CHRONOLOGY OF THE DANISH BRONZE AGE BASED ON ¹⁴C DATING OF CREMATED BONE REMAINS

Jesper Olsen¹ • Karen Margrethe Hornstrup² • Jan Heinemeier³ • Pia Bennike⁴ • Henrik Thrane⁵

ABSTRACT. The relative Bronze Age chronology for Scandinavia was established as early as 1885. It is traditionally divided into 6 periods (I–VI). Earlier attempts to make an absolute Bronze Age chronology for southern Scandinavia were derived from burials and settlements and were mainly based on radiocarbon-dated charcoal or carbonized cereals, often with undefined archaeological periods. Here, we present high-precision ¹⁴C dating on burials with well-defined associated archaeological periods in order to improve the absolute chronology of the Danish Bronze Age. Our results are in broad agreement with the traditional absolute chronology of the Danish Bronze Age. However, our results do indicate that the onset of period III likely occurred earlier than previously thought.

INTRODUCTION

Radiocarbon dating of collagen from well-preserved human bone has routinely been carried out for decades, but cremated bone samples were always avoided because cremation destroys collagen. However, successful ¹⁴C dating of cremated bones based on their content of recrystallized bioapatite was reported by Lanting et al. (2001). As the common burial practice for a number of prehistoric periods was cremation, this method meant a breakthrough for the archaeological community, opening such cultural periods to ¹⁴C dating of human bones as demonstrated by the appearance of several studies using cremated bones (e.g. Lanting and Brindlye 1998; Lanting et al. 2001; De Mulder et al. 2007, 2009). This is also the case for the Danish Late Bronze Age. Without ¹⁴C dating, the establishment of an absolute chronology of this epoch is difficult and the Danish Bronze Age will be the focus of this study.

The relative Bronze Age chronology for Scandinavia was established in 1885 and is divided into 6 periods (I–VI). This scheme is still largely valid (Montelius 1885, 1986; Randsborg 1996; Vandkilde et al. 1996). Traditionally, the absolute Bronze Age chronology in Scandinavia is related by cross-dates to central Europe, which again depended on a synchronization with the Mediterranean (Vand-kilde et al. 1996:183), but in recent decades a large number of radiocarbon dates from especially the Early Bronze Age chronology for southern Scandinavia derived from burials and settlements, using mainly ¹⁴C-dated charcoal or carbonized cereals (Vandkilde et al. 1996). Only a few dates from period III were represented and few burial dates from the Late Bronze Age seemed to exist. Since then, a large number of dendrochronological dates of oak coffins from a minor segment of the Early Bronze Age have appeared (Christensen 2006), but only a few ¹⁴C dates of burials.

This study was inspired by a wish to establish a firm, improved chronology for the Bronze Age with a focus on the Danish area. Because of the uncertainties involved in dating settlements based on charcoal and carbonized cereals, we have chosen to use only burials clearly associated with well-defined archaeological periods. These burials contain artifacts like swords, ornaments, pins, razors, pottery, etc. with a recognizable style, i.e. a distinctive shape or decoration that was used within just one of the periods II–VI. An example is the flange hilted sword (Sprockhoff's type IIa), an important artifact in burials from period III (Thrane 1964). Our samples include ¹⁴C dates of cremated bones

¹School of Geography, Archaeology and Palaeoecology, Queen's University Belfast, 42 Fitzwilliam Street, Belfast BT9 6AX, United Kingdom. Corresponding author. Email: j.olsen@qub.ac.uk.

²Moesgaard Museum, Højbjerg DK-8270, Denmark.

³AMS ¹⁴C Dating Centre, Department of Physics and Astronomy, Aarhus University, Aarhus DK-8000, Denmark.

⁴Saxo Institute, University of Copenhagen, Copenhagen DK-2300, Denmark.

⁵Department of Prehistoric Archaeology, Moesgaard, Aarhus University, Højbjerg DK-8270, Denmark.

as well as dendrochronological dates of oak coffins. Here, we present new high-precision ¹⁴C results on cremated bones from the Danish Bronze Age (periods II–VI) with the purpose of testing and improving the existing chronology of the Danish Bronze Age using Bayesian models to interpret the available dates.

METHODS

Prior to accelerator mass spectrometry (AMS) dating, cremated bone samples are pretreated as follows (see Olsen et al. 2008). Two grams of unprocessed sample are soaked in a 1.5% sodium hypochlorite solution to dissolve remaining organic material (48 hr, 20 °C). The sample is then washed and submerged in 1M acetic acid to remove postdepositional carbonates as well as less crystalline, soluble fractions of bioapatite (24 hr, 20 °C). Next, the sample is washed and dried (12 hr, 80 °C), generally with a bioapatite yield of ~96%. The pretreated sample is crushed and 1.5 g is treated with 100% dehydrated phosphoric acid (8 hr, 25 °C) to liberate CO_2 , from which sulfur impurities are removed using Sulfix[®] (Baker Hughes, Inc., USA) prior to conversion to graphite for AMS targets (Lanting et al. 2001).

All samples were visually inspected for surface and interior color and burn cracks. Infrared (IR) spectroscopy was performed on powdered pretreated sample material, i.e. bioapatite: The sample material was mixed with KBr and hydraulically pressed into pellets prior to measurement of IR spectra with a PerkinElmer FTIR spectrometer (PARAGON 1000). The spectrum of KBr was automatically subtracted by an online computer. IR spectra on the bioapatite bone fraction provide information on the crystallinity index (CI) and carbon to phosphorus ratio (C/P) (Garvie-Lok et al. 2004; Olsen et al. 2008).

Charcoal and pitch samples for ¹⁴C dating were pretreated by the acid-alkali-acid (AAA) method prior to conversion to CO_2 by burning in sealed evacuated ampoules with CuO. The AAA method is as follows: 1M HCl (80 °C, 24 hr) followed by 1M NaOH (80 °C one to several days) and finally 1M HCl (Thomsen 1990).

Part of the resulting CO₂ gas was used for δ^{13} C analysis on a GV Instruments Isoprime stable isotope mass spectrometer to a precision of 0.15‰, while the rest was converted to graphite for AMS ¹⁴C measurements via reduction with H₂ using cobalt as a catalyst (Vogel et al. 1984). All AMS ¹⁴C measurements were carried out using the EN tandem accelerator at Aarhus University (Denmark). The dating results are reported as conventional ¹⁴C dates in ¹⁴C yr BP based on the measured ¹⁴C/ ¹³C ratio corrected for the natural isotopic fractionation by normalizing the result to the standard δ^{13} C value of –25‰ PDB (Andersen et al. 1989).

LOCALITIES AND SAMPLES

In order to test and improve the Danish Bronze Age chronology, this study includes new ¹⁴C dates on cremated human bones as well as previously published dendrochronologically dated oak coffins (Tables 1 and 2). The geographical distribution of the chosen localities is shown in Figure 1.

A total of 31 cremated human bone samples have been dated (Table 1). Of these, 7 samples have previously been measured and compared to context dated material associated with the samples (Olsen et al. 2008). One sample was tested against a dendrochronologically dated oak coffin (AAR-8789, -13976, J Olsen, unpublished data; Olsen et al. 2008), and 6 against pitch sealing material from the cremation urns (AAR-8110, -8111, -8112, -9576, -9571, -9573). Of the total of 37 samples presented here, 28 dated samples were submitted blind (Table 1), i.e. no prior knowledge of intersample dependencies was available to the AMS laboratory during analysis.

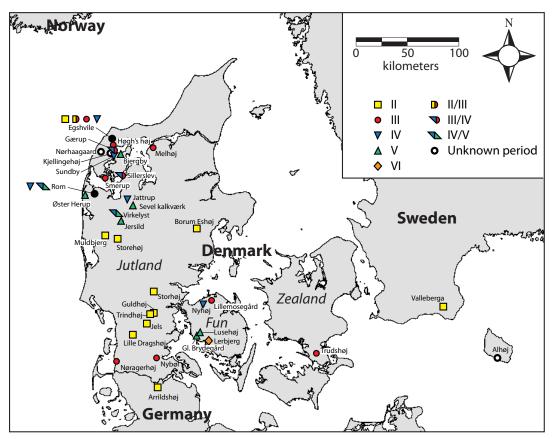


Figure 1 Map showing the geographical distribution of localities of samples used in this study

As revealed by χ^2 tests, there is a good agreement between the dated cremated human bone samples and their associated pitch samples (Table 1). All except the pair AAR-9571 and AAR-9568 yield acceptable χ^2 statistics. The age difference between the cremated bone sample AAR-9571 and its associated pitch sample AAR-9568 amounts to 8 standard deviations and is excluded in the statistical analysis. Unlike the bone date, the pitch date is incompatible with the archaeological date, pointing to an erroneous identification of the pitch sample. For the remaining samples, the weighted average age difference between cremated bone samples and pitch is $+26 \pm 25$ ¹⁴C yr (χ^2_{meas} : $1.7 \le 9.5$), i.e. the bones are insignificantly older than the pitch. This observation fits well with the concept of a limited "old wood" CO₂ effect as discussed below.

Stratigraphic information from the excavations showed that a few samples represent the same event, while for other samples only the chronological order is known. The samples from the locality Rom D1 and D2 (Table 1) were found close to each other on a flat stone and were surrounded by a shared packing of round stones. From an archaeological point of view, they are assumed to be contemporaneous. The ¹⁴C ages from Rom D1 and D2 yield a combined age of 2821 ± 22 ¹⁴C yr BP (Table 1). Stratigraphic evidence from the excavation of the Egshvile location shows that AAR-8826 is older than AAR-8827, which in turn is older than AAR-8828, and AAR-8828 is older than AAR-8788 (Table 1). Also, in the Lerbjerg location, AAR-9568, -9571 are older than AAR-9569, -9573 (Table 1). A thorough presentation of the localities and single finds as well as archaeological dates is beyond the scope of the present paper and will be presented elsewhere.

numbers wi	index. Lab numbers with BP indicates blind test. Periods refer to the traditional Bronze Age Chronology. $n/a = not$ available	test. Periods	refer to th	e traditi	onal Bro	onze Ag	ge Chrono	logy. n/a = no		Color	
Lab nr (Blind test ID)	Location	Material	Prep. yield	C wt%	C/P	CI	δ ¹³ C ‰ VPDB	¹⁴ C age BP	Surface	Interior	Visible burn cracks
Period II (1500–1300 BC) AAR-8789 (PB7) Egt AAR-13976 Egt	0 BC) Egtved Egtved	Bone Bone	98.6% 96.9%	$0.09 \\ 0.12$	0.09 n/a	5.3 n/a	-23.05 -23.69	3128 ± 28 3126 ± 29	Yellow Yellow	White White	No No
<i>Combined (AAR-878</i>) AAR-8826 (PB15)	<i>Combined (AAR-8789, -13976)</i> AAR-8826 (PB15) Egshvile N6	Bone	97.3%	0.16	0.05	5.8	-27.17	$3127 \pm 20 \ (0.0 \le 3.8)^{a}$ 3052 ± 46 White	$0.0 \le 3.8)^{a}$ White	White	Yes
Transition period II–III AAR-8827 (PB16) E.	L-III Egshvile N5	Bone	87.8%	0.23	0.12	4.9	-22.89	3049 ± 27	White	White	Yes
Period III (1300–1100 BC) AAR-13975 Lille	00 BC) Lillemosegård	Bone	97.2%	0.12	n/a	n/a	-23.45	3045 ± 32	White	White	Yes
AAR-8825 (PB14) AAR-8828 (PB17)	Skallerup Eeshvile N1	Bone Bone	96.4% 96.7%	0.18 0.31	0.14 n/a	5.0 4 2	-16.60 -22.74	3071 ± 35 3097 ± 27	Gray/White White	Gray/White White	Yes Yes
AAR-9517 (PB21) AAR-9523 (PB27)	Høgh`s høj Smerup	Bone Bone	97.0% 98.0%	0.08	n/a 0.10	3.9 6.0	-22.70 -22.80	3092 ± 42 3059 ± 38	Gray/White Gray/White	Gray/White White	Yes Yes
Transition period III/IV AAR-9516 (PB 20) Gá AAR-9519 (PB 23) Si	II/IV Gærup, Stagstrup Sillerslev	Bone Bone	95.5% 97.0%	0.06 0.05	$0.17 \\ 0.24$	4.4 4.5	-23.30 -25.50	2938 ± 41 2910 ± 44	Gray/White Gray/White	Gray/White Gray/White	Yes No
1100-950	Period IV (1100–950/920 BC)								•	2	
AAR-8788 (PB6) AAR-9514 (PB18)	Egshvile N7 Sundbv	Bone Bone	97.9% 96.0%	$0.32 \\ 0.05$	0.15 0.11	4.4 5.2	-24.54 -24.10	2882 ± 24 2805 ± 43	White White	White White	Yes Yes
AAR-9515 (PB19)	Jattrup	Bone	98.7%	0.07	0.17	4.6	-24.50	2837 ± 39	Gray/White	Gray/White	Yes
AAR-9524 (PB28) AAR-9574 (PB36)	Rom D3 Nyhøj, Kattebjerg	Bone Bone	97.8% 94.6%	$0.09 \\ 0.16$	$0.17 \\ 0.08$	4.4 4.4	-23.80 -23.40	2886 ± 34 2867 ± 33	Gray/White White	White White	Yes Yes
Transition period IV/V AAR-4681 R AAR-8110 R	V/V Rom D2 Rom D2	Pitch Bone	44.8% 92.3%	80.5 0.10	n/a 0.09	n/a 6.2	-28.50 -26.10	2790 ± 45 2882 ± 47	White	White	Yes
AAR-468	<i>Combined (AAR-4681, -8110)</i> AAR-4682 Rom D1	Pitch	46.4%	80.1	n/a	n/a	-29.50	-	$(2.0 \le 3.8)$		
AAR-8111 Rom] <i>Combined (AAR-4682, -8111)</i> <i>Combined (AAR-4681, -8110</i>)	AAR-8111 Combined (AAR-4682, -8111) Combined (AAR-4681, -8110, -4682, -8111)	Bone (94.6%	0.20	0.15	5.0	-23.50	2805 ± 45 White $2811 \pm 30 (0.0 \le 3.8)$ $2821 \pm 22 (2.3 \le 7.8)$	White).0 ≤ 3.8) 2.3 ≤ 7.8)	White	Yes

									Co	Color	
							δ ¹³ C				Visible
Lab nr			Prep.	C			%00	¹⁴ C age			burn
(Blind test ID)	Location	Material	yield	wt%	C/P	CI	VPDB	BP	Surface	Interior	cracks
AAR-6097	Virkelyst	Pitch	63.8%	48.8	n/a	n/a	-28.40	2815 ± 40			
AAR-8112	Virkelyst	Bone	96.2%	0.10	0.10	6.2	-24.60	2829 ± 39	White	White	Yes
Combinea (AAK-bU9/, -8112)	, -8112)							$2\delta 2 \pm 2\delta (0.1 \le 3.\delta)$	$0.1 \leq 5.8)$		
Period V (950/920–800 BC)	00 BC)										
AAR-8786(PB4)	Ø. Herup	Bone	95.3%	0.12	0.04	5.9	-23.26	2722 ± 25	Gray/White	White	Yes
AAR-8787 (PB5)	Sevel Kalkværk	Bone	98.0%	0.23	0.17	5.3	-25.62	2650 ± 25	Gray/White	White	Yes
AAR-9518 (PB22)	Bjergby	Bone	97.9%	0.01	0.18	4.7	-22.50	2583 ± 34	Gray/White	White	Yes
AAR-9520 (PB24)	Jersild	Bone	98.2%	0.09	0.12	5.6	-22.20	2683 ± 36	Yellow	White	Yes
AAR-9522 (PB26)	Tilsted	Bone	95.9%	0.07	0.09	6.1	-20.60	2206 ± 37^{b}		White	Yes
AAR-9570 (PB32)	Gl. Brydegård	Pitch	64.8%	73.6	n/a	n/a	-27.20	2706 ± 35	White	White	Yes
AAR-9576 (PB38)	Gl. Brydegård	Bone	98.7%	0.21	0.04	6.2	-21.60	2714 ± 34	White	White	Yes
Combined (AAR-9570, -9576)	, -9576)								$(0.0 \le 3.8)$		
AAR-9575 (PB37)	Lusehøj GX	Bone	98.8%	0.21	0.09	5.5	-23.50	2611 ± 33	Gray/White	White	Yes
Period VI (800-530/520 BC)	520 BC)										
AAR-9568 (PB30) ^c	Lerbjerg I	Pitch	52.1%	76.5	n/a	n/a	-29.90	2851 ± 24^{b}			
AAR-9571 (PB33)	Lerbjerg I	Bone	96.0%	0.08	0.06	6.5	-22.90		White	White	Yes
Combined (AAR-9568, -9571)	, -9571)							~	$(110 \le 3.8)^{\rm b}$		
AAR-9569 (PB31)	Lerbjerg II	Pitch	50.3%	74.9	n/a	n/a	-29.50				
AAR-9573 (PB35)	Lerbjerg II	Bone	96.8%	0.17	0.07	5.6	-24.60	2502 ± 39	White	White	Yes
Combined (AAR-9569, -9573)	, -9573)							$2482 \pm 28 \ (0.6 \le 3.8)$	9.6 ≤3.8)		
Unknown archaeological date	gical date										
AAR-13974	Alhøj	Bone	92.3%	0.18	n/a	n/a	-23.65	3008 ± 28	White	White	Yes
AAR-9521 (PB25)	Nørhaagaard	Bone	97.2%	0.22	0.02	6.4	-23.00	2697 ± 42	White	White	Yes
AAR-9525 (PB29)	Kjellingehøj IV	Bone	95.3%	0.04	0.18	4.7	-21.70	2823 ± 41	White	White	Yes

°For AAR-9568, see discussion in Olsen et al. (2008).

265

4	104-52), Højrup Fønder amt 5), Vamdrup se amt 26), Vamdrup 26), Vamdrup 26), Vamdrup e amt (6A), Vorgod (6A), Vorgod (01-12) Borum	Material Wood (<i>Quercus</i> sp.)		AICII.			
	đ	Wood (Quercus sp.)	Description	date]	BP age	Denui ociii ono- logical age	Reference
4			From oak cof-	П	3050 ± 50	1375–1370 BC (3323 ± 3 BP)	Aner and Kersten 1981; Christensen 2006:195ff. nr 3
4		Wood (Quercus	From oak cof- fingrave C	П	3130 ± 80	$(3339 \pm 0.5 \text{ BP})$	nr
A 00 A <		Wood (Quercus sp.)	f.	П	3060 ± 70	1340-1308 BC $(3274 \pm 16 BP)$	
A 04	_	Wood (Quercus sp.)	oak cof-	П	3080 ± 80	1364-1337 BC (3301 ± 14 BP)	Aner and Kersten 1986; Christensen 2006:227ff, nr 21
00 A <		Wood (Quercus sp.)	oak cof-	П	3190 ± 85	1373 BC (3323 ± 0.5 BP)	Aner and Kersten 1986; Christensen 2006:219ff. nr 17
< <	Århus amt	Wood (Quercus sp.)	From oak cof- fin, grave B	Ш	2930 ± 65	$(3290 \pm 14 \text{ BP})$	Jensen 1998:83ff; Chris- tensen 2006:193ff, nr 2
< <	slee Kirchspiel, ourg	Wood (Quercus sp.)	-f	II		1361–1329 BC (3295 ± 16 BP)	Aner and Kersten 1978; Christensen 2006:190ff, nr 1
<		Wood (Quercus	From oak cof- fin prave A	Π		1389 BC (3339 ± 0 5 BP)	
	Jels (Sb. 200204-83), Jels sogn, Gram herred Haderslev amt	Wood (Quercus	-j	Π		1348 BC	
Ne 4/40A Muluujerg (SU soon Hind her	5-59), Hover Iekøhing amt	Wood (Quercus	From oak cof-	II		$(32.0 \pm 0.5 \text{ BC})$ 1365 BC $(3315 \pm 0.5 \text{ BP})$	Aner and Kersten 1995; Christensen 2006·207ff nr 10
Lu-804 Mound, Valleb nia	Sca-	Collagen (human)	man bone n coffin	П	3170 ± 55		Håkansson 1974; Strömberg 1974
Lu-803 Mound, Valleberga 6 ⁷	Valleberga s.,	Wood (Quercus sp.)	-fo	П	3190 ± 55		Håkansson 1974; Strömberg 1974
tu (Lu		(· J-			$3180 \pm 39 \ (0.1 \le 3.8)$	$(0.1 \leq 3.8)$	
Ke 2909 Nøragerhøj (Sl sogn. Høier he	Sb. 210202-39) Emmerlev terred. Tønder amt	Wood (<i>Quercus</i> sp.)	From oak cof- fin	I	3030 ± 70	3030 ± 70 1301–1272 BC (3237 ± 15 BP)	Aner and Kersten 1981; Christensen 2006:212ff. nr 13
K-3874 Melhøj (Sb. 12 Løgsted sogn.		Wool	From stone cist grave	Ξ	2930 ± 80	~	Jørgensen et al. 1984:43
Ke 3022 Nybøl (Sb. 220202-64), Rise herred. Åbenrå amt	Nybøl (Sb. 220202-64), Hjordkær sogn, Rise herred, Åbenrå amt	Wood (Quercus sp.)	cof-	III		1277–1246 BC (3212 ± 16 BP)	Aner and Kersten 1981; Christensen 2006:211ff, nr 12
AAR-13138 Lusehøj (Sb. 080205-1 sogn, Båg herred, Oder	6) Flemløse 1se amt	Textile stinging nettle	From stone cist grave	N	2650 ± 60	~	¹⁴ C date made available by Ulla Mannering, U. of Copen- hagen (Thrane 2004:79ff)

Supplementary Material

Of considerable importance for the Danish absolute chronology are a number of dendrochronological dates of oak coffins from the Early Bronze Age (Table 2). The 28 oak coffins all date within the interval 1391–1266 BC, i.e. period II and the beginning of period III, and 25 of the 28 dates within a period of <50 yr, from \sim 1391 to \sim 1344 BC (Christensen 2006). Apart from the dendrochronological dates, sporadic ¹⁴C dates of graves are available, but practically all of them are finds without any archaeologically datable objects (Vandkilde et al. 1996). Here, supplementary samples are selected based on the criterion that the samples are archaeologically datable to a single period within periods II–VI or may be placed in the transition between 2 periods (Table 2).

CHRONOLOGICAL MODEL FOR THE DANISH BRONZE AGE

Based on the typology of grave goods, the Danish Bronze Age is subdivided into 6 periods (I–VI). Here, we concentrate on the periods II to VI and consensus ages of each period are presented in Tables 1 and 4. Cremated human bones samples deriving from graves with positive typological identifiers are archaeologically associated with one of the periods II–VI (Tables 1 and 2). However, some of the samples have typological identifiers associated with 2 periods and are therefore archaeologically associated with transition periods. Two samples (AAR-9521, AAR-9525) are from burials containing interesting, but rare, grave goods and urns. AAR-13974 is a burial without grave goods. These 3 burials are exceptions to the rule of a positive archaeological date to a particular period and therefore not included in the chronological model (Table 1). For reasons unknown (it is suggested that a mistake of some kind has taken place from excavation to store), the calibrated age of sample AAR-9522 ranges from 383 to 186 BC (i.e. in the Iron Age) and is therefore inconsistent with the archaeological date (period V). AAR-9522 is thus regarded as an outlier (Table 1).

To obtain a chronology of the Danish Bronze Age, a conceptual model for the Bronze Age periods II to VI is developed (Figure 2). It is presumed that periods may overlap in time with the condition that periods not directly adjacent to each other have no overlap (Figure 2). Thus, period II is older than period IV, which again is older than period VI and period III is older than period V (Figure 2). For the transitions, it is assumed that the transition II–III is older than the transition III–IV, which again is older than the transition IV–V (Figure 2). Thus, the chronological model is constructed as 3 sequences where each period or transition is given as phases. The first sequence consists of periods II, IV, and VI, the second of period III and V, and the third of transitions II–III, III–IV, and IV–V. The boundaries of each phase denote onset and termination of each period or transition phase. As an additional constraint on the model, the start and end of each period must be chronologically ordered (Figure 2). The stratigraphic evidence from the Egshvile and Lerbjerg locations provide further constraints on the chronological model and are thus included.

Table 3 Calibrated age intervals of unmodeled and modeled data. Samples are from Tables 1 and 2. The "type" column denotes whether a ¹⁴C date (C14) or dendrochronological (D) date has been used in the model. The column "A" denotes the agreement index between the sample and the applied model. Generally, A values below 60% are considered as poor agreement. Periods refer to the traditional Bronze Age Chronology.

		0	
Туре	Unmodeled conf. interval	Modeled conf. interval	А
C14	1525–1389 BC (95.4%)	1495–1373 BC (92.8%)	80.1%
		1338–1323 BC (2.6%)	
D	1389–1387 BC (95.4%)	1389–1387 BC (95.4%)	100.8%
D	1389–1387 BC (95.4%)	1389–1387 BC (95.4%)	100.6%
D	1378–1368 BC (95.4%)	1378–1367 BC (95.4%)	99.8%
D	1373–1371 BC (95.4%)	1374–1372 BC (95.4%)	99.9%
	Type C14 D D D	Type Unmodeled conf. interval C14 1525–1389 BC (95.4%) D 1389–1387 BC (95.4%) D 1389–1387 BC (95.4%) D 1378–1368 BC (95.4%)	C14 1525–1389 BC (95.4%) 1495–1373 BC (92.8%) D 1389–1387 BC (95.4%) 1389–1387 BC (95.4%) D 1389–1387 BC (95.4%) 1389–1387 BC (95.4%) D 1378–1368 BC (95.4%) 1389–1387 BC (95.4%)

Table 3 Calibrated age intervals of unmodeled and modeled data. Samples are from Tables 1 and 2. The "type" column denotes whether a ¹⁴C date (C14) or dendrochronological (D) date has been used in the model. The column "A" denotes the agreement index between the sample and the applied model. Generally, A values below 60% are considered as poor agreement. Periods refer to the traditional Bronze Age Chronology. *(Continued)*

Lab nr/Sample ID	Туре	Unmodeled conf. interval	Modeled conf. interval	A
Ke 4740A	D	1365–1363 BC (95.4%)	1366–1364 BC (95.4%)	99.9%
Ke 3817A	D	1377–1323 BC (95.4%)	1378–1335 BC (95.4%)	108.1%
Ke 3443	D	1348–1346 BC (95.4%)	1349–1347 BC (95.4%)	100.0%
Ke 2243	D	1376–1312 BC (95.4%)	1379–1332 BC (95.4%)	100.070
NM B 1404	D	1366–1312 BC (95.4%)	1370–1331 BC (95.4%)	96.0%
Ke 3817B	D	1355–1291 BC (95.4%)	1367–1327 BC (95.4%)	54.3%
AAR-8826 (PB15)	D C14	1425–1192 BC (94.5%)	1422–1321 BC (95.4%)	110.4%
AAK-8820 (FB13)	C14	1140–1132 BC (0.9%)	1422–1321 BC (95.478)	110.470
Transition mented II III		1140–1152 DC (0.970)		
Transition period II–III AAR-8827 (PB16)	C14	1404–1258 BC (94.1%)	1379–1282 BC (95.4%)	112.3%
AAK-0027 (1 D10)	014	1227–1219 BC (1.3%)	1379–1282 BC (95.478)	112.370
D . 1 HI (1200 1100 DC)		1227–1219 BC (1.376)		
Period III (1300–1100 BC)	C14	1420 1204 DC (05 49/)	1220 1262 DC (05 40/)	15 20/
AAR-8828 (PB17)		1430–1304 BC (95.4%)	1339–1263 BC (95.4%)	45.3%
AAR-9517 (PB 21)	C14	1447–1259 BC (95.4%)	1354–1258 BC (95.4%)	69.7%
AAR-8825 (PB14)	C14	1423–1259 BC (95.4%)	1354–1258 BC (95.4%)	80.2%
AAR-9523 (PB27)	C14	1419–1253 BC (91.4%)	1358–1255 BC (95.4%)	95.7%
		1238–1213 BC (4.0%)		106.00
AAR-13975	C14	1408–1252 BC (89.9%)	1357–1254 BC (95.4%)	106.2%
		1239–1212 BC (5.5%)		
Ke 2909	D	1316–1258 BC (95.4%)	1304–1260 BC (95.4%)	105.7%
Ke 3022	D	1292–1230 BC (95.4%)	1300–1254 BC (95.4%)	83.6%
K-3874	C14	1378–1334 BC (4.4%)	1352–1220 BC (95.4%)	73.6%
		1321–924 BC (91%)		
Transition period III/IV				
AAR-9516 (PB 20)	C14	1290–1278 BC (1.2%)	1249–1049 BC (95.4%)	112.6%
		1269–1010 BC (94.2%)		
AAR-9519 (PB 23)	C14	1260–977 BC (95.4%)	1252-1230 BC (3.4%)	106.5%
			1219–1041 BC (92.0%)	
Period IV (1100-950/920 BC)				
AAR-8788 (PB6)	C14	1188-1179 BC (0.9%)	1111–995 BC (95.4%)	109.9%
	011	1155–1144 BC (1.1%)	1111 <i>335</i> BC (35.176)	107.770
		1129–977 BC (93.3%)		
AAR-9524 (PB28)	C14	1206–1201 BC (0.6%)	1112–984 BC (95.4%)	115.1%
AAR-)524 (1 D20)	014	1194–1139 BC (10.2%)	1112-984 BC (95.470)	113.170
		1133–972 BC (82.6%)		
		955–939 BC (2%)		
AAR-9574 (PB36)	C14	1187–1180 BC (0.7%)	1108–975 BC (95.4%)	124.6%
AAR-93/4 (FB30)	C14		1108–975 BC (93.476)	124.070
		1153–1145 BC (0.9%)		
A A D 0515 (DD 10)	014	1129–924 BC (93.9%)	1100 0(0 DC (05 40/)	102.00/
AAR-9515 (PB 19)	C14	1120–903 BC (95.4%)	1108–962 BC (95.4%)	103.9%
AAR-9514 (PB 18)	C14	1109–1102 BC (0.6%)	1093–947 BC (95.4%)	72.6%
		1081–1063 BC (1.5%)		
		1055–836 BC (93.3%)		
Transition period IV/V	-			
Combined (AAR-6097, -8112)	C14	1050–903 BC (95.4%)	1016–915 BC (95.4%)	113.4%
Combined (AAR-4681, -8110, -	C14	1040–910 BC (95.4%)	1012–919 BC (95.4%)	107.9%
4682, -8111)				
Period V (950/920-800 BC)				
AAR-8786(PB4)	C14	911-814 BC (95.4%)	887-805 BC (95.4%)	86.4%
Combined (AAR-9570, -9570)	C14	904–810 BC (95.4%)	885–805 BC (95.4%)	97.7%

Table 3 Calibrated age intervals of unmodeled and modeled data. Samples are from Tables 1 and 2. The "type" column denotes whether a ¹⁴C date (C14) or dendrochronological (D) date has been used in the model. The column "A" denotes the agreement index between the sample and the applied model. Generally, A values below 60% are considered as poor agreement. Periods refer to the traditional Bronze Age Chronology. (Continued) Lab nr/Sample ID Type Unmodeled conf. interval Modeled conf. interval А

AAR-9520 (PB24)	C14	901-	-798 BC (95.4%)	88	1-795 BC (95.4%)	118.5%
AAR-13138	C14		-955 BC (9–777 BC (95.4%)	137.8%
		939-	-748 BC (89.7%)			
			-665 BC (
			-591 BC (
AAR-8787 (PB5)	C14		-878 BC (,	83	4–792 BC (95.4%)	104.3%
	-		-790 BC (
AAR-9575 (PB37)	C14		-760 BC (83	0–775 BC (95.4%)	106.3%
	-		-670 BC (
AAR-9518 (PB22)	C14		-747 BC (82	2–769 BC (95.4%)	109.7%
(1 222)	011		-665 BC (-	- / 0/ 20 (/0/0)	1071170
			-590 BC (
			-565 BC (
Derie d VI (900 520/520)		511	<u>эөэ ве (</u>	1.270)			
Period VI (800–530/520]	,	770	500 D.C. (05 20()	70	0 52(DC (05 40/)	102 00/
AAR-9571 (PB33)	C14		-509 BC (/6	0–536 BC (95.4%)	102.9%
	(14		-428 BC (0 550 DC (05 40/)	104 70/
Combined (AAR-9569, -9	9573) C14		-505 BC (11	0–559 BC (95.4%)	104.7%
			-449 BC (/			
		439-	-416 BC (2.2%)			
Unknown samples							
AAR-13975	C14	1410-	-1214 BC	(95.4%)			
AAR-9525 (PB29)	C14	1119–	855 BC (95.4%)			
AAR-9521 (PB25)	C14	924–	-797 BC (95.4%)			
]		
II	<		IV		<	VI	
II < pariod //		V consta	d IV a award a				
Derioa II		v _s < perio	a iv sampie	$S < IV_e < V$	$\mathbf{v}_{s} \leq perio$	d VI samples $< VI_{_{\rm e}}$	
s P	sumples < n _e < 1						
s r	sumples < m _e < r						
s Protection]					
, , , , , , , , , , , , , , , , , , , ,			<		V		
, /////	III	samples <		<pre>c period V</pre>		v .	
		samples <		<pre>c period V s</pre>		V _e	
	III	samples <		<pre>c period V s</pre>		V _e	
	 _s < period		< III _e < V _s <		samples <	v _e	
[₅ < period -] < [< III _e < V _s < III-IV] < [samples < IV-V]	
s + 1.4 mining [₅ < period -] < [< III _e < V _s < III-IV] < [samples < IV-V]	v/v _e
[₅ < period -] < [< III _e < V _s < III-IV] < [samples < IV-V]	V/V _e
[₅ < period -] < [< III _e < V _s < III-IV d III/IV samp] < [samples < IV-V]	V/V _e
[₅ < period -] < [< III _e < V _s < III-IV] < [samples < IV-V]	v/v _e
[₅ < period -] < [< III _e < V _s < III-IV d III/IV samp] < [samples < IV-V]	V/V _e
II/III, < period II/III sample	 _s < period - es < / _e < / Y] < [V _s < perio	< III. _e < V _s < III-IV d III/IV samp time] < [bles < III/IV	samples < IV-V]	V/V _e
II/III _s < period II/III sample Model constrains: II _s < II	 _s < period - es < / _e < / V / _s < , < / V	$\int < [$ $V_{s} < perio$ $V_{s} < IV_{s} < I$	< III < V < III-IV d III/IV samp time] < [bles < 111/17 x VI _s	samples < IV-V]	v/v _e
II/III _s < period II/III sample Model constrains: II _s < II	 _s < period - es < / _e < / Y	$\int < [$ $V_{s} < perio$ $V_{s} < IV_{s} < I$	< III < V < III-IV d III/IV samp time] < [bles < 111/17 x VI _s	samples < IV-V]	v/v _°
II/III _s < period II/III sample Model constrains: II _s < II. II _e < II	 _s < period - es < / _e < / V / _s < _s < / V / _e < _e < / V	$\int \mathbf{s} < \mathbf{p} < \mathbf{p}$ $\int \mathbf{s} < \mathbf{p} < \mathbf{p}$ $\int \mathbf{s} < \mathbf{I} \mathbf{V}_{s} < \mathbf{I}$ $\int \mathbf{v}_{e} < \mathbf{I} \mathbf{V}_{e} < \mathbf{I}$	$< III_{e} < V_{s} <$ $III-IV$ $d III/IV samp$ $time$ $IV/V_{s} < V_{s} <$ $IV/V_{e} < V_{e} <$] < [] oles < 111/17 < VI₅ < VI₅	samples < IV-V]	v/v _e
II/III _s < period II/III sample Model constrains: II _s < II. II _e < II Sample constrains: AAR-88	 _s < period - es < / _e < / V / _s < _s < / V / _e < / V _e < / V		$< III_{e} < V_{s} <$ $III-IV$ $d III/IV samp$ $time$ $IV/V_{s} < V_{s} <$ $IV/V_{e} < V_{e} <$ $328 < AAR$] < [] oles < 111/17 < VI₅ < VI₅	samples < IV-V]	V/V _e
II/III _s < period II/III sample Model constrains: II _s < II. II _e < II Sample constrains: AAR-88	 _s < period - es < / _e < / V / _s < _s < / V / _e < _e < / V		$< III_{e} < V_{s} <$ $III-IV$ $d III/IV samp$ $time$ $IV/V_{s} < V_{s} <$ $IV/V_{e} < V_{e} <$ $328 < AAR$] < [] oles < 111/17 < VI₅ < VI₅	samples < IV-V]	V/V _e

Figure 2 Conceptual schematic of the constructed chronological model for the Danish Bronze Age. Constraints from stratigraphical information are also shown. Subscripts s and e denote start and end, respectively.

Using the data from this study (Table 1) combined with the supplementary data (Table 2), the chronological model for the Danish Bronze Age is translated into a Bayesian statistical model using OxCal v 4.1 (Bronk Ramsey 2009) and the IntCal09 calibration curve data (Reimer et al. 2009). Running the model, it turned out that the 10 high-precision dendrochronological dates included in period II constrained period II to a very limited time interval and resulted in very low agreement index for the sample Combined (Lu-804, Lu-803). To avoid this problem, the dendrochronological dates of period II and III were included in the model as subphases in their respective periods as otherwise OxCal presupposes a more or less uniform distribution of samples across the main phase, which in turn puts too much weight on the very precise and narrowly distributed dendrochronological dates. In total, 39 ¹⁴C and dendrochronological dates are used in the chronological model and the results are summarized in Tables 3 and 4 and Figure 3.

RESULTS AND DISCUSSION

The success of ¹⁴C dating of burned or cremated bones depends on the exposed temperature during burning and the degree of recrystallization of the inorganic bone matrix (Van Strydonck et al. 2005, 2009; Olsen et al. 2008). The degree of recrystallization can be characterized by visual inspection, infrared spectrometry, and carbon stable isotope analysis. The carbon content and carbon to phosphorus ratio (C/P) on the bioapatite fraction of cremated bones can also be characterized (Olsen et al. 2008). The presented samples all show low C/P ratios and δ^{13} C values as well as high crystallinity index (CI) values, indicating that these bones are likely to have been exposed to high-temperature cremation (Table 1). Only sample AAR-8825 shows an outlying δ^{13} C value as high as -16.6%(Table 1). Furthermore, the CI and C wt% values of the period III samples AAR-8825, -8828, and -9517 may suggest that these samples have not been exposed to high-temperature cremation (Table 1). Hence, this opens the possibility of exchange reactions with soil carbonate and thereby the 14 C ages being offset. However, bicarbonate exchange reactions with fossil bones commonly result in ¹⁴C ages too young (Tamers and Pearson 1965; Hassan et al. 1977; Hedges and Millard 1995; Surovell 2000), which, if true, pushes the start of period III further back in time. Recent results suggest that the carbon isotope composition of cremated bones probably reflects the CO_2 of the burning atmosphere (Hüls et al. 2010; van Strydonck et al. 2010). This indicates the possibility of cremated bone samples being affected in a similar fashion as charcoal samples by the "old wood" effect. Nevertheless, the good age consistency within all the period III ¹⁴C dates speaks against possible ¹⁴C contamination of these samples, and we believe these dates are reliable (Tables 1, 2, and Figure 4). As a final remark, we note that bioapatite derives from blood bicarbonate originating from the energy production in cells (Lee-Thorp et al. 1989; Sandford 1993; Wright and Schwarcz 1996; Munro et al. 2007). The bioapatite fraction thus reflects total energy intake, and therefore should not be as prone to possible reservoir effects caused by either a predominantly marine or freshwater diet as would be the case for bone collagen (e.g. Richards and Hedges 1999; Fischer et al. 2007; Olsen et al. 2010).

The outcome of the constructed Bayesian model is shown in Figure 3. The overall agreement of the model (A_{model}) is 90.7%. Posterior probability distribution can be difficult to interpret in terms of single dates. Here, we adopt the weighted mean value of the period posterior probability distributions to define the onset and termination of each period (Figure 3, Table 4). For comparison, the modes (most frequent value) of the posterior probability distributions are also included in Table 4, and with 1 exception (IV_e), both the weighted mean estimate and the mode agrees with ±40 yr; the mean difference is 1 yr. VI_e shows a large deviation between the weighted mean estimate and the mode of 123 yr (Table 4). Only 2 samples show agreement index values (A) lower than 60%, i.e. the lower limit for good agreement with the constructed model. Sample Ke 3817B shows an A value of

54.3% and sample AAR-8828 gives an A value of 45.3%. The low A value of AAR-8828 is a result of the stratigraphic information attached to this sample as it is to be younger than AAR-8827 (Figure 3, Table 3).

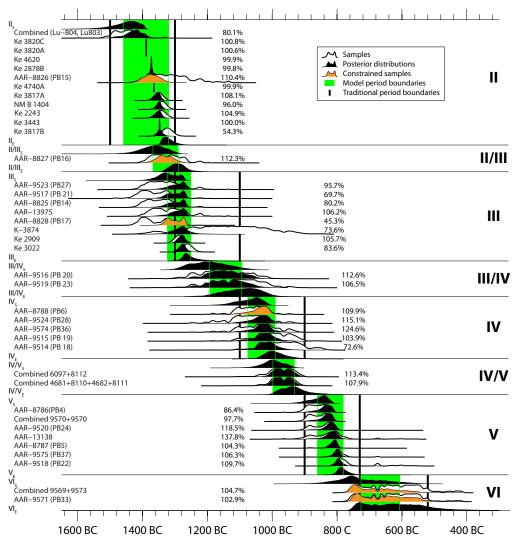


Figure 3 Modeled and unmodeled calibrated age probability distributions grouped by period (II–VI) and transition between periods (II/III, III/IV and IV/V). Solid vertical lines indicate the traditional ages of each of the periods (II–VI), and green areas indicate the model output dates for each of the periods. Numbers refer to the OxCal 4.1 agreement index of each sample with the model.

In general, the outcome of the chronological model for the Bronze Age is in good agreement with traditional Bronze Age periods (Figure 3, Table 4). The modeled boundaries of periods are all compatible with the traditional Danish chronology as the periods II, IV, V, and VI all fall within the age ranges of the traditional chronology (Table 4, Figure 3). An exception is period III, which is suggested to start some 30 yr earlier, ~1330 BC, than the traditional onset of period III (1300 BC). According to Randsborg (2006), the start of period III is ~1330 BC (1344–1319 BC) based solely on

the Danish dendrochronological dates, which are in good agreement with the result obtained by the modeled data. Further, the periods III to VI, including the transition periods III/IV and IV/V, all appear in successive chronological order with no overlaps even though this has been allowed in the model construction. The transition period II/III does, however, show an overlap with period II and III. In contrast, both III/IV and IV/V appear as a further subdivision of the traditional periods III and IV (Figure 3, Table 4). The transition period III/IV is a well-defined Danish archaeological phase, named subperiod III, corresponding to the central European phase Ha A2 (Randsborg 1972). Future chronological studies may show whether the transition period IV/V is an archaeological phase as well. All periods II to VI show significantly decreased spans in comparison to the traditional periods (Figure 4, Table 4). The main reason is the small number of samples included in each period, which is particularly true for periods II/III, III/IV, IV/V, and VI consisting of only 1 to 2 samples. Another reason may be that the samples originate from a small geographical region and as such do not represent the whole of the Danish region. However, periods II, IV, and V are represented with samples from both Jutland and Funen and in addition period III includes Zealand (Figure 1). Hence, the Danish region as a whole is represented and the result therefore points towards a likely more confined span of each period than previously thought. Interestingly, the southern Swedish period II find dates (Lu-803, Lu-804, Table 2) are significantly earlier than the period II finds from Jutland and northern Germany (Figure 3, Table 3), perhaps suggesting regional differences in the timing of each period. However, this difference may also signal a warning against drawing too firm a conclusion on a limited geographical data set.

			Model start (B0	C)	Model end (B0	C)		Period span	
Period	Traditional (BC)	п	μ	Mode	μ	Mode	Trad.	Year	Mode
Π	1500-1300	12	1459 (1558–1387) ^a	1435	1320 (1348–1284)	1330	200	140 (52–252)	116
II/III		1	1368 (1450–1289)	1360	1290 (1337–1241)	1290		78 (-1-174)	52
III	1300-1100	8	1323 (1381–1268)	1330	1251 (1296–1184)	1267	200	72 (-3-171)	5
III/IV		2	1193 (1294–1084)	1210	1094 (1201–996)	1057		99 (-1-223)	53
IV	1100-950/920	5	1075 (1163–1007)	1050	990 (1053–911)	1000	165	119 (-3-344)	5
IV/V		2	998 (1065–931)	1002	931 (1004-837)	935		67 (-3-177)	10
V	950/920-800	7	861 (925-811)	842	781 (816–740)	790	135	80 (1-168)	55
VI	800-530/520	2	726 (853–572)	755	607 (762–411) ^b	730	275	85 (-3-201)	40

Table 4 Bronze Age periods (model output). μ refers to the weighted mean of the calibrated probability distribution (95.4% confidence interval) and mode refers to most frequent value (Dates ranges BC).

^aTerminus ante quem.

^bTerminus post quem.

An archaeological classification for the 3 samples, AAR-13974, -9525, and -9521, has not been possible (Figure 5, Tables 1 and 3). Here, we apply the constructed Bronze Age chronology to try to connect these samples to a certain period by calculating the percentage of the calibrated probability distribution that falls within each period (Figure 5). Sample AAR-13974 has most of its area falling within period II/III (27.8%) and III (44.8%). Sample AAR-9525 falls within the traditional period IV, with 32.8% of its area in period IV and 46.8% in period IV/V. Sample AAR-9521 has 56.5% of its area within period V, but also a large fraction between period IV/V and V (Figure 5).

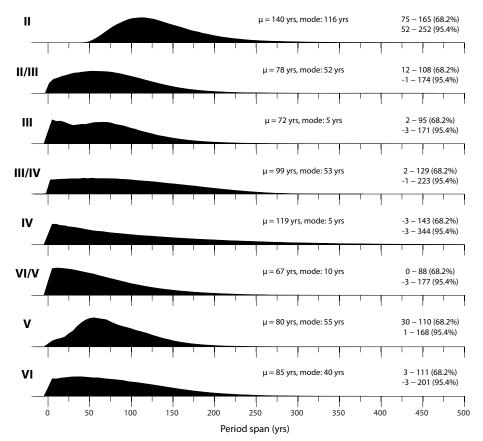


Figure 4 The probability distribution for the duration of each modeled period. μ refers to the weighed mean of the calibrated probability distribution and mode refers to most frequent value.

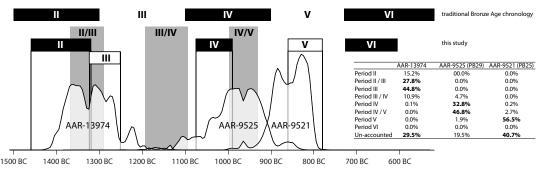


Figure 5 Calibrated age probability distributions of unknown Bronze Age period samples. The table indicates the percentage areas of each unknown sample within each modeled period. "Un-accounted" refers to the area of the calibrated age probability distributions falling outside the modeled period spans.

CONCLUSION

In this study, ¹⁴C dating of cremated bones has been used to improve the traditional chronology of the Danish Bronze Age. The careful selection of samples from burials with positive archaeological classification to a single period or a transition phase has resulted in a satisfactory absolute model for

Denmark. The model is almost in agreement with the proposed chronology, which relates to the central European chronology. The model raises an interesting question concerning the early beginning of period III, which only future work may fully explore. In the previous work by Vandkilde et al. (1996), the Danish Late Bronze Age was almost absent due to the lack of ¹⁴C dates from period IV and VI burials. Based on 20 new high-precision ¹⁴C dates, we are now able to define the Late Bronze Age periods IV to VI.

ACKNOWLEDGMENTS

The Danish Research Council for the Humanities is thanked for their financial support to Karen Margrethe Hornstrup to the ¹⁴C dating and the Danish Natural Science Research Council is acknowledged for their financial support to the AMS ¹⁴C Dating Centre, Aarhus University, Denmark. J O wishes to thank the Carlsberg Foundation for their support 2006–2009. C Bronk Ramsey, University of Oxford, is gratefully acknowledged for his help with the OxCal model.

REFERENCES

- Andersen GJ, Heinemeier J, Nielsen HL, Rud N, Thomsen MS, Johnsen S, Sveinbjörnsdóttir ÁE, Hjartarson A. 1989. AMS ¹⁴C dating on the Fossvogur sediments, Iceland. *Radiocarbon* 31(3):592–600.
- Aner E, Kersten K. 1978. Die Funde der älteren Bronzezeit des nordischen Kreises aus Dänemark, Schleswig-Holstein und Niedersachsen: København & Neumünster.
- Aner E, Kersten K. 1981. Die Funde der älteren Bronzezeit des nordischen Kreises aus Dänemark, Schleswig-Holstein und Niedersachsen: København & Neumünster.
- Aner E, Kersten K. 1984. Die Funde der älteren Bronzezeit des nordischen Kreises aus Dänemark, Schleswig-Holstein und Niedersachsen: København & Neumünster.
- Aner E, Kersten K. 1986. Die Funde der älteren Bronzezeit des nordischen Kreises aus Dänemark, Schleswig-Holstein und Niedersachsen: København & Neumünster.
- Aner E, Kersten K. 1995. Die Funde der älteren Bronzezeit des nordischen Kreises aus Dänemark, Schleswig-Holstein und Niedersachsen: København & Neumünster.
- Bronk Ramsey C. 2009. Bayesian analysis of radiocarbon dates. *Radiocarbon* 51(1):337–60.
- Christensen K. 2006. Dendrochronological dating of oak coffins from the Bronze Age of Denmark and Schleswig. *Acta Archaeologica* 77:162–246.
- De Mulder G, Van Strydonck M, Boudin M, Leclercq W, Paridaens N, Warmenbol E. 2007. Re-evaluation of the Late Bronze Age and Early Iron Age chronology of the western Belgian urnfields based on ¹⁴C dating of cremated bones. *Radiocarbon* 49(2):499–514.
- De Mulder G, Van Strydonck M, Boudin M. 2009. The impact of cremated bone dating on the archaeological chronology of the Low Countries. *Radiocarbon* 51(2): 579–600.
- Fischer A, Olsen J, Richards M, Heinemeier J, Sveinb-

jörnsdóttir ÁE, Bennike P. 2007. Coast-inland mobility and diet in the Danish Mesolithic and Neolithic: evidence from stable isotope values of humans and dogs. *Journal of Archaeological Science* 34(12): 2125–50.

- Garvie-Lok SJ, Varney TL, Katzenberg MA. 2004. Preparation of bone carbonate for stable isotope analysis: the effects of treatment time and acid concentration. *Journal of Archaeological Science* 31(6):763–76.
- Håkansson S. 1974. University of Lund radiocarbon dates VII. *Radiocarbon* 16(3):307–30.
- Hassan AA, Termine JD, Haynes CV. 1977. Mineralogical studies on bone apatite and their implications for radiocarbon dating. *Radiocarbon* 19(3):364–74.
- Hedges REM, Millard AR. 1995. Bones and groundwater: towards the modelling of diagenetic processes. *Journal of Archaeological Science* 22(2):155–64.
- Hüls CM, Nadeau M-J, Grootes PM, Erlenkeuser H, Andersen N. 2010. Experimental study on the origin of cremated bone apatite carbon. *Radiocarbon* 52(2): 587–99.
- Jensen J. 1998 Manden i kisten. Hvad bronzealderens gravhøje gemte. Copenhagen.
- Jørgensen LB, Munksgaard E, Nielsen K-HS. 1984. Melhøj-fundet. En hidtil upåagtet parallel til Skrydstrupfundet. Aarbøger for Nordisk Oldkyndighed og Historie 1982. p 19–57.
- Lanting JN, Brindlye AL. 1998. Dating cremated bone: the dawn of a new era. *Journal of Irish Archaeology* 9: 1–7.
- Lanting JN, Aerts-Bijma A, van der Plicht H. 2001. Dating of cremated bones. *Radiocarbon* 43(2):249–54.
- Lanting JN, van der Plicht J. 2003. ¹⁴C-chronologie: bronstijd en vroege ijzertijd. *Paleohistoria* 43/44: 117–262.
- Lee-Thorp JA, Sealy JC, van der Merwe J. 1989. Stable carbon isotope ratio differences between bone collagen and bone apatite, and their relationship to diet. *Journal of Archaeological Science* 16(6):585–99.

- Montelius M. 1885. Om tidsbestämning inom bronsåldern med sårskilt avseende på Skandinavien. Stockholm.
- Montelius M. 1986. *Dating in the Bronze Age with Special Reference to Scandinavia* [reprinted]. Stockholm: Almqvist & Wiksell. 148 p.
- Munro LE, Longstaffe FJ, White CD. 2007. Burning and boiling of modern deer bone: effects on crystallinity and oxygen isotope composition of bioapatite phosphate. *Palaeogeography, Palaeoclimatology, Palaeoecology* 249(1–2):90–102.
- Olsen J, Heinemeier J, Bennike P, Krause C, Hornstrup KM, Thrane H. 2008. Characterisation and blind testing of radiocarbon dating of cremated bone. *Journal of Archaeological Science* 35(3):791–800.
- Olsen J, Heinemeier J, Lübcke H, Lüth F, Terberger T. 2010. Dietary habits and freshwater reservoir effects in bones from a Neolithic NE German cemetery. *Radiocarbon* 52(2):635–44.
- Randsborg K. 1972. From Period III to Period IV. Chronological Studies of the Bronze Age in Southern Scandinavia and Northern Germany. Copenhagen: Publications of the National Museum.
- Randsborg K. 1996. The Nordic Bronze Age: chronological dimensions. Acta Archaeologica 67:61–72.
- Randsborg K. 2006. Chronology. Acta Archaeologica 77: 3–58.
- Reimer PJ, Baillie MGL, Bard E, Bayliss A, Beck JW, Blackwell PG, Bronk Ramsey C, Buck CE, Burr GS, Edwards RL, Friedrich M, Grootes PM, Guilderson TP, Hajdas I, Heaton TJ, Hogg AG, Hughen KA, Kaiser KF, Kromer B, McCormac FG, Manning SW, Reimer RW, Richards DA, Southon JR, Talamo S, Turney CSM, van der Plicht J, Weyhenmeyer CE. 2009. IntCal09 and Marine09 radiocarbon age calibration curves, 0–50,000 years cal BP. *Radiocarbon* 51(4): 1111–50.
- Richards MP, Hedges REM. 1999. Stable isotope evidence for similarities in the types of marine foods used by Late Mesolithic humans at sites along the Atlantic

coast of Europe. *Journal of Archaeological Science* 26(6):717–22.

- Sandford MK. 1993. Understanding the biogenic-diagenetic continuum: interpreting elemental concentrations of archaeological bone. In: Sandford MK, editor. *Investigations of Ancient Human Tissue*. New York: Gordon and Breach Science. p 3–57.
- Strömberg M. 1974. Soziale Schichtungen in der älteren Bronzezeit Südschwedens. Die Kunde 25:89–97.
- Surovell TA. 2000. Radiocarbon dating of bone apatite by step heating. *Geoarchaeology* 15:591–608.
- Tamers MA, Pearson FJ. 1965. Validity of radiocarbon dates on bone. *Nature* 208(5015):1053–5.
- Thomsen MS. 1990. AMS Spectrometry. Aarhus: Aarhus Universitet.
- Thrane H. 1964. The earliest bronze vessels in Denmark's Bronze Age. Acta Archaeologica 33:109–63.
- Thrane H. 2004. *Fyns Yngre Broncealdergrave*. Bind 1. Odense Bys Museer.
- van Strydonck M, Boudin M, Hoefkens M, de Mulder G. 2005. ¹⁴C-dating of cremated bones, why does it work? *Lunula* 13:3–10.
- Van Strydonck M, Boudin M, De Mulder G. 2009. ¹⁴C dating of cremated bones: the issue of sample contamination. *Radiocarbon* 51(2):553–68.
- Van Strydonck M, Boudin M, de Mulder G. 2010. The carbon origin of structural carbonate in bone apatite of cremated bones. *Radiocarbon* 52(2):578–86.
- Vandkilde H, Rahbek U, Rasmussen KL. 1996. Radiocarbon dating and the chronology of Bronze Age southern Scandinavia. *Acta Archaeologica* 67:183– 98.
- Vogel JS, Southon JR, Nelson DE, Brown TA. 1984. Performance of catalytical condensed carbon for use in accelerator mass spectrometry. *Nuclear Instruments* and Methods in Physics Research B 5(2):289–93.
- Wright LE, Schwarcz HP. 1996. Infrared and isotopic evidence for diagenesis of bone apatite at Dos Pilas, Guatemala: palaeodietary implications. *Journal of Archaeological Science* 23(6):933–44.