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Abstract:Chronic lung allograft dysfunction (CLAD) is themajor limitation of long-term survival after lung transplantation. Chronic

lung allograft dysfunction manifests as bronchiolitis obliterans syndrome or the recently described restrictive allograft syndrome.

Although numerous risk factors have been identified so far, the physiopathological mechanisms of CLAD remain poorly under-

stood. We investigate here the immune mechanisms involved in the development of CLAD after lung transplantation. We explore

the innate or adaptive immune reactions induced by the allograft itself or by the environment and how they lead to allograft dys-

function. Because current literature suggests bronchiolitis obliterans syndrome and restrictive allograft syndrome as 2 distinct en-

tities, we focus on the specific factors behind one or the other syndromes. Chronic lung allograft dysfunction is a multifactorial

disease that remains irreversible and unpredictable so far.We thus finally discuss the potential of systems-biology approach to pre-

dict its occurrence and to better understand its underlying mechanisms.

(Transplantation 2016;100: 1803–1814)

THE MULTIPLE FACES OF CHRONIC LUNG

ALLOGRAFT DYSFUNCTION

The 2014 report of the International Society for Heart and
Lung Transplantation registry accounts for 47 647 adult lung
transplantations and for 3772 adult heart-lung transplanta-
tions performed up to June 2013.1 This reflects an average
8% annual increase in the number of adult lung transplanta-
tions reported between the years 2001 and 2011. Progresses

in surgical techniques and perioperative management have
dramatically increased the short-term survival. Yet, long-term
survival remains disappointing with a dismal 27% survival
rate at 10 years that makes lung transplantation the interven-
tionwith the poorest long-term outcomewhen comparedwith
other solid-organ transplantation such as kidney (58%), liver
(70%), heart (56%), pancreas (77%) or intestine (44%).2

The development of chronic dysfunction or chronic lung
allograft dysfunction (CLAD), affecting 50% of patients
at 5 years, partly accounts for these clinical pictures.

For a long time, bronchiolitis obliterans, or its surrogate
bronchiolitis obliterans syndrome (BOS), was considered to
be the only manifestation of chronic lung dysfunction, hence
the terms “chronic rejection” and “BOS”were indistinctively
used.3 However, a distinct nosological entity coined under
the name of restrictive allograft syndrome (RAS) was charac-
terized in 2011.4 Since then, the term CLAD has been used to
refer to all variants of pulmonary chronic dysfunction, in par-
ticular BOS and RAS. In Sato's seminal article, the probabil-
ity of developingCLADby 5 yearswas reported to be around
50%; 35% for the BOS phenotype and 15% for the RAS
phenotype (after exclusion of recipients who died within the
first 3 months post transplantation).4Despite its smaller inci-
dence, the restrictive phenotype seems to imply a poorer
prognosis, with a median survival, after disease onset of less
than 2 years (compared with around 4 years for BOS pheno-
type). The survival at 10 years reported in the same mono-
centric study was then 16% for the RAS group and 31% for
the BOS group, which heavily contrasts with the 72% figure
reported for the free-from-CLAD group. Histologically, RAS
is characterized by a stair-step progression pattern, with tissue
damage and fibrotic lesions occurring in the periphery of the
lungs (ie, in the visceral pleura, in the alveolar interstitium
and in the interlobular septa)4; whereas in the case of BOS,
the fibrotic lesions aremore likely to occur in the bronchioles.5
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Nonetheless, both types of lesions may coexist6 and overall,
risk factors are similar between BOS and RAS,7 suggesting
that both syndromes share common physio-pathological
mechanisms. However, the specificity of these 2 diseases
start to emerge from recent investigations. Diffuse alveolar
damage (DAD) for example precedes CLAD,8,9 but time
patterns determine the outcome of the pathology: late-onset
DAD has been correlated with RAS, whereas early-onset
DAD, diagnosed within the first 3 months after transplanta-
tion, has been associated with BOS.8

We will present here the mechanisms leading to CLAD af-
ter lung transplantation, and we will highlight the specific
factors behind BOS or RAS development. The terms “lung
transplantation,” “chronic rejection,” “chronic dysfunction,”
“CLAD,” “BOS,” “bronchiolitis obliterans,” or “RAS” were
used alone and in combination to search in PubMed over the
past 25 years 2015. Abstracts from the 2015 American Trans-
plant Congress, International Society for Heart and Lung
Transplantation meeting and European Respiratory Society
congress were also reviewed. The most relevant and appropri-
ate articles were then hand selected to prepare this review.

INNATE IMMUNEMECHANISMS UNDERLYING CLAD

The Receptors of Innate Immunity: Recognition of

Exogenous and Endogenous Molecules

Lungs are continuously exposed to environment. Innate
immunity is then repeatedly stimulated by pathogens, aller-
gens, or pollutants. The innate immune system recognizes
pathogen associated molecular patterns through the expres-
sion of a wide range of pathogen recognition receptors.
Among them, the toll like receptors (TLR) comprise a family
of 13 members expressed by hematopoietic or parenchymal
cells involved in the recognition of pathogens.10 In humans,
an association was suggested between polymorphism of
TLR2, TLR4, and TLR9 involved in bacteria or virus rec-
ognition, and the probability of developing CLAD.11,12 In
mice, activating TLR4 or TLR3 in the lungs via the adminis-
tration of repetitive doses of aerosolized LPS13 or synthetic
double-strand RNA14 results in obliterative bronchiolitis.

The impact of viral, bacterial, or fungal infections in the
development on CLAD has been known for a while and un-
doubtedly increases the risk for chronic rejection.15-18 Things
appear more complex regarding graft colonization. Although
colonization by aspergillus is associated with an increase of
BOS,19,20 de novo but not persistent colonization by pseudo-
monas has been found as a risk factor for BOS,21 and reestab-
lishment of the pretransplant microbiota can even reduce the
risk of chronic rejection.22 Interestingly, CXCL1 and CXCL5
secretion after pseudomonas colonization determines the
transition to chronic rejection.23 Further works will have
to establish if modulation of pseudomonas virulence factors
during long-term colonization24 regulate host immune re-
sponse and thus susceptibility to CLAD.

Besides pathogens, TLR can be triggered by the endotoxins
present in the gastric reflux of lung transplant recipients suffer-
ing from gastroesophageal reflux disease.25 Additionally, pol-
lutants are known now to be strong activators of innate
immunity,26 and attention has been recently drawn to traffic-
related air pollution exposure and the risk of developing
CLAD.27,28 Other cytosolic receptors, such as RIG-1 and
Mda5, respond to respiratory virus infection by the expression

of type I Interferon29 but their role in the development of
CLAD after lung transplantation remains to be investigated.

Graft ischemia time and ischemia-reperfusion injury (after
blood recirculation in the devitalized tissue) is a well-known
determinant of the long-term survival after lung transplan-
tation.30 Moreover, during the surgical process of lung
transplantation, the bronchial circulation is not routinely
reconnected to the main circulation, and although blood
vessels can be restored by angiogenesis, reduced blood
circulation accounts for ischemia, hypoxia, sensitivity to
infection, or defect in immunosuppressive drug delivery,
all observed after lung transplantation.31 Furthermore,
transplant arteriosclerosis is common in solid-organ trans-
plantation, and inflammatory cytokines are activators of
vascular smooth muscle cells, promoting their prolifera-
tion at the intimal level and the abnormal thickening of
the microvessel walls.32

These defects in blood supply to the small airways33 or mi-
crovascular injuries34 predispose to chronic dysfunction. In-
jured cells or tissues released various endogenous factors
that can be recognized by pathogen recognition receptor,35

a great deal of attention has been focused on the recognition
of these damage-associated molecular patterns or alarmins
by the innate immune system.36 Innate immunity can be mo-
bilized within the first hours after the transplantation in par-
ticular through the release of high-mobility group box 1
(HMGB1). This molecule secreted by necrotic cells after is-
chemia, signals via TLR or receptor for advanced glycation
end products (RAGE). The recognition ofHMGB1byRAGE
plays an important role in the development of early pulmo-
nary dysfunction after transplantation, through an IL-17–
dependent neutrophil infiltration.37,38 High-mobility group
box 1 and other alarmins, such as S100 proteins,39 heat shock
proteins,40 the soluble form of RAGE,41 or hyaluronan,42

have been found in the bronchoalveolar lavages (BAL) of
CLAD patients and are supposed to contribute to CLAD
via activation of innate immunity. Interestingly, alarmin
profile and especially S100A8, S100A9, S100A12, S100P,
and HMGB1 proteins can discriminate between BOS or
RAS subtypes suggesting a specific role for these molecules
in the development of these 2 pathologies.39

Exogenous or endogenous molecules trigger inflammation
and the release of cytokines or chemokines resulting in the ac-
tivation of innate immunity. We will then present the players
of innate immunity and detailed the tissue-degrading agents
and the chemokines they produced involved in deterioration
of lung tissues and activation of adaptive immunity.

Activation of Airway Epithelial Cells

Airway epithelial cells (AEC) are the first line of defense
against airborne pathogens, particulate matter, pollutants
or allergens. AEC express a wide range of TLR,43 nucleotide
oligomerization domain-like receptor or retinoic acid-inducible
gene-I-like receptor,44 and their localization make them early
responders in case of aggression. Their major impact in pul-
monary immunity is now well established.45 In the context of
solid-organ transplantation, several types of allodependent
or alloindependent stimuli may induce the secretion of proin-
flammatory cytokines, chemokines, and growth factors by
AEC.46-48 Among the molecules produced, it is worth men-
tioning IL-8, associated with the occurrence of alveolar
neutrophilia in lung transplant recipients49; IL-1α, produced
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after pseudomonas infection and responsible for fibroblast
activation50; CCL2, a monocyte-specific chemoattractant
protein upregulated in CLAD patients51 or the mononuclear
cell attractants CXCL9 and CXCL10, produced during
acute lung injury and propagating the inflammation within
the allograft.9 Combined with the ability to produce ma-
trix metalloproteinases (MMP)52 and to upregulate cos-
timulatory or major histocompatibility molecules (MHC)
class II molecule expression,53-55 AEC are endowed with
the capacity to attract and activate innate or adaptive im-
mune cells within the graft.

The Role of Neutrophils

Several independent studies have reported abnormally
elevated counts of neutrophils, in BAL,49,56-58 induced spu-
tum59 and biopsies60 from lung transplant recipients suffer-
ing from CLAD. Regarding the triggers, IL-8 remains the
main mediator for neutrophil recruitment and activation af-
ter lung transplantation.46,49 Some of the factors that may in-
duce an upregulation of IL-8 in lung transplant recipients
include the presence of bile acids due to concomitant gastro-
esophageal reflux disease61 as well as the presence of partic-
ulate matter due to exposure to a polluted environment62

or infections.48 Neutrophils act through mediators, such as
reactive oxygen species63 or MMP,64 and other proteases,
such as neutrophil elastase. The local persistence of these
substances is thought to induce the epithelial damages that
precede the excessive scar formation that characterizes
CLAD, making alveolar neutrophilia a predictive bio-
marker for CLAD.56,65,66

Although neutrophils have been historically associated
with the development of CLAD, the therapeutic use of
azithromycin has changed the paradigm. Azithromycin is
a macrolide antibiotic able to reverse the decline of lung
function in a subset of lung recipients.67,68 It remains un-
clear so far whether azithromycin improves lung function
due to its antimicrobial or anti-inflammatory properties.
Its use defines a new dysfunction phenotype called
azithromycin-responsive allograft dysfunction or neutro-
philic reversible allograft dysfunction since this phenotype
is often (but not always) characterized by BAL neutrophilia
(≥15%).67-72However, this phenotype is by definition revers-
ible and hence does not fulfill the strict criteria of CLAD.73

The Role of NK Cells

Unlike many other components of the immune system,
NK cells remain barely affected by the immunosuppressive
therapies used in regular clinical practice.74 That is one of
the reasons why they have recently been under the spot-
light of the solid-organ transplantation community. NK
cells have been associated to both acute75 and chronic75,76

rejections after lung transplantation. NK cells use their
membrane receptors (CD16, CD32, and CD56) to identify
IgG-coated cells via the Fc region of the antibodies.77 Acti-
vation of NK cell may be also antibody-independent. For
example, activated endothelial cells express on their surface
the chemokine CX3CL1 or fractalkine,78which interact with
the chemokine receptor CX3CR1 present on NK cells.79

In addition, the humanMHC class I chain-related proteins
MICA and MICB, expressed by epithelial cells under condi-
tions of stress, are known to be ligands for the activating re-
ceptor NKG2D on NK cells.80-82 Once activated, NK cells

release a series of cytolytic proteins, such as granzymes A
and B, perforin, FasL, TNF-related apoptosis-inducing ligand,
and chemotactic cytokines, such as TNF-α and IFN-γ.83,84

Because of their cytotoxic arsenal and their propensity to mi-
grate in the lungs of patients with chronic rejection,85 NK
cells are ideal culprit for graft destruction. However, recent
works have shown their ability to promote graft tolerance
through dendritic cells editing.86,87 In a mouse lung trans-
plantation model, killing of allogeneic dendritic cells by NK
induces graft tolerance.88 Interestingly, in human, lack of ac-
tivating killer immunoglobulin-like receptor expression by
NK cells is associated with the development of BOS,89 sug-
gesting that NK activity preserves long-term graft function.

Macrophages—Eosinophils

The role of macrophages in the development of CLAD is
suggested by their accumulation in human or animal models
and by the reduction of allograft dysfunction after blockade
of their infiltration.90-92 In human, temporal variations in
macrophage activation profile, either classical (M1) or alter-
native (M2), in associationwith alterations of the lungmicro-
biota, have been reported posttransplantation.93 Whether
these variations correlates with the development of CLAD,
as suggested in mouse94 remains to be assessed.

Recent works have shown an association between eosino-
philia and allograft dysfunction.7,95 Eosinophils may pro-
mote CLAD through the release of reactive oxygen species,
promoting graft destruction, or transforming growth factor-β
supporting aberrant remodeling. Interestingly, BAL eosino-
philia seems to be correlated with the restrictive phenotype.
Further confirmation of this link would provide a potential
mechanism leading to this particular CLAD subtype.

Activation of innate immunity and degradation of allo-
graft support the development of adaptive immunity. As we
will see, induction of autoimmune reactions along with dys-
function of regulatory mechanisms will then feed a positive
feedback loop, responsible for the perpetuation and amplifi-
cation of the immune response, driving the transition from
acute events to a chronic process.

ADAPTIVE IMMUNE MECHANISMS

UNDERLYING CLAD

Th1 Immunity

The role of adaptive cellular immunity in the development
of CLAD is highlighted by the association between acute cel-
lular rejection or lymphocytic bronchiolitis and the occur-
rence of CLAD7,96,97 or by the incidence of BOS after bone
marrow transplantation.98 The development of cellular im-
mune response against alloantigens (and autoantigens) gen-
erally relies on the migration of antigen presenting cells in
the secondary lymphoid organs, where they encounter
and activate T cells. Additionally, T cell activation within
the lung may take place through the formation of de novo
lymphoid tissue, such as bronchus-associated lymphoid
tissues (BALT).99,100 Whereas lymphoid neogenesis has
been observed in BOS,101 evidences for organized BALT
contribution in CLAD remain scarce.102 The role of Th1
immunity in the process of CLAD is suggested by an in-
crease in Th1 cells or cytokines and granzyme B levels in
blood or lung lavages of BOS recipients.76,103-106 Further-
more, inhibition of cytotoxic T cells by HLA-G molecules
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has been suggested in stable patients.107 The molecular ba-
ses of this allorecognition involve mainly an indirect pre-
sentation of donor MHC class I and II molecules.108-111

However, mouse models have also shown the contribution
of minor histocompatibility antigens presentation in the
development of obliterative lesions.112,113

Th17 Immunity

There is a growing body of evidence that autoimmunity
plays an important part in the development of CLAD.114Tis-
sue injuries caused by ischemia, primary graft dysfunction
(PGD), infections, or alloimmune reactions alter the accessibil-
ity of protein antigenic domains. Epitopes normally masked
within the protein organization can then be exposed to the im-
mune system, leading to autoimmune responses. In a murine
model of lung transplantation, Col(V)-specific T cells found
in the lung allograft mediates allograft rejection.115 This has
been confirmed in human, where the Col(V)-specific T cell
response intensity correlates with the incidence and the sever-
ity of BOS. This Col(V) autoimmune response was found to
be dependent of IL-17. Interestingly, adoptive transfer of
Col(V)-reactive T cells was sufficient to induce an OB in the
absence of alloreactivity.116Association between Th17 immu-
nity and the development of CLAD has then been reported by
several groups in human117 or mouse models118,119 and ge-
netic variation in IL-17 receptor is associated with CLAD.120

Furthermore, Th17 immunity is linked to both chronic in-
flammation and neutrophilia in the lungs.121 In the case of
lung transplantation, Th17 immunitymay thus favor chronic
dysfunction through airway fibrosis, induction of BALT, neu-
trophil chemotaxis, or expansion of autoantibodies.114

Regulatory Cells

Regulatory T (Treg) cells encompass a wide diversity of
immunosuppressive populations characterized by specific
ontogeny or mechanisms of action.122 In human, presence
of Treg cell in lung allograft or in the blood is correlated with
an absence of chronic dysfunction.65,123-125 More specifi-
cally, the Th17/Treg cell balance could determine the fate of
lung allograft. Indeed, mouse models have shown a down-
regulation of Th17 immunity after adoptive transfer of Treg
cell.126,127 On the other hand, plasticity is a feature of Treg
cell and inflammatory environment can favor their differ-
entiation into Th17 cells128 and IL-6, a pivotal factor in the
equilibrium of the Th17/Treg cell balance, is a well-known
marker of chronic dysfunction.51 Various experimental ap-
proaches have thus been proposed to stimulate the activity
of Treg cell and modulate the Th17/Treg cell balance. Inde-
pendent studies for instance have reported a decrease in the
rate of pulmonary function loss in CLAD patients as a result
of extracorporeal photopheresis therapy.130-133 Mechanisti-
cally, the mode of action of extracorporeal photopheresis is
not fully understood but probably rely on the induction of
a regulatory CD4+CD25+ T cell population.134-136 By con-
trast, immunosuppressive drugs are thought to impair Treg
cell populations and to affect Th17/Treg cell balance, favor-
ing the development of chronic dysfunction.137,138

In addition to Treg cell, regulatory B cell, producing IL-10
or TGF-β have been characterized. Regulatory B cells are in-
volved in the control of airway diseases and can inhibit the
development of bronchiolitis obliterans in a mouse model
of heterotopic tracheal transplantation.139 A great challenge

in the futurewill be to decipher the impact of these regulatory
cell populations on the development of CLADand to develop
immunosuppressive therapies able to maintain or expand
these populations, either in vivo or ex vivo.140

Humoral Immunity

The association between humoral immunity and the devel-
opment of CLAD is well documented. Accumulation of B
cells is observed in lung tissues of patients with CLAD.141

The presence of donor-specific HLA antibodies (DSA) is cor-
related with the development of BOS,142-148 and DSA
targeting therapies lower the incidence of chronic dysfunc-
tion.149,150 The role of antibodies against MICA molecules
has been reported as well.151 Although HLA or MICA/B
polymorphism is an evident molecular basis for humoral im-
munity, recent works have highlighted the role of self-antigen
recognition in the humoral immunity associated with BOS.
Antibodies directed against col(V) or K-α1 tubulin proteins
have been associated with the process of BOS,115,152 and
clearance of these antibodies reduced the risk of BOS, inde-
pendently of the clearance of DSA.153

The direct link between alloimmunity and autoimmunity
has been suggested in a mouse model where injection of
anti-MHC class I antibody induced the production of anti-
Col(V) and anti-K-α1 tubulin antibodies. Noteworthy, this
production was IL-17–dependent and resulted in an oblitera-
tive disease.154,155 In lung transplant recipients, a retrospective
analysis showed a correlation between DSA and self-antigen
antibody appearance, with DSA preceding the development
of self-antigen antibodies.156 Yet, self-reactive antibodies
can be found in the absence of DSA, suggesting a DSA-
independent mechanism for their development.153 In addi-
tion, such self-reactive antibodies may already be present by
the time of the transplantation.157 In fact, several types of
stimuli (eg, ischemia reperfusion injury, PGD) may increase
the expression of these self-proteins and activate the intersti-
tial remodeling machinery, promoting the exposure of the
cryptic antigens.158

Graft-reactive antibodies induce the activation of the com-
plement system and the degradation of lung tissues. Polymor-
phism in the complement regulatory protein CD59 has then
been associated with the development of BOS,159 suggesting
that harnessing complement activation may control CLAD
development. Complement activation has been largely inves-
tigated as a potential marker for humoral rejection, via the
immunostaining of the complement component 4 (C4d). Al-
though positive results have been reported for kidney,160

liver,161 and heart162 transplantation, it is much debated for
lung transplantation.163

Continuous immune reaction will cause tissue destruction
and dysregulation of epithelium repair. This mechanism is
hardly controllable by immunosuppression, and aberrant re-
modeling process will take place, leading ultimately to loss of
graft function (Figure 1).

CONSEQUENCES ON THE LUNG ALLOGRAFT

It is now recognized that the recurrent injuries of the
lung allograft, either immune or nonimmune related, result
in an excessive scarring and an aberrant healing process re-
sponsible for CLAD. Specific features of the respiratory
system, and in particular, its continuous exposure to envi-
ronment, probably favor the perpetuation of acute events
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into chronic injury. Toll like receptors activation for instance
may disrupt Treg cell activity and favor a Th1-oriented phe-
notype.164 The presence of CXCR3 ligands9 or inflamma-
tory cytokines and de novo anti-MHC class II DSA165 may
be responsible for the persistence of allograft injury after
DAD or PGD, respectively. Overall, this generates and prop-
agates an inflammatory environment and the recruitment of
immune cells within the allograft leading to further fibrotic
damages. This may explain how very early events, such as
PGD or ischemia reperfusion injuries, can be translated sev-
eral months or years later into chronic dysfunction.

The persistence of local inflammation results in the emer-
gence of a fibroproliferative phenotype with the secretion of
growth factors and dysregulation in the extracellular matrix
regeneration process (Figure 1). The binding of anti-HLA
class I antibodies onAECmay lead to their death through ap-
optosis and induces the release profibrotic growth factors,
such as platelet-derived growth factor, Insulin-like growth
factor-1, and TGF-β.47 Their upregulation results in the ac-
cumulation of fibroblasts and myofibroblasts, the aberrant
deposition of collagen fibers (mainly of type I), and the loss
of homeostasis in the regeneration of the extracellular ma-
trix. AEC from BOS patients demonstrated an upregula-
tion of mesenchymal markers (S100A4, fibronectin,
MMP) along with a drop in epithelial cell marker expres-
sion. The epithelial to mesenchymal transition (EMT) has thus
been proposed as a general mechanism leading to airway ob-
struction after lung transplantation.54,166 TGF-β is the fore-
most inducer of EMT167 and has long been associated with
the development of BOS after transplantation.46,104,129,168 Its

impact in the EMT triggering has also been shown in vivo in
a rat model of airway obliteration where blocking the binding
of TGF-β to its receptor reduced intraluminal airway matrix
deposition.169 In human, TGF-β could be the biological link
between PGD and BOS,170 and recent evidence has shown a
dysregulation of TGF-β signaling by microRNA-144 in BOS
patients.171 The antifibrotic drug pirfenidone,172 which acts
mainly by suppressing the expression of TGF-β, has thus been
proposed as a treatment for BOS173 or RAS.174

Although TGF-β is the main orchestrator of the airway
remodeling process after lung transplantation, its effect
can be largely modified by an inflammatory environment
and cytokines like TNFα or IL-1β.175,176 Besides, pollut-
ants177 or immunossupressive drugs178 have also been
described as EMT inducers. Moreover, release of reactive
oxygen species by macrophages or neutrophils after lung
transplantation179 associated with a decrease in the counter-
balancing factors, such as ascorbic acid, urate, glutathione57

or Clara Cell Secretory Protein 16,180 promotes the upregu-
lation of the vascular endothelial growth factor, which may
further stimulate fibrosis.181,182 In an allograft model in rats,
the simultaneous blockade of both platelet-derived growth
factor and vascular endothelial growth factor could then
reduce the severity of CLAD.183 The respective roles played
by these actors during the remodelling process of chronic
dysfunction, however, remain to be defined. Moreover, al-
though the role of EMT during the process of BOS develop-
ment is well established, its relevance to RAS is not described
yet, although airway obstruction is observed in this pathol-
ogy as well. Furthermore, the exact contribution of EMT

FIGURE 1. Physiopathological mechanisms of CLAD. Endogenous (MHC mismatch, graft injuries, self-antigen exposure) or exogenous (in-
fections, pollutants, allergens) risk factors leading to activation of innate and adaptive immunity after lung transplantation. Continuous exposure
to environment and development of autoimmunity promote the persistance of inflammation and tissue injuries. Graft destruction and wound/
healing processes promote the remodeling of the lung allograft and the development of CLAD. The specific mechanisms skewing the chronic
dysfunction toward BOS or RAS phenotypes are poorly characterized. AR, acute rejection; GERD, gastroesophageal reflux disease; HA,
hyaluronan; HSP, heat shock protein; IR, ischemia reperfusion; LB, lymphocytic bronchiolitis.
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with regard to other mechanisms, such as the recruitment of
circulating fibroblast within the fibrotic lesions,184 remains
poorly documented. Answering these questions will help to
develop new strategies for the prevention of CLAD.

CONCLUSIONS AND PERSPECTIVES

Although BOS was first considered as the unique manifes-
tation of chronic dysfunction, the identification of RAS phe-
notype has transformed our perception of this pathology.
Why was RAS characterized more than 15 years after the
first description of BOS? Was it “under the radar” and has
its identification been overlooked for years, or is RAS the
result of new immunosuppressive drug regimens? Current
works focusing on the specific features of these 2 syn-
dromes will probably answer these questions.

As presented here, BOS or RAS phenotypes can be delin-
eated by infiltrating cells, alarmins or cytokines present
within the allograft (Table 1). An article from the Leuven
Group shows a specific IL-6, CXCL10 and CXCL11 release
in BAL of RAS patients, suggesting a role for B lymphocytes
or NK in this pathology.185 Moreover, the underlying diag-
nosis and immunosuppression regimens have been recently
described as specific risk factors for RAS.186 Further works
will be needed to confirm these data and precisely define
the specificities and similarities between the 2 diseases. Note-
worthy, some evidences presented in this review have been
collected before the description of RAS, that is, on chronic
rejection groups where BOS and RAS patients were pre-
sumably pooled. Reinvestigating these data in light of our
current knowledge will be probably useful to refine the pe-
rimeter of both diseases.

Chronic lung allograft dysfunction is irreversible. There-
fore, the identification of harbingers of CLAD would allow
proactive and targeted strategies to harness the progression
of the disease, before degradation of the allograft. Several
studies have been carried out to identify predictors. Lung bi-
opsy profiling,187 BAL composition, neutrophilia,66,188,189

level of Treg cell,123,124 cytokines, chemokines,189 or MMP190

or blood levels of endothelin-1,191CCL17,192 or KL-6193 have
been proposed as early indicators of CLAD. Interestingly,
pretransplant factors may also determine the outcome of the
graft.194,195 Prediction of CLAD is thus presumably achievable.
Yet, none of these attempts have demonstrated enough ro-
bustness to achieve clinical acceptance. Indeed, CLAD is
driven by the additive effect of repeated insults to the graft.
The diversity of these insults as well as the donor and recipient
genetic burden assign each patient a unique clinical history.
Hence, large-scale gene expression profiling187,196-199 or the
powerful systems biology approach,200-203 which integrates
data sets of different nature, represents promising tools
to decipher the complex network of factors involved in
the development of CLAD.

Lung transplantation appears today as an ideal demon-
strator of P4 SystemsMedicine (participation, personaliza-
tion, prediction, and prevention), because all recipients
are followed up in well-characterized cohorts for several
years, before the occurrence of the disease. Chronic lung
allograft dysfunction displays fibrotic processes or alveo-
lar degradation similarly observed in other respiratory
diseases such as idiopathic pulmonary fibrosis or chronic ob-
structive pulmonary disease.204 Investigating CLAD is thus a

mighty lever to better understand other chronic inflammatory
lower airway diseases.
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