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Chronic, in particular chronic psychosocial, stress is a burden of modern societies and
known to be a risk factor for numerous somatic and affective disorders (in detail ref-
erenced below). However, based on the limited existence of appropriate, and clinically
relevant, animal models for studying the effects of chronic stress, the detailed behavioral,
physiological, neuronal, and immunological mechanisms linking stress and such disorders
are insufficiently understood.To date, most chronic stress studies in animals employ inter-
mittent exposure to the same (homotypic) or to different (heterotypic) stressors of varying
duration and intensity. Such models are only of limited value, since they do not adequately
reflect the chronic and continuous situation that humans typically experience. Furthermore,
application of different physical or psychological stimuli renders comparisons to the mainly
psychosocial stressors faced by humans, as well as between the different stress studies
almost impossible. In contrast, rodent models of chronic psychosocial stress represent sit-
uations more akin to those faced by humans and consequently seem to hold more clinical
relevance. Our laboratory has developed a model in which mice are exposed to social stress
for 19 continuous days, namely the chronic subordinate colony housing (CSC) paradigm,
to help bridge this gap. The main aim of the current review article is to provide a detailed
summary of the behavioral, physiological, neuronal, and immunological consequences of
the CSC paradigm, and wherever possible relate the findings to other stress models and
to the human situation.

Keywords: chronic psychosocial stress, chronic subordinate colony housing, somatic and affective disorders,
decreased glucocorticoid signaling, hypocorticism

INTRODUCTION
THE STRESS CONCEPT
In the nineteenth century, the French physiologist Claude Bernard
(1813–1878) noticed that relative constancy of the internal envi-
ronment is critical for the functional integrity of an organism.
Later, in his “emergency concept”, Walter Cannon (1871–1945)
described the disruption of this internal equilibrium, thereafter
referred to as homeostasis (1), by fear- or rage-induced “fight or
flight” reactions. In 1936, it was Hans Selye (1907–1982), who
first defined stress, and the stress response, as “the non-specific
response of the body to any physical demand” (2), and made the
distinction between “stress” and the “stressor” (3). According to
him, “stressors” are defined as specific challenges that cause a
physiological “stress” response (3). Until now, an overwhelming
number of studies have focused on the physiological, in particular
neuroendocrine, and behavioral consequences of an acute stress
response, which are, in general, well understood.

Thus, it is commonly accepted that the physiological and behav-
ioral responses to acute stressors are adaptive, and important to
reinstate body homeostasis [(4–6); for review see (7, 8)]. While
physical stressors are, thereby, defined as external challenges to

homeostasis, psychological stressors are stated as the anticipa-
tion, justified or not, of a challenge to homeostasis (9). In con-
trast, repeated or chronic stressor exposure over several weeks or
months, and the prolonged attempt of the body to reinstate home-
ostasis during this time – a process referred to as allostasis [for
review see (5, 10)] – is thought to result in alterations of numer-
ous body and brain systems, finally resulting in a disease state
[(11, 12); for review see (5)]. However, although chronic stress-
induced alterations in neuroendocrine, emotional, and immune
parameters are likely to play a major role in the etiology of numer-
ous diseases including anxiety and depressive disorders, chronic
inflammatory disorders, or cancer [(13–21); for review see (22–
27)], the detailed underlying mechanisms are less well understood
due, at least in part, to the shortage of appropriate animal models.

Physiological responses to an acute stressor
In response to any acute stressor, two major stress systems become
activated, namely the autonomic nervous system, especially its
sympathetic (SNS) branch, and the hypothalamo–pituitary–
adrenocortical (HPA) axis. Stimulation of these emergency
systems, which differ in both their time course and processing,
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reflects the body’s attempt to deal with the immediate situation
and to restore homeostasis [for review see (5, 10)]. Activation of
the SNS occurs rapidly, within seconds, via exclusively neuronal
pathways originating in the thoracolumbal regions of the spinal
cord (splanchnic nerve), and results in the release of adrenaline
from chromaffin cells of the adrenal medulla into the blood. Ele-
vated adrenaline levels in the circulation act in synergy with an
increased sympathetic noradrenergic innervation of essentially all
organs in the body [referenced in (28, 29)]. As a result, cardio-
vascular and catabolic functions are promoted, and processes not
vital in the immediate situation, such as anabolic processes and
digestion, are inhibited.

In addition to the SNS, there is a slightly delayed activation
of the HPA axis in response to acute stressors. The stimulation
of the HPA axis is triggered by the secretion of corticotropin-
releasing hormone (CRH) and arginine vasopressin (AVP) from
parvocellular neurons of the paraventricular nucleus (PVN) of
the hypothalamus into the portal blood stream of the pituitary
stalk. CRH and AVP promote the synthesis and the secretion
of adrenocorticotropic hormone (ACTH) from anterior pituitary
corticotroph cells into the peripheral blood, which, in turn, stim-
ulates cortical cells of the adrenal gland to produce and secrete
glucocorticoids [GCs; cortisol in humans, corticosterone (CORT)
in rats and mice] into the circulation. Within minutes of activa-
tion, termination of an acute HPA axis response is achieved by
efficient negative feedback inhibition via GC acting at GC recep-
tors and mineralocorticoid receptors at several brain levels (30).
The degree and temporal dynamics of HPA axis activation are
strongly dependent on the quality, intensity, and duration of the
acute stressor (11, 31, 32). In addition, the acute neuroendocrine
stress response was shown to be dependent on the time of day (33–
35), age of an individual [(36); for review see (37)], reproductive
status of an individual [e.g., in the peripartum period (38–40)],
genetic background (41–45), and stressor exposure during life
history (46, 47).

Taken together, stressor-induced activation of the SNS and HPA
axis contribute to the restoration of the “internal equilibrium”
by rapid mobilization of metabolic resources (glucose, oxygen);
processes that are adaptive and essential for survival.

Behavioral responses to an acute stressor
In addition to, and facilitated by, the rapid activation of physio-
logical systems (SNS, HPA axis) in response to an acute stressor,
there is an instant behavioral response, such as arousal, anxi-
ety/fear, or aggression. This behavioral flexibility is regulated via
activation of a number of brain regions, including cortical areas,
limbic regions, and the brainstem (48–50). A region of particular
importance is the lateral septal area, which is thought to segre-
gate the autonomic, neuroendocrine, and behavioral responses
(51). In humans, the behavioral (emotional) response to acute
stressor exposure is an important measure of mental health. It
is mainly quantified retrospectively via questionnaires (52–54) or
by analyzing behavioral patterns known to be linked with distress
during, for instance, public speaking (55–57). In laboratory ani-
mal models, a variety of behavioral tests have been established in
order to quantify signs of arousal (e.g., measurement of homecage
activity/locomotion), fear and anxiety-/social anxiety-related

behavior [e.g., novelty-supressed feeding, shock pole burying, ele-
vated plus-maze (EPM) test, light–dark box (LDB) test, open
arm exposure test, open field test, social preference/avoidance test
(SPAT), elevated platform (EPF) exposure, resident-intruder test,
Vogel test, 4-plate test, marble burying, stress-induced hyperther-
mia, contextual/cued fear conditioning, acoustic startle], learning
deficits (e.g., Morris water maze, Y/T-maze, holeboard, Barnes
maze), anhedonia (e.g., sucrose preference test, progressive ratio
responding, psychostimulant-induced hyperactivity, female urine
sniffing test), memory skills (contextual-/cued fear conditioning),
aggression (resident-intruder test), and active versus passive stress
coping strategies [e.g., forced swim test (FST), tail suspension test
(TST), learned helplessness] [for reviews dealing with these, and
additional tests to assess such behaviors see (58–65)]. Similar to
the physiological stress response, the behavioral stress response is
strongly dependent on the time of day of stressor exposure (33),
quality, intensity, and duration of the stressor (66–70), as well as
the genetic and environmental background of the organism (41,
46, 47, 71–74).

CHRONIC STRESS IN HUMANS
Mal-adaptive consequences of chronic stressor exposure
While the acute stressor-induced changes described in the sections
above are adaptive, chronic activation of the two stress systems
poses an acknowledged risk factor for numerous disorders, includ-
ing somatic disorders, like cardiovascular diseases [(75–79); for
review see (80)], chronic fatigue syndrome (81), fibromyalgia
(82), bronchial asthma (83, 84), atopic dermatitis [for review see
(85)], arthritis [(86); for review see (87)], inflammatory bowel
disease (IBD) [(13, 14, 16, 18, 20, 21); for review see (22, 25, 26)],
stomach ulcers (86), diarrhea and digestive problems (86, 88),
chronic pelvic and abdominal pain (86, 88), infections (86, 88–90),
headaches (86, 88), impaired wound healing (91–93), canceroge-
nesis [(17); for review see (27, 94)], as well as affective disorders,
like anxiety disorders and depression [(95–98); for review see (24,
58, 60, 99, 100)]. While the underlying etiology of these diseases
are not fully understood, due at least in part to a lack of ani-
mal models, chronic stress-induced dysregulation of almost all
psycho-neuro-immunological systems including the HPA axis, the
autonomic nervous system, the immune and cardiovascular sys-
tems, and emotional and cognitive brain circuits is highly likely
to contribute to the complex, and multifactorial, etiology of such
disorders. On closer inspection, one mechanism that appears to
be common throughout all of these diseases and chronic stress
models is altered GC signaling.

The link between chronic stress and impaired GC signaling
Raison and Miller defined decreased GC signaling as “any state
in which the potential of GC is inadequate to restrain relevant
stress-responsive systems”. Such inappropriate GC signaling can
be the result of decreased hormone bioavailability (hypocorti-
cism), attenuated GC sensitivity/enhanced GC resistance of target
cells, or the combination of both [for review see (101)]. Although
HPA axis hyperactivity (hypercorticism) has been generally linked
to prolonged, or chronic, stressor exposure, there is accumulat-
ing evidence for additional, even opposite alterations [for review
see (23)]. In this respect, chronic stress-induced hypocorticism

Frontiers in Psychiatry | Affective Disorders and Psychosomatic Research February 2015 | Volume 6 | Article 18 | 2

http://www.frontiersin.org/Affective_Disorders_and_Psychosomatic_Research
http://www.frontiersin.org/Affective_Disorders_and_Psychosomatic_Research/archive


Langgartner et al. Chronic subordinate colony housing

regained consideration after being more or less ignored up until
the beginning of the 2000s. For example, Friedman and colleagues
in the early 1970s described decreased plasma and urinary corti-
sol levels in parents of children suffering from neoplastic disease,
with a paradoxical decrease during periods of heightened stress
(102). Lower basal GC levels were further reported in high work
load employees (103) and patients suffering from post-traumatic
stress disorder [for review see (104)]. While elevated basal GC
levels have been repeatedly linked to stress-related disorders like
major depression [(105); for review see (100, 106)], the overall GC
signaling in these patients has been shown to be decreased both
in vivo and in vitro as a consequence of GC insensitivity [for review
see (106, 107)]. Taken together, this growing body of evidence has
led to greater acceptance of the idea that chronic stress experiences
in adulthood result in an insufficient GC signaling.

In addition, chronic stress experienced early in life, like loss
of parents, emotional neglect, maltreatment, or abuse have also
been linked to a reduced GC signaling capacity in humans. In this
context, it has been shown that women maltreated during early life
exhibited lower basal and ACTH-induced plasma cortisol levels, an
effect that was probably mediated by adrenal dysregulation (108,
109). However, whether the reduction in the overall GC signal-
ing poses a central and causal mechanism by which chronic stress
causes the variety of somatic and affective disorders described
above is still unknown, but likely.

Many stress-related disorders are linked to a decrease in GC
signaling
Although a causal involvement still has to be proven, as stated
above, several chronic stress-related pathologies have been shown
to be concurrent with reduced GC signaling in a growing num-
ber of studies. For example, hypocorticism has been described in
patients suffering from burnout and chronic fatigue syndrome,
fibromyalgia, chronic pelvic pain, and geriatric depression [(105,
110–112; for review see (23)]. Low levels of plasma GC have
been further reported when suffering from inflammatory dis-
orders, including rheumatoid arthritis [for review see (113)] or
asthma (114). In line with this, elevated levels of pro-inflammatory
cytokines have been reported in patients suffering from acute GC
deficiency after surgical removal of adrenal cortical tissue (115).
Moreover, it has recently been shown that obese women have lower
cortisol levels during pregnancy (116). Interestingly, based on
human and animal studies, it has been hypothesized that the onset
of IBD might be associated with hypo- rather than hypercorticism
[for review see (117, 118)]. This is further supported by a recent
finding showing an impaired HPA axis reactivity in 25% of Crohn’s
patients during exposure to the ultra-low dose ACTH test (119).
In addition, a positive correlation between plasma cortisol levels
and the time patients were off steroid treatment has recently been
described (120). Finally, Rodriguez and coworkers speculated that
a down-regulated cortisol response to intero- and exteroceptive
stressors might predispose patients suffering from irritable bowel
syndrome to chronic inflammatory conditions, such as asthma,
rheumatoid arthritis, or IBD (121).

Besides hypocorticism, GC resistance has been speculated to
contribute to the reduced GC signaling and the pro-inflammatory
immune shift in patients suffering from chronic stress-related

pathologies (122). As mentioned above, the disorder that best fits
this context is major depression [for review see (101)], as patients
show a reduced response to GC both in vivo and in vitro [for
review see (106, 107)], which is believed to be mediated, at least
in part, by decreased GC receptor expression and/or functionality
[(123–125); for review see (107)] . GC resistance has further been
diagnosed in a subset of patients suffering from typically chronic
inflammatory disorders like ulcerative colitis and Morbus Crohn
[(126); for review see (127)], as well as rheumatoid arthritis (128).

To causally demonstrate that chronic psychosocial stress pro-
motes the development of, at least some, somatic and affective
disorders via a reduction in overall GC signaling, it is necessary to
have appropriate animal stress models, which mimic the human
situation in an adequate way. Thus, animal models are warranted
that are of chronic psychosocial nature, to show face validity, and
cause both somatic and affective disorders, as well as result in a
reduced GC signaling (ideally both hypocorticism and decreased
GC sensitivity), to provide predictive validity. Given that the vast
majority of somatic and affective disorders are multifactorial dis-
eases, for which the underlying etiological factors are only poorly
understood, most of the animal models fail to satisfy construct
validity. However, if insufficient GC signaling is indeed causally
involved in the development of many such diseases, animal models
resulting in either hypocorticism or a decreased GC sensitivity, or
both,could be considered primarily as models displaying construct
validity.

In the following paragraphs, we will in detail describe the
chronic subordinate colony housing (CSC) paradigm, which ful-
fills all the criteria outlined above and, thus, represents an ade-
quate and preclinically validated (face and predictive validity)
animal model to investigate the underlying mechanisms related
to chronic psychosocial stress-induced impaired GC signaling and
its involvement in somatic and affective disorders.

CHRONIC SUBORDINATE COLONY HOUSING
GENERAL DESCRIPTION AND EXPERIMENTAL DETAILS
The CSC paradigm combines chronic, psychological, and social
aspects of stress and, thus, represents a highly potent animal model
to mimic the type of health compromising stressors faced by
humans (high face validity). CSC further promotes development
of both somatic and affective disorders, results in a reduced GC
signaling (high predictive/construct validity) and, thus, provides a
powerful experimental tool to study the mechanisms underlying
several relevant stress-induced pathologies. Notably, given that the
CSC paradigm is simply based on the fact that male mice instinc-
tively establish a certain hierarchical structure within their colony,
it additionally resembles the natural way of life of a male mouse
in the wild [(129); for review see (9)]. However, before we detail
the physiological, immunological, and behavioral consequences of
the CSC paradigm unraveled to date, we will briefly introduce the
experimental details of this chronic psychosocial stress model.

During CSC (for details see Figure 1), experimental mice (CSC
mice) live in chronic subordination to a dominant resident mouse
for 19 consecutive days (130). In detail, four CSC mice are put
into the homecage of a larger male resident mouse on day 1 of
the CSC paradigm, resulting in immediate subordination of the
four intruder CSC mice. To avoid habituation, all four CSC mice
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FIGURE 1 | Schematic illustration of the experimental design of the
chronic subordinate colony housing (CSC) paradigm. After arrival, all
experimental male mice are housed singly for 1 week before they are
assigned to the single-housed control (SHC) or the CSC group in a weight
matched manner. In order to induce chronic psychosocial stress, CSC mice
are housed together with a larger dominant male for 19 consecutive days. In
detail, four experimental CSC mice are introduced into the homecage
(polycarbonate observation cage; 38 cm× 22 cm×35 cm) of resident A on

day 1 of CSC, resulting in immediate subordination of the four intruder CSC
mice. The latter are then housed together with this dominant resident (A) for
eight consecutive days. On day 8, and again on day 15, of CSC, the four
experimental CSC mice are transferred into the homecages of resident B (day
8) and resident C (day 15) to avoid habituation. Before the CSC procedure, the
future dominant males are tested for their aggressive behavior. Males that
start to injure their opponents by excessive and harmful bites during testing
are not used.

are transferred into the homecage of a novel larger male resident
mouse on days 8 and 15.

All resident males are tested before CSC housing for their
aggressive behavior and males that injure their opponents by
excessive aggression (e.g., harmful bites) are not used. Notably,
although this procedure strongly reduces the number of bite
wounds delivered by the residents during CSC exposure, it does
not 100% prevent them. As a matter of routine, the subordi-
nate position of each CSC mouse is confirmed by behavioral
analysis of the first 30 min after setting up the CSC colonies on
days 1, 8, and 15 (131). Resident males reliably (>99% of CSC
colonies) obtain the dominant position by displaying offensive
behaviors toward the CSC mice, such as chasing, mounting, or
attacking their four cage mates (131). In contrast, CSC mice can
be considered as “subordinates” based on their defensive behav-
iors, including flight and submissive upright (131). So far, the
CSC model has reproducibly been shown to work in different
mouse strains, namely, C57BL/6 mice (130), BALB/c mice (132),
and CD1 mice (41). Moreover, CSC effects are independent from
the background of the residents, as the physiological, immuno-
logical, and behavioral consequences of the CSC paradigm are
comparable using either C57BL/6 (130) or the male offspring of
CD1 female mice [bred at the Max Planck Institute of Psychia-
try in Munich (Germany) for high anxiety-related behavior (HAB
mice)] and male C57BL/6 mice as dominant animals (133, 134).
Recent own unpublished data reveal that using male CD1 mice as
residents allows reliable reproduction of known CSC effects (see
Figure 2).

An important issue for the design of chronic psychosocial stress
paradigms is the choice of adequate same-aged controls, with sin-
gle housing [single-housed control (SHC) mice] or group housing
[group-housed control (GHC) mice] being widely used options.
For CSC experiments, we employ SHC mice based on own data
indicating that group housing per se poses a stressful condition
for male mice. Surprisingly, similar physiological and behavioral
alterations after 3 weeks of GHC or CSC were observed, leading
us to believe that the novel hierarchy formed by GHC mice is as
almost as stressful as being subordinated by a dominant resident.

For example, lower body weight gain and increased state anxiety
were found in both CSC and GHC compared with SHC mice
(135). In detail, the number and time of head dips and distance
traveled on the open arm of the EPM were reduced in both CSC
and GHC compared with SHC (135) mice; parameters related to
risk assessment, anxiety, exploratory (136), and locomotor behav-
ior (137), respectively. Given that isolation has been shown to lack
effects on stress-related immune and/or endocrine functions in
male mice by other stress laboratories (138, 139), single housing
seems to be the most appropriate non-stressful control condition
in non-sibling male mice. In line with this, Blanchard et al. [for
review see (140)] and Palanza [for review see (141)] proposed that
isolation is more stressful for female mice, while social grouping is
more stressful for male mice. In males, any kind of group housing
is likely to be accompanied by the establishment of subtle hierar-
chies with the result that in each cage dominant and more or less
subordinate cage mates can be found (135).

CSC-INDUCED CONSEQUENCES
Endocrine changes
Adrenal gland, pituitary, and acute stress reactivity. The CSC
paradigm has been shown to result in profound and reproducible
physiological changes, including a significant (41, 46, 130, 133,
142) and long-lasting (at least until day 8 after termination of
CSC) (70) enlargement of the adrenal glands. This increase in
absolute adrenal mass is mediated by cell hyperplasia (133), with-
out alterations in adrenal cholesterol delivery pathways [cortical
lipid droplets; protein expression of hormone-sensitive lipase, 3-
hydroxy-3-methylglutaryl coenzyme A reductase, and low-density
lipoprotein receptor, with the exception of the scavenger recep-
tor class B type 1 protein, which was increased following CSC
exposure (133)]. Notably, in an adrenocortical cell the CORT pre-
cursor molecule cholesterol can among others be derived from
(i) hormone-sensitive lipase-mediated hydrolyzation of choles-
teryl esters, stored in lipid droplets within the cytoplasm of
mostly zona fasciculata cells [for review see (143)], (ii) hormone-
sensitive lipase-mediated hydrolyzation of cholesteryl esters“selec-
tively” taken up from high-density lipoproteins and low-density
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FIGURE 2 | Effects of 19 days of CSC exposure on behavioral,
physiological, and immunological parameters. Dominant resident male
mice originated from the CD1 strain, CSC mice from the C57BL/6 strain.
CSC exposure resulted in increased anxiety-related behavior measured on
the elevated plus-maze [EPM; (A)] without affecting locomotor activity (data
not shown), decreased thymus weight (B), increased pituitary weight (C),
increased adrenal weight (D), reduced adrenal in vitro ACTH sensitivity (E),
unaffected basal morning plasma corticosterone [CORT; (F)], a tendency
toward increased basal morning plasma adrenocorticotropic hormone
[ACTH; (G)], increased histological damage in colonic tissue (H), and
increased number of viable mesenteric lymph node cells [mesLNC; (I)].

SHC (n=7–8); � CSC (n= 7–8). Parametric data are represented as
mean+SEM. Non-parametric data are represented in box-plot diagrams.
Boxes signify the upper and lower quartiles, the median is represented as
solid line, and the mean as dashed line within each box. *P < 0.05,
**P < 0.01, ***P < 0.001 versus respective SHC; #P < 0.05, ###P < 0.001
versus respective basal values.

lipoprotein via the scavenger receptor class B type 1 [(144, 145);
for review see (146–148)], (iii) lysosomal acid lipase-mediated
hydrolyzation of cholesteryl esters from low-density lipoprotein
taken up endocytotically via the low-density lipoprotein receptor
(149), and (iv) endogenous de novo synthesis from acetyl coen-
zyme A via the 3-hydroxy-3-methylglutaryl coenzyme A reductase
[for review see (150)]. Thus, given the elevated adrenal weight
following 19 days of CSC, the molecular and cellular changes
reported above in CSC versus SHC mice at the level of the adrenal
glands strongly suggest an enhanced adrenal availability and/or

mobilization capacity of the CORT precursor molecule choles-
terol and, consequently, an increased adrenal functionality in CSC
versus SHC mice. In line, analysis of plasma high-density lipopro-
tein cholesterol and low-density lipoprotein cholesterol revealed
increased levels of the latter in CSC versus SHC mice. Similarly, a
comparable or even increased relative expression of melanocortin
2 receptor protein and melanocortin 2 receptor accessory pro-
tein mRNA, as well as of steroidogenic acute regulatory protein
mRNA, side-chain cleavage enzyme mRNA, 11β-hydroxylase and
aldosterone-synthase mRNA – the latter enzymes are known to
be essential in the progress of CORT synthesis from its precur-
sor cholesterol [for review see (151, 152)] and to be controlled by
ACTH signaling [for review see (153, 154)] – support the idea of an
overall increased adrenal functionality following CSC exposure.

In confirmation of this hypothesis, mice exposed to 19 days of
CSC indeed show exaggerated plasma CORT concentrations, as
well as an increased adrenal CORT content, when killed 5 min fol-
lowing termination of a mild acute heterotypic stressor (EPF) at
the beginning of the light phase, despite the increase in plasma
ACTH concentrations not differing from EPF-exposed SHC mice
(142). Notably, when exposed to a more severe acute heterotypic
stressor, i.e., 6-min of forced swimming, CSC mice even show
an exaggerated ACTH response compared with SHC mice (155),
likely to further enhance HPA axis reactivity toward a novel and
severe enough heterotypic challenge in CSC mice. A facilitated
ACTH response to a novel heterotypic challenge is thereby in line
with other chronic stress studies [(156); for review see (157)].

In line with what we found at the adrenal level, the increased
capability of the CSC pituitary gland to produce and secret ACTH
is mediated at least partly by corticotroph cell hyperplasia (155).
Non-compromised functionality of those newly formed cells was
suggested by comparable relative pituitary pro-opiomelanocortin
protein expression between CSC and SHC mice (155). Interest-
ingly, the idea that during conditions of prolonged/chronic stress
AVP becomes the main pituitary ACTH secretagogue [for review
see (157)] is supported by unaltered relative pituitary AVP1b
receptor and decreased CRH receptor 1 protein expression in
CSC versus SHC mice (155). Taken together, these data suggest
that these newly formed corticotrophs shift their sensitivity from
CRH to AVP. Increased AVP output at the level of the PVN – as
suggested by other studies dealing with repeated/chronic stres-
sor exposure [for review see (157)] – does not appear to enhance
pituitary AVP stimulation and, thus, to contribute to the increased
ACTH drive in CSC mice, as the number of AVP positive parvo-
cellular PVN neurons is comparable between CSC and SHC mice
(155). In line, mRNA expression of AVP is even lower in the PVN
of CSC versus SHC mice (131), while CRH mRNA is not affected
(130). Furthermore, neuronal activation in the parvocellular PVN
(predominantly AVP and CRH neurons) is lower in CSC versus
SHC mice following acute heterotypic stressor exposure (open
arm; 5 min) (135). Similarly, the contributing role of changes
in pituitary negative feedback inhibition to the increased ACTH
secretion in CSC mice seems to be negligible, as the dexametha-
sone suppression test indicated a fully functional feedback system
(155). Notably, the latter finding clearly indicates that a decrease
in pituitary cytoplasmic GC receptor protein expression, as seen in
CSC versus SHC mice (155), cannot generally be interpreted as an
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impairment of negative feedback function. This is of considerable
importance for the stress field in general, as in many published
studies this was common practice.

In addition to the above described data assessed on day 20 of
CSC (after 19 days of CSC), a time course analysis revealed that
relative adrenal mass was significantly increased in stressed mice
at all time-points assessed (24, 48 h, days 7, 14, 20) during the
19 days of CSC exposure (130). A more recent study, confirm-
ing the increase in relative adrenal weight following 48 h of CSC,
extended these findings to demonstrate that even 10 h of CSC are
sufficient to cause such changes (134). However, in contrast to rel-
ative weight, absolute adrenal weight during this initial phase of
CSC was increased after 10 h, but not 48 h, of CSC exposure. Con-
sidering the reduction in body weight at both these time-points
(70, 132, 134), this clearly indicates that the increase in relative
adrenal weight observed following 48 h of CSC is exclusively due
to changes in body weight and not to changes at the adrenal level
per se. Given the reliable increase of absolute adrenal mass follow-
ing 19 days of CSC described earlier (41, 46, 130, 133, 142), these
data for the first time indicate that the adrenal glands of an organ-
ism exposed to chronic psychosocial stress enlarge during the very
initial phase of stressor exposure, normalize after about 48 h of
continuous challenge and, given the stressor still persists, start to
enlarge again.

Basal plasma CORT, ACTH and noradrenaline, and GC sig-
naling. Interestingly, these changes in absolute adrenal weight
during the initial phase of CSC seem to run in parallel with
the fluctuations of basal morning plasma CORT levels. Follow-
ing 10 h of CSC exposure, plasma morning CORT (132, 134, 158),
as well as absolute adrenal mass (134), are significantly increased,
whereas following 48 h both parameters return to baseline values.
Thus, it seems that reversing the early increase in adrenal mass in
CSC mice (10 h) poses some kind of adaptive mechanism, con-
tributing, together with a reduction of stimulatory adrenal input
(ACTH) from the pituitary and a possibly increased CORT metab-
olism (134), to prevent the organism from prolonged exposure
to elevated plasma CORT concentrations. This is supported by
studies showing a positive correlation between plasma CORT and
adrenal weight under stress conditions in rats (159, 160). Chroni-
cally elevated CORT concentrations are known to have deleterious
health consequences [(161); for review see (162–164)] and to cause
increased anxiety- and depressive-like behavior in rats. Moreover,
as greater insights can be obtained from rodent studies, chroni-
cally high CORT levels have also been shown to affect the brain
serotonergic system (165), as well as to rapidly and dramatically
increase body weight gain, adiposity, plasma leptin, insulin, and
triglyceride levels, and also to decrease homecage locomotion
(166) when delivered via the drinking water. However, future stud-
ies are needed to clarify whether these early adaptive changes in
absolute adrenal weight during CSC exposure are mediated by
hyper-/hypotrophy or by hyperplasia/apoptosis of adrenal cells.

Interestingly, although absolute adrenal mass increases again
subsequent to the 48 h time point, plasma morning CORT con-
centrations on days 7, 14, 20 stay still comparable to those of
SHC mice (41, 46, 130, 142). This suggests a mechanism different
from the one involved during the initial phase of chronic stressor

exposure to prevent the deleterious consequences of hypercorti-
cism in the later phases of chronic stressor exposure. Given that
isolated adrenal cells (130), as well as adrenal explants (142), from
mice exposed to 19 days of CSC show a reduced in vitro CORT
release when treated with different ACTH doses, it is likely that this
is implemented via a reduced ACTH sensitivity of cortical adrenal
cells. Notably, adrenal ACTH sensitivity seems to be not only
diminished under in vitro conditions, as unaffected basal morn-
ing plasma CORT in 19-day CSC mice is paralleled by elevated
plasma ACTH in comparison with SHC mice (41, 155). Support
for this second mechanism to play a role only after prolonged stres-
sor exposure and not to contribute to the initial normalization of
plasma CORT is provided by our finding that adrenal in vitro
ACTH sensitivity of CSC mice was not different from SHC at the
10 and 48 h time point (134).

While the reduction in adrenal ACTH sensitivity in the pres-
ence of increased absolute adrenal mass and plasma ACTH seems
to ensure normal basal morning CORT concentrations, it is likely
to promote the basal evening hypocorticism detected in 19-day
CSC mice (130). SHC mice were able to show the expected (167,
168) diurnal rise in plasma GC concentrations at the begin-
ning of their active period, whereas CSC mice were not and,
thus, had lower plasma CORT concentrations than respective
SHC mice in the evening of day 20 of CSC (130). The resulting
decline in GC signaling was further amplified by a CSC-induced
reduction in GC sensitivity. The latter was described in both
lipopolysaccharide-stimulated splenocytes (130) and plate-bound
anti-CD3-stimulated T helper (Th) 2 cells from peripheral lymph
nodes (169) of 19-day CSC compared with SHC mice. Thus, given
the accumulating evidence that a reduction in GC signaling might
be involved in the development of somatic and affective disorders
linked with an inflammatory component [for review see (101,
170–172)], it is likely that adrenal changes seen during CSC expo-
sure, although preventing the negative consequences of prolonged
hypercorticism, contribute to the development of spontaneous
colitis (130, 158, 173), hepatic inflammation (174), increased
anxiety-related behavior (41, 46, 70, 130, 131, 135, 142, 173, 175),
hyperactivity (70), and the increased risk of inflammation-related
colorectal cancer (CRC) (176). In support, we previously showed
additive effects of early life stress (repeated maternal separation)
and CSC exposure on both the development of hypocorticism
and on the severity of a chemically induced colitis (46). To assess,
adrenalectomy with CORT replacement needs to be performed
to see what CSC-induced behavioral and physiological effects
remain.

Notably, as already discussed above in detail, this decreased
adrenal ACTH sensitivity is not preventing CSC mice from
showing an exaggerated CORT response to subsequent EPF
exposure, suggesting an additional, yet unknown, factor that is
enhanced in CSC mice during acute heterotypic stressor expo-
sure, unaffected by the diurnal rhythm, which rescues the atten-
uated adrenal ACTH responsiveness. For example, sympathetic
innervation of the adrenal medulla via the splanchnic nerve
is known to play a critical role in modulating adrenocortical
sensitivity to ACTH (177–179). Following activation, adrenal
medullary cells secrete neurotransmitters and neuropeptides such
as adrenaline/noradrenaline, neuropeptide Y, vasoactive intestinal
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peptide, or substance P, which may, in a paracrine manner [for
review see (180, 181)], influence adrenocortical CORT secretion.
Moreover, neuropeptides such as prolactin and oxytocin (OXT),
which are released during various types of acute stressor exposures
[(39,182); for review see (183)], act as direct CORT secretagogues
(184–186). Therefore, instead of rescuing ACTH signaling, it is also
possible that this unknown factor is a CORT secretagogue itself,
thereby simply replacing ACTH in the process of adrenal activa-
tion during heterotypic stressor exposure. However, future studies
are required to elucidate the identity of this currently unknown
determinant.

In contrast to the reduction of basal adrenal cortex function,
increased basal plasma noradrenaline concentrations following
CSC (130) indicate an over-activated adrenal medulla and, thus,
uncoupling the activity of the HPA axis and the SNS during
chronic psychosocial stressor exposure. As the concerted action
of steroid hormones and neurotransmitters of the SNS is crucial
for optimal immunosuppression, uncoupling of the HPA axis and
the SNS is likely to further promote pro-inflammatory processes
(187). Thus, future studies focusing on the role of the SNS in
CSC-induced pathology are warranted.

Summary. In summary, exposure to CSC initially (10–24 h)
triggers a pronounced HPA axis response, resulting in increased
absolute adrenal mass and elevated basal morning plasma GC con-
centrations. Following 48 h of continuous CSC exposure, basal
morning GC concentrations return to basal levels again, medi-
ated most likely by a combination of decreased stimulatory input
from the pituitary, enhanced CORT metabolism, and restoration
of normal adrenal mass. Interestingly, during further stressor con-
tinuation, the recurrence of rising absolute adrenal mass is not
paralleled by increased (morning), but rather decreased (evening)
basal plasma GC concentrations, mediated at least partly via a
pronounced reduction in adrenal ACTH responsiveness.

Body weight changes
While decreased body weight gain has been reported in many stud-
ies investigating the effects of repeated/chronic stressor exposure
(67, 188–191), other studies have reported no alteration in body
weight development (192–195). In line, the effects of CSC expo-
sure on body weight development are not fully consistent, resulting
in either decreased (130, 131, 135, 169, 173, 176) or unaffected
body weight gain (41, 46, 70). Therefore, while CSC seems to reli-
ably diminish body weight gain during the initial phase of CSC
exposure (46, 70, 131, 132, 134), this in some sets of mice normal-
izes over the final days of stressor exposure. Notably, CSC mice
further gained significantly more weight in the week after stressor
termination than unstressed SHC controls leading to a normal-
ization or even increased bodyweight of CSC versus SHC mice
(70). Similar findings have previously been reported following
subjection to the visible burrow system (196) and repeated social
defeat (194) and may represent a general phenomenon following
prolonged stressor exposure. This increase in body weight after
termination of chronic stress may be an adaptive mechanism for
ensuring sufficient resources in preparation for subsequent stress-
ful events. Together, these data emphasize the necessity to further
investigate the link between repeated/chronic stressor exposure

and changes in body weight and, suggest that caution should be
exhibited when interpreting a lack of reduced body weight gain as
a sign of a non-effective chronic stress paradigm.

Somatic disorders
In addition to the consequences on endocrine parameters and
body weight development, CSC represents an established model
to study the immunological consequences of chronic psychosocial
stress exposure. In agreement with other chronic social stress par-
adigms (188, 189, 197–201), CSC causes thymic involution, first
detected after 24 h (130), which is in line with the thymus atrophy
reported in rats following 24 h of resident-intruder confrontations
(189, 201).

Inflammation. Interestingly, and again in line with others (198,
202, 203), CSC causes splenomegaly (41) and reduced in vitro GC
sensitivity in isolated and lipopolysaccharide-stimulated spleno-
cytes (130). Given that this is paralleled by pronounced immune
activation in the social disruption (SDR) paradigm (203–205),
it is very likely that the systemic immune status of CSC mice is
enhanced as well. GC resistance of IL-4 producing Th2 cells, a
reduced number of regulatory T cells, and an increased T cell
effector function, all detected in peripheral lymph nodes following
19 days of CSC exposure (169) support this idea. Moreover, CSC
mice show higher hepatic tumor necrosis factor alpha, monocyte
chemotactic protein 1, and heme oxygenase mRNA expression,
indicating noticeable oxidative stress and hepatic inflammation
(174), and develop a more severe colitis when subsequently treated
with dextran-sulfate sodium (DSS, 1%, 7 days) (46, 173). The latter
was indicated by increased body weight loss, inflammatory reduc-
tion of colon length, and histological damage score in CSC versus
SHC mice after 8 days of DSS treatment.

Interestingly, unlike SHC, CSC mice already on the second day
of DSS treatment demonstrate an increased cytokine secretion
from isolated and plate-bound anti-CD3-stimulated mesenteric
lymph node cells (173), suggesting chronic subordination itself to
trigger the development of a colonic inflammation. In support,
stimulated cytokine secretion from isolated mesenteric lymph
node cells is increased in non-DSS treated CSC mice 8 days fol-
lowing stressor termination (173). Finally, confirming chronic
subordination-induced spontaneous colitis, CSC mice display an
increased histological damage score in the colon – first detectable
after 14 days of CSC (130), number of colonic macrophages, den-
dritic, and Th cells (158), and cytokine secretion from in vitro
stimulated mesenteric lymph node (130) and lamina propria
mononuclear cells (158). Notably, comparable to the CSC par-
adigm, a modified version of the SDR paradigm (202–204, 206)
has recently been shown to also cause mild histological colonic
damage in male mice (195).

Based on the absent CORT increase in the plasma of CSC mice
on the second day of DSS treatment – despite increased in vitro
stimulated cytokine secretion from mesenteric lymph node cells
at this time – we recently hypothesized that CSC-induced adrenal
insufficiency contributes to the increased severity of DSS-induced
colitis [for review see (118)]. In contrast, increased cytokine secre-
tion from in vitro stimulated mesenteric lymph node cells of
SHC mice was first detected on the eighth day of DSS treatment,
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and immediately paralleled by high plasma CORT concentrations
(173). However, the adrenal hyper-reactivity toward heterotypic
stressors in CSC versus SHC mice clearly argues against a general
break down of adrenal functioning in CSC mice. Thus, it is rather
likely that cytokine levels secreted from mesenteric lymph node
cells in vivo during DSS treatment were not high enough to spill
over into the systemic circulation and, thereby, activate the HPA
axis until day 4 of DSS treatment in both CSC and SHC mice. In
turn, a more pronounced plasma CORT increase in CSC versus
SHC mice on day 8 of DSS treatment suggests elevated systemic
cytokine levels in both groups, and indicates HPA axis hyper-
reactivity in CSC mice also to occur in response to heterotypic
stressors of an inflammatory nature, given the assumption that
inflammation is severe enough to activate the HPA axis.

Support for decreased basal GC signaling – caused by basal
hypocorticism and/or GC resistance (130, 169) – to promote CSC-
induced aggravation of DSS-induced colitis is provided by the
finding that the combination of early-life stress (maternal sep-
aration, MS; 3 h/day, from postnatal day 1–14) and 19 days of
CSC during adulthood has additive effects on DSS-induced coli-
tis. In contrast to CSC mice, which are only unable to adequately
increase plasma CORT at the beginning of the dark/active phase,
mice exposed to both MS and CSC suffer from hypocorticism even
during the morning hours (46).

With respect to the mechanisms underlying the development
of CSC-induced spontaneous colitis, assessment of several func-
tional levels of the colon following the initial stress phase (10 h
of CSC) revealed a pronounced, adrenal hormone-mediated,
local immune suppression in colonic tissue; probably allowing
luminal- and translocated-bacteria to proliferate without con-
straint (158). Immune suppression was indicated by a reduced
cytokine and immunoglobulin A secretion from isolated and
anti-CD3/IL-2-stimulated lamina propria mononuclear cells, a
decreased percentage of CD3+ cells within all isolated lamina
propria mononuclear cells, a decreased pro-inflammatory colonic
cytokine mRNA expression, and a lower number of F4/80+

macrophages, CD11c+ dendritic cells, CD3+ T cells, and CD4+ Th
cells in colonic tissue of CSC compared with SHC mice. Whether
or not this effect is mediated by cortical GC or medullary cate-
cholamines still needs further investigation. The early decrease in
colonic IgA secretion in combination with an obsolescent mucosa,
indicated by reduced epithelial cell proliferation and apoptosis,
additionally suggested the initiation of impaired epithelial barrier
functions (158). In line, 10 h of CSC resulted in a reduced/deficient
mucus production of colonic epithelial cells. Surprisingly, and
in contrast to early CSC-induced immune suppression, our data
clearly indicated that the reduction in epithelial barrier functions
was not mediated by adrenal hormones. Given that intact local
immune and epithelial barrier functions are essential for the con-
trol of commensal flora, it was not surprising to detect an increased
bacterial load in colonic tissue and in stool samples from CSC mice
following 10 h of stressor exposure. Furthermore, experiments
employing prolonged antibiotic treatment have revealed a causal
role of such bacterial translocation/proliferation during the initial
phase of CSC in the initiation/induction of colonic inflammation
(158). However, using adrenalectomized mice, we showed that the
immunosuppressive effects of high levels of adrenal hormones

during the initial CSC phase were required to develop a moder-
ate colitis into a full-blown form (158). Direct evidence showing
that the over-active immune system in the later stages of CSC,
i.e., when hypocorticism (46, 130) and GC resistance (130, 169)
have developed, targets this elevated presence of bacterial antigens
in the colonic tissue of CSC mice, leading to the observed colitis
(130, 158), still needs to be provided.

Inflammation-related colon carcinogenesis. Given that chronic
stress is an acknowledged risk factor for numerous disorders,
including IBD [(13, 14, 16, 18, 20, 21); for review see (22, 25,
26)] and cancer [(17); for review see (27)], and that CRC poses
one of the most serious complications in IBD patients [(207);
for review see (208, 209)], it is not surprising that CSC, besides
causing spontaneous colitis (130, 158), also increases the risk
for inflammation-related CRC. Combining a novel colitis-related
CRC mouse model – in which CRC is initiated with azoxymethane
and promoted by repeated cycles of DSS administration (210) –
with CSC exposure, revealed that CSC mice show accelerated
development of macroscopic suspect lesions, as well as a trend
toward an increased incidence of low- and/or high-grade colonic
dysplasia (176). Although only a small fraction of these polyps
may finally become malignant, there is evidence indicating that a
large majority of colorectal carcinomas develop from these ade-
nomatous polyps (211). Similarly, humans who develop severe
dysplasia in adenomas are considered to be at increased risk of
developing cancer (211). CSC mice further showed an increased
number of Ki-67+ and a decreased number of TUNEL+ colonic
epithelial cells, indicating abnormal patterns of cell replication, as
detected in several clinical conditions associated with an increased
risk for colorectal malignancies [for review see (212)]. A reduc-
tion in epithelial cell apoptosis already following 10 h of CSC
(158), thereby, indicates that this effect is fast in onset and,
hence, likely to be causally involved in CSC-induced promotion
of azoxymethane/DSS-induced CRC. The latter was further indi-
cated by increased colonic mRNA and/or protein expression of
liver receptor homolog-1, β-catenin, cyclooxygenase II, and tumor
necrosis factor alpha in CSC compared with SHC mice. Both liver
receptor homolog-1 (213) and β-catenin (214) are involved in the
control of intestinal cell renewal, and known to be involved in gas-
trointestinal tumor development (215–217). The same is true for
cyclooxygenase II, which modulates apoptosis, angiogenesis, and
tumor invasiveness [for review see (218)] and is over-expressed
in approximately 80% of CRC and 40% of colorectal adenomas
relative to normal mucosa (219). Tumor necrosis factor has been
shown to promote signaling via the β-catenin pathway, thereby
contributing to tumor development in the gastric mucosa (220).

Interestingly, a shift from protective Th cells to regulatory T
cells was recently hypothesized to mediate the increased suscep-
tibility of mice to UV-induced skin cancer following repeated
immobilization (6 h/day over 3 weeks) (12). Similarly, increased
regulatory T cell infiltration into the tumor bed, predicted reduced
survival in cancer-bearing patients [for review see (221)]. There-
fore, development of GC resistance in Th2-, but not Th1-, cell
subpopulations during 19 days of CSC (169), causing a poten-
tial down-regulation of tumor protective Th1 immunity during
repeated post-CSC DSS cycles (heterotypic immune stressors; for
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details see before), might be involved in CSC-induced CRC pro-
gression. An increased number of colonic CD4+ Th cells and
percentage of CD3+ mesenteric lymph node cells in CSC versus
SHC mice, but a decreased colonic interferon-γ mRNA expression
coupled with an unaltered interferon-γ secretion from stimu-
lated mesenteric lymph node cells support this hypothesis. An
increased colonic FoxP3 mRNA expression, as well as number
of CD3+/Foxp3+ double-positive mesenteric lymph node cells,
following CSC further suggests enhanced immune regulation.
Together with the above described reduction in regulatory T cell
counts in peripheral lymph node tissue immediately following ter-
mination of CSC (169), these data either suggest tissue specificity
of CSC effects or that regulatory T cell numbers normalize and
even increase gradually following CSC, ameliorating CSC effects
on subsequent inflammatory episodes (repeated DSS treatment)
but promoting those on CRC development. Notably, body weight
development of CSC and SHC mice during second and third DSS
cycles is comparable, indicative of an equally severe colitis, whereas
three CSC but no SHC mice were dying off too severe colitis during
the first DSS cycle.

Affective disorders
Hyperactivity. Humans exposed to severe stressors are at
increased risk for developing affective disorders, including post-
traumatic stress disorder, which is characterized by pronounced
and long-lasting hyperarousal, among other symptoms [for review
see (222)]. A link between stress and hyperactivity is also suggested
by studies revealing that prenatal stress in humans is associated
with attention deficits, hyperarousal, and hyperactivity during
childhood [(223); for review see (224)]. Poor school and social
functioning, behavioral problems, and parental conflicts, all rep-
resenting chronic psychosocial stressors, are further well-known
factors predicting persistence of childhood attention deficit hyper-
activity disorder into adolescence and adulthood (for review see
224). Moreover, bipolar disorder, which affects between 1–3% of
the population, is characterized by a cycling between depressive
episodes and periods of overactivity, termed mania. Given this
strong overactivity component, it is not surprising that the major-
ity of animal models used to study mania have focused on manip-
ulations leading to hyperactivity, e.g., psychostimulant-induced
hyperlocomotion [for review see (60, 225, 226)]. In contrast, stud-
ies employing animal models of repeated/chronic stress more or
less consistently report a stress-induced reduction in locomotor
activity, both in the homecage (33, 227) and in a novel environ-
ment during behavioral testing (67, 188, 200, 228, 229). Notably,
while locomotor activity during behavioral testing (e.g., EPM)
should ideally be dissociated from the anxiety state of the ani-
mal, altered locomotion is a general confound in such tests. For
instance, reduced locomotion during EPM testing of rats follow-
ing a single cat exposure might also be interpreted as reduced
exploration due to increased levels of predator-induced anxiety-
related behavior (230). Moreover, highly-anxious rodents (rats
bred for high-anxiety-related behavior, HAB rats) show a gender-
independent decrease in the number of line crossings in the dark
compartment during LDB testing compared with their respec-
tive low anxious counterparts (rats bred for low-anxiety-related
behavior, LAB rats) (231). Given that genotype specific differences

in anxiety-related behavior between these breeding lines have been
convincingly shown in locomotion-independent (i.e., ultrasound
vocalization) anxiety tests, this indicates that reduced locomo-
tion may be one characteristic of anxious animals [for review see
(232)]. This is further indicated by the fact that locomotion in the
open field has been used not only as an index of general locomo-
tor activity or exploratory behavior but also as index of anxiety [as
referenced in (233)].

Assessment of homecage locomotion before, immediately after,
and 1 week after CSC stressor exposure (70) confirmed the
expected increase in locomotor activity at the beginning of the
dark phase in both SHC and CSC mice prior to stress. While
this increase is not seen immediately following CSC exposure,
it is even more pronounced in CSC versus SHC mice 1 week
later, indicating a long-lasting induction of dark phase hyperloco-
motion/hyperactivity. Thus, the CSC paradigm poses one of the
few animal models, which might help unraveling the mechanisms
underlying stress-promoted hyperactivity.

State anxiety. Chronic psychosocial stressors have also been
shown to reliably increase state anxiety in rodents (66, 67, 188,
200, 228, 229, 234) and to be a risk factor for anxiety disorders
in humans [for review see (58)]. In keeping, CSC results in a
profound and robust increase in state anxiety, which has been
confirmed in at least five independent behavioral tests. In detail,
exposure to 19 days of CSC reduces the time spent on the open
arms of an EPM (130, 131, 173), specifically their distal parts dur-
ing open arm exposure (135), as well as the time spent in the lit
compartment of a LDB (131, 175). Moreover, CSC mice enter the
central zone of an OF arena less often, explore novel objects less
intensely during a novel object test (46, 70), and spend less time in
the outer zone of a platform during EPF exposure (142). Impor-
tantly, in a recent study, we further described that CSC mice spent
less time on the open arms of an EPM 4 and 8 days after stressor
termination, indicating that the stressor-induced change in emo-
tionality is a long-lasting phenomenon (70). With regard to the
potential influence of the CSC-induced hyperlocomotion on the
interpretation of these tests, they were performed in the early light
phase, when home-cage locomotion is not affected. Moreover, no
difference in locomotion parameters, such as closed arm entries
or distance traveled, were observed between SHC and CSC mice.
Therefore, the anxiogenic effect of CSC is robust and long lasting.

Given the anxiogenic effect of CSC exposure and that individ-
uals vary in their response to chronic stressor exposure (234–237),
in a recent study, we tested whether the genetic predisposition
for high versus low anxiety-related behavior determines the vul-
nerability to CSC. Interestingly, and in line with our hypothesis,
HAB CD1 mice and CD1 mice not selected for anxiety-related
behavior (NAB) are equally vulnerable to the CSC-induced behav-
ioral, physiological, neuroendocrine, and immunological effects,
whereas CD1 mice bred for low-anxiety-related behavior (LAB)
are found to be stress resilient (41). The latter is indicated by the
fact that all stress-related parameters, including anxiety-related
behavior, are comparable between CSC and SHC mice in the LAB
group. In contrast, in both HAB and NAB genotypes, CSC results
in an increased adrenal weight, a reduced adrenal in vitro ACTH
responsiveness substantiated by a lower plasma CORT:ACTH
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ratio, and an enhanced pro-inflammatory cytokine secretion from
isolated and stimulated mesenteric lymph node cells compared
with respective SHC mice. Notably, the CSC-induced increase in
anxiety described before in C57BL/6 mice (as referenced above)
was only detectable in the NAB group, probably due to a ceiling
effect in the anxious HAB line.

Social anxiety. Social anxiety disorder with a lifetime prevalence
of 12.1% (238), is the “persistent fear of one or more situations
in which an individual is exposed to unfamiliar people or possible
scrutiny by others.” People suffering from social anxiety disorder
attempt to avoid social situations that they fear, which only lead to
a persistence of the disorder (239). CSC does not appear to result
in social anxiety, despite the profound increase in state anxiety. In
more detail, CSC mice spend a similar time investigating a novel
object (empty cage) and a social contact (cage with an unknown
conspecific) during the SPAT on day 20 of CSC, indicating if any-
thing a lack of social preference (70). Interestingly, they show less
investigation in both contexts, suggesting that anxiety of the novel
environment may be, at least in part, involved. However, unlike fol-
lowing chronic social defeat, CSC mice do not show active social
avoidance, i.e., less time investigating the social context than the
non-social context (234, 240–242). Furthermore, when assessed
1 week after stressor termination, despite their still anxious-like
phenotype (less time investigating the empty cage), CSC mice pre-
fer to explore the novel conspecific (70). It is important to note
that these findings were obtained with non-familiar conspecifics,
and it is possible, if indeed not likely, that CSC mice exposed to one
of the residents that they faced during the CSC paradigm, would
show active social avoidance. For example, acute social defeat has
repeatedly been shown to lead to social avoidance, but only to
the aggressor [(243, 244); for review see (245)]. In agreement
with Kalueff and coworkers (246), the initial lack of social pref-
erence following CSC is likely to reflect a temporary social deficit
rather than depressive-like behavior (234, 240–242), particularly
as CSC mice do not display depression-related behavior in the
other tests (70).

Depressive-like behavior. In the literature, the majority of social
stress paradigms lead to both increased depression- and anxiety-
related behavior (67, 200, 228, 234, 240). This is perhaps not
surprising, as there is high co-morbidity between the two disor-
ders (247–250). However, in order to really dissect the mechanisms
underlying anxiety or depression, animal models are sorely war-
ranted, which specifically induce one phenotype. Importantly, the
CSC paradigm seems to represent such a model, given that it
does not lead to deficits in anhedonia (saccharine-preference) or
depressive-like behaviour in the FST or TST for at least 1 week fol-
lowing stressor-termination. The use of more than one behavioral
test is important, as, for example, GABAB receptor knockout mice
were shown to display depression-related behavior in the FST, but
not TST (251). Similarly, exposure to 10 days of social defeat did
not alter FST or TST behavior, but lead to an anhedonic pheno-
type as assessed using the SPAT (234). Therefore, together with
the SDR stress paradigm (252) and the social defeat/overcrowding
stress paradigm (70, 199), CSC represents one of the few ani-
mal models that increase levels of anxiety without simultaneously

increasing depression-related behavior. Of note, other depressive-
like symptoms, such as cognitive dysfunction (63), have not yet
been assessed following CSC.

Substance abuse disorders. Chronic psychosocial stress also rep-
resents a strong risk factor for the development of substance abuse
disorders, such as alcoholism. Moreover, since CSC exposure reli-
ably increases anxiety-related behavior (as referenced above), a
known risk factor for developing ethanol- (EtOH) dependence in
humans (253), we assessed whether CSC mice voluntarily con-
sume more EtOH. Here, we could show that 14-day CSC exposure
increases EtOH intake, as well as preference, without affecting taste
preference or total fluid intake (175). This increased consumption
is shown at all EtOH concentrations tested (2–8%), underlining
the potency of CSC as a chronic stressor. This is in line with human
studies, demonstrating a strong correlation between stressor expo-
sure and the amount of EtOH consumed. It was, for instance,
shown that individuals with increased numbers of stressful life
events consume more EtOH and exhibit more indicators of EtOH
dependence (254). In contrast, data gathered from rodent studies
are less consistent. While, for instance, 5 min of daily social defeat
over five consecutive days has the potential to increase EtOH con-
sumption in male Long–Evans rats (255) and male C57BL/6 mice
(256), there are also studies failing to detect a link between social
stressor exposure and increased EtOH consumption [(257); for
review see (258)]. These inconsistencies led us to consider our
CSC model to be more relevant for the human situation, as it reli-
ably induces an increase in EtOH consumption for a wide range of
EtOH concentrations. At present, it is unclear whether CSC leads
to abuse of other substances, such as cocaine or nicotine, remains
to be determined in future studies.

Central mechanisms underlying the behavioral consequences
of CSC. With respect to the central mechanisms underlying
these CSC-induced behavioral consequences, we tested a possi-
ble involvement of the brain AVP, CRH, and OXT systems (130,
131, 155). These neuropeptides have all been linked with anxi-
ety and substance abuse [(259–261); for review see (262)] and,
thus, represent potential mediators of the CSC phenotype. While
the expression patterns of hypothalamic OXT mRNA, generally
known as an anxiolytic neuropeptide (38, 263–268), as well as
the anxiogenic neuropeptide CRH (100) are not altered during
CSC, the mRNA expression of the anxiogenic neuropeptide AVP
(71, 269) is even reduced in the PVN following 20 days of CSC
(131). Similarly, OXT mRNA expression in the PVN and supra
optic nucleus is not affected on day 15 of CSC exposure (270).
Immunohistochemistry further revealed unaffected numbers of
AVP expressing parvo- and magnocellular PVN neurons in SHC
and CSC mice (155), altogether making a substantial contribution
of CRH, AVP, and OXT in CSC-induced anxiogenesis and EtOH
preference, at least at the first glance, rather unlikely.

Recent findings strongly argue for a role of at least the oxytocin-
ergic system in CSC-induced anxiety. Chronic central infusion of
OXT (1 ng/h) via an osmotic minipump during 19-day CSC expo-
sure – besides thymus atrophy, adrenal hypertrophy, and decreased
adrenal in vitro ACTH sensitivity – further prevents CSC-induced
anxiogenesis (270). The fact that chronic central OXT infusion
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FIGURE 3 | Summary of the effects of chronic psychosocial stress in male
mice induced by 19 days of chronic subordinate colony housing (CSC) on
physiological, immunological, and behavioral parameters. Compared
with single-housed controls (SHC), CSC mice develop a decreased
glucocorticoid (GC) signaling, induced by a combination of hypocorticism and
GC resistance, and phenotypes characteristic of affective and somatic
disorders. Given that stressors that can lead to somatic and affective
disorders in humans are mainly chronic and psychosocial in nature, and result

in a decreased GC signaling, the CSC paradigm represents a promising animal
model to mimic stress-related pathologies in humans and to unravel the
underlying mechanisms. Abbreviations: ACTH, adrenocorticotropic hormone;
CORT, corticosterone; LPS, lipopolysaccharide; Th2, T helper 2; LN, lymph
node; EPM, elevated plus-maze; LDB, light–dark box; EPF, elevated platform;
OF, open field; SPAT, social preference/avoidance test; OA, open arm
exposure; FST, forced swim test; TST, tail suspension test; SPT, saccharine
preference test; EtOH, ethanol; DSS, dextran-sulfate sodium.

additionally prevents the CSC-induced reduction in OXT receptor
binding in the median raphe nucleus (270), a region in which OXT
signaling has been recently implicated in serotonin release and sub-
sequent anxiolytic effects (271), suggests a main role of the OXT
system in this midbrain region in CSC-induced anxiety. Moreover,
we have recent data showing that the same central OXT infusion
procedure attenuates CSC-induced EtOH preference (Peters et al.,
unpublished observations). Since the raphe is hypothesized to be
an important component of the circuitry involved in the rein-
forcing properties of drugs of abuse, including EtOH (272), and
OXT can reduce drug intake and withdrawal symptoms (273), this
region may be,at least in part, involved in CSC-induced heightened
EtOH preference.

Besides these local changes in OXT-R binding, CSC and SHC
mice show a different neuronal activity within various brain
regions implicated in anxiety – under both basal and acute novel
environment exposure conditions (135). For example, increased
basal neuronal activation in the nucleus accumbens, as seen in CSC
versus SHC, was shown in mice exposed to predator odor, which
displayed increased anxiety-related behavior in the LDB (274).
Furthermore, a decreased activation of the ventral and interme-
diate parts of the lateral septum, as seen in CSC mice following
open arm exposure (135), has been described after acute stress in
rats exposed to a learned-helplessness paradigm (275). Similarly,
increasing the activity of lateral septum neurons was found to
reduce feelings of fear and anxiety (276). Moreover, an increased
activation of the dorsomedial part of the periaqueductal grey, as
seen in open arm-exposed CSC versus SHC mice (135), has been

reported in HAB rats after acute air jet exposure (277). Although
acute stress-induced neuronal activation of the ventral hippocam-
pus, a region well known to promote certain aspects of anxiety [for
review see (278)], is not affected by CSC, given that cFOS activa-
tion in the hippocampal CA3 region is reduced in CSC versus
SHC mice following open arm exposure (135). The latter may be
explained by the well characterized effects of stress on retraction
of dendritic spines (279), which is mainly restricted to this subfield
(280). Of note, many of these changes occur in regions that form
part of the reward circuitry, but whether acute administration of
drugs of abuse (i.e., EtOH) would lead to differential activation
between SHC versus CSC mice remains to be determined.

Together, these findings indicate that although the CSC-
induced anxiety and substance abuse phenotype is pronounced,
reliable, and long lasting, the detailed mechanisms behind are still
poorly understood and await further investigation. Moreover, it
remains to be seen whether traditional antidepressants or anxiolyt-
ics can reverse the CSC-induced behavioral and/or physiological
phenotype. Furthermore, and more akin to the clinical situation,
it will be interesting to assess whether post-CSC treatment of
the mice can reverse the long-lasting behavioral and physiological
consequences of stressor exposure.

CONCLUSION
In this review, we have highlighted the fact that numerous somatic
and affective disorders, for which chronic psychosocial stress is
an accepted risk factor, are characterized by insufficient GC sig-
naling. Thus, hypocorticism and/or GC resistance are observed in
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many disorders and following chronic psychosocial stress. Con-
sequently, animal stress models, utilizing a chronic psychosocial
component, which result in a decreased GC signaling and con-
comitant somatic and affective pathologies are likely to hold more
translational relevance than other stress models. Indeed, chronic
psychosocial stress in mice induced by the CSC paradigm results
in both an anxiogenic and substance abuse phenotype, resem-
bling affective disorders, and an overall pro-inflammatory- and
cancer-prone phenotype, akin to somatic disorders. CSC further
causes basal evening hypocorticism and GC resistance, resembling
decreased GC signaling (see Figure 3).

Therefore, we are convinced that the CSC paradigm represents
an appropriate animal model for studying stress-related disor-
ders in which altered GC signaling is a core feature. Such detailed
knowledge will provide further insight into how such stress-related
HPA axis changes ultimately lead to somatic and affective dis-
orders, at both behavioral and mechanistic level. Such detailed
knowledge, in turn, will allow us to identify novel targets for the
treatment of a wide variety of somatic and affective disorders.
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