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Abstract

Viral infection in the brain can be acute or chronic, with the responses often producing foci of increasingly
cytotoxic inflammation. This can lead to effects beyond the central nervous system (CNS). To stimulate
discussion, this commentary addresses four questions: What drives the development of human immunodefi-
ciency virus (HIV)-associated neurocognitive disorders, does the phenotype of macrophages in the CNS spur
development of HIV encephalitis (HIVE), does continual activation of astrocytes drive the development of
HIV-associated neurocognitive disorders/subclinical disease, and neuroinflammation: friend or foe? A unifying
theory that connects each question is the issue of continued activation of glial cells, even in the apparent
absence of simian immunodeficiency virus/HIV in the CNS. As the CNS innate immune system is distinct from
the rest of the body, it is likely there could be a number of activation profiles not observed elsewhere.
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Introduction

Although inflammation promotes the recruitment of
immune cells to combat bacterial and viral infection, the

product of these immune responses can damage tissues and
organs of the body. ‘‘Danger signals’’ are released by injured
and dying cells recruiting more immune cells to the site of
inflammation where they can further drive the immune re-
sponse, resulting in a positive feedback loop and chronic
inflammatory spiral (as reviewed in Ref. 76). When this in-
flammatory response occurs in the brain in response to bac-
terial or viral infection, the damage can be widespread, with
effects beyond the central nervous system (CNS).

Inflammation in the Brain

Inflammation in the brain can be acute or chronic. Acute
CNS inflammation is characterized by activation of as-
trocytes and microglia with increased secretion of pro-
inflammatory cytokines, including interleukin-1b (IL-1b),
tumor necrosis factor alpha (TNFa), and IL-6. This local
inflammatory response begins the recruitment of leukocytes,
including monocyte-derived macrophages (MDMs). Once
inside the CNS, macrophages can secrete cytokines and

chemokines, activating astrocytes that can then secrete more
cytokines and chemokines, leading to the positive feedback
loop alluded to earlier (82).

If the infectious agent is not completely controlled and
eradicated, it can lead to a localized increasingly cytotoxic
inflammation, which can have a cumulative effect over time
and result in chronic inflammation (6,82). In chronic in-
flammation, the prolonged glial activation leads to tissue
toxicity and neuron damage (82). To prevent this damage
from spreading, reactive astrocytes can proliferate and create
glial scars to block contact with healthy neurons; however,
such a scar can also hinder axonal regeneration (27,58,95).
That said, not all reactive astrocytes are protective, as long-
term activation of astrocytes can lead to sustained innate
immune activation. This will be addressed further in Question
3. In several viral infections, including simian immunodefi-
ciency virus (SIV) and chikungunya, astrocytes can remain in
an activated phenotype after immune clearance of virus,
leading to chronic implications of inflammation (47,56,99).

Toll-Like Receptors

As one of the major factors of innate immunity in the CNS,
Toll-like receptors (TLRs) are expressed on endothelial cells,
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astrocytes, microglia, and subsets of neurons. Of the 11
TLRs identified in humans, increased expression of TLR2,
TLR3, and TLR9 has been reported in CNS viral infections
(11–13,38,47,56–58). TLRs are professional molecular pat-
tern recognition receptors that elicit the innate immune re-
sponse, and later adaptive immune response, upon
encountering highly specific antigens, referred to as
pathogen-associated molecular patterns (PAMPs) and danger-
associated molecular patterns (DAMPs) (38). The release of
DAMPs, as a result of cell death or tissue remodeling, can
trigger activation of TLRs, assuming the correct pairing of
DAMP and TLR is present at the same time (38). It is also
possible that the strength of the binding between the TLR and
DAMP can influence the outcome, either neuroprotective or
neurodegenerative (69).

Although TLR2 is activated by interaction with bacterial
products, including cell wall components and lipoprotein,
TLR4 can be activated by damaged tissue markers such as
soluble CD14 (sCD14) and high mobility group box-1, both
of which can be shed from activated monocytes (64). Thus,
TLRs contribute to brain injury through activation of micro-
glia and astrocytes, downstream release of proinflammatory
cytokines, and further recruit peripheral immune cells to the
CNS. Increasing evidence is showing that once activated,
astrocytes can have a prolonged increase in expression of
TLR2. This is likely to have long-term effects, including
macrophage recruitment and retention in the CNS, which is
addressed in Question 2.

Encephalitic Viruses

Numerous viruses can cause encephalitis, including her-
pes simplex, cytomegalovirus (CMV), the Togaviridae and
Flaviviridae, and human immunodeficiency virus (HIV).
CMV has been shown to be a cause of mental retardation,
cerebral palsy, and has been linked to the development of
brain tumors (19,84). Togaviridae, similar to chikungunya,
have neurological sequelae, including immune activation of
astrocytes, even in the absence of apparent virus in tissues
(47). Flaviviridae, similar to Dengue and Zika, showed hy-
pertrophy of astrocytes in the absence of neuroinflammation
and vascular leakage, indicating activation of astrocytes that
continued after viral control (57).

Perhaps the most widely studied virus associated with
encephalitis is HIV. HIV and the parent virus SIV subvert
the innate and adaptive immune responses, in part, through
infection and reprogramming of myeloid cells (49,82). Be-
cause of this, HIV and its model, SIV, are the focus of this
commentary.

Studies of HIV infection of CD4+ T cell subpopulations
have become increasingly popular (22). However, too often
analyses of other cell types are excluded. Once CD4+ T cells
become infected, they experience cytopathic effects and
often die, which is why a CD4+ latent reservoir model is
losing popularity. Viral outgrowth analyses have shown that
there are greater number of infected monocytes and MDMs
than CD4+ T cells in blood, bronchoalveolar lavage, lungs,
spleen, and brain (3). It has almost become forgotten that
HIV is a lentivirus and, therefore, infects monocytes and
traffics to the CNS within a Trojan horse (21,92). Beyond
this, there is much debate, fueled by several studies that
suggest, but without proving, a lesser role of macrophages

and other cell types. This commentary seeks to pose some
questions that some may see as controversial.

1. What drives the development of HIV-associated neu-
rocognitive disorders (HANDs)?

2. Does the phenotype of macrophages in the CNS spur
development of HIV encephalitis (HIVE)?

3. Does continual activation of astrocytes drive the de-
velopment of HANDs/subclinical disease?

4. Neuroinflammation: friend or foe?

Q1: What Drives the Development of HANDs?

HANDs are the collective term for HIV-related neuro-
logical impairment. HANDs are broken down into asymp-
tomatic, referred to as asymptomatic neurocognitive
impairment (ANI), and symptomatic, which is further broken
down into the classifications mild neurocognitive disorder/
impairment (MND/I) and HIV-associated dementia (HAD).
Pathologically, HIVE has been defined by perivascular
leukocytic infiltrates, perivascular cuffing, and gliosis, but
the unique diagnostic criteria are the presence of multinu-
cleated giant cells (MNGCs) in the brain (80). MNGCs are
giant cells created by the cell–cell fusion of macrophages in
response to chronic inflammation, as is seen in chronic HIV
infections (61,63).

Despite the advent of combination antiretroviral therapies
(cARTs) and the resulting suppression of viral replication, the
prevalence of HIV-associated neurocognitive impairment has
increased (5), most likely due to ongoing neuroinflammation.
The 2010 CHARTER study found that >52% of HIV-infected
individuals had a neurocognitive disorder, with 7% diagnosed
with HAD, 12% diagnosed with MND/I, and 33% with ANI
(5,41). Patients with HAND and HIVE experience worse
adherence to treatment, lower quality of life, and a higher rate
of mortality than patients without it (5,65,66). Another study
found that 25–30% of untreated adults with HIV-1 and 15%
of patients treated with cART had HAND (77). Many hy-
potheses have been proposed, such as a legacy effect, which
suggests damage was already done before the initiation of
therapy (78), cART neurotoxicity, and the inability of cART
to cross the blood–brain barrier (BBB) (5). It is possible that
this damage is due to chronic activation of astrocytes and
other glial cells of the brain, which are chronically activated
in SIV/HIV infection and can persist in the absence of virus
in CNS (56). We will return to this idea in Question 3.

Monocyte invasion is linked to the development and
pathogenesis of HIVE (40,62), and increased monocyte
turnover predicts the progression of HIV infection to AIDS,
and is also correlated with the severity of HIVE (10). There
are three subsets of monocytes, which have since been
termed classical, nonclassical, and intermediate mono-
cytes. Classical monocytes are characterized by high CD14
expression, low-to-no CD16 expression, and moderate
CD64 expression and comprise about 90% of the circulating
monocytes in blood. Intermediate and nonclassical mono-
cytes make up the rest of the monocytes circulating and
differ in that they express CD16. Intermediate monocytes
are distinguished by high CD14 and CD64 expression,
whereas nonclassical monocytes have low CD14 expression
and no CD64 expression (2). CD16+ monocytes are selec-
tively infected with HIV, are preferentially attracted to the
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endothelial receptors of the BBB, and have increased
junctional proteins such as JAM-A, ALCAM, and PECAM-1
to mediate the diapedesis (60,87,88,91). CD16+ monocytes
have also been shown to promote higher viral replication than
CD16- monocytes when they differentiate into macrophages
and interact with T cells (2).

There are two overlapping theories for how monocytes
enter the CNS, the ‘‘Trojan horse’’ and the ‘‘Trojan herd.’’
The monocyte ‘‘Trojan horse’’ model theorizes that an in-
fected monocyte traffics across the BBB during normal im-
mune surveillance early in infection [usually around 10–14
days postinfection (55)]. Once this infected monocyte enters
the CNS, it becomes a productively infected macrophage,
inducing more (potentially infected) monocytes to cross the
BBB, forming perivascular cuffs of cells and triggering lim-
ited breakdown of the BBB, including the choroid plexus
(26,70). It is believed these infected monocytes cross the
BBB and differentiate into MDM and infect CNS resident
macro- and microglia and lead to viral latency (49,54). Re-
cently, the ‘‘late invasion’’ or ‘‘Trojan herd’’ model was
proposed, where changes in the circulating monocyte pheno-
type described earlier can lead to increased cycles of invasion
of monocytes in late-stage infection (30,34).

Macrophages and microglia are the primary targets of HIV
infection in the CNS (18,97). Since both activated microglia
and MDMs secrete proinflammatory cytokines, it has been
debated over which drove SIV infection of the brain; how-
ever, in vivo and in vitro (74) studies suggest it is more likely
that infiltrating macrophages drive the microglial response to
SIV infection. These microglia activated by infiltrating MDMs
had increased levels of monocyte chemoattractant protein-1
(MCP-1/CCL2), granulocyte–macrophage colony stimulating
factor, and TNFa, regardless of whether the macrophages
were SIV infected or not, although there were increased
levels of IL-6, IL-8, and vascular endothelial growth factor
when SIV-infected macrophages were introduced (74).

Q2: Does the Phenotype of Macrophages in the
CNS Spur Development of HIVE?

SIV encephalitis is only seen in chronic infection with
macrotrophic strains of SIV, providing further evidence of
macrophage involvement in AIDS disease progression (83).
At least three types of macrophages have been identified
within the brain: microglia, perivascular macrophages, and
choroid plexus macrophages (36,50). It was once thought that
microglia populated the brain early in utero with very little
turnover during the life span (94). Recent evidence using
selective depletion of microglia (24,45), however, shows the
presence of a population of microglia progenitor cells.

Perivascular macrophages have a comparatively short
turnover: within 14 weeks, based on labeling studies (4).
Perivascular macrophages were identified as a major cell
productively infected during acute and terminal SIV infection
and form the characteristic macrophage cuffs and MNGCs
that are the defining pathological characteristic of HIVE (93).

Within the choroid plexus, there are two distinct popu-
lations of macrophages: choroid plexus macrophages are
believed to be long-term tissue established macrophages,
whereas perivascular macrophages, which lie along the
fenestrated capillaries inside the choroid plexus, are the
short-lived MDMs (36).

Changes to monocyte and macrophage phenotype and
differentiation can lead to the development of HANDs
(20,29). The dogma used to be that there were two pheno-
types of CNS macrophages, proinflammatory M1, and anti-
inflammatory M2, although recent studies have expanded the
macrophage polarization to also include MØ and M4. M1 and
M2 are the most widely characterized, with increasing
number of subsets for M2 phenotypes proposed, including
M2a, M2b, and M2c. M1 is believed to be classically acti-
vated and proinflammatory (triggering Th1 responses and
secretion of IL-1, IL-12, TNFa, and ROS), whereas M2 is
alternatively activated and anti-inflammatory (triggering Th2
responses and secretion of IL-10) (17,48). Ourselves and
others have shown the presence of TNFa-producing macro-
phages in macaques with SIVE (67), yet M1 polarization may
inhibit HIV from even integrating into macrophages (81). The
time of monocyte recruitment, early or late in infection, can
polarize the monocytes to either M1 or M2, respectively (37).

The type, degree, and length of macrophage activation can
drive neuroprotection or neurodegeneration (1), leading to
apparently contradictory phenotypes. For example, a receptor
for haptoglobin–hemoglobin, CD163, has been described as a
marker of M2 macrophages (25,31). Conversely, upregulation
of CD163 on monocytes may follow activation of TLR2 (89).
M2-polarized perivascular macrophages, double positive for
CD163 and CD16 (which we described earlier as being
preferentially infected with HIV), can be found in the CNS
early in infection (7,25), and correlated with plasma viral load
and negatively correlated with CD4+ T cells (10,31). How-
ever, CD163 is not an exclusive marker for perivascular
macrophages; it can also identify activated microglia and
choroid plexus macrophages (7,53). To complicate the issue
further, CD163 is shed from monocytes/macrophages after
exposure to TNFa, soluble CD163 is elevated in chronic HIV
infection (9,25) and correlates with the percentage of inter-
mediate and nonclassical monocytes in HIV infection (9).
Thus, it is possible that M1 polarization, traditionally con-
sidered proinflammatory, actually prevents HIV replication,
whereas the anti-inflammatory M2 phenotype may be more
permissive to HIV replication and disease progression (68).

CD206 was originally thought of as a selective marker for
perivascular macrophages, linked to an M2 phenotype. A
phenotypic shift from CD206+ to CD206- perivascular
macrophages has also been observed in SIV-infected rhesus
macaques, indicating that the virus might cause changes in
macrophage phenotype (46). Increased migration and pro-
liferation of macrophages [a hallmark of M1 polarization
(48)] lead to their accumulation and ultimately the forma-
tion of MNGCs, which are usually positive for viral RNA
(39). As productive viral infection in macrophages poten-
tially indicates an M2 phenotype, then the proliferative M1
neuroprotective response might be futile (28,46). It is also
possible that the accumulation of macrophages could con-
tribute to the damage of HIVE by polarizing more M2
macrophages from infiltrating myeloid cells (96).

Q3: Does Continual Activation of Astrocytes Drive the
Development of HANDs/Subclinical Disease?

Another potential source of increased monocyte invasion
in both acute and chronic HIV infection is activated astro-
cytes. For too long, astrocytes were considered support cells
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maintaining neuron health and contributing to BBB integrity
(85). A protective role was acknowledged by protecting
neurons from inflammation by helping repair the BBB and
preserving surrounding tissue through the formation of glial
scars (32,85), as discussed earlier. Indeed, there may be no
direct counterpart for astrocytes in the peripheral immune
system (72). However, astrocytes also play a role in the
inflammatory damage linked to HIVE. Although astrocytes
have not been reported to be productively infected in adults,
they are postulated to be a latent reservoir even under ART.
Furthermore, once astrocytes are infected during acute in-
fection, they do not return to normal function as evidenced
by long-term dysregulation of TLRs (56). Astrocytes are
capable of being infected as they express both the CXCR4
and CCR5 coreceptors needed in HIV infection with re-
stricted infection of astrocytes reported in neonatal rhesus
macaques (59,90), although this may require specific tro-
pism of viral strains (59).

Astrocyte activation could drive the increased monocyte
turnover seen in HIV infection and HIVE. Astrocytes can be
activated through binding transactivator of transcription (Tat)
or cytokines secreted by neighboring microglia/MDMs. This
leads to increased expression of the adhesion molecules in-
tercellular adhesion molecule-1 and vascular cell adhesion
molecule-1 (86). These adhesion molecules then facilitate
increased monocyte migration into the brain through che-
motaxis and haptotaxis (35,52). Increased proinflammatory
cytokines have been observed in brain tissue after SIV/
HIV infection, including CCL2/MCP-1 and MCP-3/CCL7
(73,79,98). Although MCP-1/CCL2 recruits both monocytes
and T cells, CD4+ T cells are not found in large quantities

in the CNS in HIV infection (16,51). It is interesting to
note that astrocytic supernatant had increased CCL7 and
induced preferential migration of MDMs versus T cells (73).
This could explain why monocytes, rather than CD4+

T cells, are preferentially selected to the CNS during HIV
infection.

Under resting conditions, astrocytes express several TLRs
that can bind DAMPs and PAMPs, activating an im-
mune response (71). In HIV infection of the CNS, TLR2
is upregulated in astrocytes, which has been linked to sus-
tained inflammation due to the continuous secretion of
proinflammatory cytokines, and sustained TLR2 expression,
(8,23,42,56) even when no virus is evident in the CNS (56).
This is combined with decreased TLR9 expression (23). It is
easy to imagine how HIV hijacking of the normal innate
immune function of astrocytes would have long-standing
effects (Fig. 1).

Under normal conditions, astrocytes have high TLR9
(considered antiviral) and low TLR2 (considered antibac-
terial) (23,42,43). Thus, stimulation with a TLR2 agonist
results in fairly low levels of cytokines, but TLR9 binding
would be anticipated to induce higher secretion of cyto-
kines. Incubation with Tat protein induces decreased ex-
pression of TLR9 (23) and increased TLR2; stimulation
with TLR2 agonists induces increased cytokines (23,44).
Thus, Tat effectively hides astrocytes from the very infec-
tious agent they are stimulated by, making the astrocytes
refractory to stimulation through viral antigens! This could
provide an avenue through which astrocytes remain con-
tinually primed for activation, just not to the very virus that
has primed them.

FIG. 1. Under normal healthy conditions, astrocytes express high levels of TLR9 (generally thought of as antiviral) and
low levels of TLR2 (antibacterial). When stimulated through TLR2, cytokine secretion is low, whereas exposure to TLR9
agonists produces a higher secretion of cytokines. When astrocytes are exposed to HIV proteins, including Tat, there is a
phenotypic switch, both in vitro and in vivo. This means that if the astrocytes are then stimulated with TLR9 agonists, they
fail to produce cytokines, yet when stimulated through TLR2, they produce a cytokine response. This implies that Tat
protein hijacks the glia and creates increased activation through TLR2, while limiting the response to HIV viral antigens
through TLR9. HIV, human immunodeficiency virus; TLR, Toll-like receptor.
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Q4: Neuroinflammation: Friend or Foe?

Arguably, the damage associated with HANDs is not
caused by the virus, per se, but rather by the double-edged
sword that comprises the immunological response(s) within
the CNS. Obviously, inflammation is needed to control in-
fection and the damage caused by it; however, HIV may
have subverted this system, allowing for long-term and
progressive damage to the CNS. The HIV proteins glyco-
protein 120 (gp120), Tat, and negative regulatory factor
(Nef) may do more damage than the actual HIV infection of
the CNS cells.

HIV infection and damage of the brain is a multifaceted
positive and negative feedback system composed of mono-
cyte/macrophage, microglial, and astrocytic components. As
we have shown earlier, classically activated proinflammatory
M1-polarized macrophages (including microglia) are refrac-
tory to HIV replication; however, M2 macrophages, which
should be resolving neuroinflammation, allow HIV to repli-
cate (Q2). The result is an endless cycle of resolving and
relapsing activation of microglia and astrocytes (Q3), waves
of infiltrating monocytes (Q1), leading to chronic damage.

Once neuroinflammation is resolved, it is possible that the
damage might still exist. A difficulty in assessing the presence of
active inflammation in animal models is the histology at nec-
ropsy. If MNGCs are not identified on the hematoxylin and
eosin slide, does that mean the animal never experienced neu-
roinflammation? It is not even known whether the brain returns
to normal once MNGCs are present or whether this is a ‘‘point of
no return?’’ Are other nonimmune cells of the brain damaged
permanently? Pathologists are limited by the timing of nec-
ropsies, and H&Es do not always identify activation of non-
immune cells, including astrocytes and endothelium.

Some potential solutions moving forward would be to
target numerous aspects of CNS infection, thus preventing
initiation of the positive feedback loop. The best solution
remains to prevent HIV prophylactically, and the second
should be early and quick detection that allows for treat-
ment with cART with high neuropenetrance. Alternative
solutions under active investigation include blocking traf-
ficking of infected monocytes into the CNS (14,15). An-
other alternative therapy that is gaining popularity is the
use of tetrahydrocannabinol (THC). Levels of circulating
CD16+hi monocytes are lower in HIV+THC+ patients than
in untreated HIV+ patients, possibly by preventing the
CD16- to CD16+ transition (75). THC also blocks the mi-
gration of microglial-like cells to HIV tat (33). Further
studies are needed to elucidate the positive feedback loop in
HIV infection, as well as treatment options to target dif-
ferent parts of the positive feedback loop to prevent ram-
pant chronic damaging cellular activation and subsequent
neuroinflammation.
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