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Abstract

Traditionally seen as a sudden, brutal event with short-term impairment, traumatic brain injury (TBI) may cause

persistent, sometimes life-long, consequences. While mortality after TBI has been reduced, a high proportion of

severe TBI survivors require prolonged rehabilitation and may suffer long-term physical, cognitive, and psychological

disorders. Additionally, chronic consequences have been identified not only after severe TBI but also in a proportion of

cases previously classified as moderate or mild. This burden affects the daily life of survivors and their families; it also

has relevant social and economic costs.

Outcome evaluation is difficult for several reasons: co-existing extra-cranial injuries (spinal cord damage, for instance)

may affect independence and quality of life outside the pure TBI effects; scales may not capture subtle, but important,

changes; co-operation from patients may be impossible in the most severe cases. Several instruments have been

developed for capturing specific aspects, from generic health status to specific cognitive functions. Even simple

instruments, however, have demonstrated variable inter-rater agreement.

The possible links between structural traumatic brain damage and functional impairment have been explored both

experimentally and in the clinical setting with advanced neuro-imaging techniques. We briefly report on some

fundamental findings, which may also offer potential targets for future therapies.

Better understanding of damage mechanisms and new approaches to neuroprotection-restoration may offer better

outcomes for the millions of survivors of TBI.
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Background

Traumatic brain injury (TBI) affects millions of people

worldwide. Its incidence (new cases per year), including

the whole range of severity from minor to devastating

injuries, varies in different countries, from 60 cases per

100,000 inhabitants up to figures 12 times higher [1],

reflecting local variations and, most likely, different

inclusion criteria and methodologies. Epidemiology is

changing, with more TBI due to increased motorization

in several developing countries, while ageing of the

population in the Western hemisphere increases the

incidence of injuries due to falls in the elderly [2].

Mortality in severe TBI was higher than 50 % (up to

80 % in cases older than 60 years) in an old series [3].

Results have improved over the past decades and mor-

tality has been reduced to 30–40 % [4]. The increased

number of survivors, however, includes both successful

cases who are back to an enjoyable life and cases with

persistent disabilities (Table 1).

A proportion of severe TBI survivors, after prolonged

hospital care, require long rehabilitation and may have

long-term physical, cognitive, and psychological disor-

ders. Such disorders may disrupt previous relationships

and preclude return to work, with severe economic and

social impacts. The global burden is such that TBI survi-

vors have a lower life expectancy than the general popu-

lation [4].

The weight of chronic consequences relative to med-

ical care and rehabilitation costs has been estimated by
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calculating lifetime costs per case of severe TBI in the

USA: 80 % of the estimated total cost (approximately

USD 400,000) was attributable to disability and lost

productivity [4].

The fact that severe brain damage is linked to harsh,

long-lasting consequences is not unexpected. New data

suggest, however, that disability may be common also

after hospital admission for (apparently) mild head injur-

ies. Accurate follow-up of 549 cases in Scotland esti-

mated moderate or severe disability after mild TBI in

42–52 % of cases. A Canadian systematic review on the

consequences of mild TBI, however, gives much lower

figures [5]. Existing data are, therefore, insufficient to

draw conclusions.

Figures on the prevalence of people living with the

consequences of TBI are even less well documented; it

has been estimated, however, that several million people

(approximately five million in the USA and seven million

in Europe) were living with TBI-related disability 10 years

ago [6, 7].

No data are available for countries such as India

and China, where TBI incidence is increasing due to

motorization.

The consequences of injury may be attenuated by high

quality care in the emergency setting, in the ICU, and

over the whole rehabilitation process; family and social

support also plays an important role. Economic and so-

cial disparities, with unequal access to resources and

treatment, may, therefore, deeply influence outcome.

This review is based on a comprehensive literature

review which is detailed in Fig. 1. The selection process

was conducted by the authors aiming at a narrative

review, not a systematic literature review.

Biology of traumatic brain injury

Brain trauma is an acute biomechanical event character-

ized by multiple pathophysiological processes that de-

velop over time in a continuum (Fig. 2). TBI survivors

are affected by a “polypathology” whose main features

are white matter degradation, neuronal loss, protein mis-

folding, and persistent neuroinflammation. Alterations of

neurotransmitter systems have also been described [8].

White matter degradation

Neuronal circuits and functions depend on white matter

integrity [9]. Seminal neuropathological studies by

Adams and colleagues have documented the distribution

of axonal pathology in a large series of TBI cases and

have introduced the concept of “diffuse axonal injury”

[10, 11]. Shear-tensile forces due to trauma may cause a

disruption of the axonal cytoskeleton and impair axonal

transport. Additional neurochemical changes, such as

intracellular calcium overload, may further damage the

axons. Thus, TBI affects structural brain networks pro-

gressively, from focal axon alteration to delayed axonal

disconnection [12, 13].

The functional and structural connectivity in patients

can now be investigated by resting-state functional MRI

and advanced diffusion imaging (Fig. 3), respectively,

documenting axonal damage over a wide range of injury

severities [8, 14, 15].

Studies indicate that even apparently intact axons with

disrupted physiology may contribute greatly to clinical

dysfunction in mild TBI. White matter abnormalities on

advanced neuroimaging studies are evident in many

patients in whom CT scans are normal and are strong pre-

dictors of long-term consequences [2, 9, 16, 17]. Serum

markers of axonal injury are emerging (i.e., “SNTF”, a pro-

teolytic fragment of alpha-II spectrin) that may assist in

monitoring of neuropathology progression [18].

Protein misfolding

TBI is a risk factor for delayed neurodegeneration and

dementia, including Alzheimer’s disease and chronic

traumatic encephalopathy [19, 20]. Several mechanisms

may be implicated, including axonal injury, neuronal

Table 1 Outcome at 6 months (percent data) from major pharmacological trials and consecutive series

Publication year Patient number Death Vegetative state Severe disability Moderate disability Good recovery

Neuroprotective trials: placebo groups

Tirilazad [82] 1998 459 28 4 13 17 38

Metilprednisolone [48] 2005 4819 22 Included in the
mortality rate

14 17 46

Progesteron [83] 2014 588 22 Not reported 27 19 31

Consecutive series

EBIC [84] 1999 796 31 2 16 20 31

NeuroLink [85] 2012 1273 33 3 14 17 33

UK RAIN study [86] 2013 2620 26 Not reported 33 22 19

Results at 6 months shown in this table are not corrected for severity. Better results in the neuroprotective trials may depend on the exclusion of the most severe

cases, who are not amenable to randomization but are, on the contrary, included in consecutive series. The Metilprednisolone study included severe and

moderate TBI

Stocchetti and Zanier Critical Care  (2016) 20:148 Page 2 of 10



loss, persistent inflammation, and prolonged blood–

brain barrier disruption [21–24]. However, the neuro-

pathological link that is receiving most attention is

the accumulation of amyloid-β peptides and aberrant

microtubule-associated protein tau, two common fea-

tures in Alzheimer disease. Tau pathology has been

shown to occur in rodent models of TBI within

2 weeks of injury [25–27]. Recent evidence indicates

that a focal brain trauma in mice leads to persistent

tau pathology which disrupts axonal microtubule net-

works, propagates to remote regions in the brain, and

is associated with brain dysfunction [28].

Persistent inflammatory response

The inflammatory response in TBI includes local cere-

bral production of cytokines and chemokines, endothe-

lial activation, microglial activation, and migration of

systemic neutrophils, lymphocytes, and monocytes into

the injured brain. In experimental TBI, microglial cells

readily activate [29] and remain chronically activated for

at least one year after injury [30], spreading form the site

of injury to remote regions in the brain. Clinical data

from TBI brain autopsies and from positron emission

tomography of TBI patients identify chronic microglia

activation up to several years after injury and document

a close association between neuropathology and inflam-

mation in space and time [31, 32]. Experimental studies

show that aspecific suppression of the inflammatory

response may protect the injured tissue early on but

harm the brain at chronic stages [33], suggesting that

therapeutic strategies should aim at modulation, rather

than inhibition, of the inflammatory response.

Neurorestorative processes

In addition to toxic processes, TBI also induces neuror-

estorative events that include neurogenesis, gliogenesis,

Fig. 1 Flow diagram of literature search
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angiogenesis, synaptic plasticity, and axonal sprouting.

These processes are stimulated by endogenous growth-

related factors and may persist for weeks to months,

contributing to recovery after TBI.

The adult brain retains neurogenic zones with neural

stem cells that can differentiate into functional neurons

[34, 35]. Several laboratories have reported an increased

proliferative response in the hippocampus beginning as

early as 2 days post-injury [36], with a peak in the first

weeks after injury [37]. The proliferation in the dentate

gyrus is age-dependent, with the juvenile brain showing a

greater potential [36]. Newly generated neuroblasts [38]

have been shown to migrate toward the site of injury [39]

and to participate in cognitive recovery [40, 41]. Next to

neurogenesis, axonal sprouting and synaptogenesis from

surviving neurons may play a role in spontaneous motor

recovery after TBI [42, 43]. However, all these spontan-

eous brain restorative processes are short-lived [44–46].

Outcome assessment

Outcome assessment after TBI is complex and the spe-

cific consequences due to brain damage are sometimes

difficult to identify. Brain trauma, especially in the case

of road traffic accidents, is often associated with extra-

cranial injuries. These injuries may themselves cause dis-

abilities, sometimes to an overwhelming extent, as in

case of concomitant spinal cord damage. Facial injuries,

ocular damage, limb lesions or amputations, pelvic frac-

tures, etc. are further examples of associated injuries po-

tentially affecting quality of life (QoL) independent of, or

in association with, brain damage.

Accordingly, pre-existing diseases may confuse the as-

sessment: if TBI affects a person with a history of sub-

stance abuse or in the context of severe psychiatric

disorders, the dissection of the pure effect of head injury

becomes arduous or impossible.

The Glasgow Outcome Scale (GOS), a simple, five

point scale, was designed in 1975 specifically for asses-

sing outcome after TBI [47]. It became extremely popu-

lar as a simple tool to assess overall patient disability

without detailed neurological and psychological evalua-

tions, usually through a short interview. Its apparent

simplicity was extremely attractive and the scale has

been used in major clinical trials, such as CRASH [48],

where approximately 10,000 cases were scored at

6 months after TBI. Limitations, however, were quickly

identified: the broad categories couldn’t capture subtle

changes, physical disabilities were better characterized

than cognitive or behavioral problems, and the inter-

rater agreement could vary widely [49].

Two major improvements have been subsequently in-

troduced: an extended GOS scale, based on eight cat-

egories, and a structured interview for guiding the

examiners toward a final accurate score [50]. Emphasis

was put on assessing changes from the pre-injury status,

accounting for pre-existing problems, and in assessing

both mental and physical disabilities. The structured

interview also suggested a simple exploration of social

interactions, leisure attitudes, etc.

Despite the simplicity of the GOS and the guidance of-

fered by the structured interview, discrepancies among

raters remained a problem: when, during a trial on a

Fig. 2 Toxic and protective events in TBI over time
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neuroprotective agent, the results of interviews were

reviewed centrally, more than one-third of the scores were

discordant [51]. Alternative methods for reducing inter-

rater differences using the GOS were then proposed [52],

focusing on education and central monitoring.

Objective measurements of mental and physical func-

tion, as performed using a range of tools, may miss the

patient’s own perspective on QoL, while he/she is the

most qualified expert for evaluating the quality of his/

her own life.

This could be captured by instruments for assessing

the generic health status, such as the Medical Outcomes

Survey 36-Item Short Form Health Questionnaire (SF-

36) [53], or by tools specifically designed for TBI, such

as the Quality of Life after Brain Injury (QOLIBRI), a

37-item scale with six subscales covering areas of

wellbeing and functioning that are typically affected

by TBI, plus a total score which provides a summary

of QoL [54].

QoL is usually self-reported but self-reporting is not

suitable for the most severe cases, with aphasia or per-

sistent vegetative status.

Ideally a combination of instruments, such as the ex-

tended GOS and the QOLIBRI or other additional tools,

could document important domains that are often not

sufficiently investigated, such as interpersonal relation-

ships, social and leisure activities, self and the environ-

ment, etc. [55]. Using complicated and long tests,

however, may be cumbersome or unbearable for pa-

tients: when accurate testing was attempted in more

Fig. 3 Advanced diffusion imaging in a normal control subject (a–c) and a TBI patient (d–f). a, d Axial T2-weighted images at 0.7-mm isotropic

resolution. b, e Fractional anisotropy and c, f mean diffusivity from diffusion tensor imaging. Cc corpus callosum, Cg cingulum, CR corona radiata,

LV lateral ventricle. The color scheme indicates quantitative diffusion parameters (not direction of fibers). Processing included averaging of

two acquisitions with opposite phase encoding direction acquisitions and eddy current correction plus motion correction using the Human

Connectome Project pipeline which included FSL 5.0.6. (L. Holleran, JH Kim, and DL Brody, unpublished data)
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than 1000 patients enrolled in the Traumatic Coma Data

Bank, less than 100 completed the full test battery [56].

Outcome changes over time

The temporal profile of outcome was first established in

the first months following TBI, based on the observation

that a significant proportion of patients improve con-

tinuously during the first 6 months after injury, stabiliz-

ing thereafter. When 786 TBI patients were followed up

for 1 year, 35 % achieved a favorable outcome at

6 months and an additional 5 % reached this level at one

year [57]. The finding that the most significant improve-

ments, especially in the physical status, happen during

the first 6 months has been confirmed in more recent

series [58]. For this reason almost all major TBI trials in

the past 20 years have assessed outcome 6 months after

injury.

Evidence is accumulating, however, that outcomes

after TBI may change after greater periods of time after

trauma, in the direction of both further recovery and,

unfortunately, progressive worsening. Additionally, some

evidence suggests that TBI is a trigger of a persistent,

chronic disease, with late deterioration several years after

injury [19]. The evidence that about 25 % of TBI cases

show functional deterioration between 7 and 13 years

post-TBI indicates that, in some patients surviving the

acute injury, TBI may be the substrate for the induction

of neurodegenerative chronic processes.

Long-term consequences

Excess mortality

TBI patients have a higher mortality rate than controls

matched for age and sex. Behavioral problems, impulsiv-

ity, suicide, motor accidents, etc. are more common in

young survivors, while in cases older than 45 years med-

ical problems such as pneumonia, sepsis, and neurode-

generative diseases are associated with early deaths. In

an American study the risk of dying was 2.2 times more

than controls considering moderate to severe TBI who

received inpatient rehabilitation, with an average reduc-

tion of life expectancy of 6.6 years [59]. The data were

much worse for individuals who were unable to follow

commands on admission to rehabilitation: they were 6.9

times more likely to die, with an average life expectancy

reduction of 12.2 years.

Vegetative status and minimally conscious state

The vegetative state (or “unresponsive wakefulness

syndrome”) is a complex neurological condition in which

patients appear to be awake but show no sign of aware-

ness of themselves or their environment [60]. This con-

dition may be transient, preceding further recovery, or

persist. If repeated accurate assessments confirm unre-

sponsiveness 1 year after injury, a persistent vegetative

state is diagnosed [59]. A high rate of misdiagnosis is

reported because of the barriers to communication from

the patient and the environment, so that patients with

minimal, but present, responses (minimally conscious

state) are confused with cases without responsiveness.

These responses can be detected by complementing clin-

ical evaluation with electrophysiology [61] and sophisti-

cated imaging techniques [62].

Physical disabilities

Motor and sensory deficits may persist as a consequence

of specific traumatic damage to the underlying nervous

structures. In the most severe cases, additional damage

due to prolonged immobilization during hospital care,

such as peri-articular calcification, may worsen recovery.

Bladder and sphincter control may be impaired. All

these physical disabilities may cause significant handicap

and limit the return to a normal and productive life.

Dementia

TBI has been identified as a risk factor for dementia but

this topic is still debated. A large retrospective cohort

(more than 50,000 mild, moderate, and severe TBI cases)

identified 4361 (8.4 %) cases who developed dementia.

In a stratified adjusted analysis, moderate to severe TBI

was associated with increased risk of dementia across all

ages, whereas mild TBI appeared to be a more important

risk factor only in older cases (65 years or older) [63].

Endocrinopathies

Individual hormonal deficiencies after adult TBI are

greatly variable in different reported studies. Chronic

dysfunction of the pituitary axis is observed in approxi-

mately 35 % of individuals who sustain a moderate-to-

severe TBI. The most common deficiency is that of

growth hormone (GH), followed by gonadotropin, corti-

sol, and thyroid [64]. GH replacement provides clinically

relevant, long-term QoL benefits in TBI patients with

severe hypopituitarism [65]. When hormone deficits are

not recognized and managed appropriately, they may

profoundly affect both the results of the rehabilitative

efforts and the final outcome of the subjects.

Cognitive impairment

TBI causes deficits of attention, memory, information

processing speed, and executive functioning. High-level

cognitive functions depend on well functioning distrib-

uted brain networks and on finely regulated neurotrans-

mitter systems [8, 15], which may be disrupted by injury.

When a group of moderate to severe TBI cases was ex-

tensively studied through comprehensive neuropsycho-

logical screening, deficits in sustained attention, paired

associate learning, and reaction time have been clearly

shown [66].
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The relationship between TBI severity and neuro-

psychological deficits has been studied up to 10 years

after injury [67]. Fifty per cent of mild cases recovered

complete cognitive competency, while an additional

20 % required “some help”. On the other end of the

spectrum, only 30 % of the more severe cases fully re-

covered [68]. More encouraging data on mild injuries re-

covery are reported in a recent systematic review [5].

White matter damage in definite locations, as demon-

strated by advanced imaging techniques, seems to be

associated with specific disorders: for instance, lesions to

the fornices are correlated with associative learning and

memory deficits; frontal lobe lesions are strictly linked

with executive function impairment [15]. Grey matter

lesions (especially in the orbitofrontal and insular corti-

ces and in the caudate) seem associated with impulsivity;

impairment of decision making, with longer deliberation

times, also seems to be associated with a number of ana-

tomical lesions [8].

As already mentioned, TBI is increasingly affecting an

aging population in several countries; the neural loss

that accompanies normal ageing might combine or

interact with the brain damage caused by a TBI and

worsen patients’ cognitive and social abilities [69, 70].

Psychiatric disorders

Psychiatric disorders are common following TBI and

include depression, anxiety, and psychosis, as well as

other maladaptive behaviors and personality changes.

A recent meta-analysis shows that TBI increases the

incidence of psychiatric disorders, with depression

and bipolar disorders having higher odds ratios, 2.1

and 1.85, respectively. Psychiatric symptoms may be

temporary, limited to the first weeks after injury, or

persistent. They may limit participation in rehabilita-

tion and functional independence in the community.

Long-term psychiatric disorders are associated with

greater risk for substance abuse [71].

Seizures

The incidence of seizures after TBI is variable, depend-

ing on the mechanism, the location, and the extent of

brain damage and on appropriate treatment. Penetrating

injuries are very often the cause of seizures, which may

affect up to 50 % of patients. In closed TBI, the inci-

dence of late seizures is lower but it may vary between 9

and 42 % in untreated patients [72]. Other sources indi-

cate an incidence of 25–30 % after severe TBI and 5–

10 % after mild to moderate injury [73]. There is low-

quality evidence that early treatment with antiepileptic

drugs reduces the risk of early post-traumatic seizures

and no evidence to support a reduction in the risk of

late seizures [74].

Employment

The combination of physical and functional deficits dis-

cussed translates into a high rate of un-employment in

survivors of TBI. Patients recovering from severe TBI

are sometimes offered a sheltered working environment,

while return to previous work positions is rare. In a USA

series 73 % of cases with mild initial injury return to pre-

vious jobs; this proportion falls to 49 % for severe pa-

tients [68]. Even patients of working age with apparently

favorable outcomes have difficulties in restarting their

jobs: in a group studied in Norway 10 years after injury,

the rate of employment was 58 % [67].

Sexuality

Brain injury can directly and indirectly affect important

aspects related to sexuality and sexual function. Physical

(for instance pituitary dysfunction) and psychological

components (such as depression) may both result in im-

paired sexual activities. When sexual function has been

studied 1 year after TBI with self-reports and structured

interviews, significant disturbances were detected [75];

29 % of participants reported dissatisfaction with sexual

functioning, with a greater percentage of men reporting

dissatisfaction.

Sexual issues and sexual needs are rarely discussed and

managed during the rehabilitation phase after TBI [76].

Impairment of social and leisure activities

The combination of physical, cognitive, and emotional

impairments creates a major obstacle for re-entry into

the community. Decreased social contact, depression,

and loneliness combined with reduced financial re-

sources, unemployment, and physical disabilities may se-

verely disrupt previous social networks and make social

and leisure activities impossible [77].

When several parameters (neuropsychological func-

tioning, emotional status, functional status, employment,

and perceived QoL) were assessed in 201 patients with

moderate or severe TBI up to 3–5 years after injury, re-

covery to pre-injury levels ranged from 65 % of cases

with regard to personal care to approximately 40 % with

regard to cognitive competency, major activities, and

leisure and recreation [68]. These figures were related to

initial TBI severity.

Other series measuring QoL and comparing it with

matched comparators confirm these findings: TBI cases

experienced worse general health, elevated probabilities

of depression, social isolation, and worse labor-force par-

ticipation rates. The most affected areas were social

function, emotions, and mental health [78]. Patients typ-

ically report “somewhat lower life satisfaction and affect”

as a consequence of TBI [79]. QoL is consistently worse

in older patients, as documented after the evacuation of

subdural hematomas [80].
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What can be done to minimize long-term consequences

and improve outcome

TBI consequences can be attenuated with appropriate

and prolonged care. When professional help is linked

with family assistance, the results may further improve.

This, however, requires an organized system of care,

financial resources, and a solid supportive network of

“next of kin”.

For these reasons people with very limited financial re-

sources and/or no familiar and social support are ex-

posed to the worse TBI consequences. A typical

demonstration of this concept has been documented in

a cohort of homeless TBI patients in Scotland. The

homeless have a 5.4 times increased risk of TBI com-

pared with the normal population. After discharge back

to their condition of homelessness, they had double the

mortality rate compared with homeless cases not hospi-

talized [81].

A key issue in TBI care is the temporal progression of

tissue damage, with long-lasting pathological cascades.

Angiogenesis, neurogenesis, and brain plasticity, spon-

taneous regenerative mechanisms induced after acute

brain injury, are too weak to counteract damage progres-

sion. If those mechanisms could be modulated and

strengthened, new therapeutic possibilities could be

explored.

Conclusions

Traditionally seen as a sudden, brutal event with short-

term consequences, TBI may cause persistent, some-

times life-long, consequences.

A huge amount of work has been invested in improv-

ing early TBI care, from rescue to emergency surgical in-

terventions, prevention of secondary insults, acute

treatment of intracranial hypertension in intensive care,

etc. Data bases with ten thousands of patients have been

assembled to better define diagnosis, management, and

prognosis in the acute phase. In contrast, fewer data,

usually on a very limited numbers of cases, are available

on long-term outcomes. This is striking, because bring-

ing patients with head injuries back to an enjoyable life

should be the ultimate goal of any treatment.

Important long-term consequences have been identified

not only after severe TBI but also in a relevant proportion

of cases previously classified as moderate or mild.

Better understanding of the damage mechanisms and

new approaches to neuroprotection-restoration may

offer better outcomes for millions of survivors of TBI.
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