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ABSTRACT 19 

Paleosols preserved within the Carboniferous – Permian succession of the Lodève Basin, 20 

Massif Central, France change stratigraphically from Histosols to calcic Vertisols and 21 

Calcisols to gypsic Vertisols and ultimately back to calcic Vertisols and Calcisols.  New 22 

high-precision U-Pb zircon ages (CA-IDTIMS) for tuff beds within the Lodève and 23 

adjacent Graissessac basins significantly revise the chronostratigraphy of these and 24 
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correlated Permian terrestrial basins of eastern Euramerica.  Under the newly revised 25 

chronostratigraphy presented here these stratigraphic changes in morphology indicate a 26 

substantial drying of paleoenvironments across the Carboniferous – Permian boundary 27 

with a trend toward progressively more arid and seasonal climates through most of the 28 

early Permian. This newly-realized chronology provides a paleoenvironmental and 29 

paleoclimatic timeline for eastern tropical Pangea that is contemporaneous with similar 30 

records in western Pangea and suggest pan-tropical, progressive climate change toward 31 

aridity and seasonality occurred from the Late Carboniferous through early Permian.  32 

 33 
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1. Introduction 35 
 36 

 There is a first-order correlation between atmospheric pCO2 concentrations and 37 

global climate throughout the past half billion years (Royer et al., 2004).  As present-day 38 

CO2 increases there is a need to assess the effects of climate change in a warming world.  39 

Because the Carboniferous – Permian is the last icehouse to greenhouse transition on a 40 

vegetated and metazoan-populated Earth, and this time period corresponds to an increase 41 

in atmospheric CO2 concentrations (Montañez et al., 2007), there has been a focus on 42 

reconstructing global terrestrial paleoclimate across this transition interval (e.g., Cecil, 43 

1990; Cecil, 2003; DiMichele, 2014; DiMichele et al., 2006; Montañez et al., 2007; 44 

Peyser and Poulsen, 2008; Tabor et al., 2004; Tabor et al., 2013; Tabor and Poulsen, 45 

2008).  While Carboniferous – Permian terrestrial paleoclimate reconstructions based on 46 

paleosol records have emerged from the western tropics (Rosenau et al., 2013a; Rosenau 47 

et al., 2013b; Tabor and Montañez, 2004) and high latitudes (Beauchamp, 1994; 48 

Gulbranson et al., 2010; Gulbranson et al., in press; Limarino et al., 2014), only recently 49 

have proxy records of this nature been constructed for central and eastern tropical regions 50 

of Pangaea (Eros et al., 2012; Schneider et al., 2006; Thomas et al., 2011). Existing 51 

paleoclimate reconstructions from western tropical Pangea indicate the onset of 52 

seasonality toward the close of the Carboniferous and a clear aridification trend through 53 

the early Permian (Bishop et al., 2010; Tabor and Montañez, 2002; Tabor et al., 2008). 54 

While, there are hints of this aridity trend seen in eastern Ukraine during the 55 

Carboniferous – Permian boundary (Eros et al 2012), the long-term trend of this aridity 56 

through the Permian is unknown.  At this time it remains unclear if this paleoclimate 57 

trend is limited to the western tropics or if it extends throughout the tropics. The Lodève 58 
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Basin in the south of France was chosen as an ideal location to extend Carboniferous – 59 

Permian climate trends from the western, to the central, Pangean landmass because of 60 

previously developed stratigraphic and paleoecological frameworks and the presence of 61 

multiple ashes throughout the succession (Körner et al., 2003; Pochat and Van Den 62 

Driessche, 2011; Schneider et al., 2006). 63 

Presented herein are new chronostratigraphic constraints and paleosol data for the 64 

Carboniferous – Permian formations of the Lodève and adjacent Graissessac Basins, 65 

southern France. The new chronostratigraphy places the majority of the basin infill within 66 

the Ghzelian to upper Sakmarian. Changes in paleosol micro- and macromorphology 67 

indicate a change from humid everwet climates in the latest Carboniferous to seasonal 68 

and semiarid climates, with a progressive trend toward aridity, through the early Permian. 69 

Therefore, this study documents a similar and contemporaneous climate trend in central 70 

Pangea as seen in previous climate reconstructions from western tropical Pangea, 71 

supporting a pan-tropical aridification during this interval of time, which may have 72 

occurred in response to rising levels of atmospheric CO2 (e.g., Montañez et al., 2007). 73 

 74 

2. Background 75 

2.1 Geological Setting 76 
The Lodève Basin is situated to the NW of Montpellier, France, on the 77 

southeastern edge of the French Massif Central (Fig. 1). The basin covers a total area of 78 

approximately 150 km
2 

(Fig. 1), and lies upon Precambrian and Cambrian rocks 79 

composed of schists, arkosic and quartzose sandstones, limestones and volcaniclastics 80 

(Conrad and Odin, 1984).  Four bounding-faults delimit the Lodève Basin and define its 81 

characteristic half-graben shape.  In particular, vertical motions along the southern, E-W 82 
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trending Les Aires fault were responsible for creation of accommodation and sediment 83 

accumulation during Permian time (Conrad and Odin, 1984). During the Pennsylvanian 84 

and Permian the Lodève Basin occupied a low latitude (0 to 10°N) (Fig. 1B) position on 85 

the Pangean landmass approximately 400 km inland from the Tethys ocean (Schneider et 86 

al., 2006). During this time, the Hercynian Mountains, of unknown topography (Ziegler 87 

et al., 1997) separated the Lodève Basin from Tethys.  Paleomagnetic studies of the 88 

Lodève Basin strata indicate that it was a site of paleogeographic stability throughout the 89 

Permian, whereas surrounding contemporaneous basins underwent a component of 90 

rotation (Chen et al., 1997; Cogné et al., 1990; Diego-Orozco and Henry, 1993; Henry et 91 

al., 1999). 92 

Lodève Basin fill consists of ~3000 m of Carboniferous – Permian siliciclastics 93 

previously thought to range from Ghzelian through Changhsingian (Zechstein) age, with 94 

unconformities that separate (1) the lower Asselian from upper Asselian strata and (2) the 95 

middle Sakmarian from upper Artinskian strata (upper Lower Rotliegend to the lower 96 

Upper Rotliegend I; Schneider et al., 2006).  Only Permian strata outcrop in the Lodève 97 

Basin. However, Carboniferous outcrops occur in the adjacent Graissessac Basin to the 98 

west of the Lodève Basin (Bruguier et al., 2003).  These western outcrops include 99 

Gzhelian (Stephanian C) through Lower Asselian (early Lower Rotliegend) strata.  100 

Prior radioisotope age constraints for the Lodève and correlative Permian basins 101 

of southern France are sparse, and limited to relatively imprecise SIMS U-Pb zircon ages, 102 

SHRIMP U-Pb zircon ages or 
40

Ar/
39

Ar sanidine and biotite ages. SIMS 
206

Pb/
238

U ages 103 

on zircons from five volcanic ash layers located in the southern French Massif Central 104 

basins, including a tonstein from the Graissessac, record an average regional magmatic 105 
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activity from 295.5 ± 5.1 to 297.9 ± 2.1 Ma and constrain the age of the Graissessac 106 

Basin to the Late Carboniferous (295.3 ± 4.8 Ma) early Permian (Autunian to 107 

Sakmarian); (Bruguier et al., 2003). Schneider and others (2006) developed a 108 

biostratigraphy for younger Permian strata in the Lodève Basin to constrain the timing of 109 

deposition given the lack of chronostratigraphic constraints (Fig. 2).  Schneider and 110 

others (2006) also referenced unpublished U-Pb zircon ages for the Viala Formation 111 

(289.3 ± 6.7 Ma) and Octon Member of the Salagou Formation (284 ± 4 Ma) in the 112 

Lodève Basin, but provide no data or analytical details. Breitkreuz and Kennedy (1999) 113 

and Königer et al. (2002) presented SHRIMP U-Pb zircon ages for volcanics within 114 

Carboniferous - Permian transition sediments of several German basins, ranging from 115 

302 to 297 (± 3) Ma. Several 
40

Ar/
39

Ar dates in the range of 302 to 291 Ma from 116 

Carboniferous – Permian basins of east-central Europe have been published (Burger et 117 

al., 1997; Goll and Lippold, 2001; Hess and Lippolt, 1986); however, the accuracy of 118 

these dates has been questioned by direct comparison to high-precision U-Pb zircon ages 119 

in recent studies (Davydov et al., 2010; Gastaldo et al., 2009). 120 

Carboniferous – Permian strata of the Lodève Basin underwent extensive 121 

alteration in response to deep burial and higher-than average geothermal heat flow in the 122 

region. Copard and others (2000) report Tmax burial temperatures between 600 – 610°C 123 

for the western Graissessac Basin based on vitrinite reflectance data of coals and 124 

suggested that Carboniferous – Permian heat flow was 180mW/m
2
, a value that is 4.5 125 

times the average heat flow value in typical stable cratonic basins (Blackwell, 1971; 126 

Condie, 1997). Copard and others (2000) interpreted such high heat flow values, and thus 127 

the high-temperature burial history, in the Graissessac Basin to a regional high-128 
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temperature event associated with the end-Permian Saalic Orogeny. In addition, Buatier 129 

and others (2000) identified nacrite, a high-temperature polymorph of kaolinite (Hanson 130 

et al., 1981; Shen et al., 1994), as a burial diagenetic mineral that formed within 131 

dolomitic strata in the basement rocks of the Lodève Basin. In the basin, the nacrite 132 

appears to form contemporaneously with hydrothermal barite.  Fluid inclusion data from 133 

these barites indicates these minerals formed in the presence of a high-salinity brine (25 134 

wt% NaCl) at temperatures ranging from 80 to 100C (Buatier et al., 2000). 135 

2.2 Lithostratigraphy 136 

The lithostratigraphy of the Lodève Basin may be divided into three ascending 137 

units. Unit I consists of coal-bearing strata of the Graissessac Formation (Fig. 2).  Unit II 138 

consists of fluvio-alluvial siliciclastics of the Usclas St. Privat, Tuilieres-Loiras, and 139 

Viala formations; Unit III includes the Rabejac, Salagou and La Lieude formations. (Figs. 140 

2,3).  The Rabejac Formation is composed of fluvio-alluvial siliciclastics, whereas, the 141 

overlying Salagou Formation includes mixed playa siliciclastics, evaporites and zeolites 142 

(Schneider et al. 2006).  The overlying La Lieude Formation is composed of siliciclastics 143 

deposited within fluvio-alluvial environments (Schneider et al. 2006). 144 

2.3 Previous paleoclimate studies 145 

Previous studies of the whole rock chemical composition of the Permian strata 146 

within the Lodève Basin were used as indicators of climate-sensitive minerals such as 147 

analcime and albite (Schneider et al., 2006). Stratigraphic variations in whole rock 148 

chemistry indicate an increase in analcime and albite in the Octon Member of the Salagou 149 

Formation that was interpreted to represent a strongly evaporitic environment in a semi-150 

arid climate (Schneider et al., 2006).   Schneider and others (2006) and Quast and others 151 
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(2006) further used the stable carbon and oxygen isotopic compositions of carbonate 152 

cements in sandstones and calcretes in Permian strata of the Lodève Basin as potential 153 

paleoclimate proxies. Both studies concluded that the carbonates were diagenetically 154 

overprinted and not appropriate for paleoenvironmental reconstruction.  155 

 Pochat and Van Den Driessche (2011) built upon previous studies in other 156 

continental rift basins (Harris et al., 2004; Lambiase, 1990; Lefournier, 1980; Pochat et 157 

al., 2005; Prosser, 1993; Schlische, 1991) to develop a model of lacustrine sedimentation 158 

in the Lodève Basin. Their model hypothesizes that lake water volumes did not change 159 

substantially throughout the Carboniferous – Permian, but that lake surface areas did 160 

change. Pochat and Van den Driessche (2011) attributed the changes in the composition 161 

of sedimentary fill of the Lodève Basin to changes in tectonic style associated with 162 

typical rift basin development as opposed to changes in Carboniferous – Permian 163 

paleoclimate.   164 

 165 

3. Methods 166 

3.1 Field Methods 167 

 Fieldwork included identification and description of paleosols using modern soil 168 

description techniques (Schoeneberger et al., 2012) as advocated for paleosols (Retallack, 169 

1988), and placement of these paleosols into an existing stratigraphic framework (Körner 170 

et al., 2003; Schneider et al., 2006).  Outcrops were trenched back to remove surficial 171 

weathering and samples were collected for petrographic analysis. Layers preserving 172 

evidence for paleopedogenesis were logged and described in detail according to 173 

previously defined methods (Tabor and Montañez, 2004; Tabor et al., 2006). Paleosol 174 
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profile tops were identified on the basis of a marked change in grain size and color, as 175 

well as preservation of primary sedimentary structures. Profile bases were delineated at 176 

the lowest occurrence of unaltered parent material. Paleosol matrix was sampled at 0.1-177 

0.2 m vertical spacings; rhizoliths and paleosol nodules were sampled where present. 178 

Paleosol classification primarily follows the system of Mack and others (1993). Paleosol 179 

types, as well as the names and stratigraphic positions of collected samples, are provided 180 

in Figure 3.  Micromorphological analysis of thin sections (n=46) followed the methods 181 

developed for modern soils (Bullock et al., 1985; Stoops, 2003; Stoops et al., 2010). 182 

3.2 Radiometric Dating 183 

Volcanic strata (tuffs, tonsteins, and cinerites) were identified and sampled in the 184 

field utilizing the stratigraphy summarized by Schneider and others (2006) and references 185 

therein.  Abundant populations of prismatic zircon crystals were separated from hand 186 

samples of each volcanic horizon by conventional density and magnetic methods. 187 

Methods for U-Pb geochronology using chemical abrasion isotope dilution thermal 188 

ionization mass spectrometry (CA-IDTIMS) follow those previously published by 189 

Davydov et al. (2010) and Schmitz and Davydov (2012). A fraction of the zircon separate 190 

from each sample, which was selected on the basis of sharply facetted morphology, 191 

clarity and lack of inclusions, was placed in quartz beakers in a muffle furnace at 900°C 192 

for 60 hours to anneal minor radiation damage; in preparation for subsequent chemical 193 

abrasion (Mattinson, 2005). Single zircon crystals were individually subjected to a 194 

modified single step, high-T (12 hours at 180°C) version of the chemical abrasion 195 

method of Mattinson (2005).  U-Pb dates and uncertainties for each analysis were 196 

calculated using the algorithms of Schmitz and Schoene (2007) and the U decay 197 
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constants of Jaffey and others (1971). Uncertainties are based upon non-systematic 198 

analytical errors, including counting statistics, instrumental fractionation, tracer 199 

subtraction, and blank subtraction. These error estimates should be considered when 200 

comparing our 
206

Pb/
238

U dates with those from other laboratories that used tracer 201 

solutions calibrated against the EARTHTIME gravimetric standards. When comparing 202 

our dates with those derived from other decay schemes (e.g., 
40

Ar/
39

Ar, 
187

Re-
187

Os), the 203 

uncertainties in tracer calibration (0.05%; Condon et al., 2007) and U decay constants 204 

(0.108%; Jaffey et al., 1971) should be added to the internal error in quadrature. Quoted 205 

errors for calculated weighted means are thus of the form X(Y)[Z], where X is solely 206 

analytical uncertainty, Y is the combined analytical and tracer uncertainty, and Z is the 207 

combined analytical, tracer and 
238

U decay constant uncertainty. 208 

 209 

4. Results  210 

4.1 Field 211 

Paleosols in the Lodève Basin exhibit variations in characteristics such as texture, 212 

color, structure, presence and concentration of soil-forming minerals, and accumulations 213 

of organic matter. Based upon field observations of these characteristics, there are five 214 

different types of paleosols in the Permian-Carboniferous strata of the Lodéve Basin: 215 

Histosols, Calcisols, calcic Vertisols, gypsic Vertisols and Protosols (Figs. 4, 5, 6A-F).  216 

Protosols found in the basin are not useful for paleoclimate reconstruction and are not 217 

discussed further herein.   218 

Histosols (n=7) are found only in the Stephanian Graissessac Formation Histosols 219 

occur as seven discrete coal seams, which range in thickness from 1.2 to 5.2 m thick 220 
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(Figs. 4, 5A). Each seam is stratigraphically separated by intercalated claystones, 221 

siltstone and volcanic ash layers. The mineral Jarosite occurs through all strata.  222 

Calcisols (n=2) occur in the Tuilieres-Loiras and La Lieude formations. (Figs. 223 

3,4).  Calcisols of the Lodève Basin are identified based on the presence of stage II 224 

through stage IV pedogenic carbonate accumulation (Machette, 1985; Mack et al., 1993).  225 

Stage II carbonate accumulation includes mm- to cm-sized carbonate nodules and 226 

tubules, whereas Stage III and Stage IV carbonate accumulation includes continuous 227 

lateral horizons of carbonate cementation (Machette, 1985). These soils preserve original 228 

sedimentary structure to massive structure and are often truncated by overlying cross-229 

bedded sandstones.  Soils with groundwater carbonate nodules were identified based on 230 

the presence of inclusive growth of carbonate cements around siliclastic grains and 231 

laminations from suspension settling of grains (Fig. 5B); these carbonates noduless were 232 

excluded from the study. 233 

Calcic Vertisols (n= 4) occur in the Viala Formation, Octon Member of the 234 

Salagou Formation, and in the La Lieude Formation (Figs. 3, 4, 5C, D).   These paleosols 235 

are identified based on the presence of prominent features resulting from shrink-swell 236 

processes as well as pedogenic accumulation of subsurface calcium carbonate.  Paleosols 237 

in the Lodève Basin contain features indicative of shrink-swell processes including 238 

slickensides (Fig. 5C), clastic dikes (Fig. 5D), and wedge- shaped aggregates, as well as 239 

carbonate nodules and tubules.  These paleosols are broken into multiple horizons.  The 240 

lower-most horizons are often massive to platy, dusky red (5YR 5/4 – 2.5YR 3/4) 241 

mudstones that in some locations are calcite cemented.  The upper boundary varies from 242 

abrupt and wavy to clear and smooth. Overlying the lower horizons are between 1 to 3 243 
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horizons containing common stage II pedogenic carbonate nodules that usually increase 244 

in abundance down profile.  These horizons are dusky red (2.5 YR 3/4 – 10YR 4/4), silty 245 

mudstones to mudstones with angular blocky structure and slickensides.  The upper 246 

boundary is typically abrupt and wavy and possesses clear mukkara subsurface 247 

expression.   Where not truncated, the overlying horizons are weak red (7.5R 4/3) silty 248 

mudstones to mudstones.  Some horizons are massive while others have angular blocky 249 

structure and slickensides and desiccation cracks infilled by sandstone that extend up to 250 

80 cm below the paleosol surface.  These soils are often 1 to 2 meters thick and are 251 

typically truncated by cross-bedded sandstones.   252 

Vertic Gypsisols (n=2) are paleosol profiles that occur in the upper Merifons 253 

Member of the Salagou Formation and lower La Lieude formations. (Figs. 3, 4, 5E, F).   254 

They are composed of two horizons; the lower horizon is mostly massive red mudrock 255 

(7.5 R 3/3) with the lower ~ 5 cm defined by thin platy structure and satin-spar calcite 256 

cements.  This satin-spar texture is not typically attributed to calcite cement, but is 257 

commonly found in gypsum (Gustaveson 1990).  Therefore, we interpret this texture as 258 

being originally gypsum in the soil-forming environment. The upper boundary between 259 

horizons is abrupt and wavy to broken due to the presence of vertically oriented clastic 260 

dykes.  Overlying the horizon is a 2 – 3 cm thick greenish-gray (G1 6/5G) laminated 261 

coarse silt ot fine sand (Fig. 5E, 5F)  The upper boundary is abrupt and smooth, and is 262 

commonly overlain by another vertic Gypsisol in the upper Salagou (Merifons Member).  263 

The most prominent feature is the accumulation of original pedogenic gypsum, but also 264 

exhibit vertic features such as clastic dikes that extend downward from the interpreted 265 
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paleosurface (Mack et al., 1993). They also have weakly developed soil structure.     The 266 

paleosol profiles are intercalated with laminated coarse silt to fine sandstones (Fig. 5F). 267 

4.2 Micromorphology 268 

 Micromorphology of Calisols, calcic Vertisols, and vertic Gypsisols reveals 269 

evidence of biological processes including orabated mite fecal material (Fig. 6A), 270 

bacterial films, primary boxwork fabric originating from bacterial processes (Von Der 271 

Borch et al., 1977), which now have been altered to microspar and dolomite (Fig. 6B) 272 

and rooting (Fig. 6C).  Calcic Vertisols also show clotted micrite textures (Fig. 6D) and 273 

wedge-shaped aggregates with Fe-oxide-stripping and concentrations (Fig. 6F).  274 

Additionally, the calcic Vertisols preserve hematite after primary clay fabric while the 275 

vertic Gypsisols have both hematite coatings after primary clay as well as illuvated clay 276 

coatings along roots (Fig. 6E).  The Vertic Gypsisols have been diagenetically altered and 277 

the gypsum has been replaced by calcite spar cement (Fig. 6E). 278 

4.3 U-Pb geochronology 279 

4.3.1 Graissessac Formation 280 

Eleven single zircon grains were analysed from a tonstein collected from coal bed 281 

4 (Monte Sénégra 3; Fig. 7). Four anomalously older or younger zircons are interpreted 282 

as either bearing an inherited core component, or containing residual Pb-loss domains.  283 

Seven other grains yielded a cluster of equivalent U-Pb isotope ratios, with a calculated 284 

weighted mean 
206

Pb/
238

U date of 304.07 ± 0.07(0.17)[0.36] Ma (MSWD = 0.71), which 285 

is interpreted as the eruption and depositional age of the tonstein. 286 

Nine single zircon grains were analyzed from a tonstein collected from coal bed 5 287 

(Monte Sénégre 2; Fig. 7), which was approximately 20 m above Monte Sénégra 3. One 288 
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slightly older discordant analysis is interpreted as containing an inherited core, while two 289 

anomalously younger grains may have residual Pb-loss. Six single grains yielded a 290 

cluster of dates that are equivalent with a weighted mean 
206

Pb/
238

U date of 303.95 ± 291 

0.08(0.17)[0.36] Ma (MSWD = 1.4).  This date is interpreted as the eruption and 292 

depositional age of the tonstein. While slightly younger than the underlying tonstein from 293 

coal bed 4, the two tonstein ages are within analytical uncertainty thus establishing rapid 294 

depositional rates through this interval of the Graissessac Formation 295 

4.3.2 Tuilières–Loiras Formation (Loiras Member) 296 

Eleven single zircon grains were analyzed from tuff bed V, which is in the upper 297 

portion of the middle Loiras Member (Figs. 3, 7). Five older analyzed grains are 298 

interpreted as reworked crystals from previous eruptions or containing inherited core 299 

components. Six single grains yielded a cluster of youngest dates that are equivalent with 300 

a weighted mean 
206

Pb/
238

U date of 293.94 ± 0.08(0.16)[0.35] Ma (MSWD = 0.81).  This 301 

date is interpreted as the eruption and depositional age of the tuff. 302 

Thirteen single grains from the overlying tuff bed VI (Figs. 3, 7) yielded a cluster 303 

of ten concordant and equivalent zircon grains, with a weighted mean 
206

Pb/
238

U date of 304 

293.85 ± 0.10(0.17)[0.36] Ma (MSWD = 1.49).  This date is interpreted as the eruption 305 

and depositional age of the tuff. Three variably younger analyzed grains are interpreted as 306 

containing residual Pb-loss domains.  307 

4.3.3 Viala Formation 308 

Twenty single zircon grains were analyzed from a sample taken from tuff bed III, 309 

which is approximately 60 meters above the base of the Viala Formation (Fig. 3). Ten of 310 

those analyses spread along the concordia curve with ages from 292.2 to 294.4 Ma and 311 
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are interpreted as containing variable inherited components. Three anomalously younger 312 

grains may have residual Pb-loss. The remaining seven single grains yielded a cluster of 313 

dates that are equivalent with a weighted mean 
206

Pb/
238

U date of 290.96 ± 314 

0.19(0.24)[0.39] Ma (MSWD = 4.28).  This date is interpreted as the eruption and 315 

depositional age of the tuff bed. 316 

4.3.4 Salagou Formation (Octon Member) 317 

Zircons were analyzed from four tuff beds spanning over 650 meters of the lower 318 

two-thirds of the Octon Member of the Salagou Formation (Fig. 3). Eleven grains were 319 

selected from tuff T1 for CA-IDTIMS analysis based on their uniform nature.  Of these, 320 

eight yielded a concordant and equivalent cluster of isotopic ratios with a weighted mean 321 

206
Pb/

238
U date of 284.40 ± 0.07(0.16)[0.34] Ma (MSWD = 0.79), which is interpreted as 322 

the eruption and deposition of this tuff. Three grains yielded significantly older ages of 323 

285.2 to 290.2 Ma. Tuff bed T2, approximately 40 m higher in the section, produced a 324 

number of older inherited grains ranging from 284.8 to 285.4 Ma, as well as a cluster of 325 

six equivalent analyses with a weighted mean 
206

Pb/
238

U date of 284.46 ± 326 

0.10(0.17)[0.35] Ma (MSWD = 1.06), interpreted as the age of eruption and deposition. 327 

Eight single crystals were dated from tuff bed T9, which was sampled ~300 m 328 

above T2.  These yielded one significantly older inherited zircon (305 Ma) and a cluster 329 

of seven equivalent analyses with a weighted mean 
206

Pb/
238

U date of 283.53 ± 330 

0.10(0.17)[0.34] Ma (MSWD = 1.15), and are interpreted as dating the eruption and 331 

deposition of this tuff.  Among the fourteen single zircon analyses from tuff bed T12, six 332 

yielded Neoproterozoic to Ordovician dates attesting to common inheritance in some 333 

zircons from this tuff.  Another two analyses yielded dates of 289.8 Ma and are also 334 
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interpreted as inherited or recycled from earlier volcanics.  Of the remaining six analyses, 335 

five yielded equivalent isotope ratios and a weighted mean 
206

Pb/
238

U date of 282.86 ± 336 

0.13(0.19)[0.35] Ma (MSWD = 1.22) interpreted as the eruption and depositional age of 337 

the tuff, while one slightly younger crystal appeared to suffer from a small degree of 338 

residual Pb-loss. 339 

 340 

5. Discussion5.1 Revised chronostratigraphy 341 

The U-Pb zircon data reported in this study represent the first high-precision CA-342 

IDTIMS ages for interstratified volcanics within the Carboniferous – Permian rift basins 343 

of Europe. The resulting precise and accurate ages obtained from the Lodève and 344 

Graissessac basins thus have direct consequences for the numerical age of correlated 345 

continental sequences throughout eastern Euramerica. These numerical ages also allow 346 

the first accurate terrestrial-marine correlation to the late Carboniferous – early Permian 347 

global time scale, which has been significantly revised through recent high-precision CA-348 

IDTIMS geochronology (Davydov et al., 2010; Schmitz and Davydov, 2012). 349 

The coal-bearing strata of the basal Graissessac Formation of the western Lodève 350 

and eastern Graissessac basins have been previously assigned a biostratigraphic age of 351 

Late Stephanian (B+C), or latest Carboniferous, on the basis of abundant and well-352 

preserved paleoflora (Gand et al., 2013 and references therein). The reproducible 353 

depositional ages for coal 4 (304.07 ± 0.08 Ma) and coal 5 (303.95 ± 0.07 Ma) tonsteins 354 

at Monte Sénégra refine this intercomparison between the continental European and 355 

global marine time scales, placing deposition of these strata in the uppermost Kasimovian 356 

to lower Gzhelian stages.  By comparison the SIMS U-Pb zircon date for the same coal 4 357 
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tonstein reported by Bruguier et al. (2003) is significantly younger at 295.5 ±5.1 Ma. 358 

Unlike chemical abrasion ID-TIMS, the ion probe protocol lacks any grain pre-treatment 359 

to remove and mitigate open-system behavior, which can produce anomalously younger 360 

ages; thus we interpret the systematics of these ion probe data to be biased by Pb-loss.  361 

Other ion probe U-Pb zircon ages of 289 ± 7 Ma and 284 ± 4 Ma for the Viala Formation 362 

and Octon Member of the Salagou Formation, respectively (Schneider et al., 2006) are 363 

more accurate by comparison with the precise CA-IDTIMS ages obtained in this study 364 

for the same units (Table 1). However with a 40 to 80-fold improvement in precision, our 365 

ages place much more restrictive constraints on the timing of deposition. 366 

A revised chronostratigraphy for the Permian Lodève Basin is presented in Figure 367 

2, which also illustrates the CA-IDTIMS zircon ages that pin each formation to the 368 

current global time scale (Davydov et al. 2012). When compared with the age chart of 369 

Schneider et al. (2006), significant compression of the Lodève record is apparent. Within 370 

the first phase of basin development, the shortening of the numerical durations of the 371 

Asselian and Sakmarian global stages combined with two volcanic tuff dates restrict 372 

significant rock accumulation in the Viala, Tuileres-Loiras, and Usclas St. Privat 373 

formations. to late Asselian and Sakmarian time, between ca 296 and 289 Ma.  The hiatus 374 

at the top of the Viala Formation is constrained to probably less than two million years, 375 

before initiation of the second phase of deposition recorded in the overlying Rabejac, 376 

Salagou, and La Lieude formations. 377 

Four dated tuff beds in the lower Octon Member of the Salagou Formation (Fig. 378 

3) span over 650 meters of section (the lower third of the measured succession). The 379 

calculated rock accumulation rates for this member are ~0.43 m/ka; extrapolating this rate 380 
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indicates that the entire 1150 meters of the Octon Member could have been deposited 381 

over approximately 2.65 Ma, a much shorter duration than previously interpreted 382 

(Schneider et al., 2006; Pochat et al., 2011). Similarly the entire Salagou Formation could 383 

have been deposited in approximately 4 Ma under these accumulation rates. However, 384 

given the sedimentological distinctions between the Octon and Merifons members., there 385 

is the potential for more frequent hiatuses in the latter formation.  Therefore, we have 386 

been more conservative in our compression of the Salagou Formation, and illustrate it as 387 

extending across the Cisuralian-Guadalupian transition, which according to the current 388 

geological time scale is constrained numerically at 272 Ma. This stands in stark contrast 389 

to earlier interpretations which extended the upper Merifons Member into the 390 

Wuchapingian stage. 391 

Since the upper Salagou and La Lieude formations lack ashes to produce 392 

radioisotopic ages, the only other information available to constrain the minimum age of 393 

accumulation in the Lodève Basin is the magnetostratigraphic interpretation of the 394 

uppermost sediments of the La Lieude Formation (Evans, 2012; Maillol and Evans, 395 

1993). As summarized by Evans (2012), the entire redbed succession of the Lodève 396 

Basin is characterized by reverse polarity corresponding to the Kiaman superzone, with 397 

the exception of the uppermost sampled bed of the La Lieude Formation, which yielded 398 

normal polarity. These data suggest a proximity to the base of the Illawarra mixed 399 

polarity interval, which has been constrained in West Texas to near the base of the 400 

Capitanian Stage at approximately 265 Ma (Peterson and Nairn, 1971).  This constraint is 401 

consistent with our previous interpretations for the duration of sediment deposition in the 402 

upper Lodève Basin based upon rock accumulation rates.  Nonetheless, we might 403 
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anticipate additional compression of the absolute duration of Lodève Basin development 404 

with additional radioisotope constraints on the poorly calibrated Guadalupian global time 405 

scale (Davydov et al., 2012). 406 

The significant changes to the chronostratigraphy of the Lodève Basin, resulting 407 

in large part from our new high-precision geochronology, highlight the difficulties in 408 

constraining the time scales of terrestrial basin development and associated terrestrial-409 

marine correlations. Several studies have taken the position that lithostratigraphic, 410 

biostratigraphic, and proxy climate indicators in assumed contemporaneous European 411 

basin records can be correlated into global climate signals (Roscher and Schneider, 2006; 412 

Schneider et al., 2006; Tabor and Poulsen, 2008). The extent to which these changes will 413 

call the models into question will depend upon further integrative stratigraphic analysis 414 

and radioisotope calibration. The correlation of Carboniferous – Permian terrestrial basin 415 

records within eastern Euramerica and across Pangaea remains tentative; however further 416 

high-precision CA-IDTIMS U-Pb zircon geochronology for other abundant volcanics 417 

holds considerable promise for refining the composite stratigraphic record and associated 418 

paleoclimate proxy data.  419 

 420 

5.2 Paleoclimate Reconstruction 421 

Given the evidence for extensive diagenetic overprinting of Permian strata and 422 

paleosols in the Lodève Basin, the typical suite of geochemical proxies (e.g., Sheldon and 423 

Tabor, 2009) cannot be applied in a straightforward manner to develop a quantitative 424 

mineral- and geochemical-based paleoclimate reconstruction. Nevertheless, many 425 

macroscopic paleosol features are notably resistant to diagenetic alteration (Retallack, 426 
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1991). Furthermore, the range of analogous features among modern soil profiles can help 427 

to constrain the range of environmental and climatic conditions when paleosol profiles 428 

were undergoing soil formation in the Carboniferous – Permian Lodève Basin.  429 

Histosols in modern soil-forming environments are limited to nearly everwet 430 

conditions where precipitation exceeds 1000 mm/yr and precipitation exceeds 431 

evapotranspiration for at least 10 months each year (Cecil, 2003). Furthermore, slow rates 432 

of clastic sedimentation are prerequisite for formation of thick accumulations of organic 433 

matter in these types of soils. Therefore, the presence of Histosols in Ghzelian outcrops 434 

of the Graissessac Basin and the subsurface of the adjacent Lodève Basin represent 435 

relatively humid conditions and intermittently low clastic sedimentation rates during 436 

latest Carboniferous time. Furthermore, the presence of contemporaneous Histosol 437 

formation in separate basins around the Massif Central suggests a regional climate that 438 

was conducive to the accumulation of surficial organic matter and peat accumulation 439 

rather than a more local tectonic driver (cf. Pochat and Van den Priessche, 2011). The 440 

absence of Histosols in younger Permian strata in the Lodève Basin suggests that climatic 441 

conditions dried to the extent that such conditions were no longer conducive to peat 442 

formation or that sedimentary accumulation rates increased substantially.  443 

The dominant pedogenic process in the formation of Calcisols is the accumulation 444 

of carbonate in subsurface soil horizons (Mack et al., 1993). Modern soil profiles that 445 

accumulate calcium carbonate in subsurface horizons are most commonly found in 446 

climates where evapotranspiration exceeds precipitation for most months of the year 447 

(Buol et al., 1997). Specifically, in well-drained soils that receive >760 mm/yr, carbonate 448 

will not usually be retained within the subsurface horizons of the soil (Royer, 1999). 449 
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Therefore, Calcisols in the Tuilieres-Loiras and the La Lieude formations. are interpreted 450 

to represent relatively dry climatic conditions compared to those associated with peat 451 

accumulation in the underlying Grasseisac Formation The new 
206

Pb/
235

U ages presented 452 

here from zircon crystals in the mid Tuilleries-Loiras Formation suggests that climatic 453 

conditions changed from nearly humid-everwet during the Ghzelian to substantially drier 454 

climate by the latest Asselian-earliest Sakmarian in the Lodève Basin. 455 

The dominant pedogenic process in calcic Vertisols is episodic shrink-swell that 456 

results from wet-dry cycles as well as accumulation of carbonate (Mack et al., 1993). 457 

Shrink-swell processes in Vertisols are commonly a result of the presence of expandable 458 

2:1 clay minerals within the profile that swell during wet periods and contract during dry 459 

periods (Buol et al., 1997; Schaetzl and Anderson, 2005; Southard et al., 2012). The 460 

expansion and contraction of the profiles leads to characteristic morphological features 461 

such as slickensides, pressure faces, clastic dikes, and gilgai surface and mukkara 462 

subsurface expression. Additionally, the clotting and presence of many coalescing 463 

nucleation sites seen in thin section (Esteban and Klappa, 1983; Fig. 6D) and the 464 

presence of wedge-shaped peds with Fe-oxide-stripping and concentration (Fitzpatrick, 465 

1993; Fig. 6F) are attributed to the same shrink-swell processes that created the 466 

morphological features described above.  These soil types commonly develop in climates 467 

characterized by strongly seasonal rainfall such as monsoonal or Mediterranean rainfall 468 

patterns (Southard et al., 2012).  Not all Vertisols form from seasonal rainfall patterns; 469 

some result from episodic fluctuation of the water table (Mintz et al., 2011). However, 470 

these groundwater-affected Vertisols also have a characteristic pattern of carbonate 471 

formation that transmitted-light and cathodoluminescence petrographic analysis can 472 
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identify (Mintz et al. 2011). An Fe/Mn ratio in calcite that favors Mn will is common in 473 

vadose zone carbonates and will produce luminescence under cathodoluminence 474 

petrography (Hemming et al. 1989).  Additionally, presence of dog-tooth spar, microspar 475 

and sparry low-mg calcite has been recorded as phreatic environment cements (Esteban 476 

and Klappa, 1983; Scholle and Ulmer-Scholle, 2003). Petrographic analysis of carbonate 477 

nodules in the calcic Vertisols from the Lodève Basin do not preserve patterns suggestive 478 

of groundwater fluctuation.   Therefore, calcic Vertisols in the Viala, Rabejac, and parts 479 

of the La Lieude formations are interpreted to represent relatively dry climatic conditions 480 

during the early Permian characterized by highly seasonal precipitation patterns over the 481 

Lodève Basin. Calcic Vertisols in the Sakmarian Viala – Rabejac formations. indicate dry 482 

climate, perhaps comparable to those associated with Calcisols in the Asselian – 483 

Sakmarian Tuilieres-Loiras Formation, but with a distinct seasonal pattern of rainfall.  484 

The dominant process involved in the creation of vertic Gypsisols is the 485 

accumulation of subsurface gypsum in these profiles which indicates substantially drier 486 

conditions than during formation of the calcite.  These soils are also identified based on 487 

the presence of shrink-swell features as described prior.  Gypsum is commonly present in 488 

subsurface horizons of modern soils that are characterized by evapotrasporation far in 489 

excess of precipitation (Eswaran and Zi-Tong, 1991; Watson, 1992).  Specifically, 490 

gypsum is leached from the soil in regions that receive precipitation in excess of 250 491 

mm/year (Watson 1992).  Therefore, vertic Gypsisols in the Merifons Member of the 492 

Salagou Formation and the basal La Lieude Formation represent extremely dry 493 

conditions in the Artinskian characterized by a seasonal distribution of rainfall and high 494 

evapotranspiration rates and relatively low precipitation.  Vertic Gypsisols in the 495 
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Merifons Member represent continued seasonal precipitation as was present in the Viala 496 

– Rabajac based on calcic Vertisols, but with substantially less precipitation or higher 497 

rates of evapotranspiration.  These conditions are further supported by the presence of 498 

illuvial clay coatings and a lack of indicators for pedogenic reducing conditions seen in 499 

transmitted light microscopy, which collectively indicate these paleosols formed under 500 

exclusively well-drained conditions. Thus, shrink-swell processes did not occur in 501 

response to groundwater fluctuations but rather formed in response to regional 502 

precipitation patterns. Collectively, paleosol morphologies in the Lodeve Basin define a 503 

progressive trend from humid-everwet in latest Carboniferous time to increasingly 504 

seasonal and drier climates through the early Permian.  The peak in aridity is seen in the 505 

Artinskian Merifons Member; however, the presence of Calcicsols and calcic Vertisols in 506 

the overlying La Lieude still indicates continued seasonal and dry climates but less arid 507 

conditions during the Guadalupian. 508 

 509 

6. Implications and Conclusions 510 

The climatic trend observed herein is similar to that observed in other 511 

Carboniferous – Permian paratropical basins across Pangaea (Fig. 9).  This suggests a 512 

regional to global climatic change because all of the basins saw different tectonic 513 

controls, and likely different depositional rates, yet all preserve similar stratigraphic 514 

trends in climate proxies, which are indicative of the onset of seasonal and relatively arid 515 

conditions that persisted from latest Carboniferous through early Permian time.  It is 516 

unclear if younger Salagou or La Lieude formations preserve middle or upper Permian 517 

strata (Fig. 2), but the climate trend preserved in lower Permian succession documented 518 
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here is remarkably similar to that documented in contemporaneous paratropical basins in 519 

western Euramerica (e.g., Cecil, 2003; Eros et al., 2012; Tabor and Montañez, 2002; 520 

Tabor and Montañez, 2004).  521 

Pochat et al (2011) argued that the depositional history of the Lodève Basin was 522 

controlled largely by tectonics, and the resulting changes in sedimentary accommodation 523 

under a uniform set of climatic conditions.  That model was based on estimated water 524 

volume changes of a paleolake that extended across the entire Lodève Basin as the basin 525 

infilled and deposition prograded from the southern boundary faults (e.g., Fig. 1).  In 526 

light of the new chronostratigraphic constraints, and paleosol morphological data 527 

presented herein, the model of Pochat and others is not supported for the following 528 

reasons:  529 

(1) The new chronostratigraphic dates limit the majority of the Lodève Basin 530 

Permian strata to the lower Permian. Prior to this work much of the Salagou Formation 531 

was thought to be deposited from Kungurian to Wuchiapingian time. It is now known 532 

that most of the Salagou Formation is limited to the Sakmarian. Therefore, the temporal 533 

evolution of lake volumes and sedimentary rates in the Lodève Basin discussed by Pochat 534 

and others (2011) are no longer valid. 535 

(2) The presence of paleosols throughout the Lodève Basin sedimentary record is 536 

definitive evidence that the entire basin was not always filled by a large lake. The 537 

presence of Histosols in the Carboniferous succession indicate poorly-drained conditions 538 

and high levels of a regional water table. However, pedogenic carbonate, illuviated clays, 539 

and gypsum in subsurface horizons of Permian paleosols indicate a relative fall in the 540 

regional water table and well-drained conditions that were distal from any lake body, that 541 
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might have been present in the Lodève Basin. As a result, the water volume changes in 542 

the Lodève Basin discussed by Pochat and Van den Priessche (2011) were overestimated 543 

by their model. 544 

(3) While Pochat and Van Den Driessche (2011) are correct that this basin fits the 545 

model of a quadripartite continental-rift sequence controlled by tectonics, this basin 546 

preserves a record of climate indicators and paleoclimatic change that agrees with other 547 

paratropical basins that did not evolve under the same tectonic regimes (e.g., Tabor and 548 

Montañez, 2004; Tabor et al., 2008; Bishop et al., 2010). Therefore, while tectonics may 549 

have affected depositional style in the Lodève Basin, there are clearly extrabasinal 550 

mechanisms such as long-term aridification and increasing seasonality that affected the 551 

long-term history of sedimentation in the basin.  A megafan sequence stratigraphic model 552 

for continental sedimentary basins suggests a common evolution of sedimentary infill 553 

that evolves from initially poorly-drained conditions to progressively better drained 554 

conditions through time (Weissmann et al., 2013).  At first glance, the Lodève Basin fits 555 

this model in that the paleosols change from poorly drained Histosols in the Ghezlian to 556 

well-drained vertic Gypisols, calcic Vertisols, and Calcisols in younger Permian strata.  557 

However, considering this model under a uniform set of climatic conditions, the poorly-558 

drained Carboniferous Histosols that required ever-wet conditions, would likely have 559 

given way to well-drained argillisols/Oxisols in Permian strata under a similarly humid 560 

climate.  Moreover, the well-drained paleosols seen in the Permian would likely have 561 

corresponding poorly-drained gypsic Gleysols and calcic Gleysols in the Carboniferous 562 

strata under a uniform semi-arid climate.  Note that neither one of these conditions 563 

accommodate the evidence for seasonal precipitation that is a prerequisite for Vertisol 564 
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formation. Additionally, the presence of similar trends in penecontemporaeous low-565 

latitude Carboniferous – Permian basins under different types of tectonic controls, 566 

suggests a large-scale regional to global mechanism that is explained most 567 

parsimoniously by climate change.  Therefore, we conclude that long-term pan-tropical 568 

climate change was a dominant factor in the evolution of Lodève Basin sedimentary 569 

infill. 570 
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FIGURE CAPTIONS 883 

Fig. 1 Graissessac and Lodève basins: A) Inset location map showing position of the 884 

Graissessac and Lodève basins (star) within the French Massif Central (outlined in 885 

black); B) outcrop area of the Graissessac and Lodève basins; C) geologic map of the 886 

Lodève Basin, modified from Schneider and others (2006), with the locations of sampling 887 

sites (red stars) studied herein.  Solid black lines represent roads, while dashed lines are 888 

major basin-bounding faults.  The Saxonien formations include (in ascending order) the 889 

Rabajac Formation, Octon and Merifons Members of the Salagou Formation, and La 890 

Lieude Formation  891 

Fig. 2 Generalized stratigraphic column for the Graissessac and Lodève basins (adapted 892 

from Schneider et al. 2006 and references therein).  Chronostratigraphy and age scale on 893 

left is based on biostratigraphic correlation using fossil cockroach wings collected in the 894 

Lodève Basin (Schneider et al., 2006) compiled with the time scale calibration of GTS 895 

2004 (Davydov et al., 2004; Wardlaw et al., 2004). A revised chronostratigraphy, on the 896 



 34 

right of the diagram, is based upon ID-TIMS high-precision U-Pb ages presented here, 897 

tied to the GTS 2012 time-scale (Davydov et al., 2012; Henderson et al., 2012).  Red 898 

lines represent locations of ashes sampled in this study. 899 

Fig. 3 Detailed stratigraphic column of the Permian siliclastic succession that crop out in 900 

the Lodève Basin (adapted from Schneider et al 2006).  Roman numerals and T#s are tuff 901 

horizons described in previous studies (Gand et al., 1997; Körner et al., 2005).  The 902 

stratigraphic occurrence of paleosol morphologies are marked in the right column and 903 

correspond to the morphologies presented in Figure 5:  C = Calcisols, CV = calcic 904 

Vertisols, and VG = vertic Gypsisols.  Yellow tuffs represent ashes sampled and data 905 

presented herein.  906 

Fig. 4 Pedotypes found within the strata of the Lodeve Basin.  Orange dendtritic texture 907 

marks the occurrence of jarosite.  Arcuate lines represent the occurence of slickensides.  908 

White ovals are carbonate nodules, while Ts are indurate carbonate horizons.  The thin 909 

fenestral black lines denote the prior occurence of pedogenic gypsum (now satin spar 910 

calcite).   911 

Fig. 5 Examples of pedogenic features seen in the field.  (A) Intercalated coal seams, 912 

ashes, and siliciclastics characteristic of the Graissessac Formation  (B) Groundwater 913 

carbonate nodule. (C) Pedogenic carbonate nodules and slickensides in a vertic Calcisol. 914 

Scale is ~2 m from base of section to outcrop. (D) Clastic dikes infilled by sandstone in a 915 

vertic Calcisol. (E) Close up of the top of a vertic Gypsisol. Note desiccation cracks on 916 

the upper surface of paleosol. (F) Stacked vertic Gypsisols of the Merifons Member, 917 

Salagou Formation Green layers are the surface. 918 
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Fig. 6 Examples of pedogenic features in thin section.  All images were taken under 919 

1.25x magnification. (A) Orabated mite fecal material, (B) Boxwork fabric was originally 920 

micritic calcite and is now altered to microspar and dolomite.  (C) Brown areas are roots 921 

seen both in axial and longitudinal view.  Note the longitudinal root has been dissected 922 

probably as a result of shrink-swell processes.  Also seen is a root halo (white area 923 

encompassing part of the root). (D) Clotted micrite texture of a rhizolith encircling Fe-924 

Mn infilled root chamber. (E) Hematite replacing primary clay. (F) Wedge-shaped peds.  925 

Fig. 7 U-Pb concordia diagrams illustrating single zircon isotopic analyses for dated 926 

tonstein and tuff beds of the Graissessac and Lodeve basins. All error ellipses are plotted 927 

at the 2 confidence interval. Weighted mean 
206

Pb/
238

U dates and uncertainties (95% 928 

confidence interval) are indicated for the clusters of analyses (shaded) interpreted to 929 

represent the magmatic populations; analyses with open symbols were excluded from the 930 

weighted mean calculations (see Results section for discussion). 931 

Fig. 8Paleoclimate reconstruction adapted from Tabor and Poulsen (2008) for western 932 

and central equatorial Pangea including Lodève Basin.  International geological time-933 

scale according to Gradstein et al. (2004), while basin trends have been updated using the 934 

dates from Montanez and others (2007) and those presented herein.   Climate trends (with 935 

paleo-latitudes indicated) are based on observed climate-sensitive facies as presented in 936 

Tabor and Poulsen 2008. "Wet" indicates the presence of climate-sensitive facies 937 

corresponding to ever-wet or humid conditions (>1000 mm/yr) and PPT>ETV for at least 938 

9 months, including coals, laterites.  "Dry" indicates the presence of climate-sensitive 939 

facies corresponding to semi-arid and arid conditions where precipitation is less that ~760 940 

mm/yr and fewer than 5 months/yr with precipitation in excess of evapotranspiration 941 
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(Cecil et al., 2003).  Orange shading denotes intervals with evidence of distinct 942 

seasonality including vertic paleosol morphology (e.g. Kahmann and Driese, 2008; Tabor 943 

and Montañez, 2004) and fusain (Falcon-Lang, 2000; Falcon-Lang et al., 2006).  The 944 

schematic climate surveys are constructed from high-resolution, intrabasinal studies of 945 

paleoclimate indicators cited throughout the text and references cited therein. 946 
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Table 1. CA-TIMS U-Pb age summary 
 

Formation    
206

Pb/
238

U age   

 Sample Profile
1
 Latitude Longitude Ma


 MSWD

3
 N 

 

Salagou Formation (Octon Member) 

 T12 LM 26 43.65035 3.30138 282.86 ± 0.13(0.19)[0.35] 1.22 5 of 14 

 T9 R VIII 43.66550 3.33481 283.53 ± 0.10(0.17)[0.34] 1.15 7 of 8 

 T2 R V 43.67664 3.35763 284.46 ± 0.10(0.17)[0.35] 1.06 6 of 11 

 T1 R V 43.67736 3.35698 284.40 ± 0.07(0.16)[0.34] 0.79 8 of 11 

 

Viala Formation 

 III S 43.69246 3.34706 290.96 ± 0.19(0.24)[0.39] 4.28 7 of 20 

 

Tuilières–Loiras Formation (Loiras Member) 

 VI LDCI A 43.69910 3.17872 293.85 ± 0.10(0.17)[0.36] 1.49 10 of 13 

 V LDCI 25 43.69988 3.17893 293.94 ± 0.08(0.16)[0.35] 0.81 6 of 11 

 

Graissessac Formation 

 MS-2 (coal 5) Monte Sénégra 43.68720 3.14499 303.95 ± 0.08(0.17)[0.36] 0.80 6 of 9 

 MS-3 (coal 4) Monte Sénégra 43.68769 3.14536 304.07 ± 0.07(0.17)[0.36] 0.71 7 of 11 

 
Notes: 

1
Stratigraphic profiles illustrated by Schneider et al. (2006). 

2
All weighted mean ages at the 95% confidence interval, as calculated from the internal 2 

errors expanded by the square root of the MSWD and the Student’s T multiplier for n-1 degrees of freedom. Uncertainties are quoted as analytical 

(analytical+tracer) [analytical+tracer+decay constant].  
3
mean squared weighted deviations. 
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