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Abstract

IT Landscape models are representing the real-world IT infrastructure of a company. They include hardware assets such as

physical servers and storage media, as well as virtual components like clusters, virtual machines and applications. These

models are a critical source of information in numerous tasks, including planning, error detection and impact analysis. The

responsible stakeholders often struggle to keep such a large and densely connected model up-to-date due to its inherent size

and complexity, as well as due to the lack of proper tool support. Even though modeling techniques are very suitable for this

domain, existing tools do not offer the required features, scalability or flexibility. In order to solve these challenges and meet

the requirements that arise from this application domain, we combine domain-driven modeling concepts with scalable graph-

based repository technology and a custom language for model-level queries. We analyze in detail how we synthesized these

requirements from the application domain and how they relate to the features of our repository. We discuss the architecture

of our solution which comprises the entire data management stack, including transactions, queries, versioned persistence and

metamodel evolution. Finally, we evaluate our approach in a case study where our open-source repository implementation

is employed in a production environment in an industrial context, as well as in a comparative benchmark with an existing

state-of-the-art solution.

Keywords Model-driven engineering · Model repositories · Versioning · Graph database · IT landscape

1 Introduction

Model-driven engineering (MDE) is a discipline that aims at

improving the processes, workflows and products of exist-

Communicated by Dr. Ana Moreira.

B Martin Haeusler

martin.haeusler@uibk.ac.at

Thomas Trojer

thomas.trojer@txture.io

Johannes Kessler

johannes.kessler@uibk.ac.at

Matthias Farwick

matthias.farwick@txture.io

Emmanuel Nowakowski

emmanuel.nowakowski@uibk.ac.at

Ruth Breu

ruth.breu@uibk.ac.at

1 University of Innsbruck, 6020 Innsbruck, Austria

2 Txture GmbH, 6020 Innsbruck, Austria

ing engineering areas by applying models as an abstraction

layer. The primary field of application for MDE has tradi-

tionally always been software engineering [64]. However, the

key innovations of MDE are not domain specific. The gen-

eral concept of using a metamodel to define a structure and

then instantiating it to create actual objects applies to a wide

range of problems. When comparing different use cases it

becomes evident that modeling concepts tend to be employed

in areas that exhibit high complexity and heterogeneity in

their domain structures, such as cloud orchestration [22],

self-adaptive software [5], automotive systems [24] or Enter-

prise Architecture Management (EAM) [43]. However, there

are still many potential application areas for model-driven

approaches that have barely been investigated so far. EAM

focuses exclusively on the strategic aspects of IT manage-

ment. Standard metamodels (such as ArchiMate [43]) have

been developed for this domain, yet these metamodels focus

primarily on high-level business services and capabilities.

The actual assets (or Configuration Items (CIs) [7]) on the

operative level are captured in a coarse-grained way that does

not allow for deeper analysis, or are excluded entirely.

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10270-019-00725-0&domain=pdf


3488 M. Haeusler et al.

Configuration items typically comprise physical servers,

applications, databases and network infrastructure. We refer

to the collection of all assets in a company as the IT Land-

scape (also known as resource landscape [36]). The IT

Landscapes of major, globally operating companies, can

grow to considerable dimensions. Due to agility require-

ments, they are increasingly subject to frequent evolution

and technology shifts. Recent examples include the exten-

sive usage of virtualization platforms in data centers, the

advent of cloud computing and the emergence of As-A-

Service solutions. Furthermore, even though commonalities

do exist, every company has its own architecture and vision

behind its landscape. The terminology also varies, as there

is no generally accepted definition across all stakeholders

for common terms like Service or Application. Responsible

persons and teams often struggle in their continuous efforts

to properly document these landscapes due to their inherent

size and complexity. The absence of a reliable and up-to-

date documentation can result in slow error detection, loss

of traceability of changes and misguided planning processes

due to poor information situations. Ultimately, these issues

can lead to problems which cause very high costs for the

companies if they remain unaddressed [30,51].

The need for tool support in the area of IT Landscape doc-

umentation is evident, and model engineering is well-suited

to provide the required concepts. However, the existing MDE

tool infrastructure is insufficient when it comes to satisfying

the requirements of this domain. Existing solutions either do

not scale with the number of elements in a real-world IT

Landscape documentation, do not offer the necessary anal-

ysis capabilities, or lack the flexibility needed in long-term

projects. Several state-of-the-art model repositories employ

relational databases, even though the object-relational gap is

well-known to cause additional complexity and performance

overhead. Furthermore, the required commitment to a fixed

schema across all entries impedes the ability to perform meta-

model evolution processes without altering past revisions. In

recent years, the NoSQL family of databases has expanded,

and graph databases in particular are an excellent fit for stor-

ing model data [1,4]. The central research question we focus

on in this paper is how to combine domain-driven model-

ing concepts and technologies with the innovations from the

graph database community in order to build a model reposi-

tory which is suitable for IT Landscape documentation.

In this paper, we present a solution for storing, versioning

and querying IT Landscape models called ChronoSphere.

ChronoSphere is a novel open-source EMF model reposi-

tory that addresses the needs of this domain, in particular

scalable versioning, querying and persistence. It utilizes

innovative database technology and is based on a modular

architecture which allows individual elements to be used

as standalone components outside the repository context.

Even though ChronoSphere has been designed for the IT

Landscape use case, the core implementation is domain inde-

pendent and may also serve other use cases (see Sect. 9.4).

In our inter-disciplinary efforts to realize this repository, we

also contributed to the state-of-the-art in the database com-

munity, in particular in the area of versioned data storage

and graph versioning. We evaluate our approach in an indus-

trial case study in collaboration with Txture GmbH.1 This

company employs our ChronoSphere implementation as the

primary storage back-end in their commercial IT Landscape

modeling tool.

The remainder of this paper is structured as follows. In

Sect. 2, we first describe the IT Landscape use case in more

detail. We then extract the specific requirements for our solu-

tion from this environment and discuss how they were derived

from the industrial context. Section 3 provides a high-level

overview of our approach. In Sects. 4 through 6, we discuss

the details of our solution. In Sect. 7, we present the appli-

cation of our repository in an industrial context. Section 8

evaluates the performance of ChronoSphere in comparison

with other model repository solutions, which is followed by

a feature-based comparison of related work in several differ-

ent areas in Sect. 9. We conclude the paper with an outlook

to future work in Sect. 10 and a summary in Sect. 11. Sec-

tions 4 through 6 consist of a revised, updated and extended

version of the content presented in our previous work, mainly

[25,27,28]. The remaining sections (most notably 2, 7 and 8)

have never been published before.

2 Use case and requirement analysis

The overarching goal in IT Landscape documentation is to

produce and maintain a model which reflects the current IT

assets of a company and their relationships with each other.

As these assets change over time, keeping this model up-to-

date is a continuous task, rather than a one-time effort.

From a repository perspective, the use case of IT Land-

scape documentation is unique because it is both a database

scenario (involving large datasets) as well as a design sce-

nario where multiple users manually edit the model in a

concurrent fashion (see Fig. 1). The amount and quality

of information which is available in external data sources

depends on the degree of automation and standardization in

the company. For companies with a lower degree of automa-

tion, users will want to edit the model manually to keep it

up-to-date. In companies that have a sophisticated automa-

tion chain in place, the majority of data can be imported

into the repository without manual intervention. Typical data

sources involved in such a scenario are listed in Table 1.

After gathering and consolidating the required informa-

tion in a central repository, typical use cases are centered

1 www.txture.io.
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Fig. 1 The IT landscape environment

around analysis and reporting. A user usually starts a session

with a query that finds all assets that match a list of criteria,

such as “Search for all Virtual Machines which run a Linux

Operating System” or “Search for the Cluster named ‘Pro-

duction 2’ located in Vienna”. Finding an asset based on its

name is a particularly common starting query.

From the result of this initial global query, the user will

often want to analyze this particular asset or group of assets.

Common use cases involve impact analysis and root cause

analysis. The central question in impact analysis is “What

would be the impact to my applications if a given Physical

Server fails” and can be answered by a transitive dependency

analysis starting from the Physical Server and resolving

the path to the transitively connected applications (cross-

ing the virtualization, clustering and load balancing layers

in between). Root cause analysis is the inverse question:

given an Application, the task is to find all Physical Servers

on which the application transitively depends. This insight

allows to reduce the search space in case of an incident (rang-

ing from performance problems to total application outage).

Finally, analyzing the history of a single element or the

entire model as a whole are important use cases in IT Land-

scape management. For example, users are interested in the

number of applications employed in their company over time.

Version control becomes essential in such scenarios, because

it allows to formulate queries over time after the actual inser-

tion of the data has happened (whereas for a statistic on a

non-versioned store the query would have to be known in

advance to track the relevant data at insertion time). Per-

element history traces are also important, as they allow to

identify who performed a certain change, which properties

of the asset have been modified, and when the modification

has occurred.

In the remainder of this section, we focus on the most

important influences from the industrial context, how we

derived requirements for our repository from them, and how

these requirements are met by technical features. Figure 2

provides an overview of this process.

2.1 Deriving requirements from the context

IT architectures and their terminology (e.g., the exact def-

inition of general terms like Service or Application) vary

by company. Therefore, the structure of the resulting IT

Landscape models also differs. One solution to these Hetero-

geneous Architectures [C1] is to unify them under a common,

fixed metamodel (e.g., ArchiMate [43]). However, this can

Table 1 Common data sources for IT landscape documentation

Data source Examples Web URL

SQL databases MySQL www.mysql.com

PostGreSQL www.postgresql.org

Microsoft SQL Server www.microsoft.com/en-us/sql-server

Virtualization platforms VMware VCenter www.vmware.com/products/vcenter-server

OpenStack www.openstack.org

Red Hat Enterprise Virtualization www.redhat.com/en/technologies/virtualization

Enterprise architecture management tools IteraPlan www.iteraplan.de/en

Mega www.mega.com/en/product/enterprise-architecture

Enterprise Architect www.sparxsystems.eu

Cloud Computation Platforms Amazon EC2 https://aws.amazon.com/ec2

Microsoft Azure https://azure.microsoft.com/en-us

Google Cloud Compute Engine https://cloud.google.com/compute

Container orchestration mechanisms Google Kubernetes https://kubernetes.io

Docker Swarm https://docs.docker.com/engine/swarm
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Heterogeneous ArchitecturesC1

Large CompaniesC2

Technological ShiftsC3

Long-Running ProjectsC4

Multiple StakeholdersC5

Traceability, Auditing, ComplianceC6

PlanningC7

VersioningR2

User-Defined Meta-ModelR1

Metamodel EvolutionR3

BranchingR4

Scalability (Model & History size)R5

Concurrent AccessR6

Any Query on any Branch/VersionR7

Element History AnalysisR8

Consistency (Model & Query Results)R9

IT Landscape Context Requirements

EMF-Compliant MetamodelingF1

Per-Element-Versioned StorageF2

Metamodel Evolution & Co-AdaptationF3

Lightweight BranchingF4

Dynamic (Un-)Loading of ElementsF5

Historical ArchivingF7

ACID TransactionsF8

Primary & Secondary IndexingF6

Branch- & Time-agnostic QueriesF9

Technical Features

Fig. 2 Traceability matrix between context, requirements and features

lead to poor acceptance in practice due to its rigidity and

the additional complexity introduced by its generality. From

our past surveys and case studies [17–20,73], we inferred

the requirement that the metamodel should be configurable

by the user [R1]. The companies which utilize IT Land-

scape models the most are usually large companies [C2],

or companies with a strong focus on IT (such as data cen-

ters). This entails that the corresponding models will grow to

considerable sizes, and a repository must offer the necessary

scalability [R5].

Documenting the IT Landscape of a company is a contin-

uous effort. In the industrial context, we are therefore faced

with long-running endeavors [C4] that span several years. In

situations where responsible persons change and team mem-

bers leave while new ones join, the ability to comprehend and

reflect upon past decisions becomes crucial. Versioning the

model content [R2] meets these demands, and also enables

use cases that involve auditing, as well as use cases where ver-

sioning is required for legal compliance [C6]. The underlying

requirement for these use cases is to not only store the version

history, but also to analyze history traces [R8]. During a long-

term documentation project, the metamodel sometimes also

needs to be adapted [R3], for example due to technological

shifts [C3] that introduce new types of assets. Examples for

technological shifts include the introduction of virtualization

technologies in data centers, and the advent of cloud com-

puting. Another direct consequence of long-running projects

is that the change history of individual model elements can

grow to large sizes [R5] which must be considered in the

technical realization of a repository.

In industrial contexts, several different stakeholders col-

laborate in documenting the IT Landscape. Depending on the

scope of the project, stakeholders can involve a wide vari-

ety of roles, ranging from IT operations experts to database

managers and enterprise architects [C5]. This entails that the

repository must support concurrent access [R6] for multiple

users. Another requirement that follows directly from con-

current access is that the structural consistency of the model

contents must be ensured by the repository [R6, R9] (e.g.,

conformance to the metamodel and referential integrity).

From the analysis perspective, concurrent access is also a

threat to the consistency and reproducibility of query results,

which is required for reliable model analysis [R9]. Apart

from analyzing the current and past states of the model, IT

Landscape models are also used to plan for future transfor-

mations [C7]. The general workflow involves the creation of

“to-be” scenarios based on the current state which are then

compared against each other in order to select the best can-

didate. In order to cope with such use cases, the repository

must support branching [R4]. Branches allow the plans to

be based on the actual model and to change it independently

without affecting the as-is state. Since the comparison of two

model states is an important part of planning (as well as a

number of other use cases), the repository needs to be able

to evaluate an analysis query on any model version and on

any branch [R7] without altering the query.
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2.2 Deriving features from requirements

From the set of requirements, we inferred the technical fea-

tures which our model repository has to support. As we

want our users to be able to provide their own metamod-

els, we employ the standard Eclipse Modeling Framework

(EMF [70]) as our modeling language of choice [F1]. The

fact that the data managed by our repository consists of a

large and densely connected model which has to be put under

version control lead to the decision to employ a per-element

versioning strategy [F2], as a coarse-grained whole-model

versioning strategy would cause performance issues for such

models.

Supporting a user-defined metamodel, element versioning

and metamodel evolution at the same time is a challenging

task. The combination of these requirements entails that our

repository must support metamodel versioning, metamodel

evolution and instance co-adaptation [F3]. From a techni-

cal perspective, it is also inadvisable to create a full copy

of a model version each time a branch is created due to the

potential size of the model. We therefore require a branching

mechanism that is lightweight [F4] in that it reuses the data

from the origin branch rather than copying it when a new

branch is created. Since IT Landscape models can grow to

large sizes and will potentially not fit into the main mem-

ory of the machine which runs our repository, we require a

mechanism for dynamic on-demand loading and unloading

of model elements [F5].

A technical feature which is crucial for efficient query-

ing of the entire model is indexing [F6]. The primary index

allows to locate a model element by its unique ID without

linear iteration over all elements. Secondary indices can be

defined by the user for a given metamodel and can be used

to efficiently find all elements in the model where a property

is set to a specified value (e.g., finding all servers where the

name contains “Production”). In addition, indexing has to

consider the versioned nature of our repository, as we want

our indices to be usable for all queries, regardless of the

chosen version or branch. In other words, even a query on a

model version that is one year old should be able to utilize our

indices. In order for queries to be executable on any branch

and timestamp, we require a framework that allows for the

creation of queries that are agnostic to the chosen branch and

version [F9].

All queries and modifications in our repository are subject

to concurrent access. We meet this requirement by providing

full ACID [38] end-to-end transaction support in our repos-

itory [F8]. Finally, in order to support long histories, we

implement a feature called Temporal Rollover which enables

the archiving of historical entries [F7]. This feature allows for

indefinite growth of element histories and will be explained

in detail in later sections.

3 Solution overview

The overarching goal of our efforts is to provide a model

repository that fulfills the requirements in Sect. 2. Our ini-

tial prototypes were based on standard technology, such as

object-relational mappers and SQL databases. However, we

soon realized that table-based representations were not an

ideal fit for the structure of model data. The main issues we

faced with these solutions were related to scalability and per-

formance [R5]. The fact that most SQL databases require a

fixed schema also proved to be very limiting when taking

the requirement for metamodel evolution [R3] into consid-

eration.

During our search for alternatives, we were inspired by

approaches such as MORSA [54] and Neo4EMF [4]. We

investigated various NoSQL storage solutions and eventually

settled for graph databases. Graph databases do not require a

fixed schema, offer fast execution of navigational queries and

the bijective mapping between model data and graph data

is both simpler and faster than object-relational mappings.

However, existing graph databases on the market did not offer

built-in versioning capabilities [R2]. Using a general-purpose

graph database (e.g., Neo4j2 or Titan3) and managing the ver-

sioning process entirely on the application side has already

been proven by various authors to be possible [8,66,67,71].

However, such approaches greatly increase the complexity of

the resulting graph structure as well as the complexity of the

queries that operate on it. This reduces the maintainability,

performance and scalability [R5] of such systems.

After discovering this gap in both research and indus-

trial solutions, we created a versioned graph database called

ChronoGraph [27], which is the first graph database with

versioning support that is compliant to the Apache Tinker-

Pop standard. ChronoGraph is listed4 as an official TinkerPop

implementation and available as an open-source project on

GitHub.5 Since graph structures need to be transformed into

a format that is compatible with the sequential nature of hard

drives, we also required a versioned storage solution. Our

explorative experiments with different back-ends of Titan DB

demonstrated that key-value stores are a very suitable fit for

storing graph data. We created ChronoDB [25], a versioned

key-value store, to act as the storage backend for Chrono-

Graph. The full source code of this project is also available

on GitHub.6 The resulting repository solution therefore con-

2 https://neo4j.com/.

3 http://titan.thinkaurelius.com/.

4 http://tinkerpop.apache.org/.

5 https://github.com/MartinHaeusler/chronos/tree/master/org.

chronos.chronograph.

6 https://github.com/MartinHaeusler/chronos/tree/master/org.

chronos.chronodb.
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Fig. 3 ChronoSphere data management stack

sists of three layers, allowing for a coherent architecture and

a clean separation of concerns.

Figure 3 shows the data management concepts of Chrono-

Sphere. At the very top, in Fig. 3 Part A, we are working with

EObjects and their corresponding EClasses, EPackages and

other Ecore elements. It is important that the model and the

metamodel are stored together. This will become a critical

factor when dealing with metamodel evolution. This com-

bined model needs to be persisted and versioned [R1–R4].

ChronoSphere maps it to a property graph representation [58]

for this purpose. This representation is conceptually very

close to the model form. Our model-to-graph mapping is

inspired by Neo4EMF [4]. We will discuss related work in

this area in more detail in Sect. 9.

The property graph management in Fig. 3 Part B is pro-

vided by ChronoGraph. In order to achieve a serial form for

the model data that can be persisted to disk, ChronoGraph

disassembles the property graph into individual Star Graphs,

one for each vertex (i.e., node). A star graph is a sub-graph

that is centered around one particular vertex. Figure 3 Part

C shows the star graph of vertex v1. Creating star graphs

for each vertex is a special kind of graph partitioning. When

linking the star graphs again by replacing IDs by vertices, the

original graph can be reconstructed from this partitioning.

This reconstruction can occur fully or only partially, which

makes this solution very suitable for lazy loading techniques

[R5].

In the next step, we transform the star graph of each ver-

tex into a binary string using the Kryo7 serializer, and pass

the result to the underlying ChronoDB, our versioned Key-

Value-Store. When the transaction is committed [R6], the

commit timestamp is assigned to each pair of modified keys

and corresponding binary values, creating time-key-value

triples as shown in Fig. 3 Part D. ChronoDB then stores

these triples in a Temporal Data Matrix (Fig. 3 Part E) which

is implemented as a B+-Tree [61]. Each row in this matrix

represents the full history of a single element, each column

represents a model revision, and each cell represents the data

of one particular element for a given ID at a given timestamp.

We will define and discuss this matrix structure in more detail

in the following section.

4 Solution part I: ChronoDB

ChronoDB [25] is a versioned key-value store and the bot-

tom layer in our architecture. Its main responsibilities are

persistence, versioning, branching and indexing. As all other

components in our architecture rely on this store, we for-

malized its data structures and operations during the design

phase.

4.1 Formal foundation

Salzberg and Tsotras identified three key query types which

have to be supported by a data store in order to provide the

7 https://github.com/EsotericSoftware/kryo.
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full temporal feature set [62]. For versioning purposes, this

set can be reused by restricting the features to timestamps

instead of time ranges. This gives rise to the following three

types of possible queries:

– Pure-Timeslice Query Given a point in time (e.g., date

and time), find all keys that existed at that time.

– Range-Timeslice Query Given a set of keys and a point

in time, find the value for each key which was valid at

that time.

– Pure-Key Query Given a set of keys, for each key find the

values that comprise its history.

We use these three core query types as the functional require-

ments for our formalization approach. For practical reasons,

we furthermore require that inserted entries never have to be

modified again. In this way, we can achieve a true append-

only store. In order to maintain the traceability of changes

over time (e.g., for auditing purposes [R8]), we also require

that the history of a key must never be altered, only appended.

The key concept behind our formalism is based on the

observation that temporal information always adds an addi-

tional dimension to a dataset. A key-value format has only

one dimension, which is the key. By adding temporal infor-

mation, the two resulting dimensions are the key, and the

time at which the value was inserted. Therefore, a matrix is a

very natural fit for formalizing the versioning problem, offer-

ing the additional advantage of being easy to visualize. The

remainder of this section consists of definitions which pro-

vide the formal semantics of our solution, interleaved with

figures and (less formal) textual explanations.

Definition 1 Temporal Data Matrix

Let T be the set of all timestamps with T ⊆ N. Let S denote

the set of all non-empty strings and K be the set of all keys

with K ⊆ S. Let B define the set of all binary strings with

B ⊆ {0, 1}+ ∪ {null, ǫ}. Let ǫ ∈ B be the empty binary

string with ǫ �= null. We define the Temporal Data Matrix

D ∈ B
∞×∞ as:

D : T × K → B

We define the initial value of a given Temporal Data Matrix

D as:

Dt,k := ǫ ∀t ∈ T ,∀k ∈ K

In Definition 1, we define a Temporal Data Matrix, which

is a key-value mapping enhanced with temporal information

[R2, R3]. Note that the number of rows and columns in this

matrix is infinite. In order to retrieve a value from this matrix,

a key string and a timestamp are required. We refer to such

a pair as a Temporal Key. The matrix can contain an array of

binary values in every cell, which can be interpreted as the

serialized representation of an arbitrary object. The formal-

ism is therefore not restricted to any particular value type.

The dedicated null value (which is different from all other

bit-strings and also different from the ǫ values used to ini-

tialize the matrix) will be used as a marker that indicates the

deletion of an element later in Definition 3.

In order to guarantee the traceability of changes [R8],

entries in the past must not be modified, and new entries

may only be appended to the end of the history, not inserted

at an arbitrary position. We use the notion of a dedicated now

timestamp for this purpose.

Definition 2 Now Operation

Let D be a Temporal Data Matrix. We define the function

now : B
∞×∞ → T as:

now(D) = max({t |k ∈ K , Dt,k �= ǫ} ∪ {0})

Definition 2 introduces the concept of the now timestamp,

which is the largest (i.e., latest) timestamp at which data has

been inserted into the store so far, initialized at zero for empty

matrices. This particular timestamp will serve as a safeguard

against temporal inconsistencies in several operations. We

continue by defining the temporal counterparts of the put

and get operations of a key-value store.

Definition 3 Temporal Write Operation

Let D be a Temporal Data Matrix. We define the function

put : B
∞×∞ × T × K × B → B

∞×∞ as:

put(D, t, k, v) = D′

with v �= ǫ, t > now(D) and

D′
i, j :=

{

v if t = i ∧ k = j

Di, j otherwise

The write operation put replaces a single entry in a Temporal

Data Matrix by specifying the exact coordinates and a new

value for that entry. All other entries remain the same as

before. Please note that, while v must not be ǫ in the context

of a put operation (i.e., a cell cannot be “cleared”), v can

be null to indicate a deletion of the key k from the matrix.

Also, we require that an entry must not be overwritten. This

is given implicitly by the fact that each put advances the

result of now(D), and further insertions are only allowed

after that timestamp. Furthermore, write operations are not

permitted to modify the past in order to preserve consistency

and traceability, which is also asserted by the condition on

the now timestamp. This operation is limited in that it allows

to modify only one key at a time. In the implementation, we

generalize it to allow simultaneous insertions in several keys

via transactions.
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Definition 4 Temporal Read Operation

Let D be a Temporal Data Matrix. We define the function

get : B
∞×∞ × T × K → B as:

get(D, t, k) :=

{

Du,k if u ≥ 0 ∧ Du,k �= null

ǫ otherwise

with t ≤ now(D) and

u := max({x |x ∈ T , x ≤ t, Dx,k �= ǫ} ∪ {−1})

The function get first attempts to return the value at the coor-

dinates specified by the key and timestamp (u = t). If that

position is empty, we scan for the entry in the same row with

the highest timestamp and a non-empty value, considering

only entries with lower timestamps than the request times-

tamp. In the formula, we have to add − 1 to the set from

which u is chosen to cover the case where there is no other

entry in the row. If there is no such entry (i.e., u = − 1) or the

entry is null, we return the empty binary string, otherwise

we return the entry with the largest encountered timestamp.

This process is visualized in Fig. 4. In this figure, each

row corresponds to a key, and each column to a timestamp.

The depicted get operation is working on timestamp 5 and

key ‘d’. As D5,d is empty, we attempt to find the largest

timestamp smaller than 5 where the value for the key is not

empty, i.e., we move left until we find a non-empty cell. We

find the result in D1,d and return v1. This is an important part

of the versioning concept: a value for a given key is assumed

to remain unchanged until a new value is assigned to it at a

later timestamp. This allows any implementation to conserve

memory on disk, as writes only occur if the value for a key

has changed (i.e., no data duplication is required between

identical revisions). Also note that we do not need to update

existing entries when new key-value pairs are being inserted,

which allows for pure append-only storage. In Fig. 4, the

value v1 is valid for the key ‘d’ for all timestamps between

1 and 5 (inclusive). For timestamp 0, the key ‘d’ has value

v0. Following this line of argumentation, we can generalize

and state that a row in the matrix, identified by a key k ∈ K ,

contains the history of k. This is formalized in Definition 5. A

column, identified by a timestamp t ∈ T , contains the state of

all keys at that timestamp, with the additional consideration

that value duplicates are not stored as they can be looked up

in earlier timestamps. This is formalized in Definition 6.

Definition 5 History Operation

Let D be a Temporal Data Matrix, and t be a timestamp

with t ∈ T , t ≤ now(D). We define the function history :

B
∞×∞ × T × K → 2T as:

history(D, t, k) := {x |x ∈ T , x ≤ t, Dx,k �= ǫ}

time

keys

0 1 2 3 4 5 6 7 ...

a

b

c

d

e

f

..
.

get t=5, k='d'

v0 v1

Fig. 4 A get operation on a Temporal Data Matrix [25]

In Definition 5, we define the history of a key k up to a

given timestamp t in a Temporal Data Matrix D as the set of

timestamps less than or equal to t that have a non-empty entry

for key k in D. Note that the resulting set will also include

deletions, as null is a legal value for Dx,k in the formula.

The result is the set of timestamps where the value for the

given key changed. Consequently, performing a get operation

for these timestamps with the same key will yield different

results, producing the full history of the temporal key.

Definition 6 Keyset Operation

Let D be a Temporal Data Matrix, and t be a timestamp

with t ∈ T , t ≤ now(D). We define the function keyset :

B
∞×∞ × T → 2K as:

keyset(D, t) := {x |x ∈ K , get(D, t, x) �= ǫ}

As shown in Definition 6, the keyset in a Temporal Data

Matrix changes over time. We can retrieve the keyset at any

desired time by providing the appropriate timestamp t . Note

that this works for any timestamp in the past, in particular we

do not require that a write operation has taken place precisely

at t in order for the corresponding key(s) to be contained in the

keyset. In other words, the precise column of t may consist

only of ǫ entries, but the key set operation will also consider

earlier entries which are still valid at t . The version operation

introduced in Definition 7 operates in a very similar way, but

returns tuples containing keys and values, rather than just

keys.

Definition 7 Version Operation

Let D be a Temporal Data Matrix, and t be a timestamp

with t ∈ T , t ≤ now(D). We define the function version :

B
∞×∞ × T → 2K×B

version(D, t) :={〈k, v〉|k ∈ keyset(D, t), v=get(D, t, k)}
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time

keys

0 1 2 3 4 5 6 7 ...

a

b

c

d

e

f

..
.

null

keyset / version at t=5

v0

v1 v2

v3 v4

v5

Fig. 5 Performing a keyset or version operation on a Temporal Data

Matrix [25]

Table 2 Mapping capabilities to operations [25]

Capability Realization in formalism

Pure-Timeslice Equivalent to keyset operation

Range-Timeslice One get operation per given key

Pure-Key One history operation per given key

Figure 5 illustrates the key set and version operations by

example. In this scenario, the key set (or version) is requested

at timestamp t = 5. We scan each row for the latest non-ǫ

entry and add the corresponding key of the row to the key set,

provided that a non-ǫ right-most entry exists (i.e., the row is

not empty) and is not null (the value was not removed). In

this example, keyset(D, 5) would return {a, c, d}, assuming

that all non-depicted rows are empty. b and f are not in the

key set, because their rows are empty (up to and including

timestamp 5), and e is not in the set because its value was

removed at timestamp 4. If we would request the key set at

timestamp 3 instead, e would be in the key set. The opera-

tion version(D, 5) returns {〈a, v0〉, 〈c, v2〉, 〈d, v4〉} in the

example depicted in Fig. 5. The key e is not represented in

the version because it did not appear in the key set.

With the given set of operations, we are able to answer all

three kinds of temporal queries identified by Salzberg and

Tsotras [62], as indicated in Table 2. Due to the restrictions

imposed onto the put operation (see Definition 3), data cannot

be inserted before the now timestamp (i.e., the history of an

entry cannot be modified). Since the validity range of an

entry is determined implicitly by the empty cells between

changes, existing entries never need to be modified when new

ones are being added. The formalization therefore fulfills all

requirements stated at the beginning of this section.

Table 3 Ascending Temporal Key ordering by example [25]

Order Temporal key Key string Timestamp

0 a@0123 a 123

1 a@0124 a 124

2 a@1000 a 1000

3 aa@0100 aa 100

4 b@0001 b 1

5 ba@0001 ba 1

4.2 Implementation

ChronoDB is our implementation of the concepts presented

in the previous section. It is a fully ACID compliant, process-

embedded, temporal key-value store written in Java. The

intended use of ChronoDB is to act as the storage backend

for a graph database, which is the main driver behind numer-

ous design and optimization choices. The full source code is

freely available on GitHub under an open-source license.

4.2.1 Implementing the matrix

As the formal foundation includes the concept of a matrix

with infinite dimensions, a direct implementation is not fea-

sible. However, a Temporal Data Matrix is typically very

sparse. Instead of storing a rigid, infinite matrix structure,

we focus exclusively on the non-empty entries and expand

the underlying data structure as more entries are being added.

There are various approaches for storing versioned data

on disk [15,46,50]. We reuse existing, well-known and well-

tested technology for our prototype instead of designing

custom disk-level data structures. The temporal store is based

on a regular B+-Tree [61]. We make use of the implemen-

tation of B+-Trees provided by the TUPL8 library. In order

to form an actual index key from a Temporal Key, we con-

catenate the actual key string with the timestamp (left-padded

with zeros to achieve equal length), separated by an ‘@’ char-

acter. Using the standard lexicographic ordering of strings,

we receive an ordering as shown in Table 3. This implies that

our B+-Tree is ordered first by key, and then by timestamp.

The advantage of this approach is that we can quickly deter-

mine the value of a given key for a given timestamp (i.e., get

is reasonably fast), but the keyset (see Definition 6) is more

expensive to compute.

The put operation appends the timestamp to the user key

and then performs a regular B+-Tree insertion. The temporal

get operation requires retrieving the next lower entry with

the given key and timestamp.

This is similar to regular B+-Tree search, except that the

acceptance criterion for the search in the leaf nodes is “less

8 https://github.com/cojen/Tupl.
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than or equal to” instead of “equal to”, provided that nodes

are checked in descending key order. TUPL natively supports

this functionality. After finding the next lower entry, we need

to apply a post-processing step in order to ensure correctness

of the get operation. Using Table 3 as an example, if we

requested aa@0050 (which is not contained in the data),

searching for the next-lower key produces a@1000. The key

string in this temporal key (a) is different from the one which

was requested (aa). In this case, we can conclude that the

key aa did not exist up to the requested timestamp (50), and

we return null instead of the retrieved result.

Due to the way we set up the B+-Tree, adding a new

revision to a key (or adding an entirely new key) has the

same runtime complexity as inserting an entry into a regular

B+-Tree. Temporal search also has the same complexity as

regular B-Tree search, which is O(log(n)), where n is the

number of entries in the tree. From the formal foundations

onward, we assert by construction that our implementation

will scale equally well when faced with one key and many

versions, many keys with one revision each, or any distri-

bution in between [R5]. An important property of our data

structure setup is that, regardless of the versions-per-key dis-

tribution, the data structure never degenerates into a list,

maintaining an access complexity of O(log(n)) by means of

regular B+-Tree balancing without any need for additional

algorithms.

4.2.2 Branching

Figure 6 shows how the branching mechanism works in

ChronoDB [R4]. Based on our matrix formalization, we can

create branches of our history at arbitrary timestamps. To

do so, we generate a new, empty matrix that will hold all

changes applied to the branch it represents. We would like to

emphasize that existing entries are not duplicated. We there-

fore create lightweight branches. When a get request arrives

at the first column of a branch matrix during the search, we

redirect the request to the matrix of the parent branch, at

the branching timestamp, and continue from there. In this

way, the data from the original branch (up to the branching

timestamp) is still fully accessible in the child branch.

For example, as depicted in Fig. 7, if we want to answer a

get request for key c on branch branch A and timestamp 4,

we scan the row with key c to the left, starting at column 4.

We find no entry, so we redirect the call to the origin branch

(which in this case is master ), at timestamp 3. Here, we

continue left and find the value c1 on timestamp 1. Indeed, at

timestamp 4 and branch branch A, c1 is still valid. However,

if we issue the same original query on master , we would

get c4 as our result. This approach to branching can also

be employed recursively in a nested fashion, i.e., branches

can in turn have sub-branches. The primary drawback of this

solution is related to the recursive “backstepping” to the ori-
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Fig. 8 Temporal caching principle

gin branch during queries. For deeply nested branches, this

process will introduce a considerable performance overhead,

as multiple B+-Trees (one per branch) need to be opened

and queried in order to answer this request. This happens

more often for branches which are very thinly populated with

changes, as this increases the chances of our get request scan

ending up at the initial column of the matrix without encoun-

tering an occupied cell. The operation which is affected most

by branching with respect to performance is the keySet opera-

tion (and all other operations that rely on it), as this requires a

scan on every row, leading to potentially many backstepping

calls.

4.2.3 Caching

A disk access is always slow compared to an in-memory

operation, even on a modern solid state drive (SSD). For

that reason, nearly all database systems include some way

of caching the most recent query results in main memory

for later reuse. ChronoDB is no exception, but the temporal

aspects demand a different approach to the caching algorithm

than in regular database systems, because multiple transac-

tions can simultaneously query the state of the stored data

at different timestamps. Due to the way we constructed the

Temporal Data Matrix, the chance that a given key does not

change at every timestamp is very high. Therefore, we can

potentially serve queries at many different timestamps from

the same cached information by exploiting the periods in

which a given key does not change its value. For the caching

algorithm, we apply some of the ideas found in the work

of Ramaswamy [57] in a slightly different way, adapted to

in-memory processing and caching idioms.

Figure 8 displays an example for our temporal caching

approach which we call Mosaic. When the value for a tem-

poral key is requested and a cache miss occurs, we retrieve

the value together with the validity range (indicated by gray

background in the figure) from the persistent store, and add

the range together with its value to the cache. Validity ranges

start at the timestamp in which a key-value pair was modified

(inclusive) and end at the timestamp where the next modifica-

tion on that pair occurred (exclusive). For each key, the cache

manages a list of time ranges called a cache row, and each

range is associated with the value for the key in this period.

As these periods never overlap, we can sort them in descend-

ing order for faster search, assuming that more recent entries

are used more frequently. A cache look-up is performed by

first identifying the row by the key string, followed by a linear

search through the cached periods.9 We have a cache hit if

a period containing the requested timestamp is found. When

data is written to the underlying store, we need to perform a

write-through in our cache, because validity ranges that have

open-ended upper bounds potentially need to be shortened

due to the insertion of a new value for a given key. The write-

through operation is fast, because it only needs to check if

the first validity range in the cache row of a given key is

open-ended, as all other entries are always closed ranges. All

entries in our cache (regardless of the row they belong to)

share a common least recently used registry which allows

for fast cache eviction of the least recently read entries.

In the example shown in Fig. 8, retrieving the value of key

d at timestamp 0 would result in adding the validity range

[0; 1) with value v0 to the cache row. This is the worst-

case scenario, as the validity range only contains a single

timestamp, and can consequently be used to answer queries

only on that particular timestamp. Retrieving the same key at

timestamps 1 through 4 yields a cache entry with a validity

range of [1; 5) and value v1. All requests on key d from

timestamp 1 through 4 can be answered by this cache entry.

Finally, retrieving key d on a timestamp greater than or equal

to 5 produces an open-ended validity period of [5;∞) with

value v2, which can answer all requests on key d with a

timestamp larger than 4, assuming that non-depicted columns

are empty. If we would insert a key-value pair of 〈d, v3〉 at

timestamp 10, the write-through operation would need to

shorten the last validity period to [5; 10) and add a cache

entry containing the period [10;∞) with value v3.

4.2.4 Incremental commits

Database vendors often provide specialized ways to batch-

insert large amounts of data into their databases that allow

for higher performance than the usage of regular transac-

tions. ChronoDB provides a similar mechanism, with the

additional challenge of keeping versioning considerations in

9 In most cases, linear search in main memory is still faster than per-

forming O(log(n)) disk accesses. Also, the cache usually does not

contain all data, so these lists will remain short.
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Fig. 9 Incremental commits

mind along the way. Even when inserting large amounts of

data into ChronoDB, we want the history to remain clean,

i.e., it should not contain intermediate states where only a

portion of the overall data was inserted. We therefore need to

find a way to conserve RAM by writing incoming data to disk

while maintaining a clean history. For this purpose, the con-

cept of incremental commits was introduced in ChronoDB.

This mechanism allows to mass-insert (or mass-update) data

in ChronoDB by splitting it up into smaller batches while

maintaining a clean history and all ACID properties for the

executing transaction.

Figure 9 shows how incremental commits work

in ChronoDB. The process starts with a regular transaction

inserting data into the database before calling

commitIncremental(). This writes the first batch

(timestamp 2 in Fig. 9) into the database and releases it from

RAM. However, the now timestamp is not advanced yet. We

do not allow other transactions to read these new entries,

because there is still data left to insert. We proceed with

the next batches of data, calling commitIncremental()

after each one. After the last batch was inserted, we con-

clude the process with a call to commit(). This will merge

all of our changes into one timestamp on disk. In this pro-

cess, the last change to a single key is the one we keep. In

the end, the timestamps between the first initial incremen-

tal commit (exclusive) to the timestamp of the final commit

(inclusive) will have no changes (as shown in timestamps

3 and 4 in Fig. 9). With the final commit, we also advance

the now timestamp of the matrix and allow all other trans-

actions to access the newly inserted data. By delaying this

step until the end of our operation, we keep the possibility

to roll back our changes on disk (for example in case that

the process fails) without violating the ACID properties for

all other transactions. Also, if data generated by a partially

complete incremental commit process is present on disk at

database start-up (which occurs when the database is unex-

pectedly shut down during an incremental commit process),

these changes can be rolled back as well, which allows incre-

mental commit processes to have “all or nothing” semantics.

A disadvantage of this solution is that there can be only one

concurrent incremental commit process on any data matrix.

This process requires exclusive write access to the matrix,

blocking all other (regular and incremental) commits until it

is complete. However, since we only modify the head revi-

sions and now does not change until the process ends, we can

safely perform read operations in concurrent transactions,

while an incremental commit process is taking place. Overall,

incremental commits offer a way to insert large quantities of

data into a single timestamp while conserving RAM without

compromising ACID safety at the cost of requiring exclu-

sive write access to the database for the entire duration of the

process. These properties make them very suitable for data

imports from external sources, or large scale changes that

affect most of the key-value pairs stored in a matrix. This will

become an important factor when we consider global model

evolutions in the model repository layer [R3]. We envision

incremental commits to be employed for administrative tasks

which do not recur regularly, or for the initial filling of an

empty database.

4.2.5 Supporting long histories

In order to create a sustainable versioning mechanism, we

need to ensure that our system can support a virtually unlim-

ited number of versions [R2, R5]. Ideally, we also should

not store all data in a single file, and old files should remain

untouched when new data is inserted (which is important for

file-based backups). For these reasons, we must not constrain

our solution to a single B-Tree. The fact that past revisions

are immutable in our approach led to the decision to split the

data along the time axis, resulting in a series of B-Trees. Each

tree is contained in one file, which we refer to as a chunk file.

An accompanying meta file specifies the time range which

is covered by the chunk file. The usual policy of ChronoDB

is to maximize sharing of unchanged data as much as possi-

ble. Here, we deliberately introduce data duplication in order

to ensure that the initial version in each chunk is complete.

This allows us to answer get queries within the boundaries

of a single chunk, without having to navigate to the previous

one. As each access to another chunk has CPU and I/O over-

head, we should avoid accesses on more than one chunk to

answer a basic query. Without duplication, accessing a key

that has not changed for a long time could potentially lead

to a linear search through the chunk chain which contradicts

the requirement for scalability [R5].

The algorithm for the “rollover” procedure outlined in

Fig. 10 works as follows.
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Fig. 10 The temporal rollover process by example [26]

Algorithm 1: Temporal Rollover [26]

Data: The data chunk containing the “head” revision

Result: An archive chunk and a new “head” chunk

1 time ←getLastTimestamp(headChunk);

2 head ←getHeadRevisionFromChunk(headChunk);

3 setValidTo(headChunk, time);

4 newHeadChunk ←createEmptyChunk(time + 1);

5 insertEntriesIntoChunk(head, newHeadChunk);

6 updateTimeRangelook-up();

In Line 1 of Algorithm 1, we fetch the latest timestamp

where a commit has occurred in our current head revision

chunk. Next, we calculate the full head version of the data in

Line 2. With the preparation steps complete, we set the end

of the validity time range to the last commit timestamp in

Line 3. This only affects the metadata, not the chunk itself.

We now create a new, empty chunk in Line 4, and set the

start of its validity range to the split timestamp plus one (as

chunk validity ranges must not overlap). The upper bound of

the new validity range is infinity. In Line 5 we copy the head

version of the data into the new chunk. Finally, we update our

internal look-up table in Line 6. This entire procedure only

modifies the last chunk and does not touch older chunks, as

indicated by the grayed-out boxes in Fig. 10.

The look-up table that is being updated in Algorithm 1

is a basic tree map which is created at start-up by reading

the metadata files. For each encountered chunk, it contains

an entry that maps its validity period to its chunk file. The

periods are sorted in ascending order by their lower bounds,

which is sufficient because overlaps in the validity ranges

are not permitted. For example, after the rollover depicted

in Fig. 10, the time range look-up would contain the entries

shown in Table 4.

Table 4 Time range look-up [26]

Time range Chunk number

[0 . . . 300] 0

[301 . . . 1000] 1

[1001 . . . ∞] 2

We employ a tree map specifically in our implementation

for Table 4, because the purpose of this look-up is to quickly

identify the correct chunk to address for an incoming request.

Incoming requests have a timestamp attached, and this times-

tamp may occur exactly at a split, or anywhere between split

timestamps. As this process is triggered very often in prac-

tice and the time range look-up map may grow quite large

over time, we are considering to implement a cache based on

the least-recently-used principle that contains the concrete

resolved timestamp-to-chunk mappings in order to cover the

common case where one particular timestamp is requested

more than once in quick succession.

With this algorithm, we can support a virtually unlimited

number of versions [R6] because new chunks always only

contain the head revision of the previous ones, and we are

always free to roll over once more should the history within

the chunk become too large. We furthermore do not perform

writes on old chunk files anymore, because our history is

immutable. Regardless, thanks to our time range look-up,

we have close to O(log n) access complexity to any chunk,

where n is the number of chunks.

This algorithm is a trade-off between disk space and scal-

ability. We introduce data duplication on disk in order to

provide support for large histories. The key question that

remains is when this process happens. We require a metric

that indicates the amount of data in the current chunk that

belongs to the history (as opposed to the head revision) and

thus can be archived if necessary by performing a rollover.

We introduce the Head–History–Ratio (HHR) as the primary

metric for this task, which we defined as follows:

H H R(e, h) =

{

e, if e = h
h

e−h
, otherwise

…where e is the total number of entries in the chunk, and h

is the size of the subset of entries that belong to the head revi-

sion (excluding entries that represent deletions). By dividing

the number of entries in the head revision by the number of

entries that belong to the history, we get a proportional notion

of how much history is contained in the chunk that works for

datasets of any size. It expresses how many entries we will

“archive” when a rollover is executed. When new commits

add new elements to the head revision, this value increases.

When a commit updates existing elements in the head revi-

sion or deletes them, this value decreases. We can employ a

threshold as a lower bound on this value to determine when

a rollover is necessary. For example, we may choose to per-

form a rollover when a chunk has an HHR value of 0.2 or less.

This threshold will work independently of the absolute size

of the head revision. The only case where the HHR threshold

is never reached is when exclusively new (i.e., never seen

before) keys are added, steadily increasing the size of the

head revision. However, in this case, we would not gain any-
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thing by performing a rollover, as we would have to duplicate

all of those entries into the new chunk to produce a complete

initial version. Therefore, the HHR metric is properly cap-

turing this case by never reaching the threshold, thus never

indicating the need for a rollover.

4.2.6 Secondary indexing

There are two kinds of secondary indices in ChronoDB. On

the one hand, there are indices which are managed by Chron-

oDB itself (“system indices”) and on the other hand there are

user-defined indices. As indicated in Table 3, the primary

index for each matrix in ChronoDB has its keys ordered

first by user key and then by version. In order to allow for

efficient time range queries, we maintain a secondary index

that is first ordered by timestamp and then by user key. Fur-

ther system indices include an index for commit metadata

(e.g., commit messages) that maps from timestamp to meta-

data, as well as auxiliary indices for branching (branch name

to metadata). User-defined indices [R5] help to speed up

queries that request entries based on their contents (rather

than their primary key). An example for such a query is

find all persons where the first name is ’Eva’. Since Chron-

oDB stores arbitrary Java objects, we require a method to

extract the desired property value to index from the object.

This is accomplished by defining a ChronoIndexer inter-

face. It defines the index(Object) method that, given

an input object, returns the value that should be put on the

secondary index. Each indexer is associated with a name.

That name is later used in a query to refer to this index. The

associated query language provides support for a number

of string matching techniques (equals, contains, starts with,

regular expression…), numeric matching (greater than, less

than or equal to…) as well as Boolean operators (and, or,

not). The query engine also performs optimizations such as

double negation elimination. Overall, this query language

is certainly less expressive than other languages such as

SQL. Since ChronoDB is intended to be used as a stor-

age engine and embedded in a database frontend (e.g., a

graph database), these queries will only be used internally for

index scans while more sophisticated expressions are man-

aged by the database frontend. Therefore, this minimalistic

Java-embedded DSL has proven to be sufficient. An essential

drawback of this query mechanism is that the number of prop-

erties available for querying is determined by the available

secondary indices. In other words, if there is no secondary

index for a property, that property cannot be used for filtering.

This is due to ChronoDB being agnostic to the Java objects it

is storing. In absence of a ChronoIndexer, it has no way

of extracting a value for an arbitrary request property from

the object. This is a common approach in database systems:

without a matching secondary index, queries require a linear

scan of the entire data store. When using a database fron-

Table 5 Secondary indexing in ChronoDB

# Index Branch Keyspace Key Value From To

1 name master default e1 “john” 1234 ∞

2 name master default e2 “john” 1234 5678

3 name master default e3 “john” 1234 7890

4 name master default e2 “jack” 5678 ∞

tend, this distinction is blurred, and the difference between

an index query and a non-index query is only noticeable in

how long it takes to produce the result set.

In contrast to the primary index, entries in the secondary

index are allowed to have non-unique keys. For example,

if we index the “name” attribute, then there may be more

than one entry where the name is set to “John”. We therefore

require a different approach than the temporal data matri-

ces employed for the primary index. Inspired by the work of

Ramaswamy et al. [57], we make use of explicit time win-

dows. Non-unique indices in versioned contexts are special

cases of the general interval stabbing problem [31].

Table 5 shows an example of a secondary index. As such

a table can hold all entries for all indices, we store the index

for a particular entry in the “index” column. The branch,

keyspace and key columns describe the location of the entry

in the primary index. The “value” column contains the value

that was extracted by the ChronoIndexer. “From” and

“To” express the time window in which a given row is valid.

Any entry that is newly inserted into this table initially has

its “To” value set to infinity (i.e., it is valid for an unlimited

amount of time). When the corresponding entry in the pri-

mary index changes, the “To” value is updated accordingly.

All other columns are effectively immutable.

In the concrete example shown in Table 5, we insert three

key-value pairs (with keys e1, e2 and e3) at timestamp 1234.

Our indexer extracts the value for the “name” index, which is

“john” for all three values. The “To” column is set to infinity

for all three entries. Querying the secondary index at that

timestamp for all entries where “name” is equal to “john”

would therefore return the set containing e1, e2 and e3. At

timestamp 5678, we update the value associated with key

e2 such that the indexer now yields the value “jack”. We

therefore need to terminate the previous entry (row #2) by

setting the “To” value to 5678 (upper bounds are exclusive),

and inserting a new entry that starts at 5678, has the value

“jack” and an initial “To” value of infinity. Finally, we delete

the key e3 in our primary index at timestamp 7890. In our

secondary index, this means that we have to limit the “To”

value of row #3 to 7890. Since we have no new value due to

the deletion, no additional entries need to be added.

This tabular structure can now be queried using well-

known techniques also employed by SQL. For usual queries,
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Fig. 11 Transaction control with and without versioning [25]

the branch and index is fixed, the value is specified as a search

string and a condition (e.g., “starts with [jo]”) and we know

the timestamp for which the query should be evaluated. We

process the timestamp by searching only for entries where

From ≤ t imestamp < T o

…in addition to the conditions specified for the other

columns. Selecting only the documents for a given branch is

more challenging, as we need to traverse the origin branches

upwards until we arrive at the master branch, performing

one subquery for each branch along the way and merging the

intermediate results accordingly.

4.2.7 Transaction control

Consistency and reliability are two major goals in ChronoDB.

It offers full ACID transactions with the highest possible read

isolation level (serializable, see [38]). Figure 11 shows an

example with two sequence diagrams with identical transac-

tion schedules. A database server is communicating with an

Online Analytics Processing (OLAP [10]) client that owns

a long-running transaction (indicated by gray bars). The

process involves messages (arrows) sending queries with

timestamps and computation times (blocks labeled with “c”)

on both machines. A regular Online Transaction Processing

(OLTP) client wants to make changes to the data which is ana-

lyzed by the OLAP client. The left figure shows what happens

in a non-versioned scenario with pessimistic locking. The

server needs to lock the relevant contents of the database for

the entire duration of the OLAP transaction, otherwise we

risk inconsistencies due to the incoming OLTP update. We

need to delay the OLTP client until the OLAP client closes

the transaction. Modern databases use optimistic locking and

data duplication techniques (e.g., MVCC [6]) to mitigate this

issue, but the core problem remains: the server needs to ded-

icate resources (e.g., locks, RAM…) to client transactions

over their entire lifetime. With versioning, the OLAP client

sends the query plus the request timestamp to the server.

This is a self-contained request; no additional information or

resources are needed on the server, and yet the OLAP client

achieves full isolation over the entire duration of the transac-

tion, because it always requests the same timestamp. While

the OLAP client is processing the results, the server can

safely allow the modifications of the OLTP client, because it

is guaranteed that any modification will only append a new

version to the history. The data at timestamp on which the

OLAP client is working is immutable. Client-side transac-

tions act as containers for transient change sets and metadata,

most notably the timestamp and branch name on which the

transaction is working. Security considerations aside, trans-

actions can be created (and disposed) without involving the

server. An important problem that remains is how to han-

dle situations in which two concurrent OLTP transactions

attempt to change the same key-value pair. ChronoDB allows

to select from several conflict handling modes (e.g., reject,

last writer wins) or to provide a custom conflict resolver

implementation.

5 Solution part II: ChronoGraph

ChronoGraph is our versioned graph database which is built

on top of ChronoDB. ChronoGraph implements the Apache

TinkerPop standard, the de-facto standard interface for graph

databases. We first provide a high-level overview over Tin-

kerPop; then, we focus on the concepts of ChronoGraph

itself.

5.1 Apache TinkerPop

The TinkerPop framework is the de-facto standard interface

between applications and graph databases. Its main pur-

pose is to allow application developers to exchange a graph

database implementation with another one without altering

the application source code that accesses the database. The

TinkerPop standard is designed in a modular fashion. The

core module is the property graph API [58] which specifies

the Java interfaces for vertices, edges, properties and other

structural elements.

In a property graph, each vertex and edge can have proper-

ties which are expressed as key–value pairs. According to the

standard, each vertex must have an identifier which is unique

among all vertices, and the same is true for edges. In practice,

database vendors often recommend to use identifiers which

are globally unique in the database. Furthermore, in addition

to the unique ID and the user-defined properties, each vertex

and edge has a label, which is defined to be a single-valued

string that is intended to be used for categorization purposes.
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Fig. 12 ChronoGraph

architecture [27]
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All user-defined properties are untyped by definition, i.e., no

restriction is imposed on which values a user-defined prop-

erty may have. However, some graph database vendors such

as Titan DB10 and OrientDB11 offer the possibility to define a

schema which is evaluated at runtime. The only unsupported

value for any user-defined property is thenullvalue. Instead

of assigning null to a property, it is recommended to delete

the property on the target graph element entirely.

Another module in the TinkerPop standard is the graph

query language Gremlin. In contrast to the property graph

API, which is only a specification, Gremlin comes with a

default implementation that is built upon the property graph

API interfaces. This implementation also includes a num-

ber of built-in query optimization strategies. Other modules

include a standard test suite for TinkerPop vendors, and a

generic server framework for graph databases called Grem-

lin Server.

5.2 ChronoGraph architecture

Our open-source project ChronoGraph provides a fully

TinkerPop-compliant graph database implementation with

additional versioning capabilities. In order to achieve this

goal, we employ a layered architecture as outlined in Fig. 12a.

In the remainder of this section, we provide an overview of

this architecture in a bottom-up fashion.

The bottom layer of the architecture is a versioned key-

value store, i.e., a system capable of working with time–key–

value tuples as opposed to plain key–value pairs in regular

key-value stores. For the implementation of ChronoGraph,

we use ChronoDB, as introduced in Sect. 4.

ChronoGraph itself consists of three major components.

The first component is the graph structure management. It is

10 http://s3.thinkaurelius.com/docs/titan/1.0.0/schema.html.

11 https://orientdb.com/docs/last/Tutorial-Using-schema-with-

graphs.html.

responsible for managing the individual vertices and edges

that form the graph, as well as their referential integrity

[R9]. As the underlying storage mechanism is a key-value

store, the graph structure management layer also performs

the partitioning of the graph into key-value pairs and the

conversion between the two formats. We present the techni-

cal details of this format in Sect. 5.3. The second component

is the transaction management. The key concept here is that

each graph transaction is associated with a timestamp on

which it operates. Inside a transaction, any read request for

graph content will be executed on the underlying storage

with the transaction timestamp. ChronoGraph supports full

ACID transactions [R6] with the highest possible isolation

level (“serializable”, also known as “snapshot isolation”, as

defined in the SQL Standard [38]). The underlying versioning

system acts as an enabling technology for this highest level of

transaction isolation, because any given version of the graph,

once written to disk, is effectively immutable. All mutating

operations are stored in the transaction until it is commit-

ted, which in turn produces a new version of the graph,

with a new timestamp associated with it. Due to this mode

of operation, we do not only achieve repeatable reads, but

also provide effective protection from phantom reads, which

are a common problem in concurrent graph computing. The

third and final component is the query processor itself which

accepts and executes Gremlin queries on the graph system.

As each graph transaction is bound to a branch and times-

tamp, the query language (Gremlin) remains agnostic of both

the branch and the timestamp, which allows the execution of

any query on any desired timestamp and branch [R8].

The application communicates with ChronoGraph by

using the regular TinkerPop API, with additional extensions

specific to versioning. The versioning itself is entirely trans-

parent to the application to the extent where ChronoGraph

can be used as a drop-in replacement for any other Tinker-

Pop 3.x compliant implementation. The application is able to

make use of the versioning capabilities via additional meth-
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Fig. 13 Star Graph partitioning by example

ods, but their usage is entirely optional and not required

during regular operation that does not involve history analy-

sis.

5.3 Data layout

In order to store graph data in our Temporal Key–Value Store,

we first need to disassemble the graph into partitions that can

be serialized as values and be addressed by keys. Then, we

need to persist these pairs in the store. We will first discuss

how we disassemble the graph, followed by an overview of

the concrete key–value format and how versioning affects

this process.

5.3.1 Partitioning: the star graph format

Like many other popular graph databases, e.g., Titan DB, we

rely on the Star Graph partitioning in order to disassemble

the graph into manageable pieces.

Figure 13 shows an example of a star graph. A star graph

is a subset of the elements of a full graph that is calculated

given an origin vertex, in this case v0. The star graph contains

all properties of the vertex, including the id and the label,

as well as all incoming and outgoing edges (including their

label, id and properties). All adjacent vertices of the origin

vertex are represented in the star graph by their ids. Their

attributes and remaining edges (indicated by dashed lines

in Fig. 13) are not contained in the star graph of v0. This

partitioning was chosen due to its ability to reconstruct the

entire graph from disk without duplicating entire vertices or

attribute values. Furthermore, it is suitable for lazy loading

of individual vertices, as only the immediate neighborhood

of a vertex needs to be loaded to reconstruct it from disk.

5.3.2 Key–value layout

Starting from a star graph partitioning, we design our key–

value layout. Since all graph elements in TinkerPop are

mutable by definition and our persistent graph versions have

to be immutable, we perform a bijective mapping step before

persisting an element. We refer to the persistent, immutable

version as a Record, and there is one type of record for each

Table 6 TinkerPop API to Record Mapping [27]

TinkerPop Record Record contents

Vertex VertexRecord id, label,

PropertyKey → PropertyRecord

In: EdgeLabel →

EdgeTargetRecord

Out: EdgeLabel →

EdgeTargetRecord

Edge EdgeRecord id, label,

PropertyKey → PropertyRecord

id of InVertex, id of OutVertex

Property PropertyRecord PropertyKey, PropertyValue

— EdgeTargetRecord id of edge, id of other-end Vertex

structural element in the TinkerPop API. For example, the

mutable Vertex element is mapped to an immutable Ver-

texRecord. A beneficial side-effect of this approach is that

we hereby gain control over the persistent format, and can

evolve and adapt each side of the mapping individually if

needed. Table 6 shows the contents of the most important

record types.

In Table 6, all id and label elements, as well as all Prop-

ertyKeys, are of type String. The PropertyValue in the

PropertyRecord is assumed to be in byte array form. An

arrow in the table indicates that the record contains a map-

ping, usually implemented with a regular hash map. An

element that deserves special attention is the EdgeTarge-

tRecord that does not exist in the TinkerPop API. Traversing

from one vertex to another via an edge label is a very common

task in a graph query. In a naive mapping, we would traverse

from a vertex to an adjacent edge and load it, find the id of

the vertex at the other end, and then resolve the target vertex.

This involves two steps where we need to resolve an element

by ID from disk. However, we cannot store all edge informa-

tion directly in a VertexRecord, because this would involve

duplication of all edge properties on the other-end vertex.

We overcome this issue by introducing an additional record

type. The EdgeTargetRecord stores the id of the edge and the

id of the vertex that resides at the “other end” of the edge.

In this way, we can achieve basic vertex-to-vertex traversal

in one step. At the same time, we minimize data duplication

and can support edge queries (e.g.,g.traversal().E()
in TinkerPop), since we have the full EdgeRecords as stan-

dalone elements. A disadvantage of this solution is the fact

that we still need to do two resolution steps for any query that

steps from vertex to vertex and has a condition on a property

of the edge in between. This trade-off is common for graph

databases, and we share it with many others, e.g., Neo4j. We

will discuss this with a concrete example in Sect. 5.4.

For each record type, we create a keyspace in the underly-

ing key–value store. We serialize the record elements into a
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Fig. 14 Mapping a graph to key-value format

binary sequence. This binary sequence serves as the value for

the key–value pairs and the id of the element is used as the cor-

responding key. The type of record indicates which keyspace

to use, completing the mapping to the key–value format. The

inverse mapping involves the same steps: given an element ID

and type, we resolve the key–value pair from the appropriate

keyspace by performing a key look-up using the ID. Then,

we deserialize the binary sequence, and apply our bijective

element-to-record mapping in the inverse direction. When

loading a vertex, the properties of the incoming and outgoing

edges will be loaded lazily, because the EdgeTargetRecord

does not contain this information and loading edge properties

immediately would therefore require an additional look-up.

The same logic applies to resolving the other-end vertices of

EdgeTargetRecords, allowing for a lazy (and therefore effi-

cient and RAM-conserving) solution.

Figure 14 shows an example for the translation process

between the Graph format and the Key-Value-Store format.

In this example, we express the fact “John Doe knows Jane

Doe since 1999” in a property graph format. Each graph ele-

ment is transformed into an entry in the key–value store. In

the example, we use a JSON-like syntax; our actual imple-

mentation employs a binary serialization format. Please note

that the presented value structures correspond to the schema

for records presented in Table 6.

5.4 Versioning concept

When discussing the mapping from the TinkerPop struc-

ture to the underlying key–value store in Sect. 5.3, we did

not touch the topic of versioning. This is due to the fact

that our key–value store ChronoDB is performing the ver-

sioning on its own. The graph structure does not need to

be aware of this process. We still achieve a fully versioned

graph, an immutable history and a very high degree of shar-

ing of common (unchanged) data between revisions. This

Fig. 15 Example: Navigating in a graph version

is accomplished by attaching a fixed timestamp to every

graph transaction. This timestamp is always the same as in

the underlying ChronoDB transaction. When reading graph

data, at some point in the resolution process we perform a

get(…) call in the underlying key–value store, resolving an

element (e.g., a vertex) by ID. At this point, ChronoDB uses

the timestamp attached to the transaction to perform the tem-

poral resolution. This will return the value of the given key,

at the specified timestamp.

In order to illustrate this process, we consider the example

in Fig. 15. We open a transaction at timestamp 1234 and

execute the following Gremlin query:

V("v0").out("e0").outE("e1")

.has("p", "x").inV()

Translated into natural language, this query:

1. starts at a given vertex (v0),

2. navigates along the outgoing edge labeled as e0 to the

vertex at the other end of the edge,

3. from there navigates to the outgoing edge labeled as e1,

4. checks that the edge has a property p which is set to value

x,

5. and finally navigates to the target vertex of that edge.

We start the execution of this query by resolving the vertex

v0 from the database. Since our transaction uses timestamp

1234, ChronoDB will look up the temporal key v0@1234,

and return the value labeled as B in Fig. 15.12 Value A is not

visible because it was overwritten by B at timestamp 1203,

and value C is also not visible because it was written after

our transaction timestamp. Next, we navigate the outgoing

edge labeled as e0. Our store does contain information on

that edge, but since the query does not depend on any of

its properties, we use the EdgeTargetRecord stored in B and

12 All circles in Fig. 15 represent serialized vertex records or edge

records.
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directly navigate to v1. We therefore ask ChronoDB for the

value associated with temporal key v1@1234, and receive

value G. For the next query step, we have a condition on the

outgoing edge e1. Our EdgeTargetRecord in value G does not

contain enough information to evaluate the condition; hence,

we need resolve the edge from the store. Querying the tem-

poral key e1@1234 will return the value H, which is shared

with the previous version because it was not changed since

then. After evaluating the condition that the property “p” on

edge version H is indeed set to the value “x” (as specified

in the query), we continue our navigation by resolving the

target of e1, which is v2. The temporal key v2@1234 will

result in the value K being returned.

Note that this final navigation step starts at an element that

was reused from the commit at timestamp 1065 and ends at

the state of v2 that was produced by the commit at timestamp

1203. This is possible because graph elements refer to each

other by ID, but these references do not include the branch or

timestamp. This information is injected from the transaction

at hand, allowing for this kind of navigation and data reuse.

This is a major step toward fulfilling requirement [R8]. As

ChronoDB offers logarithmic access time to any key-value

pair on any version, this is also in line with requirement [R5].

5.5 TinkerPop compatibility and extensions

The Apache TinkerPop API is the de-facto standard inter-

face between graph databases and applications built on top

of them. We therefore want ChronoGraph to implement and

be fully compliant to this interface as well. However, in order

to provide our additional functionality, we need to extend

the default API at several points. There are two parts to this

challenge. The first part is compliance with the existing Tin-

kerPop API, the second part is the extension of this API in

order to allow access to new functionality. In the following

sections, we will discuss these points in more detail.

5.5.1 TinkerPop API compliance

As we described in Sects. 5.3 and 5.4, our versioning

approach is entirely transparent to the user. This eases the

achievement of compliance to the default TinkerPop API.

The key aspect that we need to ensure is that every transac-

tion receives a proper timestamp when the regular transaction

opening method is invoked. In a non-versioned database,

there is no decision to make at this point, because there is

only one graph in a single state. The logical choice for a ver-

sioned graph database is to return a transaction on the current

head revision, i.e., the timestamp of the transaction is set to

the timestamp of the latest commit. This aligns well with the

default TinkerPop transaction semantics—a new transaction

t1 should see all changes performed by other transactions

that were committed before t1 was opened. When a commit

occurs, the changes are always applied to the head revision,

regardless of the timestamp at hand, because history states are

immutable in our implementation in order to preserve trace-

ability of changes. As the remainder of our graph database, in

particular the implementation of the query language Grem-

lin, is unaware of the versioning process, there is no need

for further specialized efforts to align versioning with the

TinkerPop API.

We employ the TinkerPop Structure Standard Suite, con-

sisting of more than 700 automated JUnit tests, in order to

assert compliance with the TinkerPop API itself. This test

suite is set up to scan the declared Graph Features (i.e.,

optional parts of the API), and enable or disable individ-

ual tests based on these features. With the exception of

Multi-Properties13 and the Graph Computer,14 we currently

support all optional TinkerPop API features, which results

in 533 tests to be executed. We had to manually disable 8

of those remaining test cases due to problems within the test

suite, primarily due to I/O errors related to illegal file names

on our Windows-based development system. The remaining

525 tests all pass on our API implementation.

5.5.2 TinkerPop extensions

Having asserted conformance to the TinkerPop API, we

created custom extensions that give access to the features

unique to ChronoGraph. As the query language Gremlin

itself remains completely untouched in our case, and the

graph structure (e.g., Vertex and Edge classes) is unaware

of the versioning process (as indicated in Sect. 5.4), we are

left with one possible extension point, which is the Graph

interface itself. In order to offer queries access to times-

tamps other than the head revision, we need to add a method

to open a transaction on a user-provided timestamp. By

default, a transaction in TinkerPop on a Graph instance g is

opened without parameters. We expand the transaction class

by adding several overrides which accept the desired target

branch and version. Using these additional overrides, the user

can decide the java.util.Date or java.lang.Long
timestamp on which the transaction should be based, as well

as the branch to operate on. This small change of adding an

additional time argument is all it takes for the user to make

full use of the time travel feature, the entire remainder of

the TinkerPop API, including the structure elements and the

Gremlin query language, behave as defined in the standard.

Opening a transaction without parameters defaults to open-

13 We do not support multivalued properties directly as intended by

TinkerPop. However, we do support regular properties of List or Set

types.

14 The Graph Computer is the entry point to the distributed Online

Analytics Processing (OLAP) API. Support for this feature may be

added in future versions of ChronoGraph.
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ing a transaction on the latest version of the master branch,

which is also in line with the TinkerPop API specification.

In order to provide access to the history of a single Ver-

tex or Edge, we added explicit query methods to our Graph

implementation. These methods allow access to the history

of any given edge or vertex. The history is expressed by an

Iterator over the change timestamps of the element in

question, i.e., whenever a commit changed the element, its

timestamp will appear in the values returned by the iterator.

The user of the API can then use any of these timestamps as

an argument to g.tx().open(…) in order to retrieve the

state of the element at the desired point in time. The imple-

mentation of the history methods delegate the call directly

to the underlying ChronoDB, which retrieves the history of

the key–value pair associated with the ID of the given graph

element. This history is extracted from the primary index,

which is first sorted by key (which is known in both sce-

narios) and then by timestamp. This ordering allows the two

history operations to be very efficient as only element ID

requires a look-up in logarithmic time, followed by back-

wards iteration over the primary index (i.e., iteration over

change timestamps) until a different ID is encountered (c.f.

Table 3).

The final requirement with respect to versioning capabil-

ities is the demand for an operation that lists all changes

within a given time range, regardless of the affected ele-

ments. In order to meet this requirement, we added another

pair of methods to our Graph implementation. These meth-

ods (one for vertices, one for edges) accept time ranges and

grant access to iterators that return TemporalKeys. These keys

are pairs of actual element identifiers and change timestamps.

Just as their element-specific counterparts, it is intended that

these timestamps are used for opening transactions on them in

order to inspect the graph state. Combined calls to next()

on it1 and it2 will yield the complete list of changes

upon iterator exhaustion. Analogous to their element-specific

siblings, these methods redirect directly to the underlying

ChronoDB instance, where a secondary temporal index is

maintained that is first ordered by timestamp and then by

key. This secondary index is constructed per keyspace. Since

vertices and edges reside in disjoint keyspaces, these two

operations do not require further filtering and can make direct

use of the secondary temporal index.

5.6 Transaction semantics

The Apache TinkerPop API is currently available in its third

version. It evolved alongside its implementations, which

range from local graphs (e.g., the in-memory reference

implementation TinkerGraph) to highly distributed systems

(e.g., Titan DB). Due to this diversity, the requirements

toward transaction semantics, in particular behavior under

concurrent access [R6], are specified very loosely in Tinker-

Pop itself. For example, when iterating over the outgoing

edges of a vertex, TinkerPop only specifies that the iteration

itself should never return a null value and should never

throw a ConcurrentModificationException, but

details regarding the visibility of changes made by other,

concurrent transactions are unspecified.

Since the reference implementation TinkerGraph, which is

provided alongside the API, does not support transactions,15

we had to design the transaction semantics by ourselves.

When we implemented ChronoDB, we envisioned it to be a

system suitable for storing data for analysis purposes, there-

fore the consistency of a view and the contained data is

paramount. As all stored versions are effectively immutable,

we chose to implement a full ACID transaction model in

ChronoDB with the highest possible isolation level (“Seri-

alizable” [38]). As ChronoGraph is based on ChronoDB,

it follows the same transaction model. To the best of our

knowledge, ChronoGraph is currently the only implementa-

tion of the TinkerPop API v3.x that is full ACID in the strict

sense, as many others opt for repeatable reads isolation (e.g.,

OrientDB), while ChronoGraph supports snapshot isolation.

A proposal for snapshot isolation for Neo4j was published

recently [55], but it is not part of the official version. Graph

databases without ACID transactions and snapshot isolation

often suffer from issues like Ghost Vertices16 or Half Edges17

which can cause inconsistent query results and are very diffi-

cult to deal with as an application developer. These artifacts

are negative side-effects of improper transaction isolation,

and application developers have to employ techniques such

as soft deletes (i.e., the addition of “deleted” flags instead of

true element deletions) in order to avoid them. As Chrono-

Graph adheres to the ACID properties, these inconsistencies

can not appear by design.

5.7 Functionality and usage implications

Our implementation is a stark contrast to existing solutions.

We implement the versioning process at a lower level, in

the generic temporal key–value store ChronoDB. This store

is aware of the semantics of the versioning process, and is

capable of solving the problem of long histories [26] (c.f.

Sect. 4.2), unlike the previously mentioned solutions. There

are no additional mapping steps required in order to achieve

graph versioning, in fact our graph to key-value mapping

is very similar to the algorithm employed by Titan DB. In

15 Transactions are an optional feature in TinkerPop 3.

16 Vertices that have been deleted by transaction t1 while being mod-

ified concurrently by transaction t2 do not disappear from the graph;

they remain as Ghosts.

17 Half Edges refer to the situation where an edge is only traversable and

visible in one direction, i.e., the out-vertex lists the edge as outgoing,

but the in-vertex does not list it as incoming, or vice versa.
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particular, no additional auxiliary graph elements are intro-

duced for the purpose of versioning. To the end user, the

versioning process is completely transparent, as our imple-

mentation is fully compliant with the standard TinkerPop

API for non-versioned graphs. There is no need for trans-

lating one graph query into another in order to run it on a

different version of the graph. A developer familiar with the

TinkerPop API can start using ChronoGraph without any

particular knowledge about its versioned nature. By offer-

ing additional methods, which are very much in line with

the intentions of the TinkerPop API, we grant access to

the versioning-related features. Additionally, ChronoGraph

is fully ACID compliant with snapshot isolation for concur-

rent transactions, preventing common artifacts that arise in

other, non-ACID graph databases, such as ghost vertices and

half edges. Our solution is strongly based on immutability

of existing versions, which aids in preserving traceability of

changes and allows extensive sharing of data that remained

unchanged between revisions.

5.8 Conflict resolution

In case of concurrent write transactions, the versioning

engine is sometimes faced with conflicting commits. This sit-

uation occurs when two transactions simultaneously intend

to modify the very same graph element. In this section, we

describe our current conflict resolution approach.

The conflict resolution algorithm implemented in Chrono-

Graph differentiates between addition and removal of entire

graph elements on the one hand and property value changes

on the other hand. Additions of graph elements can never

cause a true conflict: even if two concurrent transactions

add a vertex or edge with the same new identifier (which is

highly unlikely, since we employ universally unique identi-

fiers), then the resulting state in both transactions is identical:

the new vertex or edge exists. They may still differ in their

properties, which we consider at a later stage.

When either side of the conflict is a graph element deletion,

we are faced with two options: either we undo the deletion to

apply the changes from the other side of the conflict, or we

retain the deletion and discard the other changes. In our cur-

rent implementation, the removal of a graph element always

takes precedence over any other conflicting modification on

this element. This may cause the loss of property changes

on the deleted element in the concurrent transaction. How-

ever, the alternative of “undeleting” the graph element is even

more undesirable. In particular if the deleted element was a

vertex, then its adjacent edges have also been deleted, which

would result in a completely isolated vertex if we chose to

undelete it. Isolated vertices are no problem for the storage

engine, but they don’t add much value to the semantics of the

graph, as they will never contribute to the results of traversal

queries (since they are not connected to any other element).

In case of a conflict on property values, it is important

to know that ChronoGraph tracks all modifications on vertex

and edge properties individually. This means that the conflict

resolution algorithm has access to the information whether

or not any given vertex property or edge property has been

modified within the transaction. For example, if two con-

current transactions perform a commit on the same vertex,

and one of them sets the firstname property to John,

while the other sets the lastname property toDoe, then the

conflict is resolved by accepting both changes (the resulting

vertex will have a firstname of John and a lastname

of Doe). Only if both transactions modify the same property

on the same graph element, then a true conflict occurs. Here,

we employ the same strategy as for graph elements: if either

side of the conflict is a deletion, the deletion wins. If neither

side is a deletion, then the last writer wins. For example, if

one transaction sets firstname to John and a concurrent

transaction setsfirstname toJack on the same graph ele-

ment, then the conflict is resolved by using the firstname

value from the transaction which was committed later in time.

5.9 Limitations and drawbacks

Our approach is tailored toward the use case of having a

versioned graph (as opposed to a temporal graph), which

entails that queries on a single timestamp are the prevalent

form of read access. Even though we support additional aux-

iliary methods for traversing the history of a single vertex or

edge, and listing all changes within a given time range, our

approach is far less suitable for use cases with an empha-

sis on temporal analysis that require time range queries, or

detection of patterns on the time axis (as in graph stream anal-

ysis [47,56]). For example, answering the question “Which

elements often change together?”, while possible in our solu-

tion, can not be implemented in an efficient way that does

not require linear scanning through the commit logs. Another

example would be the query “List all vertices that have ever

been adjacent to a given one”, which would again involve

linear iteration in our solution. In general, our graph is a

TinkerPop implementation and therefore optimized with the

traversal language Gremlin in mind. As such, it does not lend

itself as well to declarative, pattern-driven search approaches

like Cypher as a dedicated Cypher graph implementation

(e.g., Neo4j) would do.

We are currently also not offering any means for distribut-

ing the graph among multiple machines (see Sect. 10 for

details). This limits the scale of our graph to sizes manage-

able within the physical memory and computing resource

restrictions of a single machine. An essential drawback of

our solution is that, due to the versioned nature of our data,

we cannot rely as much on dictionaries with O(1) access

times (e.g., Hash Maps) as regular general-purpose graph

databases, because of the temporal resolution steps that hap-
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Fig. 16 Conceptual ChronoSphere metamodel [28]

pen on every navigation. Those steps have a complexity of

O(log (n)), which also limits the scalability of our graph.

Finally, we have to acknowledge the fact that Chrono-

Graph is an ongoing work-in-progress research project,

therefore numerous optimization possibilities have not been

exploited yet. For a detailed evaluation of ChronoGraph, we

refer the interested reader to our previous work [27].

6 Solution part III: ChronoSphere

ChronoSphere is our novel open-source graph-based EMF

model repository. It provides a wide variety of features

known from other solutions, such as querying, persistence,

versioning and branching, and furthermore supports unique

features such as metamodel evolution and snapshot-level

transaction isolation. ChronoSphere does not assume the

presence of a runtime environment such as OSGi,18 but

can be integrated into such frameworks if required. The

software is distributed via standard Maven repositories,19

which makes it easily accessible for a wide range of modern

dependency management tools such as Gradle, Apache Ivy

or Apache Maven. ChronoSphere is implemented in pure

Java, which allows it to run in any environment compat-

ible with the Java 8 SE standard. This includes a broad

spectrum of scenarios, from single-user desktop applications

to highly concurrent enterprise-level server back-ends. The

only notable exception where ChronoSphere cannot be used

are JVM implementations that do not support Java reflection

(e.g., Android devices) which is required for serialization and

deserialization of objects in the lower levels of ChronoDB. As

ChronoSphere provides its own data store and has no depen-

dencies to an external database, it can be easily embedded

into any EMF-based application.

A conceptual metamodel of ChronoSphere is shown in

Fig. 16. A ChronoSphere instance manages a num-

18 https://www.osgi.org/.

19 https://mvnrepository.com/artifact/com.github.martinhaeusler/org.

chronos.chronosphere.

ber of named Branches (with master as the predefined

one) [R4], and each Branch refers to its origin (recur-

sively). Each Branch contains any number of Versions

[R8], which in turn contain a user-defined (Ecore-based)

Metamodel and an InstanceModel, which is a col-

lection of EObjects that adhere to the EClasses in

the Metamodel. A ChronoSphere instance can then create

Transactions [R6] on a given Version by starting them on

a transactionTimestamp, which is usually obtained

from a user-provided java.util.Date. This is a fairly

common setup for versioning- and branching-enabled model

repositories. A detail deserving special attention is the fact

that a Version and a Metamodel are bound to each other in a

one-to-one relationship. This is a requirement for metamodel

evolution [R3], which we will discuss in Sect. 6.4.

6.1 Graph layout

In order to store EMF metamodels and their correspond-

ing instance models in our graph database, we need to

define a bijective transformation for each element between its

EMF (in-memory) representation and its (persistent) graph

representation. Our approach to this task is inspired by

Neo4EMF [4] which uses a similar mapping.

Figure 17 shows a small example for our model-to-graph

mapping. Please note that this example is not complete; sev-

eral properties were omitted for visual clarity. As outlined

earlier, we store the Ecore metamodel (EPackages, EClasses,

…) together with the actual instance model (EObjects) in

the same graph in order to support metamodel evolution and

model versioning at the same time. The two vertices at the

top represent two EPackages, with “MySubPackage” being

owned by “MyPackage”. The metamodel also contains two

EClasses, one of which has an EAttribute and an ERefer-

ence attached. Note that, in contrast to regular Ecore, we

attach unique identifiers to every element in the meta- and

instance model. This allows for easier object comparison in

cases where an element was loaded more than once from the

graph.
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id: "102270d6-a0f0-4354-b991-09ac592cdb75"

kind: "EREFERENCE"

name: "myRef"

id: "039fd383-b089-4257-b22c-7b57548e9ac4"

kind: "EATTRIBUTE"

name: "name"

id: "c472f890-1d44-4aca-82df-ebae0b3f4009"

kind: "ECLASS"

name: "MyBaseClass"

id: "c7b93a26-f809-45fd-a06c-606595ebca7f"

kind: "ECLASS"

name: "MyClass"

id: "c05d38c9-20a9-4580-b033-a4b1db8f2bbb"

kind: "EPACKAGE"

name: "MySubPackage"

nsURI: "http://www.example.org/mymodel/sub"

nsPrefix: "mymodel.sub"

id: "931fbf19-5ad5-4fd1-a9b2-f7897427837c"

kind: "EPACKAGE"

name: "MyPackage"

nsURI: "http://www.example.org/mymodel"

nsPrefix: "mymodel"
ownedEPackage

cl
as

si
fi
er classifier

eSuperType

eAttrib
ute

eR
ef

er
en

ce

eClass eClass

eRef_102270d6-

a0f0-4354-b991-

09ac592cdb75

id: "72c89041-fc7b-4851-8c14-5772e0ba125b"

kind: "EOBJECT"

id: "776835a1-0d1e-4d8e-ba5f-8767b5b8346c"

kind: "EOBJECT"

eAttr_039fd383-b089-4257-b22c-7b57548e9ac4: "MyObject"

Fig. 17 Model-to-graph mapping by example (simplified)

The two vertices with box icons represent actual EOb-

jects. Each EObject vertex is connected with an edge labeled

as “eClass” to the vertex in the metamodel that represents the

EClass of the EObject. References are represented as edges as

well. They use the unique ID of the EReference to which they

belong as the edge label, prefixed with “eRef_”. This allows

for efficient identification during the mapping process and

eliminates the possibility of unintentional name clashes on

edges. A similar pattern is applied for attribute values. The

left EObject vertex has a property prefixed with “eAttr_”,

followed by the unique identifier of the “name” EAttribute.

Again, this schema prevents name clashes and allows for fast

identification of the corresponding meta-element. By follow-

ing this schema, we can efficiently and unambiguously map

each EMF model into its graph representation, and vice versa.

There are several additional details to be considered which

are not represented in this figure. For example, Ecore allows

to define an EReference which is many-valued and has a

fixed ordering for its targets. By definition, edges on a ver-

tex are unordered. Hence, we need to assign explicit numeric

“order” attributes to these edges to retain this information.

Even though such corner cases do exist and require special

attention during the design of the mapping algorithm, the

overall graph format is very concise, especially when com-

pared to the large number of tables required in equivalent

SQL representations.

6.2 EQuery

Storing and retrieving models are basic capabilities that are

offered by all model repositories. However, only very few

tools allow for queries that operate on model content, such

as CDO. Often, languages like OCL [53], EOL [42] or the

Hibernate Query Language (HQL20) are employed for this

purpose. HQL translates directly into SQL queries, utilizing

the object-relational mapping information. From the model-

ing perspective, HQL is therefore a rather low-level language

that is furthermore bound specifically to stores implemented

in SQL. It operates on storage level, as opposed to working on

the model level. OCL allows for model-level queries, but the

execution of these statements often suffers from poor perfor-

mance on larger instance models. Both OCL and HQL require

that their statements are written as plain strings in an applica-

tion, effectively circumventing any validation by compilers.

In the context of ChronoSphere, we introduce a new

query language called EQuery. It uses familiar syntax and is

implemented as an internal domain-specific language (DSL)

embedded in Java itself. EQuery is based on traversals rather

than declarative statements. Queries form an integral part of

an application’s business logic, and embedding them directly

into the Java source code has many benefits. Application

developers can make full use of the Java compiler for valida-

tion, and benefit from their Java IDEs when it comes to editor

support features, such as code completion and syntax high-

lighting. Queries will never go out of sync with the code that

operates on them, and Java-level type safety is also preserved

at compile time, which cannot be achieved with string-based

query formats. Finally, EQuery also defines generic traversal

steps that accept Java Lambda Expressions, which greatly

enhances the flexibility and expressivity of queries.

20 https://docs.jboss.org/hibernate/orm/3.3/reference/en/html/

queryhql.html.
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EQuery works by first stating a starting element, then

navigating the model from there to arrive at the desired

result element(s). In between, EQuery allows for a wide

range of operations, including filters, loops and subqueries.

Before execution, the traversals are scanned and optimized

to make best use of the indices maintained by Chrono-

Sphere [R5]. Internally, those queries are translated to graph

traversal queries on the underlying ChronoGraph structure.

Those queries allow for highly efficient, stream-based lazy

evaluation. The entire EQuery framework is also easily exten-

sible with new operations, such as the evaluation of OCL

statements [53] or expressions in the Epsilon Object Lan-

guage [42]. There is also an ongoing research project for

translating OCL statements directly into graph traversals

called Mogwaï [11], which might also be incorporated into

our framework in the future.

The remainder of this section is dedicated to examples on

how to use EQuery. We use the IT Landscape metamodel for

this purpose, as shown in Fig. 20.

1 Set <EObject > mailServerVMs = transaction.
find()

2 .startingFromAllEObjects ()
3 .isInstanceOf("Application")
4 .has("name", "Mail Server")
5 .eGet("runsOn")
6 .asEObject ().toSet ();

Listing 1 A basic EQuery example

Listing 1 shows a basic example of the EQuery syntax.

Here, we start our traversal from the set of all EObjects

in our model. We then narrow the search space by restrict-

ing the elements to have an EClass named “Application”.

We then filter the EAttributes of the EObjects and

look for Applications with a “name” equal to “Mail Server”.

Then, we navigate along the “runsOn” EReference using

the familiar eGet(…) syntax. The result is a stream of arbi-

trary objects21 which needs to be filtered to include only

EObjects. Finally, we convert the stream into a Set for

further processing. All of this is expressed within regular

Java code.

1 Set <EObject > queryResult = transaction.find
()

2 .startingFromInstancesOf("Cluster")
3 .and(
4 eGet("runsOn")
5 .isInstanceOf("PhysicalMachine"),
6 eGet("runsOn")
7 .isInstanceOf("VirtualMachine")
8 ).toSet ();

Listing 2 An example for Subqueries in EQuery

21 In Ecore, the operation eGet(…) can be used to access references

and attributes. While EReferences always point to other EObjects, EAt-

tributes can have arbitrary values. Thus, eGet(…) in EQuery returns

an untyped stream of objects.

Listing 2 shows a query that retrieves all clusters which are

mixed, i.e., run on physical as well as virtualized hardware.

The query starts from the set of all clusters and then specifies

an and(…) step. This step will filter out all EObjects where

at least one of the provided subqueries does not produce any

object. Each subquery starts at the same object, which is the

one which was passed into the and step. In our example, we

pass in a cluster object into the and step, and check if it runs

on at least one physical and at least one virtual machine.

1 // load Ecore meta -elements from EPackage
2 EClass application = ...;
3 EClass virtualMachine = ...;
4 Set <EObject > virtualizedApplications =
5 transaction.find()
6 .startingFromInstancesOf(application)
7 .named("apps")
8 .eGet("runsOn")
9 .isInstanceOf(virtualMachine)

10 .back("apps")
11 .asEObject ().toSet ();

Listing 3 An example for back-navigation in EQuery

Our final query example in Listing 3 involves the retrieval

of all Applications which run on virtualized hardware.

To do so, we start from all applications in our model,

and create a name for this traversal step (“apps”). This

name can be arbitrary and is not connected to the model

in any way; it merely acts as a marker in our query.

From the applications, we navigate along the “runsOn”

EReference to the virtual machines. For every appli-

cation where this navigation step produced a valid result

(i.e., application.eGet("runsOn") is non-empty),

we check if at least one of the resulting EObjects is of type

Virtual Machine. If there is such an instance, we navigate

back to the previously marked “apps” position. This pro-

duces a stream that only contains EObjects that have at

least one target for the “runsOn” EReference which is a

Virtual Machine. It is important to note here that the back
step will only be performed if at least one element passed

the previous step. This style of backtracking works in arbi-

trary distances between query steps, and the programmer can

define an arbitrary number of (uniquely) named steps to jump

back to. They are useful in cases where the required filter

condition is not on an element itself but on its neighbors,

or in order to avoid long backtracking navigation. A final

detail worth mentioning in Listing 3 is that we first retrieve

the EClasses from the EPackage. In most places, the EQuery

API allows the programmer to choose between passing a

name (EClass name, EAttribute name…) or a variable of the

appropriate type. Generally speaking, passing in the meta-

model element directly is more efficient than specifying it by

name. In all further listings, we will not include the variable

definitions.
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6.2.1 EQuery validation and type safety

As EQuery statements are fragments of Java code, they are

subject to the Java type system and will automatically be

checked by the Java compiler. Furthermore, as there is no

media disruption between the query and the code which sur-

rounds it, the compiler will also assert that the result of the

query is of the type expected by the surrounding code. For

example, in Listing 3 the compiler can check that the result is

of type Set<EObject>. Aside from type errors, the com-

piler will also check that the general syntactic structure of

the query is correct (e.g., no unbalanced braces, no mistyped

operators…). Among the errors which will not be noticed

by the Java compiler are mistyped names of metamodel

elements and their types. For example, eGet(“name”)

is always correct according to the Java compiler, even if

the EAttribute name does not exist in the current meta-

model. Furthermore, the Java compiler cannot infer that

eGet(“name”)will produce an element of type String;

all it knows is that it produces some result Object. For such

cases, EQuery provides content filtering and casting methods

(e.g., asEObject(), asNumber()…) which first apply

an instanceof filter and then downcast the passing ele-

ments.

OCL takes a very different approach. From the perspec-

tive of a Java developer, OCL is an external DSL, which

means that an OCL expression is embedded into a Java pro-

gram as a string literal. By using tools such as the Dresden

OCL compiler [12], it is possible to type-check an OCL state-

ment, provided that both the statement and the corresponding

metamodel are known. However, even though this is a strong

validation, it cannot check the interactions between the query

literal and the application which executes the query. On a Java

API level, the result of an ocl.evaluate(literal)

method call will always be of typeObjectwhich then needs

to be downcast to the expected type. As both the content

of the OCL string literal as well as the downcast itself can

be changed freely without causing type errors from the Java

compiler, we argue that this method does not provide full type

safety for application developers. This is not limited to OCL:

all query languages which rely on string literal representation

(such as SQL and HQL) also suffer from the same issue.

Due to the fact that in our use case the metamodel is evolv-

ing dynamically at runtime and queries have to be created

dynamically rather than coming from design-time-constant

string literals, we decided to implement our query language

as a Java-embedded DSL to retain as much type safety as

possible by relying on the Java type system.

6.3 Metamodel evolution

One of the major benefits of employing model reposito-

ries is the freedom of defining a custom, domain-specific

metamodel for any given use case. In practice, users often

cannot take full advantage of this benefit because they are

hampered by the lack of proper tool support, in particu-

lar in cases where the metamodel evolves over the duration

of a project [37]. These cases are very common in indus-

trial contexts with long-running endeavors. In traditional

enterprise software engineering scenarios, developers cre-

ate database scripts that migrate the database schema (and

contained data) from one version to the next. There is a

wide variety of tools for this purpose (e.g., Flyway22 and

LiquiBase23). In a model-based environment, this translates

to the concept of metamodel evolution [R3], sometimes also

referred to as metamodel adaptation [74]. The key challenge

of metamodel evolution is to keep the instance model con-

sistent with the metamodel, i.e., the instances need to be

co-adapted such that they conform to the new metamodel

[9].

For some evolutionary metamodel changes, no instance

co-adaptation is required. For example, when adding a new

EAttribute to an existingEClass, the existing instances

are still valid (provided that the attribute is not manda-

tory), they just have no value set for the new attribute.

Other basic examples include the addition of new EClasses

or increasing the multiplicity of an EAttribute from

multiplicity-one to multiplicity-many. However, far more

complex examples exist as well, and in many cases, fully

automatic and deterministic instance co-adaptation is not

possible. Cicchetti et al. refer to such cases as unresolvable

breaking changes [9]. For instance, we consider a meta-

model that contains an EClass A. The next version of the

same metamodel does not contain A anymore, but a new

EClass named B instead. Even though there are algorithms

for model differencing [16,40,72], in the absence of unique

identifiers (e.g., UUIDs) and change logs we cannot tell if A

was removed and B was added, or if A was merely renamed to

B. In the first case, we would have to delete all instances of A,

in the second case we would need to migrate them to become

instances of B. This basic example shows that instance co-

adaptation requires semantic information about the change,

which is only available to the application developer. For this

reason, ChronoSphere provides an API for managing meta-

model evolution with instance co-adaptation [R3]. Rose et

al. provide a summary of related approaches [60]. This in-

place transformation approach is in line with Wimmer [75]

and Meyers [48], with the notable difference that we pro-

pose a Java API instead of ATL processes or DSLs [35,

59]. The concept is also similar to the Model Change

Language [49]. This API offers three different modes of

operation:

22 https://flywaydb.org/.

23 http://www.liquibase.org/.
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Fig. 18 Metamodel evolution in

ChronoSphere [28]
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– Changes without need for instance adaptation

This kind of evolution is intended for the most basic

changes that do not require any kind of instance co-

adaptation. Examples include adding EClasses, adding

EAttributes, or increasing feature multiplicities from

one to many. This category is also known as non-breaking

changes [9]. The developer only provides the new ver-

sion of the metamodel and loads it into ChronoSphere,

which will create a new version in the history.

– One-to-one correspondence

When instance co-adaptation is required, a common case

is that each EObject from the old model will still cor-

respond to (at most) one EObject in the new model.

Examples for changes in this category include the renam-

ing of EClasses and EAttributes. For such cases,

the ChronoSphere metamodel evolution engine provides

the developer with a predefined evolution process and

a predefined element iteration order. The developer

implements an Incubator that is responsible for either

migrating a given EObject to match the new meta-

model, or deleting it if it is obsolete. The Incubator is

specific to a given source and target metamodel and con-

tains the semantics and domain-specific constraints of the

migration, expressed in Java source code.

– Generic adaptation

In more complex cases, a one-to-one correspondence of

elements can no longer be established, for example when

an EClass is refactored and split up into two separate

classes. In such cases, ChronoSphere provides a generic

Evolution Controller interface that is in full control over

the instance co-adaptation. It receives the migration con-

text, which provides utility methods for querying the old

and new model states. The migration process as well

as the iteration order of elements are defined by the

implementation of the controller. For that reason, imple-

menting an evolution controller is the most powerful and

expressive way of defining a migration, but also the most

technically challenging one that entails the highest effort

for the developer. Just like the incubators from the one-to-

one correspondence case, such migration controllers are

specific to a given source and target metamodel version.

By offering these features, we implement the metamodel

evolution requirement [R3]. Since we only adapt the latest

version of the model to the new metamodel, the old model

instances still conform to their corresponding metamodel. We

must not touch these instances, because this would violate the

requirements for versioning and traceability of changes [R8,

R9]. Hence, we need to put the metamodel under version

control as well.

As shown in Fig. 18, every version in every branch of

the model can have its own metamodel to which it corre-

sponds. A direct consequence of this approach is that the

application developer needs to be aware of those (potentially)

multiple metamodels, and create queries dynamically based

on that metamodel. While this will entail additional efforts in

development, it is the only fully consistent way of managing

versioned models with evolving metamodels.

The alternative would be to retroactively adapt every

stored version of the model to a single new metamodel.

However, since this adaptation process is not guaranteed to

conserve all information (e.g., consider a new metamodel

where an EAttribute has been deleted), we would not

be able to guarantee traceability anymore. Consequently,

we would introduce a considerable threat to the validity of

audits. By storing a new metamodel alongside the co-adapted

instance model, we restrict the impact of a metamodel evolu-

tion to a single version (e.g., the version that simultaneously

introduces m4 and mm2 in Fig. 18) and can still guarantee

traceability in the remaining sections of our data. As we will

discuss in the remainder of this section, in our approach, we

can guarantee traceability even across metamodel evolutions.

Algorithm 2 shows how metamodel evolution works in

ChronoSphere when using an Incubator. In the beginning of

the metamodel evolution algorithm, we open two transac-

tions on the repository, and we refer to them as txOld and

txNew. We will use txOld in order to read the repository

state before the evolution has occurred, and txNew to per-

form our modifications. We assume that txOld contains a

metamodel and a corresponding instance model (otherwise

the evolution is a regular insertion). It is crucial at this point

that these two transactions are able to work in parallel, and

are furthermore completely isolated from each other. Our

first actual modification is to override the previous meta-
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Algorithm 2: Incubator-based Metamodel Evolu-

tion [28]

Data: Repository; NewMetamodel; Incubator

1 txOld ← Repository.tx();

2 txNew ← Repository.tx();

3 txNew.setMetamodel(NewMetamodel);

4 foreach EObject e in tx New.all I nstances do

5 txNew.delete(e)

6 foreach EObject e in tx Old.all I nstances do

7 newClass ← Incubator.getEClass(NewMetamodel, e);

8 if newClass != NULL then

9 txNew.recreate(e, newClass);

10 foreach EObject e in newT x .all I nstances do

11 oldEObject ← oldTx.getEObject(e);

12 Incubator.transferEAttributes(oldEObject, e);

13 foreach EObject e in newT x .all I nstances do

14 oldEObject ← oldTx.getEObject(e);

15 Incubator.transferEReferences(oldEObject, e);

16 txNew.commit();

17 txOld.rollback();

model in txNew. We can safely do so because the original

is still stored in txOld. There is no metamodel differencing

taking place in this phase, we perform a plain overwrite. We

initially delete all elements in txNew (lines 4 to 5) and start

with an empty instance model. Afterward, we begin our first

instance evolution phase (lines 6 to 9). We iterate over all

EObjects stored in the old repository state, and ask our Incu-

bator for a new EClass for this particular EObject. If there is

a corresponding EClass in the new metamodel, we recreate

the EObject with the same ID, preserving the historical trace-

ability link. Otherwise, we discard the EObject. In lines 10

through 12, we iterate over the elements that received a new

EClass previously and look for their counterparts in txOld.

We ask the Incubator to transfer any desired EAttribute values

from the old version to the new one, which may also involve

a value transformation step. For the fulfillment of all of its

tasks, the Incubator has access to the Ecore API as well as

the ChronoSphere API, allowing for very clean and expres-

sive implementations. Finally, we construct the EReference

instances by iterating over the EObjects again (lines 13 to

15). Once more, the Incubator is responsible for the actual

semantics. In the last phase, we perform the commit that

persists our changes to disk (and creates a new entry in the

version history), and roll back the historical transaction.

Overall, we have maintained our traceability links (by

retaining the IDs of EObjects) and performed a metamodel

evolution with instance adaptation that is ACID safe and cre-

ates a clean history without partially evolved intermediate

states. The evolution process with a full-fledged Evolution

Controller works in much the same way. The primary differ-

ence is that the lines 6 through 15 are replaced by a call to

the controller, allowing for a maximum of flexibility in the

controller implementation. This algorithm requires efficient

management of RAM in practice, in particular when working

with larger models. Since txNew needs to manage all changes

applied to all model elements, the change set can grow to very

large sizes. By utilizing incremental commits, we can miti-

gate the problem by flushing batches to disk while providing

the same level of ACID safety and equivalent histories.

6.4 Advantages and limitations of the incubator
approach

Using the incubator algorithm as described in section reduces

the amount of manual coding required to perform a meta-

model evolution with instance adaptation. The incubator

assists the programmer in the common case that an EOb-

ject before the metamodel evolution conforms to at most one

EObject after the metamodel evolution. This covers a lot of

cases, including:

– Removal of classes

– Addition of new classes

– Renaming of any metamodel element

– Any changes to EAttributes and EReferences

– Any combination of changes listed above

In all of these cases, the incubator provides utilities such as

a fixed migration process and a fixed element iteration order.

The goal of the incubator approach is to drastically reduce

the required amount of manual coding for common cases.

However, it is not applicable in all scenarios. For example,

when a single class C is split into two classes (C1 and C2),

then each EObject E conforming to C must be split into

two EObjects E1 and E2, where E1 becomes an instance

of C1, and E2 an instance of C2. Cases such as this (which

are less common and often fairly complex) are not covered

by the incubator. In such cases, the programmer needs to

implement the migration code manually. We consider the

current features to be a baseline that provides the neces-

sary raw functionality. We aim to build more sophisticated

and user-friendly evolution mechanisms on top in the future,

gradually reducing the amount of required manual coding

(see Sect. 10).

6.5 Transaction and versioning concepts

Transactional safety [R6] is the foundation of all features in

ChronoSphere which are related to collaboration and evo-

lution. Originally coined by the database community, this

concept has since been adopted by other domains as well. In

the context of modeling and model repositories, transactional

safety implies that several clients can work in parallel on a

model without interfering with each other.
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Fig. 19 Analyzing transitive dependencies of IT assets in Txture’s interactive visualizations

In ChronoSphere, a client24 requests a transaction, then

operates on it by executing queries and applying changes

locally in this transaction. Afterward, the transaction can

either be committed (local changes will be made available

globally by creating a new version) or rolled back (revert-

ing all local changes). The isolation property defined in the

SQL Standard [38] states that any operation executed within

a transaction must not be affected by other, concurrent trans-

actions [R6]. In order to achieve the highest possible isolation

level (serializable [38], also known as snapshot isolation),

databases traditionally either need to perform excessive pes-

simistic locking, or allocate considerable amounts of RAM

to open transactions in order to retain duplicates of concur-

rently modified entries. Thanks to its versioning capabilities,

ChronoSphere can provide snapshot isolation with minimal

locking, no additional memory overhead and without sac-

rificing performance. This is a direct consequence of our

design: once a model version is committed, it is effectively

immutable. Further changes will create new versions. There-

fore, as long as a client is working on any given version (i.e.,

the used transaction timestamp does not change), the model

content will not change, thus guaranteeing snapshot isolation.

7 Industrial case study

At the time of writing this document, ChronoSphere and

its sub-components are already being used in production in

24 We use the term “client” to refer to application code that operates on

top of ChronoSphere. This can be a remote method invocation, another

thread or simply a method call to the public API.

industry. They are embedded in the commercial IT Landscape

documentation tool Txture,25 which is in turn deployed on-

site at several customers. In this section, we explore how the

interplay between Txture and ChronoSphere works and how

ChronoSphere contributes to the use cases of Txture.

Txture is a software tool for documenting the IT Land-

scape of companies. The customers of Txture employ it

for several different use cases, including impact analy-

sis, history analysis, enterprise architecture management,

transformation planning and as a supportive tool for data-

center outsourcing. Txture uses ChronoSphere as its primary

data storage. Its clients interact with Txture via a web-

based user interface. This UI offers interactive, query-based

near-real-time visualizations to the end user. The supported

visualization types include graph-based views, tables and

charts. The graph-based views (as shown in Fig. 19) are

suitable for many IT Operation and Enterprise Architec-

ture use cases, because they allow the user to navigate the

connections between model elements in an interactive way,

expanding areas of interest and collapsing others into groups

(or hiding them entirely). This workflow allows to abstract

away from distracting details on the fly. Each navigation

step performed by the user on the front-end is translated

into a query step and added to the existing base query. The

server core is responsible for executing these queries and

directly relies upon the capabilities of ChronoSphere. The

metamodel in Txture can be adapted to suit the needs of the

customer (usually starting from a best-practice model syn-

thesized from past projects; a simplified version is shown

25 www.txture.io.
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Fig. 20 Metamodel for IT

landscapes (simplified)

in Fig. 20). Therefore, queries cannot be hard-coded; they

need to be created on the fly in order to conform to the meta-

model. In a string-based approach (e.g., OCL strings), the

only solution would involve building queries from individ-

ual pieces via string concatenations, which is an error-prone

process. In this approach, the Java compiler cannot offer

any checks with respect to the content of a query string.

EQuery is implemented as a Java-embedded internal DSL

(c.f. Sect. 6.2) which is beneficial for this scenario, as queries

can be assembled dynamically one step at a time without the

need for string concatenations. As queries are expressed as

Java code and ChronoSphere is intended as a tool for appli-

cation developers, further measures are required to make

ad-hoc queries available to end-users. Txture implements

a custom query syntax for end-users which is then trans-

lated into EQuery statements. Another approach for ad-hoc

queries could be to employ a JVM scripting language such as

Groovy,26 which would allow end-users to type their EQuery

statements directly into a text field and evaluate them.

The incremental commits offered by ChronoSphere (see

Sect. 4.2) are also used by Txture. Data imports from external

data sources, most notably from a Configuration Manage-

ment Database (CMDB [7]), often produce a large quantity

of new elements to insert into the model. Incremental com-

mits allow to perform this insertion in a number of smaller

successive steps, avoiding memory limitation issues on the

server while preserving a history that does not contain any

intermediate (incomplete) states. Furthermore, this preserves

the atomic nature of imports: even if previous incremental

commit portions have already been written to disk, an error

26 https://groovy-lang.org.

that occurs toward the end of the process can still cancel the

entire process without corrupting the database content.

A feature that is used in particular by Enterprise Architects

in Txture is the planning feature. This allows an architect to

apply arbitrary changes onto the current state of the model,

without making them part of the “as-is” architecture or mak-

ing them visible to anybody else. Txture provides the same

suite of analysis tools for the resulting plans that is also avail-

able on the “as-is” model, in addition to comparison features

that allow to analyze the impact of the plan on the real model.

This is realized using the branching feature of ChronoSphere.

When a new plan is created by a user, Txture switches the

currently selected branch for that user from the master (“as-

is”) branch to a new one. Since this branching is lightweight

in ChronoSphere, the user does not experience any waiting

time during this switch even when creating new plans on top

of large models.

A similar argument can be made for the Time Machine fea-

ture in Txture. By selecting a date and time in the past, a user

can move the entire client to that particular point in time and

review the contents of all existing visualizations calculated

on that model state. The versioning feature of ChronoSphere

acts as the enabling technology here: Txture uses the date

and time selected by the user on the user interface as the

request timestamp for the ChronoSphere transaction. As all

queries are timestamp-agnostic, all visualizations adapt to

the new situation automatically as their backing queries are

being re-evaluated by the server.

The fact that each revision is immutable in ChronoSphere

also brings additional advantages that are utilized by Txture.

Any client starts out on the latest revision of the “as-is” model

at the time of logging in. When a new model version is created

at the server, a notification is sent out to all clients, informing

123

https://groovy-lang.org


3516 M. Haeusler et al.

them about the existence of this new update. On most sys-

tems, this would entail that the client has to react immediately

and fetch the new information from the server in order to pre-

vent synchronization issues. Txture clients are not forced to

interrupt their current task, because the version a client is

currently viewing is immutable. The user can continue to

analyze the currently selected model version indefinitely as

the server will yield consistently reproducible query results

for any version. Should the user choose to switch to the latest

version, the transaction timestamp associated with the ses-

sion is updated to the most recent one, refreshing all query

results and client views in the process.

8 Performance evaluation

In comparison with other repository solutions, Chrono-

Sphere offers several additional features while making fewer

assumptions about the input model (e.g., we do not assume

the metamodel to remain constant over time). This rises the

question how well our approach can perform in comparison

with other solutions. In this section, we present a compara-

tive benchmark between ChronoSphere and the Eclipse CDO

repository. We specifically selected CDO for three reasons:

– CDO is widely considered to be the “gold standard” in

model repositories.

– In the spectrum of competing solutions, CDO is closest

to ChronoSphere with respect to features.

– CDO is based on a relational store, which allows for a

discussion of individual advantages and drawbacks when

comparing it to our graph-based approach.

For this benchmark, we operate on a fixed Ecore model

(as required by CDO). This model uses the Metamodel for

IT Landscape Management (Fig. 20 shows a simplified ver-

sion, the full Ecore file is available online27). Since instance

models in the IT Landscape environment are sensitive infor-

mation and therefore confidential, we created a synthetic

model in collaboration with our industry partners at Txture.

This model exhibits the same inner structure (element counts,

associations, …) as a typical real-world model. The instance

model file is available online.28 It consists of approximately

200000 EObjects.

This benchmark includes four individual scenarios. The

scenarios have been synthesized from the most commonly

used queries in Txture, as introduced in Sect. 1. In each sce-

nario, we grant 5GB of RAM to the Java Virtual Machine

(Java 1.8 Update 161) which executes the code. It is possible

27 https://git.io/vxZl3.

28 https://git.io/vxZWp.
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Fig. 21 Insertion performance

to run the benchmark with less RAM, however in such cases,

the garbage collector can impact the individual runtimes in

unpredictable ways. The relevant hardware in our test sys-

tem included an Intel i7 5820K CPU (3.30GHz) and a Crucial

CT500MX SSD, operated by Windows 10. All tests were exe-

cuted on a pre-warmed JVM. Each figure in the benchmark

shows the results of the scenario, averaged over 10 indepen-

dent executions. Variances are not included in the figures

due to their small magnitudes. We would like to emphasize

that CDO offers several ways of executing queries. One of

them is the usage of the Hibernate Query Language (HQL29).

This language requires deep knowledge of the underlying

storage, as the user needs to be aware of the way in which

database tables are generated from model classes. Another

way of querying the data in CDO is by using its program-

ming interface directly. The third and final way for querying

data in CDO is by specifying OCL [53] queries. We argue

that OCL queries are the only option to formulate queries

on the abstraction level of the model, without requiring any

knowledge of the underlying storage. In this benchmark, we

will therefore only utilize OCL queries in CDO. We use the

latest stable version of CDO as of January 2018.

8.1 Model insertion

The first benchmark scenario consists of loading the 200000

EObjects into the system and persisting them to disk.

As Fig. 21 shows, there are significant performance differ-

ences during model insertion when using different database

back-ends for CDO. The embedded H2 database offers faster

insertion speed compared to PostGreSQL. ChronoSphere

is the middle ground between the two. The primary factor

which is slowing ChronoSphere down in this comparison is

the fact that both H2 and PostGreSQL have access to fixed

29 https://docs.jboss.org/hibernate/orm/3.3/reference/en/html/

queryhql.html.
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Fig. 22 Assets By Name performance

schemas, which allows for a very compact binary represen-

tation of each EObject. ChronoSphere uses a more flexible

approach, resulting in less densely packed data structures and

consecutively lower insertion speed. CDO accomplishes this

performance also by deliberately working without foreign

key constraints in the database itself, thus forfeiting one of

the biggest advantages of relational storage systems.

8.2 Assets By Name

A very common task for any repository is to allow a user to

find an element by its name. In this scenario, we are search-

ing for a Physical Machine by name. We use the following

queries:

1 PhysicalMachine :: allInstances ()->select(
2 pm: PhysicalMachine | pm.name =
3 <name_placeholder >
4 )

Listing 4 OCL: Assets By Name

1 find().allInstancesOf(physicalMachine)
2 .has(name , <name_placeholder >).toSet ();

Listing 5 EQuery: Assets By Name

We repeat each query 100 times, using a different replace-

ment for the <name_placeholder> in every iteration.

Using the same name in every execution would entail the

possibility that the tool under test is simply returning a

cached query result which contradicts our measurement goals

(Fig. 22).

Given the fact that relational databases have been designed

especially for this kind of query, it might lead to the assump-

tion that CDO is capable of answering this query very

efficiently. However, it turns out that the CDO query eval-

uation engine for OCL does not inspect the provided OCL

statement for optimization possibilities. Instead of creating a

suitable SQL statement and forwarding it to the underlying

database, the OCL statement is evaluated simply by iterating

over the EObjects in memory. Another shortcoming of CDO

is the fact that it does not create secondary indices on model

data, and also does not offer such an option through its API.

While it is possible to manually create secondary indices in

the underlying database, they will not be utilized by CDO.

ChronoSphere analyzes and optimizes the passed query and

utilizes a secondary index on the element name, allowing for

greatly reduced query response times in this scenario.

8.3 Root cause analysis

After retrieving a particular element by name, a common task

in the IT Landscape context is to perform a Root Cause Anal-

ysis. Such an analysis attempts to track down the root cause

for a failing asset. For example, an application might fail

to operate properly because the underlying virtual machine

fails. The query therefore needs to retrieve the transitive

dependencies of a given asset. For this particular scenario, we

consider the transitive dependencies of a Service asset down

to the PhysicalMachine level. This is commonly referred to

as the deployment stack. We measure the accumulated time

for 1000 executions of this query on different initial start

objects. The queries in OCL and EQuery are formulated as

follows:

1 self.dependsOn.runsOn ->closure(host: Host |
2 host ->selectByKind(VirtualHost).runsOn
3 )

Listing 6 OCL: Root Cause Analysis

1 tx.find().startingFromEObject (self)
2 .eGet(dependsOn).eGet(appRunsOn)
3 .closure(hostRunsOn)
4 .isInstanceOf(physicalMachine)
5 .toSet ();

Listing 7 EQuery: Root Cause Analysis

In this benchmark, we utilize the closure statement in

both languages to navigate the transitive paths. We require

this statement because the path length is unknown—a Virtual

Machine may run on a Cluster which in turn is deployed on

Virtual Machines. Such a query is very difficult to express in

SQL and would require recursive JOIN operations. However,

since CDO resolves OCL queries via in-memory iteration, it

circumvents this issue.

Figure 23 shows that CDO provides acceptable perfor-

mance in this scenario; however, ChronoSphere outperforms

it by a factor of 2. The reason for this speedup lies within

the architecture of ChronoSphere: after consolidating the

EQuery steps, it transforms them into a Gremlin graph traver-

sal. This highly optimized traversal engine is then executing

the query on the data structures provided by ChronoGraph.
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Fig. 23 Root cause analysis performance

We avoid the overhead of the reflective EObject API com-

pletely, granting ChronoSphere faster query execution.

8.4 Impact analysis

Root Cause Analysis, as introduced in the previous section,

finds the cause of failure of a particular asset. The inverse

question is also relevant in IT Landscape management: given

an asset, we need to determine which higher-level assets are

affected in case that this asset fails. For our model-level query,

this means that we need to find the incoming transitive depen-

dencies of a model element. For our benchmark, we perform

the impact analysis from a Physical Machine all the way up

to the Services. We formulated the corresponding queries as

follows:

1 Service.allInstances ()->collect(service:
Service |

2 service.dependsOn.runsOn ->closure(host:
Host |

3 host ->selectByKind(VirtualHost).
runsOn

4 )->selectByKind(PhysicalMachine)
5 ->includes(self)
6 )

Listing 8 OCL: Impact Analysis

1 find().startingFromEObject (s)
2 .closure(hostRunsOn , Direction.INCOMING

)
3 .eGetInverse(appRunsOn)
4 .eGetInverse(dependsOn).toSet ();

Listing 9 EQuery: Impact Analysis

In this particular scenario, we encounter a shortcoming of

OCL: it does not allow to formulate query steps across the

incoming references of an object. This issue has been per-

ceived by tool authors and there are extensions to OCL which
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Fig. 24 Impact analysis performance

allow for an eInverse step, e.g., in the Acceleo framework.30

However, as CDO only supports the official OCL standard,

our options for formulating this query (without having to

modify our metamodel) are very limited. We iterate over all

services, build the deployment stack for each service, and

then check if our Physical Machine in question is contained

in the resulting set of elements.

As Fig. 24 clearly shows, the limitations of OCL severely

impact the performance of the query in CDO. In contrast,

the EQuery expression in ChronoSphere has approximately

the same performance as the forward-navigating Root Cause

Analysis query. Please note that we reduced the number of

input elements from 1000 to 10 in this scenario in order to get

results from CDO within a reasonable time frame. Multiply-

ing the result of ChronoSphere by 100 yields the same results

as in the Root Cause Analysis scenario. This demonstrates

that ChronoSphere queries can navigate along outgoing and

incoming references without any performance penalty.

8.5 Threats to validity

We tried to achieve a comparison in this chapter which is

as fair as possible. Nevertheless, some threats to the valid-

ity of our results could not be eliminated during the process.

First of all, the exact behavior of the Just-in-Time Compiler

of the Java Platform, as well as its garbage collector, can-

not be completely pre-determined. This adds some inherent

variance to the results, which we tried to mitigate by pre-

warming the JVM and assigning sufficient RAM to the Java

process. In the CDO cases, we implemented the queries on

a CDO client, with the CDO Server process running on the

same machine in order to eliminate network latency. CDO

does offer an embedded mode; however, in our tests we

unfortunately found this mode to be unstable and prone to

a number of unpredictable runtime exceptions. One might

30 https://wiki.eclipse.org/Acceleo/Acceleo_Operations_Reference.
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Table 7 Benchmark result summary (execution times in ms)

CDO (H2) CDO (PGSQL) ChronoSphere

Model Loading 13,404.5 83,915.8 46,077.0

Root Cause Analysis 1509.6 1504.2 636.3

Impact Analysis 33,155.0 32,907.9 12.5

Assets By Name 23,292.3 19,470.0 1517.4

Bold value represents the best score in the respective row

argue that implementing the queries in HQL would have

yielded better performance in CDO; however, we chose OCL

because it operates on the model level rather than on the per-

sistence level. Also, in HQL it is currently not possible to

formulate queries which are recursive or rely on transitive

closures, which we require in our benchmark scenarios. The

employed model, even though crafted in collaboration with

the experts at Txture to ensure real-life conditions, is a syn-

thetic construct, which might lead to different results in real

applications.

8.6 Benchmark summary

In this comparative evaluation (which is summarized in

Table 7), we demonstrated that ChronoSphere offers com-

petitive performance, even though it does not require a

metamodel to be constant over time. The underlying graph

database allows for schema-free model storage without

sacrificing query execution speed. This benchmark also

demonstrates that avoiding O/R-mapping techniques has a

positive influence on the overall performance. We also show-

cased the expressiveness of our query framework, which

allows for more flexible navigation than OCL. This advan-

tage is crucial in the IT Landscape domain and generally

beneficial in model analysis. Our results are also in line with

the extensive comparative benchmark by Barmpis et. al [1]

which demonstrates the advantages of graph-based storage

over relational solutions for model persistence.

Please note that we focused exclusively on ChronoSphere

in this evaluation. For an evaluation on ChronoDB [25]

and ChronoGraph [27], we refer the interested reader to the

respective publications.

9 Discussion and related work

Over the years, a considerable number of model repositories

have been developed by various authors. Pierantonio et. al

provide a good overview in their paper [13]. In this section,

we will compare our approach to other solutions which are

conceptionally close to our repository. As our approach also

entailed the development of lower-level infrastructure, we

will also consider related work in those areas. This section

is structured in a bottom-up fashion, starting with the related

work in the area of versioned key-value stores and concluding

with related work in the model repository area.

9.1 Related Key-Value-Store versioning solutions

Database content versioning is a well-known topic. Early

work in this area dates back to the 1986 when Richard

Snodgrass published his article on Temporal Databases [69].

Adding a time dimension to the data stored in a database con-

siderably increases the complexity of the data management,

because the additional dimension introduces new demands

regarding data consistency and several tried-and-true solu-

tions are no longer applicable to the same extent as with

non-versioned data (e.g., hash tables for caching). Key-value

stores have become attractive formats for versioned data due

to their simple nature when compared to relations, graphs or

documents.

Sridhar Ramaswamy published a paper in 1997 on index-

ing for temporal databases [57]. He proposes an approach

based on validity ranges for each entry to which he refers

as windows. Each entry is valid from its insertion until its

validity is explicitly terminated by an update or deletion.

This transforms the problem of a search in a versioned

database into an instance of the well-known interval stab-

bing problem [65]: given a set of intervals and a number,

find all intervals containing this number. This approach

strongly inspired our efforts. The major difference between

the algorithms we employ in ChronoDB (c.f. Sect. 4.1) and

Ramaswamy’s approach is that in our case, the upper limit of

each validity window is given implicitly by the matrix struc-

ture. We therefore do not need to update a previously stored

validity range in our database when a new version is added.

This allows our data store to operate in a strictly append-only

fashion, which entails a number of technical advantages in

the implementation. Also, deletions of entries do not impact

our data structure in any different way than inserts or modi-

fications, which was an issue in Ramasway’s solution.

Felber et. al [21] propose a different solution. For every

key, the store manages a list of values, each value corre-

sponding to one version. This is a simple and effective system

for managing elements with independent histories (e.g., wiki

pages). However, this solution does not preserve the histori-

cal correlation between elements. For example, given a key

k1 with values a1 and a2, and a key k2 with values b1 and b2,

there is no way to tell if the entry (k1, a1) existed at the same

time as (k1, b1), or (k1, b2) or neither of them. This tempo-

ral correlation is crucial when individual values can contain

references to one another, as it is the case with ChronoGraph.

Commercial database vendors also explored the possi-

bilities for database content versioning. Lomet et.al [44,45]

developed an approach named ImmortalDB which was later

integrated into Microsoft SQL Server. This solution is based
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on history chains: each entry refers to its predecessor via

a pointer (alongside timestamp metadata). This approach

allows for high performance of queries on the latest version

of the data. However, as the request timestamps are moved

further back in time, the query performance degrades lin-

early, as the history chains need to be traversed. ChronoDB

avoids this problem and offers logarithmic access time to any

entry, regardless of its age. Further commercial projects in

this area include Temporal Tables in IBM DB2 [63] or Ora-

cle’s Flashback technology [32]. The choice between history

chains and time-indexing (as shown in Sect. 4) depends on

the use case. History chains offer almost the same perfor-

mance for queries on the latest version as an unversioned

system, but when previous versions are requested, the per-

formance decreases linearly with the age of the requested

version, as all intermediate chain links need to be traversed.

Time-indexed solutions are engineered to offer nearly iden-

tical query performance on any requested version, but the

overall query performance decreases in a logarithmic fash-

ion as new versions are being added. We mitigate this issue

by splitting the data along the time axis, thus limiting the

search space of each request (see Algorithm 1). For systems

which primarily serve the latest version, history chains are a

viable choice. However, in particular for the use case of IT

Landscapes, the performance of historical queries matters to

the end users, as the repository is used for audits and history

analysis.

9.2 Related graph versioning solutions

In comparison with Key-Value stores and SQL databases,

graph databases as we know them today are a relatively

new technology. Consequently, there are fewer approaches

regarding content versioning.

Considering the large amount of development and quality

assurance efforts that has been invested into existing graph

databases (e.g., Neo4J or TitanDB), it is a tempting idea

to integrate versioning in these systems rather than devel-

oping new ones. Castelltort and Laurent published one of

the first papers [8] that seek to integrate versioning into

general-purpose graph databases. This is achieved by creat-

ing a layout for a “meta-graph” that can contain and manage

multiple versions of itself. The graph database contains this

meta-graph, and incoming queries need to be aware of this

structure in order to extract the information they require. As

Castelltort and Laurent clearly show in their paper, the com-

plexity of queries sharply increases in such a scenario. Due

to the increased number of checks that need to be performed

by each query, the performance inevitably degrades as well.

Perhaps the largest drawback of this approach is that the

application needs to be aware of and manage this additional

layer of complexity. There are several different approaches

for creating a layout for the meta-graph, e.g., the solution

proposed by Taentzer et al. [71] which is based on modeling

differences between versions as graphs. There is one central

issue which is shared by all layouts: Given a suitable set of

graph changes, they introduce vertices in the graph which

have a very high degree of incoming and/or outgoing edges

for the purpose of version control. Such super vertices rep-

resent a problematic corner case in any graph database and

may lead to poor performance and storage space utilization.

As ChronoGraph manages version control on a lower level,

there is no need to introduce any additional graph elements in

order to achieve versioning. The disadvantage of our solution

in that regard is that a completely new implementation was

required and existing graph databases could not be reused.

Other related approaches, e.g., by Semertzidis and Pitoura

[66,67] or by Han et al. [29], assume the existence of a

series of graph snapshots as input to their solutions. These

approaches do not aim for online transaction processing

(OLTP) capabilities and focus on the analysis of a series

of static graphs. A direct comparison with our approach

is therefore not feasible. However, the data managed by

ChronoGraph may serve as an input to those tools, as each

graph revision can be extracted individually and conse-

quently be treated as a series of snapshots.

9.3 Related repository solutions

Table 8 shows a comparison of related model repositories

based on the required features we established in Sect. 2.

The table can be divided into two sections, which are cloud

(Software-as-a-Service) solutions and on premise solutions.

While cloud-based solutions for EAM models exist (e.g., Iter-

aplan31), more fine-grained IT Landscape models are widely

considered to be very sensitive data in industry. Unautho-

rized access to such models could guide a potential attacker

to the servers where the impact of the attack is maximized.

Most companies therefore require an on premise deploy-

ment of the software that manages their IT Landscapes. This

eliminates cloud-based tools such as MDEForge [3] and Gen-

MyModel [14] from the list of possible repository candidates

for IT Landscape models.

Connected Data Objects (CDO)32 is widely considered

to be the gold standard of model repositories. This reposi-

tory uses SQL databases to store model data in a versioned

fashion. CDO handles the versioning process internally, it

does not make use of versioning features in the underlying

database. With respect to features, CDO is the most complete

competitor to ChronoSphere. However, CDO exhibits several

weaknesses when employed in practice [68]. In particular,

the lack of any support for metamodel evolution moti-

vated our decision to implement a novel model repository.

31 https://www.iteraplan.de/en.

32 https://wiki.eclipse.org/CDO.
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Table 8 Model repository feature comparison

Technology F1 F2 F3 F4 F5 F6 F7 F8 F9 Deployment Persistence

Eclipse CDO ✓ ✓ ✓ ✓ ✓ ✓ ✓ On Premise SQL/Documents

MORSA ✓ On Premise Documents

EMFStore ✓ ✓ ✓ ✓ On Premise XML Files

MagicDraw Teamwork Server ✓ ✓ ✓ On Premise XML Files

MagicDraw Teamwork Cloud ✓ ✓ ✓ ✓ On Premise Key–Value Store

Hawk Model Indexer ✓ ✓ ✓ On Premise Graph

Neo4EMF ✓ ✓ ✓ On Premise Graph

GreyCat ✓ ✓ ✓ ✓ ✓ On Premise Versioned Graph

ChronoSphere ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ On Premise Versioned Graph

GenMyModel ✓ ✓ Cloud (SaaS) SQL

MDEForge ✓ ✓ ✓ ✓ Cloud (SaaS) Documents

ChronoSphere also avoids the Object-Relational Mapping

(O/R-Mapping) process which is employed by CDO in order

to transfer model data into and out of the underlying database.

As we have shown in Sect. 6.1, there is a natural pattern

for transforming model elements into graph elements (and

vice versa), whereas O/R-Mapping is a fairly involved pro-

cess [39], both conceptionally as well as with respect to

resource usage (e.g., CPU and RAM). We also performed

a comparative benchmark between CDO and ChronoSphere

in Sect. 8.

Neo4EMF [4] was the first storage solution for EMF mod-

els that is based on graph database technology. This work has

inspired and guided our efforts. ChronoSphere utilizes a sim-

ilar model-to-graph mapping as Neo4EMF, albeit a different

implementation for technical reasons. Neo4EMF showed the

advantages of graph-based persistence, however it is a per-

sistence framework rather than a model repository. Central

features, such as versioning, branching and ACID transaction

support, remain unaddressed by this technology.

Hawk Model Indexer [2] is another solution in the realm

of model engineering that seeks to utilize graph-based per-

sistence for models. As the name implies, Hawk is primarily

an indexer. It is therefore not responsible for the actual model

persistence, but rather for creating a secondary structure to

speed up incoming queries. Hawk is intended to be used as

an assistive technology and does not qualify as a standalone

model repository. Just as with Neo4EMF, features like ver-

sioning and branching are not considered by this approach.

MORSA [54] was one of the first NoSQL model repos-

itories. It stores models in a document-based backend

(MongoDB33). The main features of MORSA include model

versioning and persistence. However, in contrast to Chrono-

Sphere, MORSA treats a model as a single atomic artifact.

Queries on the model content are therefore not supported.

33 https://www.mongodb.com/.

Also, the versioning process takes place on the granu-

larity of the entire model (rather than per-element as in

ChronoSphere). MORSA is suitable for storing and retriev-

ing hand-crafted models of smaller sizes. The large models

generated by automated processes in IT Landscapes would

introduce a prohibitive amount of overhead for whole-model

versioning approaches.

EMFStore [41] is a model repository that operates on

model differences, which are stored in files in an XML-based

format. This allows EMFStore to support per-element ver-

sioning and branching as well as efficient storage utilization

for long history chains. However, EMFStore does not offer

support for model content indexing and/or querying. Retriev-

ing a model version requires a checkout operation as seen in

traditional version control systems, e.g., Git or SVN. The

commercial tool MagicDraw Teamwork Server34 follows a

similar approach as EMFStore. Teamwork Server internally

stores the XMI [52] representation of a model in a folder con-

trolled by SVN, which introduces similar scalability issues as

discussed about MORSA. ChronoSphere follows a different

approach: each version of each model element is accessible

in logarithmic time without requiring a checkout procedure

of the entire model. Also, ChronoShpere allows for indexing

and querying of the model content in contrast to the other

mentioned solutions in this category. Teamwork Server has

been superseded by MagicDraw Teamwork Cloud35 which

employs a per-element versioning approach and is based on

Apache Cassandra. Even though this approach allows for a

higher scalability, due to the nature of Cassandra, this solu-

tion cannot support ACID transactions. As of the current

version (19.0), according to the official API documenta-

tion36 Teamwork Cloud does not offer any extended querying

34 https://www.nomagic.com/products/teamwork-server.

35 https://www.nomagic.com/products/teamwork-cloud.

36 https://osmc.nomagic.com/19.0/swagger/index.html#.
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capabilities beyond retrieving a model as a whole and pick-

ing individual elements by ID. It does however utilize the

same retrieval model as ChronoSphere, where elements are

retrieved by stating their ID as well as their branch and times-

tamp.

An approach that is conceptually close to ChronoSphere,

but does not declare itself as a model repository, is Grey-

Cat37 [33,34]. GreyCat stores models in versioned graphs. It

is based on the Kevoree Modeling Framework [23] (KMF),

which is an alternative to EMF that focuses on models-at-

runtime scenarios. KMF metamodels can be automatically

derived from Ecore definitions (hence we consider the meta-

modeling process to be Ecore compliant in Table 8). Much

like ChronoGraph, GreyCat implements its own graph layer

on top of a NoSQL storage. In its storage layer, Grey-

Cat uses history chains (traces in GreyCat terminology)

which consist of change operations. Thus, GreyCat utilizes

difference-based versioning, whereas ChronoGraph employs

state-based versioning. While GreyCat also implements a

property graph, it does not support the TinkerPop API. A

major difference that sets ChronoSphere and GreyCat apart

is the fact that GreyCat is heavily relying on code genera-

tion. This entails that the metamodel for GreyCat is fixed for

all versions and branches, and metamodel evolution cannot

be supported in the same way as it is possible in Chrono-

Sphere. GreyCat (and its predecessors) and ChronoSphere

have been developed during the same time periods as inde-

pendent projects, which is the reason why neither of them is

built on top of the other. The existence of two independent

solutions also highlights both the importance of versioned

model storage as well as the suitability of property graphs

for this task.

Further related work specifically in the IT Landscape

domain includes Configuration Management Databases

(CMDBs). There is a wide variety of commercial products on

the market (e.g., BMC Atrium,38 ServiceNow39 or HP Uni-

versal CMDB40). A direct comparison with ChronoSphere is

infeasible because CMDBs are tightly bound to their appli-

cation domain, whereas our solution is generic and domain

independent. The metamodel in a CMDB is usually fixed

and tailored toward the IT operations use case. Versioning

capabilities are also found in CMDB products, but they are

often limited to the history of single elements (i.e., it is not

possible to move an entire view with multiple elements back

in time). Overall, we do not consider CMDBs to be model

repositories because they do not utilize a metamodeling lan-

37 https://greycat.ai.

38 https://www.bmc.com/it-solutions/cmdb-configuration-

management.html.

39 https://www.servicenow.com/.

40 http://cmshelpcenter.saas.hp.com/CMS/10.30/ucmdb-docs/docs/

eng/doc_lib/Content/DIC_Guide.htm.

guage (e.g., Ecore), they are domain-specific and operate on

a fixed metamodel. However, a model repository can be used

as the back-end of a CMDB or EAM application.

Table 8 shows two important facts. On the one hand all

of the features we implemented in ChronoSphere (except for

historical archiving) are present in at least one related tool.

This emphasizes the importance of the chosen feature set. On

the other hand, this table shows that ChronoSphere also ful-

fills all requirements of a general-purpose model repository

and is therefore not restricted to IT Landscape modeling in

any way.

9.4 ChronoSphere as a generic model repository

ChronoSphere has been created specifically for the use case

of IT Landscape documentation. However, the resulting con-

cepts and software are generic and have no dependencies to

this particular domain. As a general-purpose EMF model

repository with a rich feature set, ChronoSphere can be

applied in a wide range of use cases, in particular in models-

at-runtime scenarios. In the context of this paper, we decided

to focus on the domain for which the tool was originally cre-

ated. While the features of ChronoSphere are generic, it is

optimized for the workloads expected in the IT Landscape

domain (model sizes, frequency of insertions and queries,

number of concurrent users…). We will conduct further stud-

ies in the future where we apply ChronoSphere in different

domains.

10 Outlook and future work

ChronoSphere and its components currently operate exclu-

sively in local deployments. However, as other projects (e.g.,

Neo4J and TitanDB) have shown, graph databases lend them-

selves well to distribution across several machines. One of

our future goals is to create a distributed version of Chrono-

Graph for greater scalability. The fact that this database

operates in a versioned, append-only fashion should ease

this transition as the common problem of encountering stale

data is eliminated by design. Due to the chosen layer separa-

tion, the code base of ChronoSphere itself will remain largely

unchanged. Overall, we hope to achieve a distributed model

repository that can scale well with even larger models and

higher numbers of concurrent users.

EQuery, the query framework introduced by Chrono-

Sphere, is constantly evolving. With inspiration from Project

Mogwaï [11], we aim for the inclusion of OCL expression

evaluation into our EQuery framework. This will allow pro-

grammers to have a ocl(String) step in the query where

the OCL statement is provided as a string. This string will

then be analyzed and transformed into a graph query, which

is then used as a subquery in the overall evaluation. By
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Table 9 The chronos technology stack

Technology Classification Source Code Repository

ChronoDB [25] Versioned Key-Value Store https://github.com/MartinHaeusler/chronos/tree/master/org.chronos.chronodb

ChronoGraph [27] Versioned TinkerPop Graph

Database

https://github.com/MartinHaeusler/chronos/tree/master/org.chronos.chronograph

ChronoSphere [28] Ecore Model Repository https://github.com/MartinHaeusler/chronos/tree/master/org.chronos.chronosphere

similar means, we intend to integrate the Epsilon Object Lan-

guage [42] as sub-expressions in our query framework. This

will allow ChronoSphere to offer support for several different

query languages within the same underlying engine.

The metamodel evolution facilities in ChronoSphere are

intended as a baseline. They offer the atomic commands

required by any evolution mechanism and focus on raw

functionality. However, certain use cases may require more

sophisticated approaches, e.g., transformations based on

differences between two given metamodels. We plan on intro-

ducing additional abstraction layers on top of the current

imperative design in order to support such transformations,

gradually reducing and ultimately eliminating the required

amount of manual coding efforts.

Finally, we will continue our ongoing efforts to increase

the overall code quality, test coverage, documentation and

performance of the implementation (Table 9). ChronoSphere

is a work in progress project that uses a large amount of

software that was developed specifically for this purpose

and consequently includes less off-the-shelf software com-

ponents than other projects. There is still a lot of room for

improvement in the implementation details which we intend

to explore in the near future.

11 Summary

In this paper, we presented ChronoSphere, a novel open-

source EMF model repository. This model repository was

designed and implemented to support large IT Landscape

models in industrial contexts, but is generic and can be

employed in any EMF-based modeling scenario. We ana-

lyzed how we inferred the requirements from the IT Land-

scape context and how they relate to the technical features

offered by ChronoSphere. We then focused on the concepts

behind our repository implementation which also contributed

to the state-of-the-art in versioned data storage and graph

databases. We discussed the commonalities and differences

of our solution with respect to related repository technology.

Our concepts and technology were evaluated in a case study

where ChronoSphere is used as the primary storage backend

by the industrial IT Landscape modeling and analysis tool

Txture. Building on top of the use cases of this case study we

performed a comparative benchmark with a state-of-the-art

model repository and demonstrated the competitive perfor-

mance of our solution. ChronoSphere is a fresh impulse in the

area of model repositories not only in terms of its features and

implemented standards, but first and foremost in that it pro-

vides the entire data management stack, allowing for a clean

and consistent architecture. As all of the individual com-

ponents are available as open-source software, each aspect

is accessible for experimentation and innovation in future

research projects. ChronoSphere is an all-new approach to

model repositories, and we hope that it will serve as a plat-

form for future projects in research and industry alike.
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