decrease in GFR via several mechanisms.
Tubular atrophy increases fluid delivery to the macula densa
and triggers a decrease in GFR via tubuloglomerular feedback.
Tubular damage also leads to the development of atubular
glomeruli and decreases the number of functional nephrons.
Finally, tubulointerstitial fibrosis impairs blood flow in the
corresponding region and induces ischemic injury of nephrons.

One common mechanism that leads to renal failure via tubu-

lointerstitial injury is massive proteinuria (9,10). Large-scale
prospective studies, including the Modification of Diet in Renal
Disease and Ramipril Efficacy in Nephropathy, have estab-
lished the relationship between proteinuria and progressive
renal disease (11,12). Systematic analyses of these reveal that
greater urinary protein excretion predicts a faster decline in
GFR (13,14). Accumulating evidence suggests that filtered mac-
romolecules exert a number of critical effects on tubular cells,
including the more general effects of lysosomal rupture and
energy depletion, as well as more particular effects involving
direct tubular injury by specific substances such as complement
components (15,16).

In some diseases, however, including hypertensive nephro-
sclerosis, tubulointerstitial injury progresses to end-stage kid-
ney failure in the absence of massive proteinuria. Furthermore,
analysis of previous clinical studies shows that decreasing sys-
temic BP and proteinuria only partially explain the beneficial
effects of blockade of the renin-angiotensin system (RAS) on
reducing the risk for progression of kidney disease (17,18). It
thus is crucial to identify an alternative or additional mecha-
nism—and, hopefully, a more unifying one—that is common to
many forms of glomerular disease.

Chronic Hypoxia at the Center of
Tubulointerstitial Injury and ESRD

In the kidney, most afferent glomerular arterioles arise from
the interlobular arteries. The afferent arterioles divide dichoto-
mously and gives rise to glomerular capillaries, which merge
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together again at the vascular pole to form the efferent arte-
rioles. Efferent arterioles enter the peritubular capillary plexus,
which surrounds tubules and offers oxygen and nutrients to
tubular and interstitial cells (Figure 1).

Although blood flow to the kidney is high, accounting for
20% of cardiac output, the presence of oxygen shunt diffusion
between arterial and venous vessels that run in close parallel
contact means that renal tissue oxygen tensions are in fact
comparatively low (19,20). Oxygen tension in the renal me-
dulla, for example, does not rise above 10 mmHg. That in the
renal cortex is more variable, however, with an average pO2 of
approximately 30 mmHg, but decreases dramatically in accor-
dance with changes in renal perfusion. As a consequence, the
kidney is somewhat sensitive to changes in oxygen delivery.
Although this sensitivity has the merit of facilitating the kid-
neys in their adjustment of erythropoietin (EPO) production to
changes in oxygen supply, it also renders them prone to hy-
poxic injury.

The chronic hypoxia hypothesis, proposed by Fine et al. (21),
emphasizes chronic ischemic damage in the tubulointerstitium
as a final common pathway in end-stage kidney injury. Since its
introduction, this fascinating hypothesis has been investigated
intensively and subsequently validated by Eckardt, Johnson,
and many other investigators (22–24).

Chronic Hypoxia in the Kidney Is
Multifactorial
Loss of Peritubular Capillaries and Fibrosis in Chronic
Renal Disease

Chronic ischemia in the tubulointerstitium occurs via several
mechanisms acting in concert. Histologic studies of human
kidneys and animal models have shown that extensive tubulo-
interstitial injury is associated with damage to renal arterioles
and arteries as well as with distortion and loss of peritubular
capillaries (25–29). It therefore is of little wonder that fibrotic
kidneys with advanced renal disease are devoid of peritubular
capillary blood supply and oxygenation to the corresponding
region (Figure 2A).

Even when the peritubular capillaries are essentially intact,
however, interstitial fibrosis still impairs tubular oxygen sup-
ply. This is because the extended distance between the capil-
laries and tubular cells reduces the efficiency of oxygen diffu-
sion (Figure 2B). In this regard, it is notable that hypoxia per se
is a profibrogenic stimulus for tubular cells, interstitial fibro-

Figure 1. The microvasculature of the nephron. The peritubular
capillary plexus is fed by glomerular efferent arterioles and
supplies nutrients and oxygen to tubular and interstitial cells.
Illustration by Josh Gramling—Gramling Medical Illustrations.

Figure 2. Multiple mechanisms of chronic hypoxia in the kid-
ney. Mechanisms of hypoxia in the kidney of chronic kidney
disease include loss of peritubular capillaries (A), decreased
oxygen diffusion from peritubular capillaries to tubular and
interstitial cells as a result of fibrosis of the kidney (B), stagna-
tion of peritubular capillary blood flow induced by sclerosis of
“parent” glomeruli (C), decreased peritubular capillary blood
flow as a result of imbalance of vasoactive substances (D),
inappropriate energy usage as a result of uncoupling of mito-
chondrial respiration induced by oxidative stress (E), increased
metabolic demands of tubular cells (F), and decreased oxygen
delivery as a result of anemia (G). Illustration by Josh Gram-
ling—Gramling Medical Illustrations.
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blasts, and renal microvascular endothelial cells. Tubular cells
under hypoxic conditions undergo epithelial-mesenchymal
transdifferentiation to become myofibroblasts (30). Hypoxia
can also activate fibroblasts and change the extracellular matrix
metabolism of resident renal cells (31,32). A fibrogenic response
leads in turn to the obliteration of peritubular capillaries. Fur-
thermore, renal tubular cells that are subjected to severe or
prolonged hypoxia develop in their mitochondria functional
deficits that lead to persistent energy deficits, subsequently
causing them to undergo apoptosis (33). Together, chronic hyp-
oxia in this compartment can lead to transdifferentiation or
apoptosis (or both) of tubular cells, activation of resident fibro-
blasts, and further obliteration and loss of peritubular capillar-
ies with progression of fibrosis. These changes may combine to
institute a vicious cycle of regional hypoxia and progressive
kidney failure in the late stages of disease.

Glomerular Damage and Hypoxia of the Tubulointerstitium
Hypoxia also plays a pathogenic role in the relatively early

stages of kidney disease, well before the development of struc-
tural tubulointerstitial injury. Peritubular capillaries occur
downstream of the glomerular efferent arterioles. Impairment
of the “parent” glomerular capillary bed, as occurs in glomer-
ulosclerosis, for example, thus automatically results in a de-
crease in peritubular perfusion and tubular oxygen supply
(Figure 2C). In a model of accelerated glomerulosclerosis in-
duced by repeated injection of anti-Thy1 antibody in unine-
phrectomized rats, we observed a decrease in blood flow in
peritubular capillaries using intravital microscopy and physio-
logic lectin perfusion (34). Stagnation of peritubular capillary
blood flow was associated with hypoxia in the corresponding
tubulointerstitium, and both preceded the development of his-
tologic tubulointerstitial injury and peritubular capillary loss.

Hemodynamic Maladjustment in the Tubulointerstitium:
Imbalance of Vasoactive Substances

Even in the presence of structurally intact glomeruli, imbal-
ances in vasoactive substances and associated intrarenal vaso-
constriction can cause chronic hypoxia in the kidney in the
early stage of kidney disease, before the development of histo-
logic changes in the tubulointerstitium (Figure 2D). Futrakul et
al. (35) performed intrarenal hemodynamic studies in patients
with severe glomerulonephritis using radioisotope techniques
and showed that elevated efferent arteriolar resistance and
decreased peritubular capillary flow were associated with re-
versible renal functional impairment. This reversible change in
peritubular capillary flow may have reflected an improvement
in the imbalance of vasoactive substances in the kidney. They
recently extended these observations to report a correlation
between a decrease in peritubular capillary flow and tubular
dysfunction in patients with type 2 diabetes and normoalbu-
minuria (36). These results support the concept that chronic
hypoxia may/can induce tubulointerstitial injury, which even-
tually leads to ESRD in patients with a variety of kidney dis-
eases.

Among various vasoactive substances, local activation of
RAS is especially important because it can lead to constriction

of efferent arterioles, hypoperfusion of postglomerular peritu-
bular capillaries, and subsequent hypoxia of the tubulointersti-
tium in the downstream compartment. To clarify the mecha-
nism of these effects, we used a remnant kidney model in rats
induced by ligation of renal artery branches, in which RAS is
markedly activated. Our computer-assisted morphologic anal-
ysis demonstrated narrowing and distortion of peritubular cap-
illaries with decreased blood flow and hypoxia in a very early
phase in this model, before the development of structural kid-
ney damage (37). In addition, angiotensin II damages endothe-
lial cells directly: Administration of angiotensin II to rats causes
the loss of peritubular capillaries, an effect that is ameliorated
by receptor blockade (38,39). A second important mechanism of
angiotensin II–induced ischemia is inefficient cellular respira-
tion and hypoxia via oxidative stress, which is detailed below.
Thus, angiotensin II induces tubulointerstitial hypoxia via both
hemodynamic and nonhemodynamic mechanisms. Intrarenal
vasoconstriction may also occur secondary to increased local
endothelin or a local loss of vasodilating nitric oxide (NO).

Role of Anemia in Hypoxia of the Kidney
The amount of O2 delivered, either to the whole body or to

specific organs, is the product of blood flow and arterial O2

content. Under most circumstances, oxygen delivery (DO2) is
determined using the equation DO2 � CO � (%Sat � 1.39 �

[Hb]), where CO is cardiac output in liters per minute, %Sat is
percentage of hemoglobin O2 saturation, [Hb] is hemoglobin
concentration in grams per liter, and 1.39 is the hemoglobin
binding constant. From the equation, anemia in kidney disease
may accelerate the decline in renal function by inducing tubu-
lointerstitial hypoxia (Figure 2G). The important role of anemia
is emphasized by the fact that anemia is observed at a relatively
early stage of renal dysfunction. Both the Third National Health
and Nutrition Examination Survey and the National Kidney
Foundation Kidney Early Evaluation Program showed that the
risk for anemia significantly increases when GFR falls below 60
ml/min per 1.73 m2 (40,41). Studies that have confirmed ane-
mia as an independent risk factor for ESRD include a retrospec-
tive multivariate logistic analysis of 71,802 subjects that was
performed by Iseki et al. (42) and an analysis of the data of the
Reduction of Endpoints in NIDDM with the Angiotensin II
Antagonist Losartan study of patients with type 2 diabetic
nephropathy (43). The average increase in adjusted relative risk
in the latter study was 11% for each 1-g/dl decrease in hemo-
globin concentration.

Oxidative Stress and Inefficient Cellular Respiration
Chronic kidney disease is associated with oxidative stress.

Angiotensin II, which is often upregulated in renal diseases,
also promotes renal oxidative stress by stimulating NADPH
oxidase. Furthermore, renal anemia contributes to oxidative
stress as erythrocytes represent a major antioxidant component
of the blood.

Superoxide leads to decreased NO bioavailability through
ONOO� formation. Adler et al. (44) showed that, because NO is
a suppressor of mitochondrial respiration, depletion of NO by
oxidative stress may stimulate mitochondrial respiration and
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uncouple it from chemical energy consumption, resulting in
tissue hypoxia (Figure 2E).

Kidneys of the spontaneously hypertensive rat (SHR), which
characteristically undergo oxidative stress, revealed enhanced
oxygen usage relative to tubular sodium transport and lower
intrarenal pO2 (45). Amelioration of oxidative stress improved
renal oxygenation in a model of diabetic nephropathy (46) and
in the angiotensin II continuous infusion model (47). The same
oxidative stress–related mechanism may cause tubulointersti-
tial hypoxia in the aging kidney (48). It is likely that the renal
hypoxia in these models results from a decrease in NO bio-
availability and subsequent uncoupling of mitochondrial res-
piration as a result of oxidative stress.

Relative Hypoxia as a Result of Increased Metabolic Demand
When metabolic demand is increased, cells may suffer from

relative hypoxia even under the maintenance of otherwise nor-
mal blood flow. Studies that have used the blood oxygen level–
dependent (BOLD)–magnetic resonance imaging (MRI) tech-
nique (see Detection of Hypoxia in the Kidney section) have
demonstrated that streptozotocin-induced diabetic kidneys suf-
fer from tissue hypoxia at an early stage, before the develop-
ment of structural changes (49). A possible explanation is that
the hyperfiltration that occurs early in diabetic nephropathy
leads to the increased delivery of sodium to tubular cells,
imposing an excessive tubular sodium reabsorption workload
relative to oxygen supply and subsequently resulting in tubular
hypoxia (Figure 2F). Whether proteinuria causes functional
hypoxia as a result of increased metabolic demand for reab-
sorption is an important question for future study.

Detection of Hypoxia in the Kidney
Despite an ever-increasing need for methods to identify and

quantify hypoxic cells in vivo, suitable tools for detecting low
oxygenation within tissues remain in short supply. Among
those with potential diagnostic and research use are chemical
tools such as pimonidazole, which is reduced under conditions
of low oxygen availability. Visualization of this reaction allows
us to detect hypoxic cells. These chemical methods are subject
to a number of limitations, however: Their sensitivity is rela-
tively low, detecting hypoxic cells at oxygen levels of �10
mmHg only, and they are not quantitative. Moreover, the hyp-
oxia probe is metabolized and bound to cells over a 1- to 3-h
period, requiring the assumption that oxygen content as well as
delivery of the chemical compound, in terms of blood flow to
the tissue, remain constant over the observation period. An
additional limitation is that ischemia might impair the delivery
of the compound to hypoxic tissues.

Polarographic oxygen sensors serve as true oxygen monitors,
but the method is invasive and functional in only a limited
range of tissues. In addition, because their signal is propor-
tional to the measured quantity, they can become noisy and
inaccurate, especially at low oxygen levels over relatively large
tissue volumes.

To overcome these problems, Tanaka from our group re-
cently established a novel transgenic rat (50). These animals,
which were highlighted in a recent issue of the JASN (51),

express luciferase tagged with FLAG under a promoter com-
posed of a tandem repeat of hypoxia-inducible factor (HIF)
binding sites, providing a wide dynamic detection range of
quantitative oxygen concentration with resolution down to the
individual cell level. These animals enabled us to demonstrate
different patterns of hypoxia at the early stage in various kid-
ney disease models. An impressive regional correlation was
noted between areas of hypoxia and areas of macrophage ac-
cumulation, apoptosis, and cell proliferation.

With regard to future clinical applications, BOLD-MRI is a
promising tool for the estimation of tissue oxygenation in vivo.
Whereas oxyhemoglobin is diamagnetic, deoxyhemoglobin is
paramagnetic. Thus, when red blood cells that contain deoxy-
hemoglobin are placed in the magnetic field of an MRI, they
cause field distortion, which appears as BOLD contrast in the
resulting images. Limitations at this time include difficulty in
obtaining reproducible and reliable information in this mobile
organ, i.e., the kidney.

Therapeutic Approaches to Chronic Hypoxia
Because chronic hypoxia in the tubulointerstitium is a final

common pathway to ESRD, therapeutic approaches that target
the chronic hypoxia should prove effective against a broad
range of renal diseases. Potential treatment modalities that
target chronic hypoxia in the kidney are summarized in Table
1. Details of each are discussed in the following sections.

Treatment Targeting Hypoxic Tubulointerstitial Damage: EPO
Because anemia is a risk factor for renal failure, correction of

anemia by EPO and the subsequent improvement in oxygen
delivery to the kidney may delay the progression of renal
failure. This expectation was supported by several studies that
suggested that progression might be delayed by an improve-
ment in anemia by treatment with EPO. Gouva et al. (52)
recently conducted a randomized, controlled trial of early ver-
sus deferred initiation of EPO in nondiabetic predialysis pa-
tients. The early treatment arm was started immediately on
EPO titrated to produce a target hemoglobin level of �13 g/dl,
whereas the deferred treatment arm started EPO only when

Table 1. Treatment modalities that target chronic
hypoxia in the kidneya

Improvement of anemia by EPO
Preservation of peritubular capillary blood flow by

blockade of the renin-angiotensin system
Protection of the vascular endothelium

VEGF
dextran sulfate

Antioxidants to improve the efficiency of cellular
respiration

HIF-based therapy
prolyl hydroxylase inhibitors
gene transfer of constitutively active HIF
aEPO, erythropoietin; VEGF, vascular endothelial growth

factor; HIF, hypoxia-inducible factor.
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hemoglobin decreased below 9 g/dl. The results clearly
showed that early initiation of EPO in predialysis patients with
anemia significantly slows the progression of renal disease.
However, some other trials, including the much larger Cardio-
vascular Risk Reduction by Early Anemia Treatment with Epo-
etin � trial, could not confirm beneficial effects of intensive
treatment with EPO, and renoprotective effects of EPO requires
further investigation.

Blockade of RAS to Ameliorate Tubulointerstitial Hypoxia
Norman et al. (53) were the first to show that blockade of RAS

preserved peritubular capillary perfusion and tissue oxygen-
ation in healthy anesthetized rats. In a remnant kidney model,
we demonstrated that treatment with the angiotensin receptor
blocker olmesartan restored blood flow in peritubular capillar-
ies and improved oxygenation of the kidney (37). Although
these improvements in kidney oxygenation by RAS inhibition
are multifactorial, one important mechanism is the dilation of
efferent glomerular arterioles and consequent increase in blood
supply to the downstream tubulointerstitium. Inhibitors of
RAS also serve as antioxidants and should ameliorate uncou-
pling of mitochondrial respiration, leading to more efficient use
of oxygen. Supporting the latter mechanism, administration of
an angiotensin receptor blocker corrected the reduced pO2 in
the cortices of the SHR and reversed the inefficient use of O2 for
Na� transport (54).

Protection of the Tubulointerstitial Vasculature
Protection of the tubulointerstitial vasculature theoretically

should preserve blood supply and guarantee oxygenation to
the corresponding compartment. Physiologically, endothelial
cells are covered with a layer of heparan sulfate proteoglycans,
which are crucial to the anticoagulant and anti-inflammatory
properties of the endothelium. Endothelial cell injury is associ-
ated with the loss of these proteoglycans on the cell surface and
thrombus formation, followed by subsequent ischemic tubulo-
interstitial damage. On this basis, we hypothesized that admin-
istration of dextran sulfate may protect the kidney from endo-
thelial damage by re-establishing the intact endothelial surface.
To investigate this, we used a model of thrombotic microangi-
opathy induced by renal artery perfusion of an antiglomerular
endothelial antibody. Results showed that the administration of
dextran sulfate protected the kidney against endothelial dam-
age, probably by acting as a “repair coat” (55) to re-establish the
intact anticoagulant and anti-inflammatory surface of the in-
jured endothelium.

Kang et al. (56) treated rats with remnant kidneys with vas-
cular endothelial growth factor (VEGF). This treatment im-
proved renal function and lowered mortality rates compared
with the vehicle control, and histology confirmed an increase in
peritubular capillary endothelial cell proliferation and a de-
crease in peritubular capillary rarefaction. These results
showed that treatment with VEGF protected the kidney by both
the preservation of the capillary endothelium and the partial
reversal of the impaired angiogenesis.

HIF as a Target for Drug Development
Although VEGF is a promising therapeutic modality, a po-

tential pitfall of the induction of vessels by overexpression of a
single gene such as VEGF is that the resulting vessels may be
leaky, immature, or irregular. This is because the formation of
a functionally intact microvasculature requires the coordinated
activation of various genes. Rather, a more promising approach
to protecting tissues against hypoxia is the activation of a
“master gene” switch that results in a broad and coordinated
downstream reaction.

At the center of the cellular response to hypoxia is HIF
(57,58). HIF is composed of two subunits, an oxygen-sensitive
HIF-� subunit and a constitutively expressed HIF-� subunit
(also known as aryl hydrocarbon receptor nuclear translocator
[ARNT]). The first isoform of HIF-�, HIF-1�, was originally
identified and cloned as a high-affinity DNA binding protein
localized to the 3� hypoxia-responsive element of the EPO gene
(59,60). Both HIF-1� and HIF-1� are members of the basic
helix-loop-helix PER/ARNT/SIM (HLH-PAS) family of tran-
scription factors. HIF binds to the hypoxia-responsive element
in the cis-regulatory regions of its target genes and transcrip-
tionally activates various genes encoding proteins that mediate
adaptive responses to reduced oxygen availability.

Under normoxic conditions, two conserved proline residues
within the central oxygen-dependent degradation domains of
the HIF proteins are hydroxylated by the protein products
prolyl hydroxylase domain containing (PHD) (61). This pro-
motes binding of the von Hippel Lindau tumor suppressor
protein, part of a ubiquitin ligase complex, resulting in polyu-
biquitylation and rapid degradation. Similarly, a conserved
asparagine residue in the carboxyl-terminal transactivation do-
main of the HIF proteins is hydroxylated in normoxia by factor
inhibiting HIF (FIH), preventing recruitment of the p300/
CREB-binding protein transcriptional co-activators and thus
leading to transcriptional repression. Under hypoxia, oxygen is
lacking as an essential substrate for the hydroxylation reaction,
and the unmodified HIF proteins avoid degradation but rather
heterodimerize with HIF-� and upregulate the transcription of
target genes. The biologic significance of HIF in the kidney
under physiologic and pathologic conditions was demon-
strated recently by Manotham from our group, who used in
vivo gene transfer of DNA expressing negative dominant HIF
and constitutively active fusion protein of HIF (62).

Owing to its ability to induce the expression of a variety of
oxygen-regulated and renoprotective genes in a coordinated
and physiologic manner, stimulation of HIF-1 signaling may be
more effective in ischemic states. For emphasizing the efficacy
of this “master gene” switch, transgenic mice expressing con-
stitutively active HIF-1� in the epidermis displayed an increase
in dermal capillaries with a 13-fold elevation of VEGF (63).
Despite a marked induction of hypervascularity, HIF-1� did
not induce edema, inflammation, or vascular leakage, pheno-
types that develop in transgenic mice that overexpress VEGF in
skin.

A recently discovered isoform of HIF-1�, HIF-2�, has been
shown to possess both structural and functional similarity to
HIF-1�. HIF-1� and HIF-1� are expressed in most cell types,
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whereas HIF-2� shows a more restricted pattern of expression
(57,64). To study the expression of HIF-1� and HIF-2� in the
kidney, Eckardt’s group used high-amplification immunohis-
tochemical analyses (65,66) and showed that HIF-2� was in-
duced by hypoxia in peritubular endothelial cells and fibro-
blasts as well as glomerular endothelial cells, whereas HIF-1
was localized predominantly in the tubular cells (65). These
results are consistent with those of studies that have used a
surrogate marker for HIF-2� in genetically engineered mice
(67). In these mice, disruption of the murine HIF-2a gene was
accomplished by homologous recombination in embryonic
stem cells using a targeting plasmid in which a modified form
of �-galactosidase (�-gal) was substituted for exon 2 of the
HIF-2� gene. Activity staining for nuclear-localized �-gal re-
vealed strong expression predominantly in vascular endothe-
lial cells but also in the renal interstitial cell compartment,
whereas �-gal staining was not evident in renal tubular cells.

Upregulation of the two HIF-� isoforms in the kidney by
hypoxia was demonstrated in models of segmental renal infarc-
tion and radiocontrast nephropathy (68,69). Although cell-type
specificity of HIF isoforms in these models was consistent with
previous findings, temporal and spatial profiles of HIF activa-
tion were relatively complex, suggesting an important but com-
plicated role of HIF in tissue preservation as a response to
regional renal hypoxia. Our recent in vitro experiments showed
that HIF-1 in tubular epithelial cells promotes proliferation of
endothelial cells and that HIF-2 that is overexpressed in renal
endothelial cells mediates migration and network formation;
these results suggest a specific role of each isoform in certain
cell types (70), although a clear differentiation of their roles
independent of localization remains controversial.

Prolyl Hydroxylase
Three HIF prolyl hydroxylases with the potential to catalyze

this reaction have been identified, and these proteins, termed
PHD1, PHD2, and PHD3, seem to have arisen by gene dupli-
cation. The contribution of each to the physiologic regulation of
HIF remains uncertain. These respective isoforms each have
unique but overlapping patterns of tissue expression. Recent
experiments using suppression by small interference RNA
showed that each contributes in a nonredundant manner to the
regulation of both HIF-1� and HIF-2� subunits and that the
contribution of each PHD is strongly dependent on the abun-
dance of the enzyme (71). In most cells, PHD2 has the most
dominant effect because it is substantially the most abundant.
Whereas both PHD2 and PHD3 proteins are induced by hyp-
oxia, induction of PHD3 is particularly striking in certain cells,
and under these conditions, the contribution of PHD3 is greater
than that of PHD2. PHD3 seems to contribute more substan-
tially to the regulation of HIF-2�.

Prolyl hydroxylase inhibitors have been the focus of recent
studies on novel strategies to stabilize HIF. More than half a
century ago, oral administration of cobaltous chloride was used
to treat anemia associated with chronic renal disease (72). Co-
balt therapy led to a significant erythropoietic response in
association with improved appetite and greater tolerance for
medications that are necessary to correct electrolyte abnormal-

ities. However, blood values promptly declined to pretreat-
ment levels when cobalt therapy was discontinued. Although
the mechanism of erythropoiesis was unknown at that time,
cobalt is now recognized as an inhibitor of PHD and thereby
serves as a stimulator of HIF. We demonstrated the renopro-
tective effects of chemical preconditioning with cobaltous chlo-
ride in an ischemic model of renal injury (73). Administration
induced upregulation of HIF-regulated genes, such as VEGF
and EPO, and subsequently protected the kidney against the
tubulointerstitial damage induced by hypoxia. Cobalt treat-
ment was also effective when given after the initial insult in a
chronic progressive glomerulonephritis model, a model of cy-
closporin nephrotoxicity, and a model of chronic renal failure
with glomerular hypertension, demonstrating not only its pre-
ventive but also its therapeutic potential (70,74,75).

Although cobalt administration has been somewhat effective
in experimental animals, long-term administration to humans
is hindered by various side effects. Less toxic and more potent
PHD inhibitors have been sought, and a variety of new candi-
dates are now under development (76). Whereas the mamma-
lian genome encodes three closely related proteins with HIF
prolyl hydroxylase activity, only a single HIF asparaginyl hy-
droxylase, FIH, has been identified to date. A therapeutic po-
tential of FIH inhibitors is also an interesting subject to be
pursued.

Conclusion
Chronic hypoxia is the final common pathway to end-stage

renal failure. Ischemia of the kidney is induced by the loss of
peritubular capillaries in the tubulointerstitium in the late stage
of renal disease. Accumulating evidence also suggests a crucial
role for hypoxia in the tubulointerstitium before structural
microvasculature damage in the corresponding region, empha-
sizing the pathogenic role of this condition from an early stage
of kidney disease. Given this background, therapeutic ap-
proaches against this final common pathway should be effec-
tive in a broad range of renal diseases. Presently, administra-
tion of EPO to correct anemia and blockade of RAS to preserve
peritubular capillary flow and reduce oxidative stress are key
to the improvement of kidney oxygenation. In the future, the
HIF transcription factor at the center of many cellular hypoxic
response pathways will be an attractive target for therapeutic
manipulation.
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