
Christophe Dousson and Pierre Le Maigat
France Telecom R&D,

2 avenue Pierre Marzin,
22307 Lannion cedex, France.

{christophe.dousson,pierre.lemaigat}@orange-ftgroup.com

Abstract

This article falls under the problem of the sym-
bolic monitoring of real-time complex systems or
of video interpretation systems. Among the vari-
ous techniques used for the on-line monitoring, we
are interested here in the temporal scenario recog-
nition. In order to reduce the complexity of the
recognition and, consequently, to improve its per-
formance, we explore two methods: the first one is
the focus on particular events (in practice, uncom-
mon ones) and the second one is the factorization of
common temporal scenarios in order to do a hierar-
chical recognition. In this article, we present both
concepts and merge them to propose a focused hi-
erarchical recognition. This approach merges and
generalizes the two main approaches in symbolic
recognition of temporal scenarios: the Store To-
tally Recognized Scenarios (STRS) approach and
the Store Partially Recognized Scenarios (SPRS)
approach.

1 Introduction
Symbolic scenario recognition arises in monitoring of dy-
namic systems in many areas such as telecommunications
networks supervision, gas turbine control, healthcare moni-
toring or automatic video interpretation (for an overview, re-
fer to [Cordier and Dousson, 2000]).

Such scenarios could be obtained among other things by
experts, by automatic learning [Fessant et al., 2004; Vautier
et al., 2005] or by deriving a behavioral model of the system
[Guerraz and Dousson, 2004]. Due to the symbolic nature
of those scenarios, the engine performing the recognition is
rarely directly connected to sensors. There is often (at least)
one dedicated calculus module which transforms the “raw”
data sent by the system into symbolic events. Typically this
module can compute a numerical quantity and sends sym-
bolic events when the computed value reaches given thresh-
olds. In cognitive vision, this module is usually a video-
processing which transforms images into symbolic data.

Often those scenarios are a combination of logical and tem-
poral constraints. In those cases, symbolic scenario recogni-
tion can process the scenarios uniformly as a set of constraints

(like the Event Manager of ILOG/JRules based on a modi-
fied RETE algorithm for processing time constraints [Berstel,
2002]) or separate the processing of temporal data from the
others like in [Dousson, 2002]. This article mainly deals with
this second approach where temporal constraints are managed
by a constraint graph between relevant time points of the sce-
narios. There are two approaches for dealing with tempo-
ral constraints: STRS recognizes scenarios by an analysis of
the past [Rota and Thonnat, 2000] and SPRS which performs
an analysis of scenarios that can be recognized in the future
[Ghallab, 1996]. Two main problems in the SPRS approach
are the fact that scenarios have to be bounded in time in order
to avoid never expected ending scenario (in practice, when
working on real-time systems, it is difficult to exhibit sce-
nario which cannot be bounded in time); and, second, that
SPRS engine has to maintain all partially scenarios which
possibly leads to use a large amount of memory space. To
partially avoid those drawbacks, the implementation of SPRS
algorithms in [Dousson, 2002] introduces a clock and dead-
lines which are used to garbage collect the pending scenarios.
On the other hand, the main problem with STRS algorithms
is to maintain all previously recognized scenarios. To our
knowledge, no work has been published on how long such
scenarios should be maintained. In addition, STRS does not
provide any kind of “prediction” as SPRS does.

A first attempt to take the benefits of both approaches was
made in [Vu et al., 2003]. It consists of a hierarchization of
the constraint graph of the scenario. It deals only with graphs
where all information about time constraints can be retrieved
from a path where temporal instants can be totally ordered.
The hierarchy constructs an imbricated sequence of scenar-
ios containing only two events at a time. The principle of the
recognition is, at any instant, to instantiate elementary scenar-
ios and when an event is integrated in a high-level scenario,
looking for previously recognized elementary scenarios. The
purpose of this article is to generalize this method; the start-
ing point will be an SPRS approach and the generalization
mixes reasoning on past and future. As a byproduct, STRS
and SPRS methods appear as two extreme kinds of the pro-
pose focused hierarchical recognition.

The next section presents the used SPRS approach and de-
tails some aspects which are relevant to this paper. The sec-
tion 3 is dedicated to the temporal focusing which enables the
system to focus on uncommon events prior to others. Events

IJCAI-07
324

Chronicle Recognition Improvement
Using Temporal Focusing and Hierarchization



could be not only basic events coming directly from the su-
pervised system but aggregated indicators. So the temporal
focusing could be used in order to control the computation of
such indicators on particular temporal windows and to avoid
useless computation. As such indicators could be themselves
scenarios, section 4 presents how the hierarchical recognition
deals with common subscenarios. Finally, we show that both
concepts could be merged and experimentally lead to good
improvement of performances. This will be the object of the
section 5.

We conclude in section 6 by experimentation on detect-
ing naive servers in a Reflected Distributed Denial of Service
(RDDoS) attack.

2 Chronicle Recognition System
Our approach is based on the chronicle recognition as pro-
posed in [Dousson, 2002] which falls in the field of SPRS
methods. A chronicle is given by a time constraint graph la-
beled by predicates.

An instance of event is a pair (e, t) where t is the date of
the event and e is its type. When no ambiguity results, we
sometimes do not distinguish between an event and its type.
Figure 1 shows a chronicle which contains four events: the
event e (if instantiated) must occur between 1 and 3 units of
time after an instantiation of f , the event g must occur be-
tween 0 and 3 units of time after e and between −1 and 4
units of time after e′.

[0,3]
e

e'
[-1,4]

g

f [1,3]

Figure 1: A chronicle.

Note that the complete formalism is based on a reified logic
(a chronicle is a conjunctive formula) and introduces also
predicates on persistency or event absence. In this article we
choose to present in details the focusing from the time con-
straint graph point of view, other predicates are also taken into
account but not discussed here.

2.1 Recognition Algorithms
Let CRS (Chronicle Recognition System) denote the algo-
rithm of recognition. Basically the mechanism of CRS is,
at each incoming event, to try to integrate it in all the pend-
ing (and partial) instances of the chronicle model and/or cre-
ated a new instance and calculating (using constraint propa-
gation [Dechter et al., 1991]) new forthcoming windows for
all the forthcoming events of each instance. An instance of
a chronicle model is then a partial instantiation of this model
and forthcoming windows fc(e) of a non-instantiated event e
is the (extended1) interval where the occurrence of an event
could lead to a recognition2.

1An extended interval is a disjoint union of intervals.
2This does not imply that, for all non instantiated events e, if

(e, t) occurs with t ∈ fc(e) then the instance is recognized. This a
difference between SPRS mechanism where integration of events is

Figure 2 shows the mechanism of the recognition algorithm
on a small example: when CRS receives f at 1, it creates the
new instance I1 and updates the forthcoming window of the
node e. When a new f occurs at 3, instance I2 is created (the
forthcoming windows of I1 is updated “using” a clock tick
set at 3). When e occurs, I3 is created (from I2) and I1 is
destroyed as no more event e could from now be integrated
into (instance I2 is not destroyed, waiting for another poten-
tial e between 5 and 6). As all events of I3 are instantiated
the chronicle I3 is recognized.

f e[1,3]

(f,1) e,[2,4]

(f,3) e,[4,6]

(f,1) e,[3,4]

(f,1) (f,3) (e,5)

(f,3) (e,5)

(f,3) e,[5,6]

Chronicle model

Chronicle instances

time

- Discarded -

I1
I2

I3

Figure 2: Created instances of a chronicle by the incoming
event stream (f, 1)(f, 3)(e, 5).

2.2 From Clock to “AssertNoMore” Event.
In first implementations of chronicle recognition, a clock was
introduced in order to discard “impossible” instances when
the clock goes past one of their forthcoming windows (see
behavior of I1 in figure 2).

In order to take into account some jitter in data transmis-
sion a possible delay δ can be taken into account. This de-
lay bounds the maximum difference observed at reception be-
tween two events sending at the same time by the (possibly
distributed) system. Basically, the event integration algorithm
could be written as following:

integrate((e, t));
setGarbageClock(t − δ)

The main drawback is that it implies that events arrive
roughly in a FIFO manner (the allowed jitter is bounded by
δ): so, when the FIFO hypothesis should be relaxed (and it
is often the case when the monitored system is distributed), δ
should be increased and the garbage efficiency decreases 3.

In order to avoid this, instead of a clock, we define a new
input message: “AssertNoMore(e, I)”, where e is an event
type and I an extended interval. It specifies to CRS that, from
now on, it will not receive more events of type e with an oc-
curence date in I . This mechanism is implemented in CRS by
managing one forthcoming window for each event type which
is updated when receiving an “AssertNoMore” message.

We do not describe here how CRS deals with this asser-
tion as it is very close to the previous CRS. Intuitively, all the
forthcoming windows of e are reduced (fc(e) \ I), these win-
dows are propagated according to the constraint graph of the

incremental and some STRS mechanism where integration is made
by block in a backward manner.

3In case of focusing, an other side effect of using clock is the
creation of “false” instances. This will be explained in section 6.

IJCAI-07
325



chronicle and, if a forthcoming window becomes empty, the
instance is discarded. The previous garbage collect of CRS
could be emulated by the following:

integrate((e, t));
∀ event type e′, AssertNoMore(e′, ] −∞, t − δ])

It illustrates that the previous clock management forces all
the event types to be synchronized: in other words, if one
kind of event could be widely jittered, then all event types
are supposed to be the same. Notice that, as we allow
the use of extended intervals, more complex garbage man-
agement could be easily implemented: it could be different
from ] −∞, clock] and non chronological: we could process,
for instance, “AssertNoMore(e, [10, 20] ∪ [30, 40])” and, then,
“AssertNoMore(e, [0, 10])”.

This point of view changes slightly the manner the engine
works: the progress of time is no more driven by the observa-
tions coming from the supervised system but by an “internal”
control, this control could be given by the knowledge of the
temporal behavior of the system. We will see in the next sec-
tion how this new feature is essential for an efficient temporal
focusing.

3 The Temporal Focusing
3.1 General Description
In some cases, not all events have the same status: in exam-
ple on figure 2, event f could be very frequent and event e
extremely uncommon. Due to this difference of frequency,
the recognition of the chronicle could be intractable in prac-
tice, indeed each event f potentially creates a new instance
of the chronicle waiting for other events: if a thousand f ar-
rive between 0 and 1, a thousand instances will be created.
As event e is extremely uncommon most of those instances
would be finally destroyed. In CRS, the number of creation
of instances has a great impact on performance of the recog-
nition. In order to reduce this number, we focus on event e in
the following manner: when events f arrive, we store them in
a collector and we created new instances only when events e
occur, then we will search in the collector which f could be
integrated in the instances. Potentially the number of created
instances will be the number of e and not the number of f .
In order to be not limited to uncommon events, we order the
recognition process by introducing a level for each event type.
The principle of the temporal focusing is then the following:

Temporal focusing: Begin the integration of events of level
n + 1 only when there exists an instance such that all events

of level between 1 and n had been integrated.
So, if level(e) ≤ level(f), the engine will integrate e at t = 5
then it will search in the collector all events f between t = 2
and t = 4. The collector finds (f, 3) and sends it to the en-
gine, this leads to the creation of the instance I3. Technically
we made the choice of sending f not only to instances wait-
ing for events of same level but to all the pending instances.
As the number of f sending from the collector to the engine
is small, only a small number instances are created. This also
ensures that the collector sends an event one and only one
time. So, in our example, (f, 3) leads to the creation of in-
stance I2 with fc(e) = [5, 6].

In addition to the recognition engine, we developed some
modules (see figure 3): an Event Router which routes the
events coming from the supervised system to either the en-
gine or the collector; a module named Finished Level De-
tector which detects when a particular instance of chronicle
has finished to integrate all events of level lesser than n, then
looks at the forthcoming windows of events of level n+1 and
sends them (through a “Focus” message) to the collector as a
request for events. At last, a module called No Need Window
Calculator, which computes for all current instances the win-
dows where they do not need events of greater level and sends
this information to the collector via a “Discard” message. In
order to make the buffer management easier, the collector it-
self is split into Buffered Streams: one for each event type.

Collector

(f,t)

(e,d)(f,t)…

Incoming
Events

Recognition
Engine
(CRS)

Event

Router

Finished Level

Detector

No Need Window 

Calculator

Buffered Stream f:
(f,t),(f,t')(f,t'')…

Buffered Stream g:

(g,d),(g,d')…

nm(f)
fil(f)

foc(f)

foc

fil(g)
nm(g)

(f,t)
+

AssertNoMore(f,[a,b])

Discard(f,]-�,x]�[y,z])
Focus(f,[a,b])

Figure 3: Architecture of the focused recognition.

At this stage, we have defined two messages for a feedback
control on the production of event of high level: CRS is able
to focus on specified time windows (by sending a “Focus”
message) but also could discard events in irrelevant time win-
dows (by sending a “Discard” message).

3.2 The Buffered Streams
The collector is composed of many buffered streams, each of
them is dedicated to one event type. This section presents
how it works: each buffered stream manages three particular
temporal windows (see figure 4) :

i) the assert no more window (nm) which contains all the
occurrence dates for that no more event will be received
from now,

filtered

window

time

focused window

no more window

buffered events

Figure 4: The 3 control windows used to manage the buffer.

IJCAI-07
326



ii) the filtered window (fil) which contains all the occur-
rence event dates for which the pending instances don’t
care, and

iii) the focus window (foc) which contains all the occurrence
dates for which incoming events are required and should
be integrated immediately by CRS without be stored.

The figure 5 illustrates the different cases of processing an
event according to its position against the temporal windows
of the buffered stream.

Fordidden
(should not happen)

The event f is
discarded

The event f is
sent to CRS

f f

f f
The event f
is buffered

Figure 5: The different cases of processing an event occur-
rence into a buffered stream (according to the event date).

Reception of control messages (“AssertNoMore”, “Discard”
or “Focus”) updates also the buffered stream:

“AssertNoMore(f, w)” : it updates the windows (see fig. 6)
nm ← nm∪w, fil ← fil\w and foc ← foc\w and sends
to CRS “AssertNoMore(f, w ∩ foc)”.

“Discard(f, w)” : it destroys all events in w, then updates
the windows : fil ← fil ∪ (w\nm), foc ← foc\w and
sends back to CRS “AssertNoMore(f, w)”4.

“Focus(f, w)” : it sends all events in w, then updates the
focused window: foc ← foc ∪ (w\(nm ∪ fil) and sends
back to CRS “AssertNoMore(f, w ∩ (nm ∪ fil))”.

So, during the recognition process, the following properties
are always true : i) The windows nm, fil and foc are mutually
exclusive. ii) There is no buffered event in the filtered and
the focused windows. Whatever the levels in a chronicle, this
mechanism performs exactly same recognitions as CRS with
no focusing; only the performances are affected.

3.3 Partial order and relative event frequencies
In figure 2, if e is much more frequent than f , there is no need
to define level, as, if no f was arrived, no e initiates new in-
stances, thus the number of partial instances equals number
of f . So relatively to an other event e, event f (very fre-
quent) should be leveled only if e �≤ f (in the partial order
induced by the constraints), in particular when e and f are

not ordered, for example if e
[−1,2]−→ f . We can decompose

instances into two categories: the instances where f is before
e for which the focusing will be particular efficient and the

4This message is a kind of acknowledgment used to synchronize
the event buffer state and the CRS state.

Buffer previous
state

AssertNoMore(f,w)

AssertNoMore
sent to CRS

Events sent
 to CRS

Focus(f,w)

AssertNoMore
sent to CRS

+

Events
deleted

Discard(f,w)

AssertNoMore
sent to CRS

+

Control Message

Buffer reply

Buffer next state

Figure 6: Behavior of a buffer when it receives one control
message (“AssertNoMore”, “Discard” or “Focus”).

other part where f is after e, in this case f should be directly
sent to the recognition engine which is done by the use of the
maintained focus window. An other case where focusing is

useful is when f
[a,b]−→ e, with a, b ≥ 0, with e FIFO but f

having a jitter delay greater than b. To sum up, setting a level
to an event is based on an a priori knowledge of its incoming
frequency and on its position in the constraint graph.

The focusing must be combined with hierarchization in the
case where one can identify uncommon sub-patterns or when
more than one occurrence of a frequent event is required for
the recognition (see section 5 and 6 for an example).

4 Hierarchical Chronicles
A hierarchical chronicle is a pair (C, {h1, . . . , hn}) where
C is the base chronicle and hi are the sub-chronicles; we
assume that events involved in C can take value in the set
of sub-chronicle labels {h1, . . . , hn}. We treat only deter-
ministic hierarchical chronicles5, i.e. we do not allow two
sub-chronicles having the same label, so, in the following,
we make no distinction between the chronicle and its label.
Moreover we suppose that each hi has a distinguished event
bi. The hierarchical chronicle C will be recognized if it is

5There is no technical difficulty to consider non-deterministic hi-
erarchical chronicles. The main difference is that expansion (see be-
low) leads to more than one chronicle. This is a possible way to
introduce disjunction in chronicle formalism.

IJCAI-07
327



(classically) recognized with integrated events labeled by a
sub-chronicle hi have the date of an integrated event bi in
a recognized instance of hi. In other words, when a sub-
chronicle hi is recognized, it “sends” to all chronicles the
event (hi, date of bi).

In figure 7, the hierarchical chronicle H = (C, {h, k})
possesses two sub-chronicles h and k, the chronicle k is com-
posed of two types of events: a basic one, f (which comes
from the supervised system) and one from the sub-chronicle
h. The distinguished events are respectively e and h.

h g

k h

[0,1]

[-1,2]

[2,3]

h

e

g

e

[1,1]
[2,3]

k
h f[1,2]

C

Figure 7: The hierarchical chronicle (C, {h, k}).

Let C be a chronicle with constraint graph G and with an
event h, where h is a subchronicle with distinguished ele-
ment b and with constraint graph V . Expanding the chronicle
C (or its graph) is replacing the node h ∈ G by the graph
V , specifying that the constraints between b and G\V are the
constraints of h ∈ G. Let the relation hi → hj be defined
if hj contains the event type hi. The hierarchical chronicle is
structurally consistent if ∀i, �hi →∗ hi. In this case the ex-
pansion of a hierarchical chronicle is well defined (the graph
of the figure 8 is the expansion of (C, {h, k})). A hierarchical
chronicle C is consistent if there exists a set of events s.t. C
is recognized. It is straightforward that a (structurally consis-
tent) hierarchical chronicle is consistent iff when expanding
sub-chronicles the obtained constraint graph is consistent.

g

f

[0,1] [-1,2]

[2,3]

e

g

e
[1,1]

[2,3]

e

g

e

[1,1]

[2,3]

e

g

e

[1,1]

[2,3]
[1,2]

Figure 8: The expansion of the hierarchical chronicle C.

Hierarchical chronicles can come from two ways: the first
one is that the chronicle is initially specified in a hierarchical
manner, for example if the architecture of the system is itself
hierarchical; the second one is, starting from a flat chronicle,
we identify identical patterns inside this chronicle. The next
proposition is a necessary and sufficient condition to the hier-
archization of a (temporal) pattern and shows we have to take
care in pattern factorization: two subgraphs could be identi-
cal (with same constraints) but one of them can satisfy the
condition and the other not.

Proposition 4.1 Let G be a minimal constraint graph and
U ⊆ G a subgraph. Let b ∈ U be a (distinguished) node and
H the hierarchical chronicle defined by G′ = (G\U) ∪ {h}
and h = U , where h ∈ G′ has the same constraints as node
b. Then H and G recognize the same events iff

∀a ∈ U,∀c ∈ G\U, Dac = Dab + Dbc (1)

where Dxy is the time constraint between nodes x and y in
the graph G.

5 Focused Hierarchical Recognition
In this section, we present how focusing and the hierarchiza-
tion could be mixed. We need to add a module which trans-
forms the windows of high level events representing sub-
chronicles into those of the different buffered streams rep-
resenting the events in the sub-chronicles.

We only present the formula for updating the filtered win-
dow: when the collector receives a “Discard” message for
f , it transforms it into a “Discard” message for all events of
the sub-chronicle f , but needs also to take into account other
high-level events. In order to do that, we also introduce a
filtered window for all high level events representing a sub-
chronicle.

So, the window of the “Discard” message receives by the
buffered stream of event type e (included in f ) is given by:⋂

e∈fi
fil(fi)/De,bi where De,bi is the time constraint from e

to the distinguished node bi of fi and where:

[u, v]/[a, b] =
{

[u − a, v − b] if u − a ≤ v − b
∅ otherwise

with natural extension to the set of extended intervals.

Remark: An example of gain of focusing vs. techniques
presented in [Vu et al., 2003] is that for subgraphs with [0, 0]
constraints (co-occurrence), we don’t have to explore combi-
nation of partial instantiation but only store events and wait
for an event in the future in order to extract from the collector
events with the “good” parameters; thus all the combinatorial
explosion of elementary scenarios is avoided.

6 Experimentation
This experiment was done on real data coming from the real
case application which motivates this work: the detection of
RDDoS (Reflected Distributed Denial of Service) attacks in
IP networks.

In such attack, machines with the spoofed IP address of
the victim send SYN messages to naives servers. Then, those
servers will reply by sending to the victim SYN/ACK mes-
sages generating a massive flooding. Characteristic of the
attack is that SYN traffic to naive server is low, persistent
and, taken alone, do not trigger an alarm. We want to iden-
tify the naive servers. In our experiment, information on the
global traffic are sent way up by dozens of core routers. Pre-
processing is done by a particular numerical algorithm which
computes throughput between pairs of IP addresses and sends
alarms when this throughput is greater than two thresholds: a
low one (L events) and a high one (H events).

IJCAI-07
328



So CRS receives two kinds of events: H[ip dest] and
L[ip scr, ip dest] where variables are IP addresses of the
source and of the destination. To identify the IP addresses
of the naive servers, the focused hierarchical chronicle to rec-
ognize is :

H[ip-dest],t1

H[ip-dest],t2

SynLow[ip-dest, *],t0

[1,60]

[0,120]

SynLow[ip_src, ip_dest]

L[ip_src, ip_dest],d1

L[ip_src, ip_dest],d2

L[ip_src,ip_dest],d3

[0,+oo]

[0,120]

[0,+oo]

Figure 9: The focused chronicle to detect naive servers.

where event H is of level 1 and SynLow of level 2.
We do not discuss here the choice of threshold nor the
relevance of the chronicle, our aim is to present performance
of focusing face to huge amount of data. The log contains
�240,000 events (L and H), its period is equal to �6min,
frequencies are �660 L/sec and �3 H/sec. Due to a lack of
synchronization of routers the jitter delay is set to 60s. We
compare processing time6 for 4 different cases: on one hand,
using previous CRS with clock management (clk) [Dousson,
2002] or using CRS with “AssertNoMore” extension (anm),
and on the other hand by using a hierarchical chronicle with
focusing (fh) or the corresponding flat chronicle.

processing created maximal
time instances collector’s size

CRS+clk 17 min. 236 600 n.a.
CRS+anm 14 min. 236 600 n.a.
fh-CRS+clk 3 min. 3550 4800
fh-CRS+anm 7 s. 1840 1330

Considering only the anm extension, the processing time
decreases a little since the garbage collect is more efficient:
partial instances have a shorter lifetime in memory. The
amount of created instances is considerably reduced when us-
ing focusing. The difference between number of instances
when using clock (3550) and when using anm (1840) is ex-
plained on this example: for the leveled chronicle of figure
2, when f arrives at t = 1, we store it and the clock is set
to 1; but when (e, 3) arrives, the clock can not be set to 3
otherwise all current instances would be discarded; so, even
if in the FIFO hypothesis, it is necessary to set the delay to
3 (the upper bound of the constraint between f and e). By
this artifact, a (possible large) number of “false” instances
are uselessly created. The introduction of this delay has also
an incidence on the collector’s size.

7 Conclusion
This paper presents two improvements of chronicle recogni-
tion. The first one is the focusing on particular events which
allows the system to reason on the past and on the future in

6Performed on a PPC G4 biprocessor 2×1GHz with 1Gb
SDRAM. Java implementation was run on JVM 1.4 / Mac OS X.

a homogeneous manner. The second concerns the hierarchi-
cal recognition based on subpatterns. We also showed that
mixing both improvements increases the efficiency and also
fills the gap between SPRS and STRS approaches which are
completely covered. In practice, our approach is sufficiently
adaptive in order to fine-tune the recognition system. For in-
stance, the order of event integration could be different from
their arrival order. Moreover, focused events could postpone
some expensive numerical computations to generate events
and avoid useless ones.

Future works will take two directions: the first one is to de-
fine a more flexible way to factorize common patterns - con-
dition 1 (proposition 4.1) is too restrictive for many practical
cases. As dealing with the event frequency substantially in-
creases the efficiency of CRS, the second direction will be fo-
cused on online analysis of event frequency in order to adapt
dynamically the hierarchical temporal focusing.

References
[Berstel, 2002] B. Berstel. Extending the RETE algorithm

for event management. 9th International Symposium
on Temporal Representation and Reasoning (TIME’02),
pages 49–51, 2002. IEEE Transactions.

[Cordier and Dousson, 2000] M.-O. Cordier and C. Dous-
son. Alarm Driven Monitoring Based on Chronicles. In
Proc. of the 4th Symposium on Fault Detection Supervi-
sion and Safety for Technical Processes (SAFEPROCESS),
pages 286–291, Budapest, Hungary, 2000. IFAC.

[Dechter et al., 1991] R. Dechter, I. Meiri, and J. Pearl. Tem-
poral constraint networks. Artificial Intelligence, Special
Vol. on Knowledge Representation, 49(1-3):61–95, 1991.

[Dousson, 2002] C. Dousson. Extending and unifying chron-
icle representation with event counters. In Proc. of the 15th

ECAI, pages 257–261, Lyon, France, 2002. IOS Press.

[Fessant et al., 2004] F. Fessant, C. Dousson, and F. Clérot.
Mining of a telecommunication alarm log to improve the
discovery of frequent patterns. 4th Industrial Conference
on Data Mining (ICDM’04), 2004.

[Ghallab, 1996] M. Ghallab. On chronicles : Representation,
on-line recognition and learning. Proc. of the 5th Interna-
tional Conference on Principles of Knowledge Represen-
tation and Reasoning (KR-96), pages 597–606, 1996.

[Guerraz and Dousson, 2004] B. Guerraz and C. Dousson.
Chronicles Construction Starting from the Fault Model of
the System to Diagnose. 15th International Workshop on
Principles of Diagnosis (DX’04), pages 51–56, 2004.

[Rota and Thonnat, 2000] N. Rota and M. Thonnat. Activity
recognition from video sequences using declarative mod-
els. 14th ECAI, pages 673–677, 2000. IOS Press.

[Vautier et al., 2005] A. Vautier, M.-O. Cordier, and R.
Quiniou. An inductive database for mining temporal
patterns in event sequences. Workshop mining spatio-
temporal data (in PKDD05), 2005.

[Vu et al., 2003] V.-T. Vu, F. Bremond, and M. Thonnat. Au-
tomatic video interpretation: A novel algorithm for tempo-
ral scenario recognition. 18th IJCAI, 2003.

IJCAI-07
329


