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Abstract

The intestinal microbiota is vital for shaping the local intestinal environment as well as host

immunity and metabolism. At the same time, epidemiological and experimental evidence

suggest an important role for parasitic worm infections in maintaining the inflammatory and

regulatory balance of the immune system. In line with this, the prevalence of persistent

worm infections is inversely correlated with the incidence of immune-associated diseases,

prompting the use of controlled parasite infections for therapeutic purposes. Despite this,

the impact of parasite infection on the intestinal microbiota, as well as potential downstream

effects on the immune system, remain largely unknown. We have assessed the influence of

chronic infection with the large-intestinal nematode Trichuris muris, a close relative of the

human pathogen Trichuris trichiura, on the composition of the murine intestinal microbiota

by 16S ribosomal-RNA gene-based sequencing. Our results demonstrate that persistent T.

muris infection dramatically affects the large-intestinal microbiota, most notably with a drop

in the diversity of bacterial communities, as well as a marked increase in the relative abun-

dance of the Lactobacillus genus. In parallel, chronic T.muris infection resulted in a signifi-

cant shift in the balance between regulatory and inflammatory T cells in the intestinal

adaptive immune system, in favour of inflammatory cells. Together, these data demonstrate

that chronic parasite infection strongly influences the intestinal microbiota and the adaptive

immune system. Our results illustrate the complex interactions between these factors in the

intestinal tract, and contribute to furthering the understanding of this interplay, which is of

crucial importance considering that 500 million people globally are suffering from these in-

fections and their potential use for therapeutic purposes.
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Introduction

The gastrointestinal tract harbours a myriad of microorganisms, collectively termed the micro-

biota, which have evolved complex interdependent relationships with the host[1, 2]. The

microbiota is critical to the health of the host by metabolising nutrients[3, 4], maturing the im-

mune system[5–7] and competing out pathogens[8, 9], as evidenced by studies utilising mice

raised under germ free conditions devoid of commensal organisms. Thus, resident bacteria

shape the host immune system and small disturbances in the balance between different micro-

bial communities can have adverse effects on its integrity. Likewise, activation of the immune

system, for example during infection, may lead to alterations in the composition of the micro-

biota[10, 11], and thereby affect the balance of the intestinal microenvironment. An imbalance

in this host-microbial relationship is thought to contribute to multiple inflammatory and auto-

immune diseases[6, 12].

Parasitic worms are among the most prevalent pathogens that afflict humans, and they

share a long evolutionary history with us. Hence, worm infections are rarely lethal but can

nonetheless cause a wide variety of health issues such as abdominal pain, anaemia, stunted

growth and impaired cognitive development[13, 14]. On the other hand, parasites may incur

benefits to the host by educating the immune system early in life and providing signals that

serve to dampen inflammation and strengthen the regulatory immune response[15]. Signs of

this may be seen in developed countries, where the absence of worm infections has been corre-

lated with an increased incidence of various immune-associated diseases including allergies, in-

flammatory bowel disease (IBD), multiple sclerosis, rheumatoid arthritis (RA) and type 1

diabetes (T1D)[16–18]. Encouraged by results from various laboratory models[19–24], much

emphasis has been placed on the potential therapeutic value of parasitic infections in treating

human diseases[25–28]. Indeed, therapeutic infection with the porcine nematode Trichuris

suis is currently in clinical trial for treatment of IBD[29]. Interestingly, diseases that have been

associated with the absence of parasitic worms, including IBD, RA and T1D, have also been

correlated with alterations in the intestinal microbiota[30]. It is therefore plausible that the lack

of parasitic worm infections, via modulation of the intestinal microbiota, might confer protec-

tion against these disorders.

Trichuris muris is the murine-specific counterpart to the human pathogen Trichuris tri-

chiura that infects approximately 500 million people globally[31]. Its life cycle follows a strict

faecal-oral route. Thus, following infection of the large intestine, T.muris worms remain in the

caecal and colonic epithelium throughout their lifespan. During the first three weeks after

hatching, the larvae reside embedded in syncytial tunnels formed through adjacent intestinal

epithelial cells, but from the L2-L3 moulting stage, worms start protruding out into the intesti-

nal lumen, reaching adulthood five weeks after infection. In line with other intestinal parasites,

protective immunity to T.muris infection is dependent on induction of a T helper cell type 2

(Th2) response[32]. However, at sufficiently low doses, T.muris establishes a chronic infection

by invoking a Th1 response characterised by the production of the cytokine interferon-γ (IFN-

γ)[33].

Given that T.muris larvae occupy the same niche as the majority of the intestinal microbiota

it is plausible that these organisms influence each other, which may subsequently affect the

intestinal microenvironment of the host. Interestingly, oral administration of Lactobacillus

casei can increase the susceptibility to T.muris infections[34] and intestinal luminal bacteria

are important for enabling the T.muris larvae to hatch during the initial infection[35], further

illustrating the complex inter-species relationships that characterise the intestinal microenvi-

ronment. However, data on the influence of Trichuris parasites on intestinal bacterial commu-

nities is limited. Studies in pigs infected with T. suis have demonstrated changes in bacterial
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diversity and metabolic networks after infection[36, 37], whereas studies in humans infected

with T. trichiura have yielded conflicting data[38, 39], emphasising the need for

further research.

We set out to study the effect of chronic T.muris infection on the gut microbiota and im-

mune response. Here, we provide evidence that persistent T.muris infection resulted in dra-

matic alterations in microbial communities, in both the caecum and colon, which became

apparent approximately three weeks after infection and became increasingly established with

time. Overall, these changes resulted in a less diverse microbiota, and were characterised by a

marked increase in the relative abundance of the bacterial family Lactobacillaceae. In addition,

chronic T.muris infection affected the balance between inflammatory and regulatory immune

cells in the intestinal mucosa, although this seemed to occur prior to the increase in Lactobacil-

laceae. These findings highlight the importance of understanding the intricate interactions of

the microbiota, particularly with regard to parasitic worm infections, and their contribution to

health and disease.

Materials and Methods

Mice

Mice were obtained from Harlan Laboratories (An Venray, Netherlands). Experiments were

conducted with age-matched, male C57BL/6 mice that were eight weeks old at the start of the

experimentation. Mice were sacrificed by cervical dislocation.

Ethics Statement

All experiments were conducted in strict accordance with animal welfare laws, as determined

by Swedish authorities (Swedish Board of Agriculture, Act 1988:534). The protocol was ap-

proved by Malmö/Lund Ethical Board for Animal Research, Lund/Malmö, Sweden (permit no.

M467-12), and all efforts were made to minimize suffering of the mice. Mice were monitored

daily for signs of stress or disease, such as condition of fur and general movement. None of the

mice developed diarrhoea or other intestinal-related issues.

Trichuris muris

T.muris (strain E) was maintained, and worm-derived excretory/secretory (E/S) antigens were

generated and purified as previously described[40]. To obtain a chronic T.muris infection,

mice were infected with a low dose of approximately twenty infective eggs in sterile-filtered

(0.2 μm) tap water by oral gavage. To assess the worm burden of infected mice, large intestines

were excised and frozen at -20°C. During the analysis, intestines were cut longitudinally, and

scraped free of worms, which were subsequently counted under a reverse phase-contrast

microscope.

Experimental Outline

Mice were co-housed for at least two weeks prior to experimentation to ensure normalisation

of their microbiota, and were subsequently placed in individual cages during experiments to

avoid cross-contamination. Experiments were conducted according to the scheme in S1 Fig 10

mice were infected at day 0 with a low dose T.muris eggs and 20 mice were left uninfected. 10

of the uninfected were sacrificed at day 0 while the remaining 10 were sampled over a 35 days

period alongside with the 10 infected mice. Fresh faeces were sampled regularly throughout the

experiment, after each larval moulting stage: L2 (day 13), L3 (day 20) and L4 (day 27). The fae-

cal samples were immediately frozen on dry ice upon collection. At the end point (day 35),
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luminal contents were collected from both the caecum and colon. We sampled the luminal

colon content distally, to make them correspond to the fresh faeces samples. For simplicity, lu-

minal colon content sampled upon termination and fresh faeces sampled throughout the infec-

tion are collectively referred to as “faecal samples”. Finally, to ensure that mice had been

properly infected, a separate group of five mice was infected and sacrificed at day 35 for assess-

ment of their worm burden.

Cell Isolation

Mesenteric lymph nodes (MLN) were stripped of surrounding adipose tissue and mashed in

Dulbecco’s phosphate-buffered saline (DPBS; Life Technologies), followed by filtration

through 70 μm cell strainers (Fisher Scientific). The large intestines were stripped of attached

adipose tissue, opened longitudinally and washed thoroughly in DPBS to remove the faeces. To

isolate cells from the large-intestinal lamina propria (LI LP) the intestines were cut into ap-

proximately one cm pieces, and incubated thrice in epithelial dissociation buffer consisting

of Hank’s balanced salt solution (HBSS; Life Technologies) supplemented with 15 mM 4-

(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES; Life Technologies), 2% foetal bo-

vine serum (FBS; Sigma-Aldrich), 5 mM ethylenediaminetetraacetic acid (EDTA; Merck-Milli-

pore), 100 U/ml penicillin + 100 μg/ml streptomycin (Life Technologies), 50 μg/ml gentamicin

(Life Technologies) and 1.25 μg/ml Fungizone (Life Technologies) for 15 minutes at 37°C, on

continuous shaking. For the first round of treatment, 1 mMDL-dithiothreitol (DTT; Sigma-Al-

drich) was added to aid the removal of mucous. After a brief wash, the remaining tissue pieces

were subsequently enzymatically digested in R10 buffer consisting of RPMI 1640 (Life Tech-

nologies) supplemented with 10 mMHEPES, 10% FBS, 2 mM L-glutamine (Life Technologies),

1 mM sodium pyruvate (Life Technologies), 100 U/ml penicillin + 100 μg/ml streptomycin,

50 μg/ml gentamicin and 1.25 μg/ml Fungizone, along with 0.3 Wünsch-units/ml liberase TM

(Roche), 30 μg/ml DNase I (Roche) and 5 mM CaCl2 for 45 minutes at 37°C with magnetic

stirring. The resulting cell suspension was filtered through 100 μm cell strainers (Fisher Scien-

tific), and subjected to a density gradient centrifugation using Percoll (GE Healthcare) accord-

ing to manufacturer’s instructions. Briefly, cells were suspended in 40% Percoll and centrifuged

over a 70% Percoll layer for 20 minutes, 600 g without brake at room temperature. Cells were

collected from the 40/70 interphase and washed with R10 buffer. Cell numbers were assessed

with a KX-21N automated hematology analyzer (Sysmex).

Ex vivo Cell Stimulations and Cytokine Analyses

For cytokine secretion analyses, cells were suspended in R10 buffer, seeded at 2.5 x 106 cells/ml

in TCMicroWell 96U Nunclon plates (Thermo Fisher Scientific), and incubated with 50 μg/ml

E/S antigens for 48 hours at 37°C, 5% CO2. Cell-free supernatants were collected and frozen at

-20°C for subsequent analyses. Cytokine secretion was measured with BD cytometric bead

array (BD Biosciences) according to manufacturer’s instructions with the following modifica-

tion: the amount of capture beads and detection reagents as well as sample volumes was scaled

down five-fold. Samples were acquired on a BD LSR II flow cytometer (BD Biosciences) and

data analysed with FCAP Array v3.0 (SoftFlow Inc.).

For intracellular cytokine analyses, cells were suspended in R10 buffer, seeded at 5 x 106

cells/ml in 5 ml polystyrene round-bottom tubes (BD Falcon), and incubated with 250 ng/ml

phorbol 12-myristate 13-acetate (PMA; Sigma-Aldrich), 500 ng/ml ionomycin (Sigma-Al-

drich) and 10 μg/ml brefeldin A (Sigma-Aldrich), or brefeldin A alone as a negative control,

for 3 hours at 37°C, 5% CO2. Cells were then washed with R10 buffer followed by staining for

flow cytometry analysis.

Chronic Trichuris muris Infection and the Intestinal Microbiota
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Flow Cytometry

Cells were fluorescently labelled for 30–60 minutes on ice with the following antibodies and re-

agents: BV510-conjugated rat anti-mouse CD45 (clone 30-F11; BioLegend), BV605-conjugated

Armenian hamster anti-mouse TCRβ (H57-597; BD Biosciences), PE-conjugated rat anti-

mouse IL-10 (JES5-16E3; eBioscience), PE-CF594-conjugated rat anti-mouse CD4 (RM4-5;

BD Biosciences), PerCP-Cy5.5-conjugated mouse anti-human/mouse T-bet (4B10;

eBioscience), PE-Cy7-conjugated rat anti-mouse IFN-γ (XMG1.2; BioLegend), APC-conjugat-

ed rat anti-mouse/rat FoxP3 (FJK-16s; eBioscience), AF700-conjugated rat anti-mouse CD19

(6D5; BioLegend), AF700-conjugated rat anti-human/mouse B220 (RA3-6B2; eBioscience),

AF700-conjugated mouse anti-mouse NK1.1 (PK136; BioLegend), AF700-conjugated rat anti-

mouse Ter-119 (TER-119; BioLegend), biotin-conjugated rat anti-mouse CD8α (53–6.7; Bio-

Legend), APC-eF780-conjugated streptavidin (eBioscience), along with Violet Live/Dead (Life

Technologies) according to manufacturer’s instructions to label dead cells. Cells were stained

intracellularly with FoxP3/Transcription factor staining buffer set (eBioscience) according to

manufacturer’s instructions. Cells were analysed on a BD LSR II flow cytometer, and data ana-

lysed with FlowJo software v9.7 (Tree Star Inc.). Dead cells and aggregates were excluded from

all analyses.

Amplicon Sequencing

Bacterial DNA from caecal and faecal samples were extracted using a NucleoSpin soil kit

(Macherey-Nagel) according to manufacturer’s instructions. DNA yield and integrity were as-

sessed using a Nanodrop and agarose gel electrophoresis, respectively. The PCR-based library

formation was performed using 10 ng bacterial DNA, 0.2 μM of each barcoded forward and re-

verse primer, 0.2 mM dNTPs and 0.5 units Phusion high fidelity DNA polymerase (Thermo

Scientific) in a total volume of 25 μl. To target the 16S rRNA gene’s variable region 4 (V4) a for-

ward primer 515F (5’ AATGATACGGCGACCACCGAGATCTACAC NNNNNNNN

TATGGTAATTGTGTGCCAGCMGCCGCGGTAA 3’; “N” indicates the nucleotides of the

barcode sequence) and a reverse primer 806R (5’ CAAGCAGAAGACGGCATACGAGAT

NNNNNNNNNNNN AGTCAGTCAG CC GGACTACHVGGGTWTCTAAT 3’) were used,

both with Illumina adaptor sequences in the 5’ end [41, 42]. Cycling condition was as follows:

98°C for 30 seconds followed by 35 cycles of 98°C for 5 s, 56°C for 20 s and 70°C for 20 s. PCR

products were purified and normalised to 1–2 ng/μl using the SequalPrep Normalisation Plate

kit (Life Technologies Europe). Subsequently, samples were pooled (2 μl of each sample) and

quantified using a KAPA Library Quantification Kit (KAPA Biosystems) on a Stratagene

Mx3000 (Agilent Technologies Denmark). 6.65 pM library and 0.35 pM PhiX Control v3 (Illu-

mina) was sequenced using an Illumina MiSeq V2 PE500 cartridge (500 cycles) on an Illumina

MiSeq.

Bioinformatics

Generated sequences were analysed using qiime_pipe (https://github.com/maasha/qiime_

pipe) using QIIME v1.7.0 with default settings, which performs quality-based sequence trim-

ming, primer removal and assembly of paired-end sequences followed by the execution of a

QIIME workflow including chimera checking[41]. De novo OTU-picking was performed

using UCLUST[43] with 97% sequence similarity. Representative sequences were assigned tax-

onomy against the Greengenes database v11_2[44] using the RDP-classifier[45] with an 80%

confidence threshold. Subsequent analyses were performed in R v3.1.1 using the metagenome-

Seq[46], PhyloSeq[47], Vegan[48] and GGplot2[49] packages. Data was filtered for low-abun-

dance OTUs by removal of OTUs present in fewer than 3 of the 140 samples and with a
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relative abundance across all samples�0.005%. A single day 35 faecal sample from one of the

infected mice and a single day 0 caecal sample from one of the uninfected mice were left out

due to our cut off of at least 10,000 sequences per sample after filtering. Analyses in R were per-

formed with an average of 25,060 ± 6,480 (SD) sequences per sample before, and with

20,912 ± 5,091 (SD) sequences per sample after filtering. Alpha and gamma diversity were esti-

mated using unfiltered data. Beta diversity was performed using filtered data and calculated for

time point/treatment using Vegan. Read counts were normalised with metagenomeSeq[46]

that uses a cumulative-sum scaling in which raw counts are divided by the cumulative sum of

counts up to a particular quantile. Statistical analyses for Table 1 and S2 Table comparing unin-

fected with infected were performed on data filtered based on effective sample sizes. Taxa were

not included if they had fewer than X effective number of positive samples, where X is the me-

dian of estimated effective samples per feature calculated using metagenomeSeq. Phylogenetic

analyses were conducted using 16S rRNA gene sequences from the given family downloaded

from The Ribosomal Database Project (RDP)[50]. The representative sequences, from the

OTUs classified to be members of the given family were combined with the RDP sequences. Se-

quence-alignment using MUSCLE[51] and phylogenetic tree building using the Maximum

Likelihood method based on the Tamura-Nei model[52] were performed using MEGA v6.06

[50]. All sequence data is available from the European Nucleotide Archive (ENA) with study

accession number: PRJEB6560. Immunological raw data is available from Dryad Digital Repos-

itory (doi:10.5061/dryad.md0vg).

Results

Chronic T.muris Infection Induces Major Changes in the Gut Microbiota

To examine whether chronic T.muris infection affects the composition of the intestinal micro-

biota, we infected male C57BL/6 mice with a low dose of T.muris eggs by oral gavage, and col-

lected faecal samples at various time points after infection, coinciding with the different larval

developmental stages (S1 Fig). Five weeks after infection, the experiment was terminated and

the caecum and colon contents were collected. To confirm the chronic nature of the infection,

we assessed the intestinal worm burden of a parallel group of mice infected at the same time.

As expected, none of the mice had cleared the infection after five weeks, harbouring 20 ± 3

worms (mean ± SD; n = 5) and were thus, by definition, chronically infected.

Next, we investigated the composition of the intestinal microbiota utilising 16S rRNA gene-

based sequencing and found that chronic T.muris-infection induced clear changes in microbial

communities of the large intestine (Fig 1). While minor alterations were seen at early time

points after infection, the first substantial microbial changes appeared from day 20 (Fig 1 and

S2 Fig and S1 Table for statistical summary). The changes became more pronounced with time

(Fig 1 and S2 Fig and S3 Fig) and were very distinct at day 35 after infection, compared to the

uninfected mice (Fig 1 and S2 Fig and S1 Table for statistical summary). The infection had

similar effects on the faecal and caecal microbiota (S4 Fig). Importantly, we detected only very

minor changes over time in the microbial composition of the uninfected mice (S5 Fig),

demonstrating that differences observed in the infected mice reflected infection-dependent

changes. Thus, chronic infection with T.muris is associated with pronounced changes in the

microbiota.
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Chronic T.muris Infection Decreases Alpha and Gamma, but Increases
Beta Diversity of the Microbiota

In order to examine whether chronic T.muris infection influenced the diversity of the intesti-

nal microbiota we determined alpha (within sample) and beta (between samples) diversity for

each sample and group, respectively. Alpha diversity analysis was performed on unfiltered data

using Shannon index (Fig 2A). The alpha diversity of the faecal samples from the infected mice

was significantly decreased after 27 days of infection, and even further decreased after 35 days,

while no decrease was observed in the uninfected mice. Similarly, a significant decrease in the

alpha diversity in caecal samples was evident after 35 days of infection (Fig 2A). By contrast,

beta diversity between the faecal samples from the infected mice was increased after 27 and

35 days, and similarly, increased beta diversity was observed in caecal samples after 35 days

Fig 1. Time-dependent changes of the microbiota diversity due to chronic T.muris infection. Non-metric Multi-Dimensional Scaling (NMDS) plot using
Bray-Curtis dissimilarity indices from (A) faecal microbiota from 10 infected mice sampled at various time points from day 0 to day 35, and (B) caecal
microbiota from uninfected mice at day 0 and uninfected/infected mice at day 35. Ellipses are labelled according to the corresponding day of analysis.
Relative abundance at family level was fitted as vectors based on 9999 permutations and scaled by their correlation coefficient.

doi:10.1371/journal.pone.0125495.g001

Fig 2. Chronic T.muris infection results in decreased alpha but increased beta diversity of the microbiota. (A) Median alpha diversity based on
Shannon index of unfiltered microbiota data for faecal and caecal samples. The upper and lower whiskers correspond to the 25th and 75th percentiles. (B)
Median beta diversity based on Sørensen index for faecal and caecal samples. The whiskers correspond to the 25th and 75th percentiles. Statistical analyses
were performed with one-way ANOVA, followed by Tukey’s post-test for multiple comparisons using Prism (GraphPad software). The light blue colour for
uninfected caecal samples indicates the ten mice sacrificed at day 0, and therefore not repeated sampling as for the faecal samples. The following definitions
were used to denote statistical significance: * (p<0.05), ** (p<0.01), *** (p<0.001), while p>0.05 was considered not significant (NS).

doi:10.1371/journal.pone.0125495.g002

Chronic Trichuris muris Infection and the Intestinal Microbiota

PLOS ONE | DOI:10.1371/journal.pone.0125495 May 5, 2015 9 / 22



(Fig 2B). We therefore investigated whether there was an overall gain or loss of diversity by ex-

amining the combined microbiota from all infected mice (gamma diversity) compared to all

the uninfected mice. Thus, all untrimmed data were pooled according to treatment and the

gamma diversity (between groups) of the infected and uninfected pools was compared using

the Shannon index. In accordance with the alpha diversity, we found a decline in gamma diver-

sity at day 27 and 35 after infection in the faecal samples and at day 35 for the caecal samples

(S6 Fig). Together, these data demonstrate that chronic T.muris infection causes an overall de-

crease in microbial diversity of the large intestine.

T.muris Infection Alters the Composition of the Faecal and Caecal
Microbiota

Next, we examined the alterations in intestinal microbial composition following T.muris infec-

tion by taking taxonomical classifications of operational taxonomic units (OTU) into account.

At the phylum level, T.muris infection led to increased abundance of Firmicutes (day 27 and

35) and Proteobacteria (day 35) while decreasing Bacteroidetes (day 27 and 35) in the faecal

samples (p<0.05, repeated-measures ANOVA, S7 Fig). Firmicutes, Proteobacteria and Bacter-

oidetes accounted for more than 90% of the microbiota at all time points. The T.muris infec-

tion increased the relative abundance of Firmicutes in faecal samples from 37 ± 3% to 43 ± 6%

between day 0 and 35. Likewise, the caecal samples from the infected mice contained 58 ± 6%

Firmicutes at day 35 compared to 30 ± 2% and 36 ± 2% in the uninfected mice sacrificed at day

0 and 35, respectively. Proteobacteria and Bacteroidetes are traditionally lipopolysaccharide-

containing gram-negative bacteria whereas Firmicutes are, with minor exceptions, gram-posi-

tive bacteria, thus, the microbiota was characterised by an increased proportion of gram-posi-

tive bacteria after infection due to the increase in Firmicutes.

To further investigate the changes in the microbiota composition following the T.muris in-

fection, we analysed the microbiota composition in a taxa summary plot on family level (Fig 3),

statistical analysis on multiple taxonomic ranks (Table 1), heat-mapping at genus level, includ-

ing hierarchical cluster analysis (Fig 4), and phylogenetic tree analysis to identify candidates at

species level (S8 Fig). Hierarchical cluster analysis of Bray-Curtis dissimilarity indices identi-

fied day 0 and day 13 to be the most similar, with day 20 as the closest relative, while day 27

and 35 were distinctly clustered on two separated branches (Fig 4), indicating that major

changes in the microbiota occurred from day 20 after the infection with T.muris.

Using metagenomeSeq [46] we identified bacteria that were significantly altered due to in-

fection at any given time point. We focused on the most common effects of the infection,

which we defined as affected taxa detected in at least as many or more samples compared to

the median of the estimated effective sample size, as calculated by MetagenomeSeq. With an in-

crease at day 13 after infection, Bifidobacterium was identified as the only significantly affected

genus before the major changes to the microbiota occurring at day 20 and onward (Table 1).

The most notable change observed was an increase in the relative abundance of the bacterial

family Lactobacillaceae that remained relatively unaltered until day 20, after which it gradually

increased in abundance from<5% between day 0 and 20, to 11% and 15% after days 27 and

35, respectively (Table 1 and Fig 3). While the increase in Lactobacillaceae occurred in 8 out of

9 mice, other changes were less general (S9 Fig), further illustrating the variability between in-

dividual mice as reflected by the increase in beta diversity described earlier. Interestingly, some

genera were affected only at certain time points after infection and then remained stable (Fig 4

and Table 1). Among these we detected an increase in the relative abundance of Alistipes and

Odoribacter from the Bacteroidales family at day 20, as well as a decrease in Allobaculum and

Barnesiella and a sharp increase in Parasutterella at day 35 (Fig 4 and Table 1). The abundance

Chronic Trichuris muris Infection and the Intestinal Microbiota
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of Lactobacillus, Allobaculum and Barnesiella were also found to be significantly affected in the

caecal samples by the infection with the addition of a>10-fold increased abundance ofMucis-

pirillum and a decrease of the low-abundant Sporobacter selectively in the caecal samples (S2

Table).

By phylogenetic tree analysis, comparing the representative sequences for the OTUs classi-

fied within each family and 16S rRNA gene sequences downloaded from the Ribosomal Data-

base Project[50], we identified candidate species for the Lactobacillaceae family affected by T.

muris infection. A single OTU (L#1 in S8 Fig) accounted for more than 80% of the relative

abundance in faecal samples 35 days after infection, the sequence of which was identical to that

of L. apodemi, L.murinus and L. animalis (S8 Fig). The second most abundant OTU was iden-

tical to L. gasseri and L. taiwanensis. The same OTUs and similar relative abundance within

families were found for caecal samples (data not shown).

A Skewed Intestinal Regulatory/Inflammatory T Cell Balance is Induced
upon Chronic T.muris Infection

Finally, we wanted to investigate whether the profound changes observed in the microbiota

composition correlated with infection-driven responses in the intestinal immune

Fig 3. Chronic T.muris infection affects the composition of the microbiota. Taxa summary plots at family level showing (A) changes in microbiota
composition of faecal samples from the infected mice from day 0 to day 35, and (B) the microbiota composition of uninfected and infected mice at day 35 for
faecal and caecal samples. “Unknown” refers to OTUs that we were unable to classify. Data represent mean relative abundance.

doi:10.1371/journal.pone.0125495.g003
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compartment, which could indicate a potential causal link between these processes. CD4+ T

cells are crucial effector cells during acute T.muris infections. At low doses of infection both

CD4+ and CD8+ T cells polarise into IFN-γ-secreting effector cells, resulting in the host being

unable to expel the worms[53]. In order to confirm that the low infection dose resulted in in-

duction of a Th1 response we therefore tracked and profiled the accumulation of adaptive im-

mune cells in the large-intestinal lamina propria (LI LP) and draining mesenteric lymph nodes

(MLN) following chronic T.muris infection. Initial experimentation indicated that there were

substantial changes to the intestinal immune system at day 35 after infection, leading us to con-

duct an additional experiment, with analysis at key time points concurrent with the kinetics of

the observed alterations in the microbiota. Moreover given the established capacity of certain

bacterial species[54–56], as well as some parasites[57, 58], to promote induction of regulatory

T cells (Treg), we also assessed the generation of these cells during chronic T.muris infection.

As expected, mice chronically infected with T.muris developed intestinal inflammation

with an accumulation of haematopoietic cells, both in the LI LP (Fig 5A) and MLN (S10A Fig).

This was apparent at day 20 and persisted throughout the course of infection. Similarly, the

proportion of CD4+ T cells in the LI LP was also increased at day 20 and remained stable with

Fig 4. Chronic T.muris infection alters the relative abundance of multiple genera. (A) Heat-map illustrating changes over time in mean relative
abundance at genus level for faecal samples from infected mice. Data are log10 transformed and colour-scaled in the horizontal direction. Blue indicates low
values and red indicates high values. Dendrograms are based on hierarchical cluster analysis with Bray-Curtis dissimilarity indices. (B) Log10 fold change
between infected and uninfected faecal samples from day 35. (*) Indicates that the genus was undetected in either infected or uninfected samples. Detected
only in uninfected: Robinsoniella (0.003%), Sporobacter (0.06%). Detected only in infected: Escherichia/Shigella (0.06%), Enterococcus (0.04%).

doi:10.1371/journal.pone.0125495.g004
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time (Fig 5B), with a similar trend for CD8+ T cells (S10B Fig). In order to investigate potential

driving forces from the microbiota on the nature of the adaptive immune response after infec-

tion, we focused our analysis on time points either prior to (at day 20) or after (at day 35) the

major alterations observed in microbial communities, most notably the Lactobacillaceae. Con-

sistent with our expectations, a large fraction of the total CD4+ T cells in the LI LP expressed

classical markers of inflammatory Th1 cells; the cytokine IFN-γ (Fig 5C and 5D) and the tran-

scriptional regulator T-bet (S10C Fig) after infection. The Th1 response was established early

after infection (at latest day 20) but interestingly abated as T.muris reached adulthood (Fig

5C). CD8+ T cells, although fewer in numbers relative to CD4+ T cells, were also positive for

IFN-γ and T-bet to a similar extent (S10D Fig). Consistent with the T cell response, single-cell

suspensions of both LI LP (Fig 5E) and MLN (S10E Fig) from infected mice showed a dramatic

IFN-γ secretion upon stimulation with T.muris-derived excretory/secretory (E/S) antigens.

Moreover, we detected a slight induction of FoxP3+ Tregs in the MLN as the infection pro-

gressed (S10F Fig). However, contrary to what has been reported in other parasite models, we

did not detect an increased proportion of FoxP3+ CD4+ T cells in the LI LP at this infection

Fig 5. Chronic T.muris infection alters the regulatory/inflammatory T cell balance in the large intestine. (A) Haematopoietic cell numbers (cellularity)
in the LI LP of T.muris-infected and uninfected mice. (B-C) Proportion of (B) CD4+ TCRβ+ cells, and (C) IFN-γ+ T-bet+ CD4+ T cells in the LI LP of T.muris-
infected and uninfected mice. (D) Representative flow cytometry plots of FoxP3, IFN-γ and IL-10-expressing CD4+ T cells in the LI LP. Numbers indicate
frequencies of CD4+ T cells. Blue = uninfected, red = T.muris-infected (day 20). (E) T.muris-derived E/S antigen-specific secretion of IFN-γ by cells isolated
from the LI LP of T.muris-infected and uninfected mice after ex vivo stimulation for 48 h. (F) Proportion of FoxP3+ CD4+ T cells in the LI LP of T.muris-
infected and uninfected mice. (G) Ratio between FoxP3+ and IFN-γ+ T-bet+ CD4+ T cells in the LI LP of T.muris-infected and uninfected mice. (H) Proportion
of IL-10+ FoxP3+ CD4+ T cells in the LI LP of T.muris-infected and uninfected mice. Bar graphs are displayed as mean (n = 6) with standard deviation.
Statistical analyses were performed with one-way ANOVA, followed by Tukey’s post-test for multiple comparisons using Prism (GraphPad software). The
following definitions were used to denote statistical significance: * (p<0.05), ** (p<0.01), *** (p<0.001), while p>0.05 was considered not significant (NS).

doi:10.1371/journal.pone.0125495.g005
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dose, but rather a substantial decrease (Figs 5D and 5F), a change that was apparent already at

day 20 and remained as the infection progressed (Fig 5F). Strikingly, the ratio between regula-

tory and inflammatory CD4+ T cells was reduced almost 16-fold in the LI LP as a consequence

of infection (Fig 5G). Treg cells were not only fewer in proportion, but also seemed less prone

to produce interleukin-10 (IL-10) at day 35 (Fig 5H and S10C Fig), a cytokine known to be in-

volved in tolerogenic and anti-inflammatory responses. In fact, most of the T cell-derived IL-

10 during infection was produced by FoxP3- IFN-γ+ cells (Fig 5D and S10G Fig), and was re-

flected by IL-10 secretion from E/S-stimulated LI LP cells (S10H Fig). Taken together, these re-

sults demonstrate that low dose infection with T.muris led to chronic inflammation of the

large intestine, with a decreased ratio between regulatory and inflammatory CD4+ T cells,

which was clearly manifested after 20 days of infection and remained as the

infection progressed.

Discussion

We have performed a comprehensive study analysing the influence of chronic T.muris infec-

tion on the murine gut microbiota using 16S rRNA gene-based sequencing. By infecting mice

with T.muris, we have been able to longitudinally study the effect of chronic nematode infec-

tion in a highly controlled manner, with sampling at multiple time points. We found that per-

sistent worm infection led to a decrease in bacterial diversity of the large-intestinal microbiota

as compared to uninfected mice, with an associated increase in the relative abundance of Lacto-

bacillaceae. In parallel, we detected an overall change in the intestinal regulatory/inflammatory

T cell balance following chronic T.muris infection.

Two recent publications describe the effect of T. trichiura infection on the intestinal micro-

biota of infected humans[38, 39]. Compared with the effects of T.muris infection reported

here, the effect of T. trichiura infection in humans appeared less drastic. Cooper et al. found no

decrease in the alpha diversity in T. trichiura-infected children compared to an uninfected con-

trol group, and similarly no apparent difference was detected following curative treatment[38].

In contrast, Lee et al. detected a minor increase in alpha diversity of the intestinal microbiota in

infected individuals, which included combinations of T. trichiura, Ascaris lumbricoides and

hookworm co-infections[39]. However apart from likely species-related differences, human

field studies are often less controlled compared to laboratory-based studies in mice (e.g. varia-

tion in infection dose, duration and timing of infection), and many additional environmental

factors will undoubtedly influence the results, e.g. lifestyle, gender, age, hygiene and/or previ-

ous pathogen exposure.

We found that chronic T.muris infection had a strong effect on the alpha, beta and gamma

diversity of both the faecal and caecal microbiota. The decreased alpha diversity suggests that

the microbiota became less diverse within each individual mouse, whereas the concurrent in-

crease in beta diversity illustrates that each individual mouse responded differently to infection,

resulting in a larger diversity between the mice. Nevertheless, overall we found the gamma di-

versity to be decreased, indicating that the total number of different species of bacteria existing

in an infected population of mice is reduced compared to an uninfected population. Besides

parasite infection, a reduced microbial diversity has been observed in patients suffering from

IBD[59], indicating that this phenomenon may be a by-product of the inflammatory process it-

self rather than being a specific outcome of the parasite infection. On the other hand, Toxoplas-

ma gondii infection was recently found to induce antigen- as well as commensal-specific T cell

responses[60]; it is therefore conceivable that T.muris infection per se also results in bacteria-

specific responses, which may be driving at least some of the observed changes.
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It remains to be established what drives the pronounced and significant changes in the com-

position of the intestinal microbiota, especially those occurring from day 20 after infection.

Several possibilities can be envisaged, which may involve direct as well as indirect mechanisms

via the immune system. The time point for the major changes observed in microbial composi-

tion coincides with the larvae progressing from the L2 to the L3 developmental stage, a transi-

tion that is associated with the worms increasing in size and starting to protrude from the

syncytial tunnels into the intestinal lumen. Thus, the physical presence of larvae in the intesti-

nal lumen may be associated with a larger influence on the intestinal environment that may

alter the intestinal microbiota. Coincidentally, the parasite may influence its microenvironment

by secreting effector molecules that affect the microbiota directly or indirectly via stimulation

of host immune cells. A large fraction of the E/S components secreted by the parasite during in-

fection is made up of serine proteases that have a documented capacity to degrade the major

intestinal mucin,muc2[61]. Given that many of the intestinal microbes actively attach to the

mucous layer it is plausible that the worms, by affecting the integrity of the mucous layer in

order to promote their own survival in the intestine, may indirectly also affect the capacity of

mucous-adhering bacteria to remain in their intestinal niche[62]. In fact, consistent with such

a mechanism, a recent study showed that immune-driven alterations to goblet cell-mediated

mucous production led to reduced bacterial attachment to the mucous during T. trichiura in-

fection in macaques[63]. Finally, there are indications that the parasite itself may be driving the

changes to the microbiota independent of the adaptive immune response. Along these lines,

Rausch et al. found that mice infected with the hookworm Heligmosomoides polygyrus re-

sponded with a Th2 response and had altered intestinal microbiota composition[10]. However

following infection of IL-4Rα-/- mice, which are compromised in their capacity to generate a

Th2 response, they found similar changes in the gut microbiota composition, indicating that

the hookworm was able to alter the microbiota independently of the IL-4-regulated adaptive

Th2 response[10].

The most notable change of the microbiota following the T.muris infection was an in-

creased abundance of the gram-positive, facultative anaerobic family Lactobacillaceae, suggest-

ing a positive correlation between these bacteria and the nematode infection. This is in

agreement with Walk et al, who found the abundance of the Lactobacillus genus to be increased

following infection with H. polygyrus, and speculated that the increase in lactobacilli could be

an immune-modulating effect ofH. polygyrus infection as part of a mutualistic relationship

with the resident bacteria[11]. Moreover, Reynolds et al. identified the species L. taiwanensis to

be increased byH. polygyrus infection, and showed that administration of L. taiwanensis to

BALB/c mice facilitated subsequent infection with the nematode[64]. Furthermore, Dea-

Ayuela et al. found that treating mice orally with either viable or dead L. casei enhanced the

susceptibility of B10Br mice to T.muris infection[34], and that viable L. casei abrogated the

IFN-γ response in MLN after infection. We found a similarly decreased IFN-γ response in both

the LI LP and MLN between day 20 to 35, concurrent with an increase in relative abundance of

lactobacilli, indicating a possible negative correlation between the IFN-γ response and the pres-

ence of lactobacilli. Taken together, this may indicate that the increase in lactobacilli during in-

fection is a process that favours the survival of T.muris, and vice versa, lending credence to the

mutualism hypothesis.

Despite prior studies having demonstrated that the microbiota can influence the develop-

ment and function of the host’s immune system, we detected little correlation between the ki-

netics of microbial changes and the development of the adaptive immune response. Treg cells

play a critical role in controlling immune responses toward both pathogens and the gut micro-

biota[65], as well as preventing autoimmunity[66]. Furthermore, some parasitic infections are

known to induce Treg cells that dampen effector responses[57, 58], in part serving as the
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rationale for therapeutic worm infection as treatment for human diseases. Our data suggests

that this does not seem to be the case for chronic T.muris infection. Rather, the infection dras-

tically reversed the regulatory/inflammatory balance of the intestinal immune system, with the

ratio of regulatory to inflammatory T cells going from*4:1 in uninfected mice to*1:4 follow-

ing infection. These findings are surprising also given the documented ability of several Lacto-

bacillus species to promote the induction or expansion of Treg cells in various tissues, under

different conditions, including parasite infection[64, 67–69]. The change in the balance be-

tween regulatory/inflammatory cells was established at an early time point after infection, prior

to the observed increase in Lactobacillaceae, and remained relatively stable over time, leading

us to conclude that other mechanisms control the differentiation and development of the adap-

tive immune response. We cannot however rule out that the altered microbiota may influence

on the immune response at later stages of the infection.

The Treg cells in our experiments appeared less prone to produce IL-10 as the infection pro-

gressed. Nonetheless, we did observe an early burst in IL-10 production by FoxP3- IFN-γ+

cells, possibly as a compensatory mechanism. However, this also abated with time, as did pro-

duction of IFN-γ+ and the inflammatory response in general. It is therefore possible that T.

muris causes immune exhaustion at later stages of chronic infection. Together, this implies a

strategy adopted by the immune system to prevent pathology rather than a direct mechanism

by the worm to prevent expulsion, as expulsion cannot take place at these low doses without

immune intervention, such as blockade of IFN-γ. It is important to note however that these

findings only apply to low dose infections. High dose infections are cleared within 2–3 weeks

in most mouse strains [70], and it is possible that Treg cell induction occurs by a different ki-

netic and plays a different role under these conditions.

In summary, our data demonstrate that chronic infection with the nematode T.muris re-

sults in an altered intestinal microbiota as well as a perturbed immune regulatory/inflammato-

ry balance. Our results are largely consistent and complementary to those of Houlden et al.

published simultaneously to this paper[71], highlighting the reliability of our findings. These

studies are of fundamental importance and considerable relevance, especially given the high in-

cidence of worm infections worldwide and current efforts to use parasitic nematodes to amelio-

rate disorders associated with perturbations in the immune system.

Supporting Information

S1 Fig. Experimental outline of chronic T.muris infection. Thirty mice were divided into

three groups, each consisting of ten individuals. The first group of ten mice was sacrificed at

day 0, and caecal and faecal samples were collected as reference. Of the remaining two groups

of then mice, one was infected (“Infected”) with approximately twenty infective T.muris eggs,

while the other was left uninfected (“Uninfected”). Fresh faeces were sampled regularly from

mice of both groups and the mice were monitored over time until day 35 after infection, when

the mice were sacrificed. Caecum and colon contents were collected and analysed for micro-

biota composition. � These caecal samples are from ten mice sacrificed at day 0 and do there-

fore not represent repeated sampling as for the faecal samples.

(EPS)

S2 Fig. Early grouping visualised when comparing infected with uninfected faecal samples.

NMDS plots using Bray-Curtis dissimilarity indices of faecal microbiota samples from 10

chronically infected and 10 uninfected mice sampled from day 0 to day 35. Ellipses are col-

oured according to treatment (infected/uninfected). Relative abundance at family level are fit-

ted as vectors-based 9999 permutations and scaled by their correlation coefficient.

(EPS)
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S3 Fig. Early grouping visualised when comparing faecal samples at different time points

after infection. NMDS plots using Bray-Curtis dissimilarity indices of faecal microbiota sam-

ples from 10 chronically infected mice sampled from day 0 to day 35. Ellipses are labelled ac-

cording to the corresponding day of analysis. Relative abundance at family level are fitted as

vectors-based 9999 permutations and scaled by their correlation coefficient.

(EPS)

S4 Fig. Microbiota samples at day 35 after infection illustrate similar effects of chronic T.

muris on both the faecal and caecal microbiota. NMDS plot using Bray-Curtis dissimilarity

indices of colonic and caecal microbiota samples from day 35. Mouse ID numbers are indicated

with numbers inside the data points. Faecal and caecal samples are indicated with triangle and

circle, respectively. Dotted line separates infected from uninfected samples.

(EPS)

S5 Fig. No grouping was apparent as effect of time in the uninfected faecal samples. NMDS

plot using Bray-Curtis dissimilarity indices of faecal microbiota samples from 10 uninfected

mice sampled from day 0 to day 35.

(EPS)

S6 Fig. Chronic T.muris infection results in decreased gamma diversity of the microbiota.

Gamma diversity (measurement of overall diversity of pooled data) based on Shannon index of

untrimmed microbiota data for faecal and caecal samples. Data were pooled group- and time

point-wise. The light blue colour for caecal samples from uninfected mice indicates the ten

mice sacrificed at day 0, and therefore not repeatedly sampled as for the faecal samples. No sta-

tistics were applied as the samples were pooled and thereby only provide one single value per

time point and treatment.

(EPS)

S7 Fig. The microbiota composition is highly affected by chronic T.muris infection at the

phylum level. Taxa summary plots at phylum level showing (A) changes in microbiota compo-

sition of faecal samples from the infected mice from day 0 to day 35 and (B) the different

microbiota composition between uninfected and infected mice at day 35 for faecal and caecal

samples. “Unknown” refers to OTUs that we were unable to classify. Data represents mean

relative abundance.

(EPS)

S8 Fig. Phylogenetic analysis of Lactobacillaceae by Maximum Likelihood-method illus-

trates species candidates affected by chronic T.muris infection. The bar-plot illustrates the

relative abundance of the OTUs classified within the Lactobacillaceae family in day 35 faecal

samples from infected mice. Phylogenetic analyses were conducted using the representative se-

quences from the given OTUs (shown in red) and classified 16S rRNA gene sequences from

the Lactobacillaceae family downloaded from The Ribosomal Database Project (RDP)[50]. The

branch labels contain the RDP sequence identifier number, species name and information on

the strain from which the sequence was obtained. The tree with the highest log likelihood

(-2535,1977) is shown. The tree is drawn to scale, with branch lengths measured in the number

of substitutions per site.

(EPS)

S9 Fig. Distinct responses to chronic T.muris infection in the faecal microbiota at the fami-

ly level. Taxa summary plots at family level showing changes in microbiota composition at day

35 of faecal samples from each individual (A) uninfected and (B) infected mouse. “Unknown”
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refers to OTUs that we were unable to classify.

(EPS)

S10 Fig. Effects of chronic T.muris infection on inflammatory and regulatory T cell popu-

lations in the LI LP and MLN. (A) Haematopoietic cell numbers (cellularity) in the MLN of T.

muris-infected and uninfected mice. (B) Proportion of CD8α+ TCRβ+ cells in the LI LP of T.

muris-infected and uninfected mice. (C) Histograms of T-bet (left) and IL-10 (right) expres-

sion by IFN-γ+ and FoxP3+ CD4+ T cells, respectively, in the LI LP of T.muris-infected and un-

infected mice. Blue = uninfected, red = T.muris-infected (day 35), grey = staining control. (D)

Proportion of IFN-γ+ T-bet+ CD8α+ T cells, in the LI LP of T.muris-infected and uninfected

mice. (E) T.muris-derived E/S antigen-specific secretion of IFN-γ by cells isolated from the

MLN of T.muris-infected and uninfected mice after ex vivo stimulation for 48 h. (F-G) Propor-

tion of (F) FoxP3+ CD4+ T cells, and (G) IL-10+ IFN-γ+ FoxP3- CD4+ T cells in the MLN and

LI LP, respectively of T.muris-infected and uninfected mice. (H) E/S antigen-specific secretion

of IL-10 by cells isolated from the LI LP of T.muris-infected and uninfected mice after ex vivo

stimulation for 48 h. Bar graphs are displayed as mean (n = 6) with standard deviation. Statisti-

cal analyses were performed with one-way ANOVA, followed by Tukey’s post-test for multiple

comparisons, using Prism (GraphPad software). The following definitions were used to denote

statistical significance: � (p<0.05), �� (p<0.01), ��� (p<0.001), while p>0.05 was considered

not significant (NS).

(EPS)

S1 Table. Adonis test of significance illustrates a significant effect of chronic T.muris on

the microbiota. Adonis test of significance performed using Bray-Curtis distance matrix. The

following definitions were used to denote statistical significance: � (p�0.05), �� (p�0.01), ���

(p�0.001), while p>0.05 was considered not significant.

(DOCX)

S2 Table. Bacterial taxa that differed significantly within caecal samples after T.muris in-

fection. List of significantly (adj. p-value<0.05) increased or decreased abundance of bacteria

at multiple taxonomic ranks when comparing infected with uninfected samples at the given

timepoints. Statistics were performed using metagenomeSeq[46]. Data are given with the prev-

alence for the given bacteria, absolute counts, and relative abundance.

(EPS)

S3 Table. The Representative Sequences for the OTUs classified in the Lactobacillaceae

family and used for the Phylogenetic analysis to identify species candidates affected by

chronic T.muris infection . The 9 OTUs named L#1 to L#9 were classified in the Lactobacilla-

ceae family according to Greengenes database v11_2 [44] using the RDP-classifier [45] with an

80% confidence threshold.

(DOCX)

Acknowledgments

The technical assistance of Marianne Knudsen (University of Copenhagen) is

greatly acknowledged.

Author Contributions

Conceived and designed the experiments: JBH DS PK KKMSF. Performed the experiments:

JBH DS. Analyzed the data: JBH DS. Contributed reagents/materials/analysis tools: PK YRC JE

TM. Wrote the paper: JBH DS PK YRC JE LM KKMSF.

Chronic Trichuris muris Infection and the Intestinal Microbiota

PLOS ONE | DOI:10.1371/journal.pone.0125495 May 5, 2015 18 / 22

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0125495.s010
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0125495.s011
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0125495.s012
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0125495.s013


References
1. Sommer F, Backhed F. The gut microbiota—masters of host development and physiology. Nature re-

views Microbiology. 2013; 11(4):227–38. doi: 10.1038/nrmicro2974 PMID: 23435359

2. Tremaroli V, Backhed F. Functional interactions between the gut microbiota and host metabolism. Na-
ture. 2012; 489(7415):242–9 doi: 10.1038/nature11552 PMID: 22972297

3. Backhed F, Ding H, Wang T, Hooper LV, Koh GY, Nagy A, et al. The gut microbiota as an environmen-
tal factor that regulates fat storage. Proceedings of the National Academy of Sciences of the United
States of America. 2004; 101(44):15718–23. PMID: 15505215

4. Russell WR, Hoyles L, Flint HJ, Dumas ME. Colonic bacterial metabolites and human health. Current
opinion in microbiology. 2013; 16(3):246–54. doi: 10.1016/j.mib.2013.07.002 PMID: 23880135

5. Mazmanian SK, Liu CH, Tzianabos AO, Kasper DL. An immunomodulatory molecule of symbiotic bac-
teria directs maturation of the host immune system. Cell. 2005; 122(1):107–18. PMID: 16009137

6. Hooper LV, Littman DR, Macpherson AJ. Interactions between the microbiota and the immune system.
Science. 2012; 336(6086):1268–73. doi: 10.1126/science.1223490 PMID: 22674334

7. Ivanov II, Atarashi K, Manel N, Brodie EL, Shima T, Karaoz U, et al. Induction of intestinal Th17 cells by
segmented filamentous bacteria. Cell. 2009; 139(3):485–98. doi: 10.1016/j.cell.2009.09.033 PMID:
19836068

8. Reeves AE, Koenigsknecht MJ, Bergin IL, Young VB. Suppression of Clostridium difficile in the gastro-
intestinal tracts of germfree mice inoculated with a murine isolate from the family Lachnospiraceae. In-
fection and immunity. 2012; 80(11):3786–94. doi: 10.1128/IAI.00647-12 PMID: 22890996

9. Kamada N, Kim YG, Sham HP, Vallance BA, Puente JL, Martens EC, et al. Regulated virulence con-
trols the ability of a pathogen to compete with the gut microbiota. Science. 2012; 336(6086):1325–9.
doi: 10.1126/science.1222195 PMID: 22582016

10. Rausch S, Held J, Fischer A, Heimesaat MM, Kuhl AA, Bereswill S, et al. Small intestinal nematode in-
fection of mice is associated with increased enterobacterial loads alongside the intestinal tract. PloS
one. 2013; 8(9):e74026. doi: 10.1371/journal.pone.0074026 PMID: 24040152

11. Walk ST, Blum AM, Ewing SA, Weinstock JV, Young VB. Alteration of the murine gut microbiota during
infection with the parasitic helminth Heligmosomoides polygyrus. Inflammatory bowel diseases. 2010;
16(11):1841–9. doi: 10.1002/ibd.21299 PMID: 20848461

12. Frank DN, St Amand AL, Feldman RA, Boedeker EC, Harpaz N, Pace NR. Molecular-phylogenetic
characterization of microbial community imbalances in human inflammatory bowel diseases. Proceed-
ings of the National Academy of Sciences of the United States of America. 2007; 104(34):13780–5.
PMID: 17699621

13. Callender JE, Grantham-McGregor S, Walker S, Cooper ES. Trichuris infection and mental develop-
ment in children. Lancet. 1992; 339(8786):181. PMID: 1370339

14. Nokes C, Grantham-McGregor SM, Sawyer AW, Cooper ES, Bundy DA. Parasitic helminth infection
and cognitive function in school children. Proceedings Biological sciences / The Royal Society. 1992;
247(1319):77–81. PMID: 1349184

15. Hewitson JP, Grainger JR, Maizels RM. Helminth immunoregulation: the role of parasite secreted pro-
teins in modulating host immunity. Molecular and biochemical parasitology. 2009; 167(1):1–11. doi: 10.
1016/j.molbiopara.2009.04.008 PMID: 19406170

16. Molodecky NA, Soon IS, Rabi DM, Ghali WA, Ferris M, Chernoff G, et al. Increasing incidence and
prevalence of the inflammatory bowel diseases with time, based on systematic review. Gastroenterolo-
gy. 2012; 142(1):46–54 e42; quiz e30. doi: 10.1053/j.gastro.2011.10.001 PMID: 22001864

17. Kondrashova A, Seiskari T, Ilonen J, Knip M, Hyoty H. The 'Hygiene hypothesis' and the sharp gradient
in the incidence of autoimmune and allergic diseases between Russian Karelia and Finland. APMIS:
acta pathologica, microbiologica, et immunologica Scandinavica. 2013; 121(6):478–93. doi: 10.1111/
apm.12023 PMID: 23127244

18. Kramer A, Bekeschus S, Broker BM, Schleibinger H, Razavi B, Assadian O. Maintaining health by bal-
ancing microbial exposure and prevention of infection: the hygiene hypothesis versus the hypothesis of
early immune challenge. The Journal of hospital infection. 2013; 83 Suppl 1:S29–34. doi: 10.1016/
S0195-6701(13)60007-9 PMID: 23453173

19. Saunders KA, Raine T, Cooke A, Lawrence CE. Inhibition of autoimmune type 1 diabetes by gastroin-
testinal helminth infection. Infection and immunity. 2007; 75(1):397–407. PMID: 17043101

20. Cooke A, Tonks P, Jones FM, O'Shea H, Hutchings P, Fulford AJ, et al. Infection with Schistosoma
mansoni prevents insulin dependent diabetes mellitus in non-obese diabetic mice. Parasite immunolo-
gy. 1999; 21(4):169–76. PMID: 10320614

Chronic Trichuris muris Infection and the Intestinal Microbiota

PLOS ONE | DOI:10.1371/journal.pone.0125495 May 5, 2015 19 / 22

http://dx.doi.org/10.1038/nrmicro2974
http://www.ncbi.nlm.nih.gov/pubmed/23435359
http://dx.doi.org/10.1038/nature11552
http://www.ncbi.nlm.nih.gov/pubmed/22972297
http://www.ncbi.nlm.nih.gov/pubmed/15505215
http://dx.doi.org/10.1016/j.mib.2013.07.002
http://www.ncbi.nlm.nih.gov/pubmed/23880135
http://www.ncbi.nlm.nih.gov/pubmed/16009137
http://dx.doi.org/10.1126/science.1223490
http://www.ncbi.nlm.nih.gov/pubmed/22674334
http://dx.doi.org/10.1016/j.cell.2009.09.033
http://www.ncbi.nlm.nih.gov/pubmed/19836068
http://dx.doi.org/10.1128/IAI.00647-12
http://www.ncbi.nlm.nih.gov/pubmed/22890996
http://dx.doi.org/10.1126/science.1222195
http://www.ncbi.nlm.nih.gov/pubmed/22582016
http://dx.doi.org/10.1371/journal.pone.0074026
http://www.ncbi.nlm.nih.gov/pubmed/24040152
http://dx.doi.org/10.1002/ibd.21299
http://www.ncbi.nlm.nih.gov/pubmed/20848461
http://www.ncbi.nlm.nih.gov/pubmed/17699621
http://www.ncbi.nlm.nih.gov/pubmed/1370339
http://www.ncbi.nlm.nih.gov/pubmed/1349184
http://dx.doi.org/10.1016/j.molbiopara.2009.04.008
http://dx.doi.org/10.1016/j.molbiopara.2009.04.008
http://www.ncbi.nlm.nih.gov/pubmed/19406170
http://dx.doi.org/10.1053/j.gastro.2011.10.001
http://www.ncbi.nlm.nih.gov/pubmed/22001864
http://dx.doi.org/10.1111/apm.12023
http://dx.doi.org/10.1111/apm.12023
http://www.ncbi.nlm.nih.gov/pubmed/23127244
http://dx.doi.org/10.1016/S0195-6701(13)60007-9
http://dx.doi.org/10.1016/S0195-6701(13)60007-9
http://www.ncbi.nlm.nih.gov/pubmed/23453173
http://www.ncbi.nlm.nih.gov/pubmed/17043101
http://www.ncbi.nlm.nih.gov/pubmed/10320614


21. McSorley HJ, O'Gorman MT, Blair N, Sutherland TE, Filbey KJ, Maizels RM. Suppression of type 2 im-
munity and allergic airway inflammation by secreted products of the helminth Heligmosomoides poly-
gyrus. European journal of immunology. 2012; 42(10):2667–82. doi: 10.1002/eji.201142161 PMID:
22706967

22. Ferreira I, Smyth D, Gaze S, Aziz A, Giacomin P, Ruyssers N, et al. Hookworm excretory/secretory
products induce interleukin-4 (IL-4)+ IL-10+ CD4+ T cell responses and suppress pathology in a mouse
model of colitis. Infection and immunity. 2013; 81(6):2104–11. doi: 10.1128/IAI.00563-12 PMID:
23545299

23. Elliott DE, Setiawan T, Metwali A, Blum A, Urban JF Jr., Weinstock JV. Heligmosomoides polygyrus in-
hibits established colitis in IL-10-deficient mice. European journal of immunology. 2004; 34(10):2690–
8. PMID: 15368285

24. Smith P, Mangan NE, Walsh CM, Fallon RE, McKenzie AN, van Rooijen N, et al. Infection with a hel-
minth parasite prevents experimental colitis via a macrophage-mediated mechanism. J Immunol. 2007;
178(7):4557–66. PMID: 17372014

25. Bager P, Arnved J, Ronborg S, Wohlfahrt J, Poulsen LK, Westergaard T, et al. Trichuris suis ova thera-
py for allergic rhinitis: a randomized, double-blind, placebo-controlled clinical trial. The Journal of allergy
and clinical immunology. 2010; 125(1):123–30 e1-3. doi: 10.1016/j.jaci.2009.08.006 PMID: 19800680

26. Broadhurst MJ, Leung JM, Kashyap V, McCune JM, Mahadevan U, McKerrow JH, et al. IL-22+ CD4+ T
cells are associated with therapeutic trichuris trichiura infection in an ulcerative colitis patient. Science
translational medicine. 2010; 2(60):60ra88. doi: 10.1126/scitranslmed.3001007 PMID: 21123811

27. Fleming JO, Isaak A, Lee JE, Luzzio CC, Carrithers MD, Cook TD, et al. Probiotic helminth administra-
tion in relapsing-remitting multiple sclerosis: a phase 1 study. Mult Scler. 2011; 17(6):743–54. doi: 10.
1177/1352458511398054 PMID: 21372112

28. Summers RW, Elliott DE, Urban JF Jr., Thompson R, Weinstock JV. Trichuris suis therapy in Crohn's
disease. Gut. 2005; 54(1):87–90. PMID: 15591509

29. Weinstock JV, Elliott DE. Translatability of helminth therapy in inflammatory bowel diseases. Interna-
tional journal for parasitology. 2013; 43(3–4):245–51. doi: 10.1016/j.ijpara.2013.06.010 PMID:
23911309

30. Cenit MC, Matzaraki V, Tigchelaar EF, Zhernakova A. Rapidly expanding knowledge on the role of the
gut microbiome in health and disease. Biochimica et biophysica acta. 2014.

31. Pullan RL, Smith JL, Jasrasaria R, Brooker SJ. Global numbers of infection and disease burden of soil
transmitted helminth infections in 2010. Parasites & vectors. 2014; 7:37.

32. Else KJ, Hultner L, Grencis RK. Cellular immune responses to the murine nematode parasite Trichuris
muris. II. Differential induction of TH-cell subsets in resistant versus susceptible mice. Immunology.
1992; 75(2):232–7. PMID: 1532377

33. Else KJ, Finkelman FD, Maliszewski CR, Grencis RK. Cytokine-mediated regulation of chronic intesti-
nal helminth infection. The Journal of experimental medicine. 1994; 179(1):347–51. PMID: 8270879

34. Dea-Ayuela MA, Rama-Iniguez S, Bolas-Fernandez F. Enhanced susceptibility to Trichuris muris infec-
tion of B10Br mice treated with the probiotic Lactobacillus casei. International immunopharmacology.
2008; 8(1):28–35. PMID: 18068097

35. Hayes KS, Bancroft AJ, Goldrick M, Portsmouth C, Roberts IS, Grencis RK. Exploitation of the intestinal
microflora by the parasitic nematode Trichuris muris. Science. 2010; 328(5984):1391–4. doi: 10.1126/
science.1187703 PMID: 20538949

36. Li RW,Wu S, Li W, Navarro K, Couch RD, Hill D, et al. Alterations in the porcine colon microbiota in-
duced by the gastrointestinal nematode Trichuris suis. Infection and immunity. 2012; 80(6):2150–7.
doi: 10.1128/IAI.00141-12 PMID: 22493085

37. Wu S, Li RW, Li W, Beshah E, Dawson HD, Urban JF Jr. Worm burden-dependent disruption of the por-
cine colon microbiota by Trichuris suis infection. PloS one. 2012; 7(4):e35470. doi: 10.1371/journal.
pone.0035470 PMID: 22532855

38. Cooper P, Walker AW, Reyes J, Chico M, Salter SJ, Vaca M, et al. Patent human infections with the
whipworm, Trichuris trichiura, are not associated with alterations in the faecal microbiota. PloS one.
2013; 8(10):e76573. doi: 10.1371/journal.pone.0076573 PMID: 24124574

39. Lee SC, Tang MS, Lim YA, Choy SH, Kurtz ZD, Cox LM, et al. Helminth colonization is associated with
increased diversity of the gut microbiota. PLoS neglected tropical diseases. 2014; 8(5):e2880. doi: 10.
1371/journal.pntd.0002880 PMID: 24851867

40. Wakelin D. Acquired immunity to Trichuris muris in the albino laboratory mouse. Parasitology. 1967; 57
(3):515–24. PMID: 6048569

Chronic Trichuris muris Infection and the Intestinal Microbiota

PLOS ONE | DOI:10.1371/journal.pone.0125495 May 5, 2015 20 / 22

http://dx.doi.org/10.1002/eji.201142161
http://www.ncbi.nlm.nih.gov/pubmed/22706967
http://dx.doi.org/10.1128/IAI.00563-12
http://www.ncbi.nlm.nih.gov/pubmed/23545299
http://www.ncbi.nlm.nih.gov/pubmed/15368285
http://www.ncbi.nlm.nih.gov/pubmed/17372014
http://dx.doi.org/10.1016/j.jaci.2009.08.006
http://www.ncbi.nlm.nih.gov/pubmed/19800680
http://dx.doi.org/10.1126/scitranslmed.3001007
http://www.ncbi.nlm.nih.gov/pubmed/21123811
http://dx.doi.org/10.1177/1352458511398054
http://dx.doi.org/10.1177/1352458511398054
http://www.ncbi.nlm.nih.gov/pubmed/21372112
http://www.ncbi.nlm.nih.gov/pubmed/15591509
http://dx.doi.org/10.1016/j.ijpara.2013.06.010
http://www.ncbi.nlm.nih.gov/pubmed/23911309
http://www.ncbi.nlm.nih.gov/pubmed/1532377
http://www.ncbi.nlm.nih.gov/pubmed/8270879
http://www.ncbi.nlm.nih.gov/pubmed/18068097
http://dx.doi.org/10.1126/science.1187703
http://dx.doi.org/10.1126/science.1187703
http://www.ncbi.nlm.nih.gov/pubmed/20538949
http://dx.doi.org/10.1128/IAI.00141-12
http://www.ncbi.nlm.nih.gov/pubmed/22493085
http://dx.doi.org/10.1371/journal.pone.0035470
http://dx.doi.org/10.1371/journal.pone.0035470
http://www.ncbi.nlm.nih.gov/pubmed/22532855
http://dx.doi.org/10.1371/journal.pone.0076573
http://www.ncbi.nlm.nih.gov/pubmed/24124574
http://dx.doi.org/10.1371/journal.pntd.0002880
http://dx.doi.org/10.1371/journal.pntd.0002880
http://www.ncbi.nlm.nih.gov/pubmed/24851867
http://www.ncbi.nlm.nih.gov/pubmed/6048569


41. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al. QIIME allows
analysis of high-throughput community sequencing data. Nature methods. 2010; 7(5):335–6. doi: 10.
1038/nmeth.f.303 PMID: 20383131

42. Kozich JJ, Westcott SL, Baxter NT, Highlander SK, Schloss PD. Development of a dual-index sequenc-
ing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina se-
quencing platform. Applied and environmental microbiology. 2013; 79(17):5112–20. doi: 10.1128/AEM.
01043-13 PMID: 23793624

43. Edgar RC. Search and clustering orders of magnitude faster than BLAST. Bioinformatics. 2010; 26
(19):2460–1. doi: 10.1093/bioinformatics/btq461 PMID: 20709691

44. DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, Keller K, et al. Greengenes, a chimera-
checked 16S rRNA gene database and workbench compatible with ARB. Applied and environmental
microbiology. 2006; 72(7):5069–72. PMID: 16820507

45. Wang Q, Garrity GM, Tiedje JM, Cole JR. Naive Bayesian classifier for rapid assignment of rRNA se-
quences into the new bacterial taxonomy. Applied and environmental microbiology. 2007; 73
(16):5261–7. PMID: 17586664

46. Paulson JN, Stine OC, Bravo HC, Pop M. Differential abundance analysis for microbial marker-gene
surveys. Nature methods. 2013; 10(12):1200–2. doi: 10.1038/nmeth.2658 PMID: 24076764

47. McMurdie PJ, Holmes S. phyloseq: an R package for reproducible interactive analysis and graphics of
microbiome census data. PloS one. 2013; 8(4):e61217. doi: 10.1371/journal.pone.0061217 PMID:
23630581

48. Oksanen J BF, Kindt R, Legendre P, O'Hara RB. Vegan: Community Ecology Package. R package ver-
sion 1.17–10. 2011.

49. Wickham H. Ggplot2: elegant graphics for data analysis. New York: Springer; 2009. viii, 212 p. p.

50. Cole JR, Wang Q, Fish JA, Chai B, McGarrell DM, Sun Y, et al. Ribosomal Database Project: data and
tools for high throughput rRNA analysis. Nucleic acids research. 2014; 42(Database issue):D633–42.
doi: 10.1093/nar/gkt1244 PMID: 24288368

51. Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic
acids research. 2004; 32(5):1792–7. PMID: 15034147

52. Tamura K, Nei M. Estimation of the number of nucleotide substitutions in the control region of mitochon-
drial DNA in humans and chimpanzees. Molecular biology and evolution. 1993; 10(3):512–26. PMID:
8336541

53. Humphreys NE, Worthington JJ, Little MC, Rice EJ, Grencis RK. The role of CD8+ cells in the establish-
ment and maintenance of a Trichuris muris infection. Parasite immunology. 2004; 26(4):187–96. PMID:
15367296

54. Atarashi K, Tanoue T, Shima T, Imaoka A, Kuwahara T, Momose Y, et al. Induction of colonic regulato-
ry T cells by indigenous Clostridium species. Science. 2011; 331(6015):337–41. doi: 10.1126/science.
1198469 PMID: 21205640

55. Atarashi K, Tanoue T, Oshima K, SudaW, Nagano Y, Nishikawa H, et al. Treg induction by a rationally
selected mixture of Clostridia strains from the humanmicrobiota. Nature. 2013; 500(7461):232–6. doi:
10.1038/nature12331 PMID: 23842501

56. Geuking MB, Cahenzli J, Lawson MA, Ng DC, Slack E, Hapfelmeier S, et al. Intestinal bacterial coloni-
zation induces mutualistic regulatory T cell responses. Immunity. 2011; 34(5):794–806. doi: 10.1016/j.
immuni.2011.03.021 PMID: 21596591

57. Grainger JR, Smith KA, Hewitson JP, McSorley HJ, Harcus Y, Filbey KJ, et al. Helminth secretions in-
duce de novo T cell Foxp3 expression and regulatory function through the TGF-beta pathway. The
Journal of experimental medicine. 2010; 207(11):2331–41. doi: 10.1084/jem.20101074 PMID:
20876311

58. McSorley HJ, Harcus YM, Murray J, Taylor MD, Maizels RM. Expansion of Foxp3+ regulatory T cells in
mice infected with the filarial parasite Brugia malayi. J Immunol. 2008; 181(9):6456–66. PMID:
18941236

59. Kostic AD, Xavier RJ, Gevers D. The microbiome in inflammatory bowel disease: current status and the
future ahead. Gastroenterology. 2014; 146(6):1489–99. doi: 10.1053/j.gastro.2014.02.009 PMID:
24560869

60. Hand TW, Dos Santos LM, Bouladoux N, Molloy MJ, Pagan AJ, Pepper M, et al. Acute gastrointestinal
infection induces long-lived microbiota-specific T cell responses. Science. 2012; 337(6101):1553–6.
PMID: 22923434

61. Hasnain SZ, McGuckin MA, Grencis RK, Thornton DJ. Serine protease(s) secreted by the nematode
Trichuris muris degrade the mucus barrier. PLoS neglected tropical diseases. 2012; 6(10):e1856. doi:
10.1371/journal.pntd.0001856 PMID: 23071854

Chronic Trichuris muris Infection and the Intestinal Microbiota

PLOS ONE | DOI:10.1371/journal.pone.0125495 May 5, 2015 21 / 22

http://dx.doi.org/10.1038/nmeth.f.303
http://dx.doi.org/10.1038/nmeth.f.303
http://www.ncbi.nlm.nih.gov/pubmed/20383131
http://dx.doi.org/10.1128/AEM.01043-13
http://dx.doi.org/10.1128/AEM.01043-13
http://www.ncbi.nlm.nih.gov/pubmed/23793624
http://dx.doi.org/10.1093/bioinformatics/btq461
http://www.ncbi.nlm.nih.gov/pubmed/20709691
http://www.ncbi.nlm.nih.gov/pubmed/16820507
http://www.ncbi.nlm.nih.gov/pubmed/17586664
http://dx.doi.org/10.1038/nmeth.2658
http://www.ncbi.nlm.nih.gov/pubmed/24076764
http://dx.doi.org/10.1371/journal.pone.0061217
http://www.ncbi.nlm.nih.gov/pubmed/23630581
http://dx.doi.org/10.1093/nar/gkt1244
http://www.ncbi.nlm.nih.gov/pubmed/24288368
http://www.ncbi.nlm.nih.gov/pubmed/15034147
http://www.ncbi.nlm.nih.gov/pubmed/8336541
http://www.ncbi.nlm.nih.gov/pubmed/15367296
http://dx.doi.org/10.1126/science.1198469
http://dx.doi.org/10.1126/science.1198469
http://www.ncbi.nlm.nih.gov/pubmed/21205640
http://dx.doi.org/10.1038/nature12331
http://www.ncbi.nlm.nih.gov/pubmed/23842501
http://dx.doi.org/10.1016/j.immuni.2011.03.021
http://dx.doi.org/10.1016/j.immuni.2011.03.021
http://www.ncbi.nlm.nih.gov/pubmed/21596591
http://dx.doi.org/10.1084/jem.20101074
http://www.ncbi.nlm.nih.gov/pubmed/20876311
http://www.ncbi.nlm.nih.gov/pubmed/18941236
http://dx.doi.org/10.1053/j.gastro.2014.02.009
http://www.ncbi.nlm.nih.gov/pubmed/24560869
http://www.ncbi.nlm.nih.gov/pubmed/22923434
http://dx.doi.org/10.1371/journal.pntd.0001856
http://www.ncbi.nlm.nih.gov/pubmed/23071854


62. Van den Abbeele P, Van deWiele T, VerstraeteW, Possemiers S. The host selects mucosal and lumi-
nal associations of coevolved gut microorganisms: a novel concept. FEMSmicrobiology reviews. 2011;
35(4):681–704. doi: 10.1111/j.1574-6976.2011.00270.x PMID: 21361997

63. Broadhurst MJ, Ardeshir A, Kanwar B, Mirpuri J, Gundra UM, Leung JM, et al. Therapeutic helminth in-
fection of macaques with idiopathic chronic diarrhea alters the inflammatory signature and mucosal
microbiota of the colon. PLoS pathogens. 2012; 8(11):e1003000. doi: 10.1371/journal.ppat.1003000
PMID: 23166490

64. Reynolds L, Smith K, Filbey K, Harcus Y, Hewitson J, Redpath S, et al. Commensal-pathogen interac-
tions in the intestinal tract: Lactobacilli promote infection with, and are promoted by, helminth parasites.
Gut microbes. 2014; 5(4). doi: 10.4161/gmic.32130 PMID: 25244596

65. Bollrath J, Powrie FM. Controlling the frontier: regulatory T-cells and intestinal homeostasis. Seminars
in immunology. 2013; 25(5):352–7. doi: 10.1016/j.smim.2013.09.002 PMID: 24184013

66. Rubtsov YP, Rasmussen JP, Chi EY, Fontenot J, Castelli L, Ye X, et al. Regulatory T cell-derived inter-
leukin-10 limits inflammation at environmental interfaces. Immunity. 2008; 28(4):546–58. doi: 10.1016/
j.immuni.2008.02.017 PMID: 18387831

67. Karimi K, Inman MD, Bienenstock J, Forsythe P. Lactobacillus reuteri-induced regulatory T cells protect
against an allergic airway response in mice. American journal of respiratory and critical care medicine.
2009; 179(3):186–93. doi: 10.1164/rccm.200806-951OC PMID: 19029003

68. Kim HJ, Kim YJ, Kang MJ, Seo JH, Kim HY, Jeong SK, et al. A novel mouse model of atopic dermatitis
with epicutaneous allergen sensitization and the effect of Lactobacillus rhamnosus. Experimental der-
matology. 2012; 21(9):672–5. doi: 10.1111/j.1600-0625.2012.01539.x PMID: 22742655

69. Jang SO, Kim HJ, Kim YJ, Kang MJ, Kwon JW, Seo JH, et al. Asthma Prevention by Lactobacillus
Rhamnosus in a Mouse Model is AssociatedWith CD4(+)CD25(+)Foxp3(+) T Cells. Allergy, asthma &
immunology research. 2012; 4(3):150–6.

70. Cliffe LJ, Grencis RK. The Trichuris muris system: a paradigm of resistance and susceptibility to intesti-
nal nematode infection. Advances in parasitology. 2004; 57:255–307. PMID: 15504540

71. Houlden A, Hayes KS, Bancroft AJ, Worthington JJ, Wang P, Grencis RK, et al. Chronic Trichuris muris
infection in C57BL/6 mice causes significant changes in host microbiota and metabolome: effects re-
versed by pathogen clearance. PLoS ONE.

Chronic Trichuris muris Infection and the Intestinal Microbiota

PLOS ONE | DOI:10.1371/journal.pone.0125495 May 5, 2015 22 / 22

http://dx.doi.org/10.1111/j.1574-6976.2011.00270.x
http://www.ncbi.nlm.nih.gov/pubmed/21361997
http://dx.doi.org/10.1371/journal.ppat.1003000
http://www.ncbi.nlm.nih.gov/pubmed/23166490
http://dx.doi.org/10.4161/gmic.32130
http://www.ncbi.nlm.nih.gov/pubmed/25244596
http://dx.doi.org/10.1016/j.smim.2013.09.002
http://www.ncbi.nlm.nih.gov/pubmed/24184013
http://dx.doi.org/10.1016/j.immuni.2008.02.017
http://dx.doi.org/10.1016/j.immuni.2008.02.017
http://www.ncbi.nlm.nih.gov/pubmed/18387831
http://dx.doi.org/10.1164/rccm.200806-951OC
http://www.ncbi.nlm.nih.gov/pubmed/19029003
http://dx.doi.org/10.1111/j.1600-0625.2012.01539.x
http://www.ncbi.nlm.nih.gov/pubmed/22742655
http://www.ncbi.nlm.nih.gov/pubmed/15504540

