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Abstract Mixture analysis is commonly used for clustering
objects on the basis of multivariate data. When the data
contain a large number of variables, regular mixture analysis
may become problematic, because a large number of param-
eters need to be estimated for each cluster. To tackle this
problem, the mixtures-of-factor-analyzers (MFA) model was
proposed, which combines clustering with exploratory factor
analysis. MFA model selection is rather intricate, as both the
number of clusters and the number of underlying factors have
to be determined. To this end, the Akaike (AIC) and Bayesian
(BIC) information criteria are often used. AIC and BIC try to
identify a model that optimally balances model fit and model
complexity. In this article, the CHull (Ceulemans & Kiers,
2006) method, which also balances model fit and complexity,
is presented as an interesting alternative model selection strat-
egy for MFA. In an extensive simulation study, the perform-
ances of AIC, BIC, and CHull were compared. AIC performs
poorly and systematically selects overly complex models,
whereas BIC performs slightly better than CHull when con-
sidering the best model only. However, when taking model
selection uncertainty into account by looking at the first three
models retained, CHull outperforms BIC. This especially
holds in more complex, and thus more realistic, situations
(e.g., more clusters, factors, noise in the data, and overlap
among clusters).
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In the behavioral sciences, researchers often cluster mul-
tivariate (i.e., object-by-variable) data in order to capture
the heterogeneity that is present in the population. The
resulting clusters can differ with regard to their level and/
or covariance structure. A first example pertains to the
case in which a number of children are scored on certain
psychopathological symptoms. The aim then is to discern
different groups and to describe the differences between
the groups in terms of the strength of the symptoms and/
or of their linear covariation. A second example is a
consumer psychologist who wants to identify different
groups of consumers on the basis of their appraisals of a wide
range of food products.

A commonly used clustering method is mixture analy-
sis (McLachlan & Peel, 2000). In this method, each clus-
ter is described by a different multivariate distribution,
and every object belongs to each cluster with a particular
probability. As a result, the full data follow a mixture of
multivariate distributions. In practice, because of their
computational simplicity, multivariate normal distributions
are often assumed (McLachlan, Peel, & Bean, 2003),
implying that each cluster is characterized by a mean vector
and a covariance matrix.

When the number of variables increases, such a mixture
of multivariate normals may become problematic, in that a
large number of variance and covariance parameters need to
be estimated for each cluster [i.e., for J variables, J(J + 1)/2
variances and covariances need to be determined]. This
problem is aggravated when the sample size is small (i.e.,
few objects) and/or when the clusters differ considerably in
size, because in these cases, the information available to
estimate the parameters is too limited.

To tackle this problem, the mixtures-of-factor-analyzers
(MFA) model (Ghahramani & Hinton, 1997; McLachlan &
Peel, 2000) was developed. This method combines cluster-
ing with exploratory factor analysis (EFA). In particular, the
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variance—covariance matrix of each cluster is modeled by an
EFA model, implying that the variables are reduced to QO
cluster-specific latent factors. As a consequence, the number
of parameters that need to be estimated is decreased drasti-
cally (i.e., for each cluster, only the parameters of the EFA
model need to be estimated), which is advantageous in two
respects. First, the estimation of the unrestricted mixture
model may lead to numerical problems, because it is so
richly parameterized (i.e., near-singular variance—covari-
ance matrices; see McLachlan, Baek, & Rthnayake, 2011).
Such numerical problems may be avoided when using the
MFA model. A second advantage is enhanced interpretabil-
ity. Instead of comparing entire variance—covariance matri-
ces [with J(J + 1)/2 elements each], the main structural
differences and similarities between the clusters can be
studied by comparing the J x Q factor loadings per cluster,
which reflect the cluster-specific linear relationships among
the variables.

When using MFA, the model selection problem becomes
intricate, in that one has to determine both the number of
clusters and the number of underlying factors. To address
the MFA model selection problem, McLachlan et al. (2003)
suggested using information criteria such as the well-known
Akaike information criterion (AIC; Akaike, 1974) and
Bayesian information criterion (BIC; Schwarz, 1978). Both
information criteria look for an optimal balance between
model fit (or misfit), on the one hand, and model complex-
ity, in terms of the number of estimated parameters, on the
other. To the best of our knowledge, the performances of
AIC and BIC in the context of MFA have not yet been
evaluated thoroughly and systematically in an extensive
simulation study. Yet simulation results for Gaussian mix-
ture models have revealed that AIC tends to overestimate
the number of clusters, while BIC may underestimate this
number (Celeux & Soromenho, 1996). For factor mixture
models, which generally constrain the latent factors to be
identical across clusters, BIC mostly outperforms AIC
(Henson, Reise, & Kim, 2007; Lubke & Neal, 2006;
Nylund, Asparouhov, & Muthén, 2007; for an overview,
see Vrieze, 2012). However, the performance of BIC dete-
riorates, and can even be worse than the performance of
AIC, in more complex situations (e.g., large differences in
cluster sizes or a wider range of models, including EFA and
regular mixtures).

As an alternative model selection strategy, one may con-
sider the use of the CHull method, which was proposed for
tackling complex model selection problems in the context of
deterministic clustering and/or dimension reduction meth-
ods (Ceulemans & Kiers, 20006). Relying on the same logic
as AIC and BIC (i.e., finding an optimal balance between
model fit and complexity), the CHull method generalizes
and automates the idea behind the scree test (Cattell, 1966).
In particular, a measure of model fit (or misfit) is plotted

against a measure of model complexity, and by means of a
numerical procedure, the model is identified after which the
gain in fit by adding more parameters levels off. Simulation
studies have shown that the CHull strategy performs well for
a variety of clustering and component models (Ceulemans
& Kiers, 2009; Ceulemans, Timmerman, & Kiers, 2011;
Ceulemans & Van Mechelen, 2005; Schepers, Ceulemans,
& Van Mechelen, 2008). Especially interesting in the pres-
ent context is the study of Lorenzo-Seva, Timmerman, and
Kiers (2011), who concluded that CHull outperforms AIC
and BIC in the context of EFA.

The goal of the present article is twofold. First, the
performance of AIC and BIC as model selection methods
for MFA will be investigated by means of a simulation
study. In addition, CHull will be proposed as an alternative
model selection strategy for MFA, and its performance will
be compared to that of AIC and BIC.

The remainder of this article starts with a section on
MFA, in which the model as well as the parameter esti-
mation will be treated. In the following section, AIC, BIC,
and CHull are discussed. The fourth section presents the
design and results of the simulation study. In the final
section, we offer a summary of the results and outline
some concluding remarks.

Mixtures of factor analyzers
Model

Exploratory factor analysis In EFA, the linear relations
among J variables, measured for / objects, are explained by
means of Q latent factors. Specifically, the J-variate vector y;
of object 7 is modeled as follows:

y,=u+Bu;+e (withi=1,...,1), (1)

with p being a J-variate vector containing the means of the J
variables, B (J x Q) the matrix of factor loadings, u; a Q-
dimensional vector containing the factor scores of object 7, and
e; the J-variate residual vector. The following assumptions are
made: (a) the u; are independent and identically distributed
(i.i.d.) as N(0, Ip), with I, being the O x O identity matrix; (b)
the e; are i.i.d. as N(0, D), with D being a J X J diagonal matrix
containing the J unique variances a} (G=1,...,J);and (c) u;
and e; are independent. The model implies that the y; are i.i.d.
as N(u, X)), with

> =BB' +D. (2)

To count the number of free parameters in the EFA model,
one should take the rotational freedom (i.e., the common
factors may be rotated orthogonally [e.g., by varimax; Kaiser,
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1958] or obliquely) into account: Given the orthonormal matrix
R (i.c., RR" = I), the variance—covariance matrix 3 can be
decomposed equally well as in Eq. 2, but now using a trans-
formed loading matrix B* = BR: ¥ =B*B*' + D=BRR'B" +
D = BB' + D. Therefore, the number of free parameters fp for
an EFA model equals 2J + JO — (1/2)Q(Q — 1). Note that the
rotational freedom may be used to facilitate the interpretation of
the latent factors.

Mixtures of factor analyzers As described in the introduc-
tion, MFA is an extension of mixture analysis (MA). Given
the scores of / objects on J variables, MA finds K object
clusters in the data, with each cluster having its own density
function. Assuming multivariate normal densities, MA
models the density of the data as

K
Fy0) = me- oys e, S, (3)
k=1

where @(y; Hz, ;) designates the cluster-specific multivar-
iate normal density function with mean vector p; and co-
variance matrix X, 7, the a priori probability that an object
i belongs to cluster & (with these probabilities being restrict-
ed to sum to one), and K the number of clusters. The vector
VP collects all mixing probabilities 7, and the means and
covariances in y; and 3, (k= 1, . .., K), respectively. As
each cluster-specific covariance matrix has (1/2)J(J + 1)
elements, the model is highly parameterized (McLachlan
et al., 2003).

In order to reduce the number of parameters, MFA mod-
els each cluster-specific covariance matrix 33, with a sepa-
rate EFA model, reducing the J variables to Q factors.
Consequently, the density function of the mixture of factor
analyzers has the same form as the mixture probability
density function in Eq. 3, but it restricts the covariance
matrices X to

S, =BB, +D; (k=1,...,K), (4)

with By (J x Q) being the factor loading matrix of cluster £,
and D, a diagonal matrix containing the unique variances
for the kth cluster (i.c., afk ). The 1 vector in Eq. 3 now
consists of all elements in ;, By, and D, as well as the
mixing probabilities 7.

In each cluster, the factor loadings may be orthogo-
nally or obliquely rotated in order to facilitate the in-
terpretation of the cluster-specific factors. This implies
that the number of free parameters fp is reduced to K[2J+JQO —
(1/2)0(Q — 1)] + (K — 1) (McLachlan et al., 2003). Note
that, in order to further reduce the number of parame-
ters, additional constraints may be imposed on the MFA
model. For instance, B; (Back, McLachlan, & Flack,
2010), Dy, and/or 3, may be constrained to be equal
across clusters.

@ Springer

Parameter estimation

In order to estimate the MFA model parameters, given a
specified number of clusters K and factors O, the following
log likelihood function is maximized (McLachlan & Peel,
2000):

1 K
log L(y) =) log [Zﬂk-co(y,»; e, 3k | (5)
=1 k=1
with
1 -1
(p(y” W, Ek) = —e_]/z(yl - Hk) 2k (Y1 - Hk)

(2m) |2
(6)

To this end, often an expectation-maximization algo-
rithm, or further extensions thereof (McLachlan & Peel,
2000), is used. In this article, the MFA model will be fitted
by means of the EMFAC software package (McLachlan et
al., 2003), which adopts the alternating expectation-
conditional maximization approach.

Model selection methods for MFA

In general, the numbers of clusters and factors that underlie
a given data set are unknown. To assess these numbers, one
usually fits a set of MFA models with different numbers of
clusters and factors to the data. Next, for each fitted model, a
goodness-of-fit measure (or misfit value) is computed, along
with a measure of the complexity of the model. The final
step consists of selecting the model with the best fit-com-
plexity balance. For this last step, a number of methods are
available, three of which will be discussed and compared in
this article: AIC, BIC, and CHull.

AIC and BIC

For selecting the optimal number of MFA clusters K and
factors O, McLachlan et al. (2003) recommended the use of
information criteria. The most popular information criteria,
which therefore will be studied in this article, are AIC and
BIC. Both criteria look for a model that describes the data well
and that is parsimonious at the same time. To this end, the
model fit (i.e., minus two times the log likelihood of the model)
is penalized by the model complexity, which equals the number
of free parameters fp = K[2J+JO — (1/2)0(Q—1)] +(K—1).In
particular, AIC is computed as follows (Akaike, 1974):

AIC = —2log L+2 x fp, (7)

where the model with the lowest AIC value is the optimal one.
AIC is an estimate of the expected relative Kullback—Leibler
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divergence and selects the model that asymptotically tries to
minimize this distance (Vrieze, 2012).

The use of AIC implies that one assumes that each
observation provides new, independent information regard-
ing the underlying model, which may be unrealistic when
the sample under study grows large. Therefore, Schwarz
(1978) proposed the BIC criterion, which takes the sample
size into account, as an alternative:

BIC = —2log L + log(I) x fp. (8)

The BIC has its roots in Bayesian statistics, but paradox-
ically, it is almost always applied in a frequentist (i.e., non-
Bayesian) model selection context. It can be shown that the
difference between the BICs of two models can be seen as
an asymptotic approximation to the logarithm of the Bayes
factor of these models (see Claeskens & Hjort, 2008), which
gives an indication of the support for the first model against
the second one.! An attractive property of the BIC is that it
is consistent: The BIC selects the correct model with a
probability that goes to 1 as / grows large (see Claeskens
& Hjort, 2008). This consistency property will hold given
that the true model is among the set of models to choose
from and that some other regularity assumptions are satis-
fied (i.e., the number of parameters is finite and does not
grow with 7; for more information, see Vrieze, 2012).

On the basis of the theoretical differences between AIC
and BIC, Vrieze (2012) presented some rules of thumb for
choosing between the model selection methods. In the case
that one is interested in identifying the true model (i.e.,
operating under a zero/one loss function) and that the true
model has a fixed and finite number of parameters, BIC is
preferable (in the asymptotic situation, because of its con-
sistency property mentioned above). However, when the
true model is not in the choice set and/or when this true
model is too complex for parametric modeling (e.g., an
unknown, highly nonlinear model), AIC will minimize
(asymptotically) the mean squared error of estimation more
efficiently than BIC. Given that our interest in this article is
in selecting the true model, the latter situation of an un-
known model not being represented in the choice set is not
of immediate interest to us.

It should be noted, however, that these asymptotic results
do not simply transfer to finite samples (Vrieze, 2012). In
such cases, simulation studies are needed to evaluate and

! The Bayes factor for comparing Models 1 and 2 is the ratio of the
posterior odds (of Model 1 vs. Model 2) versus the prior odds (of
Model 1 vs. Model 2): BF,=[p(M|y)/p(Ma|y))/[p(M;)/p(M>)]. The
Bayes factor expresses how much the odds in favor of Model 1 change
when observing the data y. If we take the prior odds as being equal to 1
[such that p(M,)=p(M,)=.5], then BF, equals the posterior odds and
expresses how much evidence there is for Model 1 as compared to
Model 2 (i.e., if BF5,>1, then Model 1 is to be preferred, and vice
versa).

compare the behavior of AIC and BIC. Regarding such
simulations, comparing the formulas of AIC and BIC, it
can be predicted that AIC will often select more complex
models (i.e., models with large fp values) than BIC does (see
also Vrieze, 2012). Indeed, the only important difference
between the two criteria is that, unless the sample size is
small, AIC penalizes adding parameters to the model less
than BIC does. Consequently, AIC will often select a too
complex model, which is a tendency of AIC that has already
been observed in the context of many models (e.g., Celeux
& Soromenho, 1996; Kass & Raftery, 1995).

CHull

Like AIC and BIC, CHull searches for the model with the
best balance of model fit and model complexity. Being a
generalized and automated version of the well-known
scree test of Cattell (1966), CHull first singles out the
models at the higher boundary of the convex hull of a
log-likelihood-versus-fp plot, as these models have a bet-
ter balance between model fit and model complexity than
do the other models. Second, an optimal model is identi-
fied by selecting the hull model after which the gain in fit
by adding extra parameters levels off (i.e., the elbow in
the scree plot). A clear advantage of the automated CHull
method over the scree test is that the elbow in the plot is
not determined visually, which always implies a subjective
judgment, but numerically.

The CHull procedure allows the researcher to define the
fit and complexity measure, so that researchers can tailor
these measures according to the research question at hand
(Ceulemans & Kiers, 2006). As a consequence, CHull is
more general than AIC and BIC, in that CHull can also be
used for model selection in deterministic models in which
no likelihood can be computed, because no particular
assumptions regarding the noise in the data are imposed
(e.g., cluster and component analysis), whereas AIC and
BIC are restricted to stochastic models only. In the case of
MFA, the log likelihood of the model will be taken as the fit
measure, and the number of free parameters fp as a measure
of model complexity.

Specifically, the CHull model selection strategy consists
of the following six steps (Ceulemans & Kiers, 2006). First,
when different models exist that have the same number of
free parameters fp, only retain the model with the largest log
likelihood. Second, rank the N retained models according to
their numbers of free parameters and denote them by s,
(n=1,...,N). Third, omit all models s,, for which there exists
a less complex model s; (j < n) that has a larger log likelihood
value. Fourth, considering each triplet of adjacent models,
exclude the middle model if it is located below or on the line
connecting the other two models of the triplet in a plot of the
log likelihood versus the number of free parameters. In
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addition, all models for which the gain in fit is less than 1 % of
the fit value of the preceding (less complex) model are also
discarded (because such small fit gains may unduly influence
the results; Wilderjans, Ceulemans, & Meers, in press). Repeat
this step until no more models can be discarded. These first
four CHull steps yield the models situated on the upper
boundary of the convex hull. In order to find the optimal hull
model, the fifth step comprises computing the following scree
test value st for each hull model:

{log L,—log L,_, }
st, = Jon=JPn : 9)
{log Ly —log Ln}
JPni1—IPn

with log L, and fp, denoting the log likelihood and the
number of free parameters, respectively, for the nth model.
In Eq. 9, the numerator and denominator represent the
slopes of successive parts of the upper boundary of the
convex hull (Ceulemans et al.,, 2011) and pertain to the
(average) increase in likelihood per added parameter. A
large sz, ratio then implies that model s, fits the data
clearly better than solution s,_; (i.e., a relatively large
increase in model fit per added parameter), whereas s,
only implies a relatively small increase in model fit per
added parameter. Note that no st value can be computed for
the least and most complex models on the boundary of the
convex hull. The sixth and final step consists of selecting
the solution associated with the largest st value. Note that
free software for applying the CHull procedure is available
from http://ppw.kuleuven.be/okp/software/chull/ (Wilderjans
et al., in press).

Uncertainty in the model selection statistics

Besides selecting an optimal model, the presented model
selection strategies also allow for a ranking of interesting
models. Moreover, the AIC, BIC, and st values are in fact
statistics computed from the data, and they are subject to
sampling fluctuations. To take into account this uncertain-
ty in the model selection statistics, we may try to quantify
(by analytical tools or by simulation) the uncertainty by
means of, for instance, a standard error for the AIC, BIC,
or st values. Such an approach would be rather intricate,
and therefore we will use a crude way of accounting for
uncertainty in the model selection criteria by considering
the three best models as identified by each strategy (as has
been advised by Ceulemans & Kiers, 2006). It further
should be noted that, in practice, it is not recommended
to base one’s decision regarding the optimal model on an
automated model selection procedure solely, but to also
take substantive arguments and the interpretability of the
results into account (Ceulemans & Kiers, 2006; Wilderjans et
al., in press).
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Application to an example data set

To illustrate the different model selection strategies, they
will be applied to the iris data (Anderson, 1935, 1936),
which contain the scores of 150 irises for the following four
morphologic variables: length of the sepal, width of the
sepal, length of the petal, and width of the petal. Each iris
belongs to one of the following three species of iris flowers:
Setosa, Versicolor, and Virginica (for didactic reasons, we
use data with a known cluster allocation).

Table 1 displays the number of free parameters fp, the log
likelihood, and the AIC, BIC, and st values for MFA models
of the iris data, with the number of clusters varying from one
to five and the number of factors varying from one to three.
On the basis of AIC, the model with five clusters and two
factors would be selected, since this model has the lowest
AIC value (i.e., 423.5). The clustering corresponding to this
selected model (by assigning each iris to the cluster with the
largest posterior probability) shows that for all species, the
flowers are distributed over three or more clusters. In con-
trast to the overestimation by AIC, the lowest BIC value
(i.e., 582.8) is encountered for the model with three clusters
and one factor. The clustering based on this model coincides
with the three species of irises, with the exception of only
three flowers.

When the first four CHull steps are applied to the MFA
models in Table 1, the following four models appear to be

Table 1 Numbers of free parameters (fp), log likelihoods, AIC and
BIC values, and st values (only for hull models) for MFA models fitted
to the iris data, with the number of clusters varying from one to five
and the number of factors from one to three

Number of Number Number  Log AIC  BIC st
Clusters of of Free Likelihood Value
Factors Parameters
0/2)
1 1 12 —423.9 871.8 9079 -
2 15 -391.0 812.0 857.1
3 17 -379.6 793.3 844.5
2 1 25 -232.6 5152 590.4° 53%
2 31 -217.9 497.8 591.2°
3 35 -215.2 500.3 605.7
3 1 38 -196.2 468.4 582.8" 1.8°
2 47 -182.9 459.8 601.3
3 53 -181.0 468.0 627.6
4 1 51 -180.7 463.4 6169
2 63 -163.5 453.0 642.6
3 71 -157.8 457.6 6714
5 1 64 -159.9 447.8° 640.5
2 79 -132.7 423.5* 6613 -
3 89 -134.6  4472° 7152

* Best-fitting model. ° Second-best-fitting model. © Third-best-fitting
model. * For the first and last hull models, the sz value is not defined
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located on the upper boundary of the convex hull (located
on the red line in Fig. 1): (a) a model having one cluster
and one factor, (b) a model with two clusters and one
factor, (c) a model with three clusters and one factor, and
(d) a model with five clusters and two factors. Given the
associated st values for these hull models, which can be
found in Table 1, CHull selects the model with two
clusters and one factor (i.e., an st value of 5.3), with the
next-best-fitting model being the one with three clusters
and one factor (i.e., an st value of 1.8). Note that CHull
selects the model with three clusters (i.e., three species of
irises) only as the second-best model, whereas BIC iden-
tifies this model as the best one.

Simulation study
Research questions

In this simulation study, we will examine to what extent
AIC, BIC, and CHull succeed in correctly identifying the
numbers of underlying clusters and factors. As suggested
above, for each model selection strategy, we will discuss the
results concerning the single best model, but we will also
look at the best three models to account for uncertainty in
the model selection statistics. From the theoretical discussion
on AIC and BIC (Vrieze, 2012; Wagenmakers & Farrell,
2004), we formulate the following expectation about the per-
formance of both model selection methods: Since the true
model is always under consideration and the number of
parameters of the true model is fixed and finite, we conjecture
that BIC will outperform AIC.

-100

-150

-200

LogL

-300

-350

-400

450 | | I | | | | |
10 20 30 40 50 60 70 80 90 100

fp

Fig. 1 Numbers of free parameters fp plotted against the log likelihood
Log L for the MFA models that were fitted for the iris data, with the
number of clusters ranging from one to five and the number of factors
varying from one to three (see also Table 1). The upper boundary of the
convex hull is indicated by a red line

Moreover, the effect of the following five data character-
istics on the performance of the different model selection
strategies will be investigated: (a) the number of clusters, (b)
the distribution of the objects across the clusters, (c) the
number of factors, (d) the amount of noise in the data, and
(e) the degree of overlap between the clusters. In simulations
of different clustering techniques, it appears that retrieving
the optimal clustering becomes harder when the number of
clusters increases and when (many) small clusters exist (e.g.,
Milligan & Cooper, 1985; Schepers et al., 2008). Further-
more, we expect that when the number of underlying factors
becomes larger (Lorenzo-Seva et al., 2011), when the data
contain a large amount of noise (Ceulemans & Kiers, 2006),
and when the clusters overlap more in mean level or covari-
ance structure (De Roover, Ceulemans, & Timmerman,
2012), model selection performance will decrease and the
differences between the model selection methods under
study will become more pronounced (see, e.g., Schepers et
al., 2008).

Design and procedure

In this simulation study, data sets with 12 variables and 200
observations were constructed. The following five factors
were systematically manipulated in a completely randomized
design:

1. The number of clusters, at two levels: two and four;

2. The distribution of objects across the clusters, at three
levels: clusters of equal size (i.e., equal-size condition),
one cluster containing 60 % of the objects and the remain-
ing objects being equally distributed over the other clus-
ters (i.e., one-large-cluster condition), and one cluster
containing 10 % of the objects and the remaining objects
being equally distributed across the remaining clusters
(i.e., one-small-cluster condition);

3. The number of factors, at two levels: two and four;

4. The noise level ¢, at three levels: .05, .15, and .25;

5. The amount of overlap between the clusters, at two
levels: a small amount of overlap and a moderate
amount of overlap.

To construct a data set, the following procedure was
applied. First, the true mixing probabilities 7©™° (1 x K)
were determined on the basis of the number of clusters
and the distribution of the objects across clusters, and the
objects were accordingly assigned to one of the clusters.
Second, for the objects that belong to a particular cluster,
factor scores u, ™ and residual e;; (1 x J) values were drawn
from a multivariate normal distribution—with the 0-vector
as the mean vector and the identity matrix as the covariance
matrix—and were orthogonalized (ensuring the indepen-
dence of u,™° and e;) and standardized. Third, cluster-

specific true loadings B,™ (k=1, . . ., K) were generated
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by sampling numbers from a uniform distribution on the
interval [—1, 1]. Fourth, these cluster-specific loadings were
rescaled in order to make their sum of squares per variable
equal to 1 — . Fifth, to manipulate the amount of overlap,
cluster-specific true mean vectors ;"™ (1 x J) were spec-
ified, as is shown in Table 2. Sixth, combining the cluster-
specific true loadings B,"™, the cluster-specific true factor
scores u; ™, the cluster-specific true means p;"™¢, and the
true cluster memberships 7"™° yielded true data X"™°. Sev-
enth, the e; values were rescaled such that their variances
equalled ¢ per variable. In a final step, the noise was added
to the true data.

In order to quantify for each generated data set the
amount of overlap between the clusters, we computed for
each pair of clusters k1 and k2 the amount of overlap by
using the following overlap measure from Lu, Smith, and

Good (1989), assuming multivariate normality:

2|2k12k2|1/2
|(3) (B + Elc2)|l/2(|2k1|1/2 + |Ek2|1/2)

A=

> 6[7 (1) (= 102) (Bar+302) ™ (i —1142)] ’ (10)

with py and py, being specified as in Table 2, and 3, and
3> computed according to Eq. 4. The A measure varies
between 0 and 1, with 0 meaning the absence of overlap and
1 indicating perfect overlap. Next, a total overlap measure §
was computed by taking the average of the pairwise overlap
values. In the conditions with a small amount of overlap, the
overlap values § ranged from 0 to .000394, with a mean
value of .000005 (SD = .000031). In the moderate overlap
conditions, the overlap values ranged from 0 to .1083, with
a mean of .0239 (SD = 0.0280). Note that, when considering
each combination of the levels of the four other variables
separately, data sets from the moderate-overlap condition
clearly had a larger amount of overlap than did data sets
from the small-overlap condition.

For each of the 2 x 3 x 2 x 3 x 2 = 72 conditions, ten
replications were generated, yielding 720 simulated data

Table 2 True cluster-specific mean vectors w, ™ for the different
combinations of the levels of the number of clusters and the amount
of overlap between the clusters

Number of  Amount of Cluster Overlap”

Clusters

Small Amount Moderate Amount

sets. Next, MFA was applied to each simulated data set,
with the numbers of clusters and factors varying from
one to seven. To this end, the EMFAC software package
(McLachlan et al., 2003) was used, with the following analy-
sis options: (a) 100 random starts (with 70 % of the data being
used to determine random starting values), (b) ten K-means
starts, (c) no standardization of the variables (since the proce-
dure already yields standardized data), (d) no restrictions on
the covariance matrices 3, or the diagonal matrices D across
clusters, (e) not starting the algorithm from a user-defined
initial clustering of the objects, (f) using normal distributions
for the mixture components, and (g) using a rational initiali-
zation for the cluster-specific loadings. The simulation study
was programmed in MATLAB R2011b and conducted on a
supercomputer consisting of INTEL XEON L5420 processors
with a clock frequency of 2.5 GHz and with 8 GB RAM.

Results

When examining how often the correct numbers of under-
lying clusters and factors were identified by the three model
selection methods, it could first be concluded that AIC has a
low success rate. In particular, only considering the first
choice, AIC succeeded in selecting the correct model for
only 10 % of the data sets (see Table 3). Taking the first
three choices into account, the success rate rose to about
25 % (i.e., the correct model was among the three best AIC
models in only 173 of the 720 data sets). When investigating
the model selection mistakes more closely, it appears that
AIC tended to overfit by selecting a too complex model. In
particular, the least complex model of the three choices of
AIC was more complex (i.e., had a higher fp value) than did
the correct model for 546 of the 547 data sets in which AIC
failed to select the correct model. Because of the poor
performance of AIC, in the remainder of this discussion,
the focus will be on the comparison among BIC and
CHull.

First choice only When considering the first choice only,
BIC performed a bit better than CHull. In particular, the best
BIC model was the correct one in 630 of the 720 data sets
(87.5 %), whereas CHull retrieved the correct model in 612
cases (85 %). In order to further compare BIC and CHull, in
Table 4 a cross-classification is presented of the model

Table 3 Numbers of data sets for which the correct model was among
the first three models that were retained by AIC, BIC, and CHull

2 [1-15; -1 1]
4 [1-1] -1 1] L 1];
[-1-1]

[.25 —25]; [-.25 .25]

[.25 —25]; [-.25 .25]; [.25 .25];
[-.25 —.25]

*[1 —1] indicates that the means for the first six variables equal 1 and
the means for the next six variables equal —1
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First Choice Second Choice Third Choice Total
AIC 72 68 33 173
BIC 630 25 4 659
CHull 612 59 17 688
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Table 4 Cross-classification of the selection performance of CHull and
BIC, when considering either the first choice only or the first three choices

Choice BIC
Incorrect Correct
CHull First choice only Incorrect 63 45
Correct 27 585
First three choices Incorrect 29 3
Correct 32 656

selection results of both methods. Regarding the first choice,
it appears that both methods retrieved the correct model in
81 % of the cases and that both of them failed for 9 % of the
data sets. The latter 63 data sets mainly belonged to the
conditions with four underlying clusters and factors (i.e., 51
cases, or 81.0 % of the failures) and with large amounts of
noise in the data (i.e., 51 cases, or 81.0 %, were located in
the 25 %-noise condition). For these data sets, both BIC and
CHull tended to underestimate the complexity of the opti-
mal model. In particular, CHull selected a too simple
model (i.e., too small fp value) in 60 out of the 63 cases,
and BIC in 62. When focusing on the 72 data sets for which
only one method failed on the first choice, one can see in
Table 4 that BIC performed better in 45 cases (62 %) and
CHull in 27 cases. The 45 data sets for which BIC out-
performed CHull were mainly located in the conditions with
larger amounts of noise (i.e., only three data sets—7 %—
belonged to the 5 %-error conditions) and spread out (in a
nonsystematic way) over the levels of the other manipulated
data characteristics. In most cases (i.e., 30 out of the 45 data
sets) CHull selected a model with a lower fp value than the
correct model, indicating underestimation of the model
complexity. The 27 data sets for which CHull outperformed
BIC mainly belonged to the more difficult conditions (i.e.,
four clusters and/or four factors, a large amount of noise,
and a moderate amount of cluster overlap), with BIC in all
cases underestimating the complexity of the model. In Table 5,
the numbers of data sets for which the model selection tools
succeeded in identifying the correct numbers of underlying
clusters and factors are presented for each level of the five
manipulated characteristics. For most levels, BIC performed
better than CHull. When the underlying data contained four
clusters, CHull outperformed BIC.

First three choices When taking the first three choices into
account, CHull clearly outperformed BIC, in that CHull had a
success rate of 95.6 % (i.e., 688 of the 720 data sets), whereas
BIC identified the correct model in 659 of the 720 cases
(91.5 %). In order to check whether the better performance
of CHull over BIC (considering the first three choices) varied
over the manipulated data characteristics, in Table 6, for each
level of the five manipulated characteristics, the numbers of

Table 5 Numbers of data sets for which the three model selection
methods selected the correct model, taking only the first choice into
account, for all levels of the five manipulated data characteristics

Characteristic Level AIC BIC CHull
Number of clusters 2 0 352 325

4 72 278 287
Distribution of Equal size 21 223 223

objects across clusters One large cluster 23 201 197

One small cluster 28 206 192

Number of factors 2 35 352 343
4 37 278 269
Amount of noise 0.05 2 240 237
0.15 20 219 207
0.25 50 171 168
Amount of cluster overlap  Small 40 331 320
Moderate 32 299 292

data sets are presented for which the correct model was
among the three retained models. From this table, one can
see that for all characteristics, CHull outperformed BIC,
with this effect being more pronounced when the data
became more challenging for all methods (i.e., larger
numbers of underlying clusters and factors, larger amounts
of noise, and stronger cluster overlap). Therefore, it is not
surprising that the cross-classification in Table 4 (for the
first three choices) shows that CHull succeeded and BIC
failed for 32 cases, mostly because BIC underestimated the
number of clusters and/or factors, whereas the opposite
(i.e., BIC succeeding and CHull failing) was true for three
data sets only. Finally, note that considering additional
models hardly changed the results, as the fourth- or fifth-
best models according to BIC and CHull were the correct
ones for very few data sets (i.e., at most six).

Table 6 Numbers of data sets for which the three model selection
methods selected the correct model, taking the first three choices into
account, for all levels of the five manipulated data characteristics

Characteristic Level AIC BIC CHull
Number of clusters 2 0 357 359

4 173 302 329
Distribution of Equal size 58 229 239

objects across clusters One large cluster 56 205 218

One small cluster 59 225 231

Number of factors 2 87 355 359
4 86 304 329
Amount of noise 0.05 10 240 240
0.15 69 230 231
0.25 94 189 217
Amount of cluster overlap  Small 91 347 353
Moderate 82 312 335
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Discussion and concluding remarks

The present study aimed at evaluating three model selection
methods in the context of MFA: AIC, BIC, and CHull. The
simulation study showed overall poor performance of AIC,
in that it almost always selected an overly complex model.
In general, BIC and CHull performed well. Comparing AIC
and BIC, the results were in line both with theory and
simulation results: In the case of a zero/one loss function
(such that the true model was in the choice set), BIC showed
its consistency property and AIC tended to overfit (see
Vrieze, 2012).

Considering only the first choices of the model selection
strategies, BIC was the most accurate model selection sta-
tistic. However, when taking model selection uncertainty
into account by examining the three best models, as retained
by each model selection procedure, CHull outperformed
BIC. Inspecting the effect of the manipulated data character-
istics, CHull was better than BIC in the difficult—but more
realistic—conditions (i.e., more underlying clusters and fac-
tors, large amounts of noise and cluster overlap). In these
cases, BIC appeared to underestimate the numbers of
underlying clusters and factors. The better performance
of CHull in the difficult simulation conditions may be
caused by the fact that BIC, unlike CHull, takes the
sample size into account, and therefore penalizes model
complexity too harshly.

An important remark concerning the presented simula-
tion study is that the generated data deviated from the
stochastic model in Eq. 3, in that each sample that was
generated had characteristics (e.g., orthogonality of the
factor scores and residuals) that are expected to be true
for the stochastic model (i.e., when J goes to infinity)
only. An advantage of this approach is that exact manip-
ulation of the five factors became possible. A disadvan-
tage, however, is that sampling fluctuations are not taken
into account, presumably making it slightly easier for the
model selection strategies to identify the correct numbers
of underlying clusters and factors. In future research, the
effect of sampling fluctuations on model selection perfor-
mance could be investigated by incorporating a sampling
approach.

On the basis of the simulation study, it can be concluded
that considering the first three choices provides a proper
balance between taking uncertainty in the model selection
statistics into account and determining the (optimal) numb-
ers of underlying clusters and factors (which is the purpose
of applying model selection statistics in the first place).
Concerning the rankings of the models implied by the
different model selection strategies, a clear difference exists
between AIC and BIC, on the one hand, and CHull, on the
other. Even though all three model selection methods pro-
vide a ranking of interesting models, CHull is stricter, in that
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it only ranks those models that show a good balance be-
tween model fit and model complexity (i.e., hull models) by
means of the st values. Furthermore, these st values give an
indication of the relative differences in quality of the hull
models. Similar features, however, are also offered by
extensions of AIC and BIC. Specifically, Akaike weights
can be calculated and used to compute for each model the
probability that this model is the optimal one, given a range
of alternative models (Wagenmakers & Farrell, 2004).

Another remark pertains to defining the complexity of an
MFA model as the number of free parameters fp. First of all,
as was argued by Pitt, Myung, and Zhang (2002), model
complexity is also influenced by the functional form of the
model. Second, defining complexity in this way implies that
each parameter, regardless of its type (i.e., factor loading,
unique variance, variable-specific mean, or a priori proba-
bility), has the same weight when determining the complex-
ity of a model. In the context of MFA, this may seem like
comparing apples and oranges, in that it is not clear whether
or not a factor loading should be given the same weight as a
unique variance or an a priori probability parameter. There-
fore, it may be worthwhile to investigate whether and how
such adding of different types of model parameters can be
avoided and how the functional form of the model can be
taken into account.

Finally, with this study we aimed to provide a thorough and
systematic evaluation of the performances of AIC, BIC, and
CHull in the context of MFA. It would be interesting, howev-
er, to evaluate how useful CHull is for picking the correct
model out of a wider range of models—including EFA, MFA,
and regular mixture models—for instance, using the simula-
tion design of Lubke and Neale (20006).
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