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Abstract Childhood and adolescence are crucial times for
the development of a healthy skeletal and cardiovascular
system. Disordered mineral and bone metabolism accom-
pany chronic kidney disease (CKD) and present significant
obstacles to optimal bone strength, final adult height, and
cardiovascular health. Decreased activity of renal 1 alpha
hydroxylase results in decreased intestinal calcium absorp-
tion, increased serum parathyroid hormone levels, and
high-turnover renal osteodystrophy, with subsequent
growth failure. Simultaneously, phosphorus retention exac-
erbates secondary hyperparathyroidism, and elevated levels
contribute to cardiovascular disease. Treatment of hyper-
phosphatemia and secondary hyperparathyroidism im-
proves growth and high-turnover bone disease. However,
target ranges for serum calcium, phosphorus, and parathy-
roid hormone (PTH) levels vary according to stage of CKD.
Since over-treatment may result in adynamic bone disease,
growth failure, hypercalcemia, and progression of cardio-
vascular calcifications, therapy must be carefully adjusted
to maintain optimal serum biochemical parameters accord-
ing to stage of CKD. Newer therapeutic agents, including

calcium-free phosphate binding agents and new vitamin D
analogues, effectively suppress serum PTH levels while
limiting intestinal calcium absorption and may provide
future therapeutic alternatives for children with CKD.
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Introduction

Childhood and adolescence are crucial times for the
development of a healthy skeletal and vascular system;
alterations in bone modeling/remodeling or vascular biolo-
gy in youth carry consequences that severely impact on
quality of life as well as life span. In childhood, chronic
kidney disease (CKD) causes disordered regulation of
mineral metabolism, with subsequent alterations in bone
modeling, remodeling, and growth. These alterations occur
early in the course of CKD and are accompanied by the
development of cardiovascular calcifications. Since growth
failure and short stature are clinically apparent and
concerning to patients, families, and physicians alike,
optimization of growth and final adult height has been a
focus of CKD management in children for decades. More
recently, however, a growing awareness that cardiovascular
calcifications accompany CKD, that cardiovascular disease
is the leading cause of mortality in both adults and children
with kidney disease, and that therapies designed to treat the
skeletal consequences of CKD affect the progression of
vascular pathology, has led to a reclassification of the mineral,
skeletal, and vascular disease associated with progressive
kidney failure. Together, these alterations are termed “CKD
mineral and bone disorder” (“CKD-MBD”) [1].
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The CKD-MBD is defined as a systemic disorder of
mineral and bone metabolism due to CKD that is
manifested by either one or a combination of the following:
(1) abnormalities of calcium, phosphorus, parathyroid
hormone (PTH), or vitamin D metabolism, (2) abnormal-
ities in bone histology, linear growth, or strength, and (3)
vascular or other soft tissue calcification. “Renal osteodys-
trophy” is the specific term used to describe the bone
pathology that occurs as a complication of CKD and is,
therefore, one aspect of the CKD-MBD. While the
definitive evaluation of renal osteodystrophy requires a
bone biopsy, this procedure is not routinely performed in
the clinical setting. However, bone histomorphometry
continues to be the gold standard for the assessment of
three essential aspects of bone histology: turnover, miner-
alization, and volume [1].

Owing to new concepts and definitions of the mineral
and bone alterations associated with CKD, this review
outlines the current understanding of abnormal bone and
mineral metabolism in CKD and current treatment
strategies and their impacts on different aspects of this
disorder.

Abnormalities of calcium, phosphorus, PTH,
and vitamin D metabolism

The kidneys regulate intestinal calcium absorption by
converting 25-hydroxyvitamin D3 [25(OH)D3], the storage
form of vitamin D, to 1,25 dihydroxyvitamin D3 [1,25
(OH)2 D3, calcitriol], the active form of vitamin D, by
means of the enzyme 1 α hydroxylase. Suppression of
calcitriol synthesis occurs early in CKD, before alterations
in calcium, phosphorus, or PTH levels can be detected
[2, 3]. Low circulating levels of calcitriol are due, in part, to
a loss of functioning renal mass and result in decreased
intestinal calcium absorption, stimulating a release of PTH
[4–9]. In the early stages of CKD, elevated amounts of
circulating PTH may result in normal or low serum phosphate
levels. In advanced stages, however, decreased glomerular
filtration rate limits phosphorus excretion. Hyperphosphate-
mia ensues, causing further suppression of 1 α hydroxylase
activity [10] and stimulation of PTH release [11, 12].

As renal function declines, the kidneys and skeleton
become increasingly resistant to the actions of PTH,
necessitating higher levels of PTH to maintain normal
mineral and bone metabolism [13]. While the primary
stimulus for PTH is serum calcium concentration, hyper-
phosphatemia also potentiates PTH secretion, while
vitamin D, acting through the vitamin D receptor in
parathyroid gland tissue, suppresses PTH transcription.
Over time, chronic hypocalcemia, hyperphosphatemia, and

low circulating calcitriol levels result in parathyroid gland
hyperplasia [14]. Since the half-life of parathyroid cells is
long—on the order of 30 years—once established, hyper-
plasia is difficult to reverse. PTH secretion from enlarged
parathyroid glands may become uncontrollable, due to the
non-suppressible basal activity of a large number of
parathyroid cells. Long-term stimulation of parathyroid
glands may also lead to chromosomal changes that result in
autonomous, unregulated growth and hormone release [15].

A recently described phosphaturic hormone, fibroblast
growth factor 23 (FGF-23), may contribute to the patho-
genesis of secondary hyperparathyroidism. FGF-23 was
first identified in patients with tumor-induced osteomalacia,
autosomal dominant hypophosphatemic rickets, and X-
linked hypophosphatemic rickets. In these conditions,
elevated circulating levels of FGF-23 result in renal
phosphate wasting and suppression of calcitriol production.
FGF-23 levels rise as renal failure progresses, with
markedly elevated levels present in individuals treated with
dialysis [16]. In the early stages of CKD, increased serum
FGF-23 levels are associated with suppression of calcitriol
production and may thereby contribute to early stimulation
of PTH release [17].

Abnormalities in bone turnover, mineralization, volume,
linear growth, or strength

Evaluation of skeletal histology provides both a method for
understanding the pathophysiology of renal bone disease
and a guide to its proper management. The routine
assessment of bone histology is not performed in the
clinical setting; however, current recommendations from
the National Kidney Foundation [Kidney Disease Out-
comes Quality Initiative (KDOQI) Guidelines] suggest that
a bone biopsy should be considered in all patients with
CKD who have fractures with minimal trauma (patholog-
ical fractures), suspected aluminum bone disease, or
persistent hypercalcemia despite having serum PTH levels
between 400 pg/ml and 600 pg/ml (Level of Evidence:
Opinion) [1, 18]. After double tetracycline labeling, bone
tissue is obtained from the iliac crest on an outpatient basis
with minimal morbidity [19, 20]. As recently recommended
by the Kidney Disease Improving Global Outcomes
(KDIGO) workgroup, three areas of bone histology are
examined: bone turnover, mineralization and volume, all of
which may be altered in patients with CKD [1].

Bone turnover

Traditionally, renal osteodystrophy has been classified
primarily on alterations in bone turnover. The primary
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lesion of renal osteodystrophy in children is one of high
bone turnover, also termed “secondary hyperparathyroid-
ism”. Long-term exposure to high serum PTH levels often
leads to fibrous changes in bones; this lesion is termed
“osteitis fibrosa cystica”. Since PTH activates the PTH/
parathyroid hormone-related protein (PTHrP) receptor on
osteocytes and osteoblasts, increasing cellular activity of
both osteoblasts and osteoclasts [21, 22], excessive levels
of circulating PTH result in increased bone turnover [23].
Increased bone turnover (secondary hyperparathyroidism)
is evident in patients with early and advanced stages of
CKD and is nearly universal in untreated children at the
initiation of dialysis [24]. This condition is marked by
increased numbers of osteoblasts and osteoclasts. Due to
excess osteoclastic activity, increased resorption of mineral
and matrix along trabecular surfaces and haversian canals is
evident. Osteitis fibrosa cystica, the advanced lesion of
secondary hyperparathyroidism, is also associated with
peritrabecular fibrosis [25].

A state of low-turnover bone disease (adynamic renal
osteodystrophy) also occurs in children treated with
maintenance dialysis, although it has not been demon-
strated in adults or children with earlier stages of CKD
[26]. Adynamic bone results from over-suppression of
serum PTH, due to excess treatment with vitamin D and
calcium salts and is characterized by normal osteoid
volume, an absence of fibrosis, and a reduced bone
formation rate, as indicated by reduced or absent double
tetracycline label on bone histology [27, 28]. A paucity of
osteoblasts and osteoclasts is present [23]. Adynamic bone
has also been associated with low alkaline phosphatase
levels, high serum calcium levels, and a propensity for
increased vascular calcification [29, 30]. In addition to the
increased risk of fractures that is observed in adults with
adyamic bone, adynamic bone in children treated with
dialysis is associated with an increased severity of
growth retardation [31, 32].

Mineralization

Alterations in skeletal mineralization are also prevalent
in children with CKD [33]. Increases in unmineralized
bone (osteoid), in conjunction with delayed rates of
mineral deposition, are common [25, 33]. Defective
mineralization that is associated with high-turnover bone
disease is termed “mixed lesion”; when associated with
low-to-normal bone turnover, it is referred to as “osteo-
malacia” [1]. While the implications of defective mineral-
ization remain to be established, increased fracture rates,
bone deformities, and growth retardation are prevalent in
patients with CKD and may be due, in part, to altered
mineralization.

Volume

Since PTH is an anabolic steroid at the level of trabecular
bone, high levels of serum PTH are typically associated
with increases in bone volume, trabecular volume, and
trabecular width [20, 33–35]. Thus, children with CKD
typically have normal or high bone volume as assessed by
bone histomorphometry. Those treated with corticosteroids,
however, may display loss of bone volume, termed
“osteoporosis”. The impact of osteoporosis in childhood
may not always be immediately apparent; however, sub-
optimal peak bone mass accretion in adolescence is
associated with an increased risk of osteoporosis, hip
fractures, and mortality in adulthood [36].

Growth

Growth retardation is the hallmark of CKD in children.
Protein and calorie malnutrition, metabolic acidosis, end-
organ growth hormone resistance, and renal bone disease
are the factors most commonly implicated in growth failure
[37]. Despite correction of acidosis and anemia, normali-
zation of serum calcium and phosphorus levels, and
vitamin D sterol therapy replacement, the majority of
children with CKD continue to grow poorly. Growth failure
worsens as renal function declines; the average height of
children with even mild CKD [glomerular filtration rate
(GFR) 50–70 ml/min per 1.73 m2 body surface area] is 1
standard deviation score (SDS) below the average for
healthy children. Moderate CKD (GFR 25–49 ml/min per
1.73 m2) is associated with a height SDS of −1.5, and, at
the time of initiation of dialysis, the mean height SDS is
−1.8 [38].

Secondary hyperparathyroidism contributes to growth
retardation, although optimal target values for PTH in chil-
dren in all stages of CKD remain controversial. In children
with moderate CKD, some data indicate that normal growth
velocity is achieved when PTH levels are maintained within
the normal range [39], while others have demonstrated a
linear correlation between growth and PTH levels in the
same patient population, those with the highest PTH values
maintaining the highest rates of growth [40]. In children
treated with maintenance dialysis, adynamic bone disease
and growth failure have been associated with PTH levels
around 100 pg/ml (1st generation assay), causing many
experts to recommend target PTH levels 3–5 times the
normal range in advanced CKD [32]. Data from the
European community, however, have demonstrated that
optimal growth velocity in this population may be
associated with PTH levels of 2–3 times the normal range
[41]. As a result, optimal PTH targets remain controversial,
and recommendations vary between experts (Table 1).
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Alterations in the growth hormone/insulin-like growth
factor (IGF) pathway axis and their receptors also contrib-
ute to growth retardation. Despite normal or elevated
circulating levels of growth hormone, decreased growth
hormone receptor expression results in end-organ resis-
tance. Furthermore, increased levels of IGF binding
proteins, in the presence of normal IGF1 levels, result in
decreased bioactivity of IGF1 [42–44].

Bone deformities are also common in uremic children,
due to altered skeletal remodeling. Epiphyseal widening,
particularly around wrists, ankles, and the costochondral
junctions (rachitic rosary), is common in infants. Slipped
epiphyses, genu valgum, and femoral and wrist deformities
are most common in pre-adolescent children with long-
standing CKD [24, 45]. Avascular necrosis of the femoral
head and pathologic fractures of the extremities and chest
wall due to osteoporosis and bone deformities may occur
with minimal trauma. In addition, vertebral crush fractures
contribute to significant morbidity in this population. The
initial management of skeletal deformities requires the
normalization of serum calcium, phosphorus, and PTH
levels. Surgical correction is often also necessary but
should be performed only after correction of biochemical
abnormalities [18].

Biomarkers of renal osteodystrophy

Serum calcium and phosphorus

Serum calcium and phosphorus levels remain stable in
mild-to-moderate stages of CKD. As renal failure advances,
however, serum calcium levels drop in response to
decreased intestinal calcium absorption resulting from low
circulating levels of 1,25(OH)2D3 [2]. Treatment with active
vitamin D sterols and phosphate binders corrects hypocalce-
mia, and, in stage 5 CKD, hypercalcemia may develop in
response to aggressive treatment with high doses of vitamin D
sterols and calcium-based phosphate binders. In this context,
increased serum calcium, in conjunction with low levels of

PTH and alkaline phosphatase, may signal the development of
adynamic bone [32]. Adjustment of vitamin D dosage and the
use of non-calcium-containing phosphate binders can prevent
the development of this complication as well as its associated
growth failure [32]. Avoidance of increased serum calcium
levels, which are associated with an increased risk of
mortality in large populations of adult dialysis patients, also
may prevent the progression of cardiovascular calcification
(vide infra) [46, 47].

Similar to those of serum calcium, serum phosphorus
levels remain within the normal range until CKD stages 4
to 5 are reached, when decreased GFR limits urinary
phosphate excretion. Serum PTH levels rise but fail to
compensate for phosphorus retention [2]. In stage 5 CKD,
traditional hemodialysis or peritoneal dialysis typically
removes less than half of ingested phosphate, necessitating
the use of phosphate binders to control serum phosphorus
and PTH levels. Since elevated values for the serum
calcium × phosphorus product have been associated with
vascular calcification and increased rates of mortality [48–
50], maintaining serum calcium and phosphorus levels
within the normal range is important for optimizing cardio-
vascular health in all stages of CKD (vide infra) [18].

Alkaline phosphatase activity

Serum alkaline phosphatase values are fair markers of
osteoblastic activity in children with CKD. Osteoblasts
normally express large amounts of the bone isoenzyme of
alkaline phosphatase, and elevated serum levels correlate
with increased bone formation, high levels of serum PTH,
and growth hormone therapy [51]. Since alkaline phospha-
tase is also present in the liver, elevated serum levels of
total alkaline phosphatase may not always indicate in-
creased bone turnover. Measurement of the heat-stabile and
heat-labile fractions may help to separate skeletal from
hepatic causes of elevated levels. Alkaline phosphatase
measurements are useful in monitoring the skeletal re-
sponse to treatment with vitamin D sterols in patients with
osteitis fibrosa; values that decrease over several months
usually indicate histologic improvement [52]. However,
consistently low serum alkaline phosphatase values, partic-
ularly in children with stage 5 CKD receiving large doses
of vitamin D sterols and calcium-containing phosphate
binders, are consistent with adynamic bone [32].

Parathyroid hormone

Serum PTH levels are widely used as non-invasive markers
in distinguishing low-turnover lesions from osteitis fibrosa
[33, 53]. Current recommendations for target PTH levels are
based on measurements obtained by the 1st generation PTH
assay in cross-sectional bone biopsy data from children

Table 1 Target PTH ranges by stage of CKD

CKD stage GFR range
(ml/min per
1.73 m2)

Target intact PTH
(pg/ml)

3 30–59 *35–70
‡10–65

4 15–29 *70–110
‡10–65

5 <15 or dialysis *200–300
‡130–195

* recommended by [18], ‡ recommended by [41]
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treated with maintenance dialysis and receiving either low-
dose oral calcitriol or no vitamin D sterol therapy. Since the
1st generation assays measure both full-length molecule
and amino-terminally truncated fragments, 2nd generation
PTH assays have been developed which measure, exclu-
sively, the full-length molecule (“PTH(1–84)”). Although
some data suggest improved ability of the newer 2nd
generation assays to predict low-turnover bone disease
[54], this finding has not been substantiated by others [34,
55].

Increasing skeletal resistance to the actions of PTH
requires that PTH be maintained at higher levels in
advanced stages of CKD [56–58] (Table 1). Downregula-
tion of the PTH receptor, decreased expression of osteoblast
differentiation factor, and increased levels of osteoclasto-
genesis inhibitory factor occur with decreased renal
function, contributing to the skeletal resistance to PTH
[57, 59]. In patients with mild to moderate CKD, PTH
levels that are within the normal range generally correspond
to normal rates of bone formation, while mildly increased
levels suggest the presence of secondary hyperparathyroid-
ism [26]. In patients undergoing maintenance dialysis who
are either untreated or are receiving small daily oral doses
of calcitriol, PTH(7–84) levels of approximately two to five
times the upper limit of normal generally correspond to normal
bone formation rates [26, 33, 41, 53, 60]. Over-suppression of
PTH in patients on dialysis has also been shown to result
in growth failure, hypercalcemia, and adynamic bone
[32]. In summary, PTH levels should be maintained in the
range appropriate to the stage of CKD; levels appropriate
for early stages of CKD would indicate low-turnover
disease in patients treated with dialysis, while appropriate
levels for stage 4 CKD represent osteitis fibrosa in mild
CKD.

25(OH) vitamin D

Careful attention to 25(OH) vitamin D (native vitamin D)
nutrition is also fundamental to the optimal management of
renal osteodystrophy [18]. Native vitamin D deficiency is
prevalent in all children, including those with normal renal
function [61], and the presence of renal insufficiency
exacerbates this deficiency. Currently, therapeutic native
vitamin D is available in two forms: vitamin D2 (ergo-
calciferol) is obtained from plants and vitamin D3 (chole-

calciferol) is obtained from animal sources. Repletion of
vitamin D stores has been shown to increase calcitriol
production, ameliorate secondary hyperparathyroidism [62,
63], and heal lesions of poor mineralization in patients with
CKD stages 2 through 4 [64]. Thus, assessment and
repletion of native vitamin D stores are recommended in
this population [18]. Of note, current dosage recommenda-
tions for native vitamin D repletion are similar to doses
recommended for the treatment of nutritional rickets and far
exceed recommendations for routine daily intake (Table 2).

FGF-23

FGF-23 is a newly described phosphaturic hormone
associated with renal phosphate wasting [65], low serum
1,25(OH)2D3 levels, and osteomalacia in animals and
humans with normal kidney function [66–68]. Levels
increase as kidney disease progresses and are markedly
elevated in patients treated with maintenance dialysis [16].
Current data indicate that increased levels correlate with
calcitriol deficiency in adults with CKD stages 2 to 4 [17],
that dietary phosphorus regulates serum levels of FGF-23
[69, 70], and that the administration of vitamin D sterols
increases levels [71]. Furthermore, elevated pre-treatment
values of serum FGF-23 may predict resistance of the

Table 2 Native vitamin D dosing by degree of D deficiency

Serum 25(OH) vitamin D (ng/ml) Ergocalciferol (vitamin D2) dose Comment

<5 (severe deficiency) 8,000 IU/d p.o.×4 weeks, then 4,000 IU/d×2 months Measure 25(OH)D level after 3 months
5–15 (mild deficiency) 4,000 IU/d daily p.o.×12 weeks Measure 25(OH)D level after 3 months
5–30 (mild deficiency) 2,000 IU/d daily p.o.×12 weeks

PTH secretion

Phosphate load

Serum calcium

Bone turnover

Release of Ca and P

FGF-23 production

Calcitriol production

P reabsorption

Calcitriol production

P reabsorption

Ca absorption

P absorption

Fig. 1 Schematic representation of the interplay between PTH, FGF-
23, and calcitriol in mineral metabolism in vivo. Solid arrows
represent the actions of PTH, while open arrows represent those of
FGF-23
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parathyroid glands to therapy with vitamin D sterols [72, 73].
These findings implicate a role for FGF-23 in the control of
serum phosphorus and vitamin D metabolism, as well as in
the pathogenesis of secondary hyperparathyroidism.

A schematic representation of the interplay between
PTH, FGF-23, and calcitriol is depicted in Fig. 1.

Vascular or other soft tissue calcification

Extra-skeletal calcification, including vascular calcification,
is prevalent in adults treated with dialysis [46, 47], has its
origins in childhood [48, 49], and is associated with
significant cardiovascular morbidity and mortality [74, 75].
In contrast to the calcifications of atherosclerotic plaques in
the vascular intima that develop with age in individuals
with normal kidney function, vascular calcification in the
uremic milieu develops primarily in the vascular media.
Hypercalcemia, hyperphosphatemia, elevated levels of the
calcium × phosphorus product, and high doses of vitamin D
sterols [48–50] have all been implicated in the progression
of the burden of extra-skeletal calcification. However,
40% of adult patients with stage 3 CKD, without these
risk factors, show evidence of calcification [76], suggest-
ing that factors in the uremic milieu itself, apart from high
levels of calcium and phosphorus, contribute to cardio-
vascular disease. Furthermore, increased intimal–medial
thickness of the carotid artery is present in both children
on dialysis and in those with early stages of CKD [77],
suggesting that vascular abnormality, the leading cause of
death in this population, has its origins early in childhood
CKD [78].

Although the mechanisms of the development of
vascular calcification remain to be fully elucidated, osteo-
blasts and vascular smooth muscle cells have a common
mesenchymal origin; core binding factor-1 (Cbfa1) is
thought to trigger mesenchymal cell to osteoblast transfor-
mation. Mice deficient in Cbfa1 fail to mineralize bone
[79], and arteries obtained from patients undergoing renal
transplantation show increased levels of the protein [80].
Upregulation of the sodium-dependent phosphate transport-
er PIT-1 likely contributes to increased calcification [81,
82]. Furthermore, upregulation of pro-mineralization fac-
tors, such as osteopontin, bone sialoprotein, osteonectin,
alkaline phosphatase, type I collagen, and bone morpho-
genic protein-2 (BMP-2), is potentiated by the uremic
milieu [83–86], while expression of calcification inhibitors,
such as fetuin A and matrix Gla protein, is suppressed [87–
89]. Levels of circulating FGF-23 may also contribute, as
values are inversely correlated with peripheral vascular
calcification in adult dialysis patients [90]. Treatment with
high doses of calcium salts, in the form of calcium-based
phosphate binders, has also been implicated in the

progression of cardiovascular calcification in adult patients
treated with maintenance dialysis, and this progression is
prevented with the use of non-calcium-containing phos-
phate binders [46, 47].

Treatment

The goal of therapy in childhood CKD-MBD is to
normalize mineral metabolism with the aim of improving
growth and reducing bone deformities and fragility, while
minimizing the progression of extra-skeletal calcification.
Biochemical markers of serum calcium, phosphorus, and
PTH are primarily used to guide therapy; current therapeu-
tic agents are targeted to maintain values in the normal
range for the stage of CKD (Table 1).

Phosphorus control

As a result of phosphorus retention in CKD stages 4 and 5
[91], patients with advanced CKD and those undergoing
treatment with traditional maintenance dialysis regimens—
thrice-weekly hemodialysis or nightly peritoneal dialysis—
often require dietary phosphate restriction as well as
treatment with phosphate-binding agents. Serum phospho-
rus levels should be maintained within the appropriate
range for age and, due to increased rates of growth, infants
and young children must maintain higher levels of serum
phosphorus than older children. Calcium-containing salts
have been recommended as the mainstay in phosphorus
binding therapy in CKD stages 3 through 5. While several
calcium salts are widely used, including calcium carbonate,
calcium acetate, and calcium citrate, calcium carbonate is
currently the most commonly used compound [27, 92, 93].
In recent years, however, increasing concern about the
progressive vascular calcifications associated with a posi-
tive calcium balance and hypercalcemia has led to the
development of non-calcium-containing phosphate binders.
Current recommendations suggest that total calcium intake
from calcium-based phosphate binders should not exceed
twice the recommended daily recommended intake (DRI)
for dietary calcium. Elevated serum calcium levels (greater
than 10.2 mg/dl) should be treated by the withdrawal of
calcium-based phosphate binder therapy and, if persistent,
by the discontinuation of active vitamin D sterols [18].

To avoid excess calcium intake, a metal-free calcium-
free phosphate binder, sevelamer hydrochloride (sevelamer
HCl, RenaGel) was developed. Although sevelamer is not
yet approved for use in children, it has been shown in
prospective trials to lower serum phosphorus levels effec-
tively and control the skeletal lesions of secondary
hyperparathyroidism without increasing serum calcium
levels in children treated with dialysis [35, 46, 47, 94–96].
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Use of sevelamer HCl has also been shown to halt the
progression of vascular calcification in patients on dialysis,
in contrast to the worsening cardiovascular disease associat-
ed with long-term calcium-based binder therapy [47, 94].
Lower mortality rates have also been associated with the use
of sevelamer over calcium [97].

Lanthanum carbonate is a non-calcium-containing, but
metal-containing (lanthanum), phosphorus binding agent.
Several studies have demonstrated that lanthanum carbon-
ate effectively reduces serum phosphorous levels, and there
are fewer hypercalcemic episodes than with calcium
carbonate [98–100]. However, plasma lanthanum levels
increase over time. Although levels return to baseline after
withdrawal of the drug, bone lanthanum content increases
during therapy and remains elevated at least a year after
discontinuation of treatment [101]. Further evidence from
experiments on rodents indicates progressive liver, bone,
and growth plate accumulation [102]. Thus, although
lanthanum carbonate is an effective phosphate binder,
long-term therapy results in its accumulation in a number
of tissues, the long term consequences of which have yet to
be defined [103].

In select patient populations and dialysis centers which
are able to perform daily hemodialysis, the use of
phosphate binding medications may be decreased or
entirely avoided. Daily hemodialysis has been demonstrat-
ed to normalize serum phosphate levels in these patients,
leading to improved nutrition, improved growth, and
decreased phosphate binder usage [104, 105].

Secondary hyperparathyroidism

25(OH) vitamin D deficiency is common in children with
CKD, and assessment and repletion is recommended for all
children in stages 2 to 4 CKD with secondary hyperpara-
thyroidism. After repletion of native vitamin D stores,
therapy with active vitamin D sterols is effective in
suppressing PTH levels to the target range for the stage of
CKD. Vitamin D sterols suppress PTH levels by two
mechanisms: indirectly, through increased intestinal calci-
um absorption, and directly, via suppression of PTH gene
transcription. Calcitriol and alfacalcidol are widely used in
children, have been shown to be effective in suppressing
PTH when given in daily or intermittent doses, and improve
growth in children with CKD [39, 40]. However, hypercal-
cemia has been linked to their administration, particularly
when given with calcium-containing phosphate binders.
Thus, newer vitamin D analogues have been developed to
maximize affinity for parathyroid tissue, while minimizing
effects on intestinal calcium and phosphorus absorption.
Three new vitamin D analogues are available for use in
patients with CKD: 22-oxacalcitriol (OCT) in Japan, as
well as 19-nor-1,25-dihydroxyvitamin D2 (paricalcitol) and

1α-hydroxyvitamin D2 (doxercalciferol) in the USA. Oral
forms of paricalcitol and doxercalciferol have been ap-
proved for CKD 3 through 5 in adults, though not yet in
children. Doxercalciferol and paricalcitol are effective in
lowering PTH levels and may have a lower calcemic
potential than calcitriol in both adults and children with
CKD [35, 106].

Calcimimetic agents, which act as allosteric activators of
the calcium sensing receptor (CaSR), are also available for
the treatment of secondary hyperparathyroidism in the adult
dialysis population. By increasing the sensitivity of the
CaSR, these small organic molecules are able to reduce
PTH levels, decrease the calcium–phosphorus product, and
may provide a medical means of halting the progression of
parathyroid gland hyperplasia [107]. Cinacalcet has been
shown to be effective in the control of secondary
hyperparathyroidism in adults with CKD [108], in those
treated with maintenance dialysis [109–112], and in those
with functioning renal allografts [113]. These agents have
not been approved for use in children, and, due to the
presence of the CaSR on the growth plate [114], studies are
required to confirm their safety and efficacy in young
patients.

Growth

Despite correction of acidosis and optimization of nutrition,
many children with CKD continue to grow poorly. Re-
combinant growth hormone therapy may be indicated in
those whose height is below the 5th percentile for age and
who have open epiphyseal plates. Skeletal X-rays to
evaluate bone age are indicated prior to initiation of
hormone therapy. Skeletal deformities, such as active
rickets or slipped capital femoral epiphyses, should be
allowed to heal prior to initiation of therapy. Furthermore,
since growth hormone therapy may worsen secondary
hyperparathyroidism, serum PTH levels must be well
controlled prior to start of therapy and should be routinely
monitored during treatment. Of note, the clinical response
to recombinant growth hormone differs according to stage
of CKD, children with stage 5 CKD displaying a less robust
growth response than those with less severe kidney disease
[115, 116]. Thus, many factors, including growth potential,
degree of kidney failure, optimal dialysis prescription
[105], concomitant morbidities, and control of renal
osteodystrophy, should be considered prior to the initiation
of growth hormone therapy.

Vascular disease

Since cardiovascular disease is the leading cause of death in
both adults and children with CKD, the prevention of
cardiovascular disease progression is crucial in the man-
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agement of the CKD-MBD. The etiology of vascular
disease in CKD is multifactorial and includes traditional
risk factors, such as hyperlipidemia, hypertension, and
inflammation, as well as alterations in mineral metabolism
specific to CKD; thus, treatment is also multifaceted. Lipid
lowering agents are effective in reducing cardiac mortality
in adults with CKD [117] and in those with stable renal
allografts [118], although no benefit from their use has been
established in patients treated with maintenance dialysis
[119]. Normalization of mineral metabolism, by the
avoidance of PTH over-suppression, avoidance of hyper-
calcemia, and the maintenance of normal serum phosphorus
and the overall calcium × phosphorus product, is essential
in all patients with CKD [18]. The limiting of total calcium
intake to less than twice the DRI for age, in conjunction
with the routine monitoring of biochemical parameters and
adjustment of both phosphate binder and vitamin D sterol
therapy, is recommended to prevent progressive vascular
disease. Evaluation of vascular calcifications in children
may be performed by ultrasound of carotid intimal–medial
wall thickness [120]. The methodology for coronary
electron beam computed tomography (EBCT) and the value
of echocardiogram or abdominal X-rays [121], useful in the
adult population, have not been well established in children.

Questions (answers appear after the references)

A 12-year-old boy has come to a pediatrician’s office for a
school physical. He wakes up several times at night to
urinate. On examination, he is found to be a pale boy with a
height and a weight that are both below the third percentile.
He has Tanner 1 pubertal development and normal blood
pressure. Serum electrolyte concentrations are: sodium
136 mmol/l, potassium 3.8 mmol/l, chloride 108 mmol/l,
total CO2 18 mmol/l, blood urea nitrogen (BUN) 40 mg/dl,
creatinine of 1.8 mg/dl (stage 3 CKD), phosphorus 4 mg/dl,
calcium 9.9 mg/dl, PTH 170 pg/ml, and a hematocrit of 28%.

1. An appropriate serum PTH level for this child with this
degree of renal insufficiency is:

a. 10–65 pg/ml
b. 65–110 pg/ml
c. 200–300 pg/ml
d. >400 pg/ml

2. Appropriate management of his secondary hyperpara-
thyroidism does not include:

a. measurement and repletion of 25(OH) vitamin D
b. initiation of a calcium-free phosphate binder
c. dietary phosphate restriction
d. initiation of calcitriol therapy

3. Growth hormone therapy should be initiated:

a. immediately, to maximize final height potential
b. after correction of acidosis, anemia, and secondary

hyperparathyroidism
c. after the initiation of dialysis
d. after successful renal transplantation
e. growth hormone therapy is contraindicated in this

child

4. An 8-year-old girl presents with reflux nephropathy and
growth failure and has the following serum biochemical
determinations: serum creatinine 2.5 mg/dl (CKD
stage 4), calcium 8.9 mg/dl, phosphorus 6 mg/dl, and
PTH 140 pg/ml. The first step in serum phosphorus
management is:

a. initiation of a non-calcium-containing phosphate
binder

b. nutritional assessment and phosphate restriction
c. vitamin D sterol therapy
d. growth hormone therapy

5. A 14-year-old boy with obstructive uropathy and
stage 3 CKD has been treated with growth hormone
therapy for the past 2 years. His growth velocity has
been decreasing over the past 6 months. An indication
to stop therapy would be:

a. serum PTH level of 150 pg/ml
b. height at 50% for age
c. Tanner 2 pubertal development
d. increasing alkaline phosphatase activity

6: A 10-year-old boy receiving maintenance hemodialysis
is treated with calcium carbonate and thrice-weekly
calcitriol to control his renal osteodystrophy. His serum
PTH level is 700 pg/ml, phosphorus 5 mg/dl and
calcium is 11.5 mg/dl. To ameliorate his hypercalcemia,
the next step in his therapy should include:

a. dietary calcium restriction
b. bone biopsy
c. switching to a non-calcium-containing phosphate

binder
d. increasing the calcitriol therapy

7. An 8-year-old girl with reflux nephropathy has stage 3
CKD and a height SD less than the 3rd percentile.
Contraindication to starting GH therapy in this patient is:

a. serum PTH level of 900 pg/ml
b. bone age of 6 years
c. weight SD at the 3rd percentile
d. recurrent urinary tract infections
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8. A 9-year-old boy on dialysis has a serum calcium level
of 10.2 mg/dl and serum phosphorus of 7 mg/dl. He
currently receives two tablets of calcium carbonate
(500 mg) with each meal and snack (a total of eight
tablets per day). Optimal control of his serum phos-
phorus could best be obtained by:

a. dietary protein restriction to 0.8 mg/kg per day
b. increasing his calcium carbonate to three tablets

with meals and snacks
c. adding sevelamer to his phosphate binder regimen
d. increasing vitamin D sterol therapy
e. starting him on a calcimimetic

9. A 14-year-old boy with stage 4 CKD has the following
serum biochemical determinations: phosphorus 5.8 mg/
dl, calcium 9 mg/dl, and PTH 160 pg/ml. The
following intervention is not recommended at this stage
of his treatment:

a. calcium carbonate with meals
b. lanthanum carbonate with meals
c. low-dose calcitriol, nightly
d. dietary phosphate restriction
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Answers

1. a (10–65 pg/ml)
2. b (initiate calcium-free phosphate binder)
3. b (after correction of acidosis, anemia and secondary

hyperparathyroidism)

4. b (nutritional assessment and phosphate restriction)
5. b (height 50% for age)
6. c (switching to non-calcium phosphate binder)
7. a (serum PTH 900 pg/ml)
8. c (add sevelamer)
9. b (lanthanum carbonate)
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