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Summary

While reports suggest a single dose of senolytics may improve

vasomotor function, the structural and functional impact of long-

term senolytic treatment is unknown. To determine whether

long-term senolytic treatment improves vasomotor function,

vascular stiffness, and intimal plaque size and composition in

aged or hypercholesterolemic mice with established disease.

Senolytic treatment (intermittent treatment with Dasatinib +

Quercetin via oral gavage) resulted in significant reductions in

senescent cell markers (TAF+ cells) in the medial layer of aorta

from aged and hypercholesterolemic mice, but not in intimal

atherosclerotic plaques. While senolytic treatment significantly

improved vasomotor function (isolated organ chamber baths) in

both groups of mice, this was due to increases in nitric oxide

bioavailability in aged mice and increases in sensitivity to NO

donors in hypercholesterolemic mice. Genetic clearance of senes-

cent cells in aged normocholesterolemic INK-ATTAC mice pheno-

copied changes elicited by D+Q. Senolytics tended to reduce

aortic calcification (alizarin red) and osteogenic signaling (qRT–

PCR, immunohistochemistry) in aged mice, but both were signif-

icantly reduced by senolytic treatment in hypercholesterolemic

mice. Intimal plaque fibrosis (picrosirius red) was not changed

appreciably by chronic senolytic treatment. This is the first study

to demonstrate that chronic clearance of senescent cells improves

established vascular phenotypes associated with aging and

chronic hypercholesterolemia, and may be a viable therapeutic

intervention to reduce morbidity and mortality from cardiovas-

cular diseases.
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Introduction

Risk factors for ischemic heart disease include hypercholesterolemia,

arterial stiffness, chronic inflammation, hypertension, metabolic syn-

drome, and aging (Eckel et al., 2013). Importantly, these risk factors

contribute to impaired endothelial function (Feletou & Vanhoutte, 2006),

which can contribute to arterial remodeling and accelerate atheroscle-

rotic plaque formation and expansion (Landmesser et al., 2004).

Recent work suggests senescent cell burden can be dramatically

increased by chronological aging or in models of progeria (Lecka-Czernik

et al., 1997; Baker et al., 2004; Varela et al., 2005), high-fat feeding

(Shi et al., 2007), diabetes (Verzola et al., 2008), tobacco exposure

(Nyunoya et al., 2006), or atherosclerosis (Wang & Bennett, 2012), and

short-term treatment with ‘senolytic’ drugs in chronologically aged or

progeroid mice alleviates several aging-related phenotypes (Zhu et al.,

2015a,b). However, effects of long-term senescent cell clearance on

vascular reactivity and structure with aging or chronic hypercholes-

terolemia remain unknown.

Can chronic senolytic treatment improve
age-related vascular pathology?

To determine whether senolytic treatment with dasatinib and quercetin

(D+Q) reduces senescent cell burden and improves vascular function in

aged mice, we maintained C57BL/6J mice on standard chow for

24 months, and then initiated vehicle or D+Q once monthly for

3 months (i.e., oral gavage with a dasatinib (5 mg kg�1)/quercetin

(10 mg kg�1) cocktail once per month for months 24–27). TAF+

(telomere-associated foci) nuclei were used as a marker of senescent

cell burden (Hewitt et al., 2012). TAF+ nuclei were readily evident in

subpopulations of cells in aorta (and localized in both endothelial and

smooth muscle layers in the vessel wall) from vehicle-treated mice

(Fig. 1A–B and S1) and markedly reduced by D+Q (Fig. 1A–B and S1).

Reductions in TAF+ cells were also associated with reductions in DNA

damage (number of c-H2AX foci per cell) following D+Q (Fig. 1C).

In vehicle-treated mice, carotid arteries showed minimal relaxation to

acetylcholine assessed with an isolated organ chamber bath system

(Miller et al., 2010), which was significantly improved in mice receiving

intermittent D+Q for 3 months (Fig. 1D). In contrast to our previous

study using a single dose of D+Q in aged mice, vascular relaxation to

sodium nitroprusside was not changed by clearance of senescent cells in

aged mice (Fig. 1E), and peak contractile responses increased following

D+Q (Fig. S5, Supporting information). Similar senolytic efficacy and

phenotypic changes were observed following genetic clearance of

senescent cells in a subgroup of INK-ATTAC mice [which allow for

clearance of p16ink4a-positive senescent cells via a caspase-dependent
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mechanism (Baker et al., 2011)], thus confirming the effectiveness and

phenotypic consequences of senescent cell clearance (Figs S2–S4).

Collectively, these data suggest that acute senolytic treatment improves

vasomotor function by increasing VSMC sensitivity to NO, whereas

chronic, intermittent senolytic treatment improves vasomotor function

by increasing NO bioavailability.

To probe mechanisms underlying improvements in vasomotor func-

tion, we assayed endothelial nitric oxide synthase phosphorylation levels

(p-eNOSser1177, which are indicative of eNOS activation), but did not find

significant differences between vehicle- and D+Q-treated groups

Fig. S6). Despite this finding, p-VASP239 (Fig. 1F), a target of

NO-activated, cGMP-dependent kinases (Sporbert et al., 1999), was

significantly higher in D+Q-treated aged mice. Although previous reports

implicated reduced NOS cofactor production and increased Nox2-

derived free radicals in age-associated endothelial dysfunction (Turgeon

et al., 2012; Roos et al., 2013), we did not find significant changes in

mRNA levels of NOS-related or NADPH oxidase-related enzymes follow-

ing senolytic treatment (Figs S7–S9). Collectively, while our data suggest

that senolytic treatment improves NO signaling in aged mice, precise

molecular mechanisms underlying this phenomenon—including the

potential contributions of other endothelium-derived relaxing factors—

have yet to be elucidated.
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Fig. 1 Effects of senolytic treatment on senescent cell burden, DNA damage, vasomotor function, nitric oxide signaling, calcification, and osteogenic signaling in

chronologically aged mice. Chronic treatment with Dasatinib + Quercetin reduced senescent cell burden (A–B) and DNA damage (C) in aorta (Panel A pseudocolor legend for

high magnification lower panels: DAPI/nuclei (blue), cH2A.X (green), telomeres (red). Low magnification micrographs in upper images are provided as an anatomic frame of

reference/origin). White squares mark regions that are magnified in subsequent micrographs, and telomere-associated foci are numbered in the bottom panels. Chronic

senescent cell clearance improved vascular relaxation to acetylcholine (D) independently from changes in sodium nitroprusside (E) and significantly increased p-VASP239 levels

(F). Chronic senolytic treatment with Dasatinib + Quercetin also tended to reduce vascular calcification (G), which was associated with modest reductions in osterix

immunofluorescence (H). In all panels, asterisk denotes p < 0.05.
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To determine whether senolytic treatment elicited structural changes

in conduit arteries, we evaluated pressure–diameter relationships from

carotid arteries in a pressurized organ chamber system (Matsumoto

et al., 2007). No changes in carotid artery cross-sectional compliance or

distensibility were observed following pharmacological senescent cell

clearance (Fig. S10). Medial vascular calcification in aorta, however,

tended to be reduced by pharmacological cell clearance (Fig. 1G) and

was paralleled by changes in protein levels of osterix (Fig. 1H). The

modest effects of senolytic treatment on structural aspects of large

arteries may be due to the period of time required to regress/reverse

age-related structural changes or the efficacy of senescent cell clearance

(e.g., higher and/or more frequent dosing with senolytic agents) required

to elicit regression of calcification or deleterious changes in vascular

compliance in conduit vessels.
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Fig. 2 Effects of senolytic treatment on senescent cell burden, DNA damage, vasomotor function, and nitric oxide signaling in hypercholesterolemic mice. Chronic

treatment with Dasatinib + Quercetin reduced senescent cell burden (A–B) and DNA damage (C) in the media of atherosclerotic plaques but not the intima (Panel A

pseudocolor legend for high magnification lower panels: DAPI/nuclei (blue), cH2A.X (green), telomeres (red). Low magnification micrographs in upper images are provided

as an anatomic frame of reference/origin). Chronic senescent cell clearance modestly improved vascular relaxation to acetylcholine (D) but markedly improved relaxation to

sodium nitroprusside (E), and significantly increased levels of p-eNOSser1177 (F) and p-VASP239 (G) in both the media and intima of atherosclerotic vessels. While chronic

intermittent senolytic treatment with Dasatinib + Quercetin did not alter lipid composition of plaques (H), senolytic treatment did significantly reduce vascular calcification (I),

which was associated with marked reductions in osterix immunofluorescence (J). In all panels, asterisk denotes p < 0.05.
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Can chronic senolytic treatment improve
hypercholesterolemia-induced vascular pathology?

To determine whether senolytic treatment with D+Q reduces senescent

cell burden and improves vascular function and structure in a model of

atherosclerosis, ApoE�/�mice were fed a Western diet (TD88137; Harlan

Teklad) for 4 months to allow development of established atheroscle-

rosis (Dansky et al., 1999). Vehicle or D+Q was then administered once

weekly (i.e., oral gavage with a dasatinib (5 mg kg�1)/quercetin

(10 mg kg�1) cocktail) for the next 2 months (i.e., months 4–6).

Similarly to aged mice, TAF-positive nuclei were abundant in the

media and in intimal plaques of aorta from vehicle-treated mice

(Fig. 2A–B). Interestingly, senolytic treatment reduced senescent cell

burden in medial segments of the vessel (Fig. 2A–B), but not in regions

with established intimal atherosclerotic plaques (Fig. 2A–B). Indices of

DNA damage paralleled reductions in senescent cell burden: reductions

in DNA damage were evident only in medial segments of atherosclerotic

vessels (Fig. 2C).

Unlike chronologically aged mice, D+Q did not improve responses to

acetylcholine in isolated carotid arterial rings in an organ chamber bath

system (Fig. 2D). We did, however, observe improved relaxation to

sodium nitroprusside (Fig. 2E). Peak tension elicited by the thromboxane

A2 agonist U46619 did not differ between treatment groups (Fig. S11).

Despite a lack of improvement in vasomotor responses to acetyl-

choline, we found that D+Q significantly increased levels of

p-eNOSser1177 (Fig. 2F). Similarly to aging mice, we observed increases

in p-VASP239 in aorta (Fig. 2G), suggesting that basal NO signaling was

improved in both medial and intimal regions of atherosclerotic vessels.

Although we observed relatively large increase in p-eNOSser1177 levels,

increases in p-VASP239 levels remained small (particularly when com-

pared to the relative reduction in p-VASP239 levels in the intimal plaque

region itself). When taken with the observation that senolytic treatment

increased NADPH oxidase-related protein in the intima (Figs S13–S14) in

the absence of changes in enzymes related to NOS cofactor generation

(Fig. S12), we conclude that changes in vasomotor function are likely the

result of a complex interplay between nitric oxide bioavailability

originating from the intima and oxidation state of sGC or downstream

signal transduction molecules within the media (Landmesser et al.,

2004; Feletou & Vanhoutte, 2006).

Regarding effects of senolytics on atherosclerotic plaque burden and

composition in aorta, we found intimal plaque size was not affected in

mice receiving D+Q for 2 months (Fig. S15), and analysis of Oil Red

O-stained sections suggested the overall lipid content of the plaque was

also unaffected by senolytic treatment (Fig. 2H). Furthermore, expres-

sion of F4/80 in atherosclerotic vessels did not change appreciably

(Fig. S16), suggesting negligible changes in overall macrophage burden.

Among other possibilities, this could be related to intimal plaque

penetrance by D+Q. Effects of newer senolytics, such as navitoclax (Zhu

et al., 2015a,b), remain to be determined. We did, however, find that

intimal plaque calcification was significantly reduced in D+Q- vs. vehicle-

treated mice (Fig. 2I). This was associated with reductions in protein

levels of osterix (Fig. 2J). Intimal plaque fibrosis was not appreciably

changed by senescent cell clearance (Fig. S17). This combination of

findings is remarkable given the observations that calcified lesions are

typically refractory to classic lipid-lowering interventions and occurred in

the absence of changes in plasma cholesterol levels (Fig. S18). These

changes in plaque morphology are consistent, however, with previous

reports demonstrating that senescent cells and cells overexpressing

genes associated with progeroid syndromes have greater propensity to

undergo osteogenic differentiation in vitro (Roos et al., 2013). Critically,

unlike previous studies leveraging chronic treatment with compounds

such as quercetin (e.g., administered in drinking water) (Hayek et al.,

1997; Shen et al., 2013), our study shows that weekly, intermittent

treatment is sufficient to elicit lasting molecular and functional conse-

quences in the vasculature of hypercholesterolemic mice. Altogether, we

believe these observations lay the groundwork for future studies aimed

at understanding effects of senolytics on plaque composition and

stability both in isolation and as a complementary therapy to lipid-

lowering strategies.

Conclusions

Collectively, this study shows that chronic pharmacological clearance of

senescent cells alleviates vasomotor dysfunction in naturally aging mice

and mice with established atherosclerosis. Furthermore, senescent cell

clearance reduces markers of osteogenesis in advanced intimal plaques,

ultimately reducing intimal plaque calcification. Based on these findings,

we conclude that senescent cell clearance may be an effective

complementary therapy to classical risk factor management to reduce

morbidity and mortality associated with age-related cardiovascular

diseases.
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Fig. S1. Identification of TAF-positive nuclei in subpopulations of cells in aorta

from chronologically-aged mice.

Fig. S2. Changes in whole tissue mRNA levels of a GFP reporter gene coupled

to the senescence-associated p16Ink4a promoter in chronologically aged

mice.

Fig. S3. Changes in DNA damage following genetic or pharmacologic

clearance of senescent cells in chronologically aged mice.

Fig. S4. Effects of genetic clearance of senescent cells in chronologically aged

mice.

Fig. S5. Change in vasomotor responses to U46619 (a thromboxane A2

agonist) in carotid arteries from chronologically aged mice.

Fig. S6. Changes in levels of phosphorylated endothelial nitric oxide synthase

(peNOSser1177) following senolytic treatment with D+Q. Note that chronic

treatment with D+Q from ages 24 to 27 months did not alter levels of p-

eNOSser1177 compared to vehicle-treated mice (CTRL).

Fig. S7. Changes in expression of nitric oxide synthase isoforms (A: eNOS, B:

iNOS, C: nNOS) and enzymes related to nitric oxide synthase cofactor

generation (D: GTPCH, E: DHFR) in aorta from chronologically aged mice

treated with D+Q.

Fig. S8. Changes in mRNA levels of Nox2 in aorta from aged mice treated

with D+Q.

Fig. S9. Change in mRNA and protein levels of Nox2 in aorta from

chronologically aged mice treated with D+Q.

Fig. S10. Change in diameter (A), compliance (B), and distensibility (C) of

carotid arteries from chronologically aged mice receiving senolytic treatment

for 3 months.

Fig. S11. Change in vasomotor responses to U46619 (a thromboxane A2

agonist) in carotid arteries from hypercholesterolemic mice treated with D+Q

for 2 months.

Fig. S12. Changes in expression of nitric oxide synthase isoforms (A: eNOS, B:

iNOS, C: nNOS) and enzymes related to nitric oxide synthase cofactor

generation (D: GTPCH, E: DHFR) in aorta from hypercholesterolemic mice

following treatment with D+Q for 2 months.

Fig. S13. Changes in mRNA levels of Nox2 in aorta from hypercholes-

terolemic mice following treatment with D+Q for 2 months.

Fig. S14. Changes in protein levels of Nox2 in aorta from hypercholes-

terolemic mice following treatment with D+Q for 2 months.

Fig. S15. Changes in intimal plaque size in aorta from hypercholesterolemic

mice following treatment with D+Q for 2 months.

Fig. S16. Changes in mRNA levels of F4/80 (a marker of macrophages) in

aorta from hypercholesterolemic mice following weekly treatment with D+Q

for 2 months.

Fig. S17. Changes in intimal plaque fibrosis in aorta from hypercholes-

terolemic mice following treatment with D+Q for 2 months.

Fig. S18. Changes in plasma cholesterol levels following weekly treatment

with vehicle or D+Q for 2 months.

Data S1. Methods.
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