
ar
X

iv
:2

10
8.

11
48

5v
1 

 [
m

at
h.

PR
] 

 2
5 

A
ug

 2
02

1

CHUNG-TYPE LAW OF THE ITERATED LOGARITHM AND EXACT

MODULI OF CONTINUITY FOR A CLASS OF ANISOTROPIC GAUSSIAN

RANDOM FIELDS

CHEUK YIN LEE AND YIMIN XIAO

Abstract. We establish a Chung-type law of the iterated logarithm and the exact local and
uniform moduli of continuity for a large class of anisotropic Gaussian random fields with a
harmonizable-type integral representation and the property of strong local nondeterminism.
Compared with the existing results in the literature, our results do not require the assumption
of stationary increments and provide more precise upper and lower bounds for the limiting
constants. The results are applicable to the solutions of a class of linear stochastic partial
differential equations driven by a fractional-colored Gaussian noise, including the stochastic
heat equation.

1. Introduction

The purpose of this paper is to establish a general framework that is useful for studying
the regularity properties of sample functions of anisotropic Gaussian random fields and can be
directly applied to the solutions of linear SPDEs. This is mainly motivated by [6] and [27].
We consider a class of Gaussian random fields {v(x), x ∈ R

k} that satisfy Assumption 2.1 in
[6] (see Assumption 2.1 below) and the property of strong local nondeterminism, or strong
LND for short, with respect to an anisotropic metric (see Assumption 2.2 below). For these
Gaussian random fields, we prove some limit theorems that provide precise information about
the oscillation behavior of the sample function x 7→ v(x).

The main results of this paper are as follows. We prove a Chung-type law of the iterated
logarithm (LIL) in Theorem 4.4, the exact local and uniform moduli of continuity in Theorems
5.2 and 6.1, respectively. Our strategy is to first prove a zero–one law for each of the limit
theorems (see Lemma 3.1), showing that the limit is equal to a constant in [0,∞] almost surely.
Then, we prove that the constant is in fact positive and finite by establishing a finite upper bound
and positive lower bound for the limit, and therefore, the corresponding modulus function in
the limit theorem is sharp. We give an application of the main results to the solutions of a class
of linear SPDEs

∂

∂t
u(t, x) = L u(t, x) + Ẇ (t, x)

driven by a fractional-colored Gaussian noise, including the stochastic heat equation [3, 7]. It
is also a notable result of this paper that u(t, x) satisfies the strong LND property (see Lemma
7.3), which strengthens a result of [7].

In general, there are different ways to describe the sample path variation of random fields. The
Chung-type LIL characterizes the lower envelope (lim inf) for the local oscillations of the sample
functions at a fixed point. The local modulus of continuity at a fixed point is, for many Gaussian
random fields, given by the ordinary Khinchin-type LIL, which complements the Chung-type
LIL by characterizing the upper envelope (lim sup) for the local oscillations at a fixed point.
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On the other hand, the uniform modulus of continuity specifies the maximum oscillation of the
sample functions over certain sets such as a compact interval.

The Chung-type LIL for a class of isotropic and anisotropic Gaussian random fields with
stationary increments has been studied by Li and Shao [14] (see also [18, 25]) and Luan and
Xiao [15]. The exact local and uniform moduli of continuity for a class of anisotropic Gaussian
random fields have been studied by Meerschaert et al. [19]. The novelty of the present paper is a
general framework based on a harmonizable-type representation and the strong LND property of
a Gaussian random field that may not have stationary increments, which is employed to extend
and improve some of the results of [14, 15, 19], and can be directly applied to the solutions
of SPDEs. In particular, with a harmonizable-type representation, we are able to decompose
the random field and create independence, making it possible to establish general zero–one laws
(Lemma 3.1) which can be strengthened to prove the Chung-type LIL as well as the exact local
and uniform moduli of continuity. The independence structure from the harmonizable-type
representation also allows the use of the second Borel–Cantelli lemma, which facilitates a simple
proof of one of the bounds for the Chung-type LIL and the exact local modulus of continuity.

Let us summarize the major differences and improvements in our results compared to the
existing results in the literature. The Chung-type LIL results in [14], [18], [25] and [15] were
proved for Gaussian random fields with stationary increments, meaning that for any h ∈ R

k,

{v(x + h)− v(h), x ∈ R
k} d

= {v(x) − v(0), x ∈ R
k},

and, in particular, it is enough for them to consider the Chung-type LIL at the origin. Our
Theorem 4.4 applies to a wider class of Gaussian random fields that may not necessarily have
stationary increments, and we prove a Chung-type LIL at any fixed point x0. Moreover, our
Theorem 4.4 gives explicit upper and lower bounds for the constant in Chung’s LIL in terms of
the constants that appear in the small ball probability estimates. This implies that the limiting
constant in Chung’s LIL is given in terms of the small ball constant provided it exists, see (4.8)
below. We remark that the connection between the bounds on the limiting constant in Chung’s
LIL and the small ball estimates is also given in Theorem 7.1 of [14], but not explicitly stated
in Theorem 1.1 of [15].

For exact local and uniform moduli of continuity of Gaussian processes with stationary incre-
ments, some general theory has been established by Marcus and Rosen [17]. Also, Meerschaert
et al. [19] have used the sectorial LND property and the Fernique-type inequalities to prove the
exact uniform modulus of continuity of anisotropic Gaussian random fields. Especially, [19] pro-
vides an effective way to prove the lower bound for the uniform modulus of continuity, which is
usually a more difficult task than proving the upper bound. Our Theorems 5.2 and 6.1 improve
the results in [19]. We prove exact local and uniform moduli of continuity under two metrics
respectively: one is the canonical metric d defined in (2.4), and the other one is the metric ∆
defined in (2.3), which is comparable to d under Assumptions 2.1 and 2.3. For the local modulus
of continuity in Theorem 5.2, under the canonical metric d, we are able to prove that the exact
constant in the LIL is

√
2. This is an improvement to Theorem 5.6 of [19], which only shows

that the constant is at least
√
2 (see Remark 5.3 below). We achieve this sharper result by using

a tail probability estimate due to Talagrand [22], which is stated in Lemma 5.1 below.
For the uniform modulus of continuity, the strong LND assumption in our Theorem 6.1 is

stronger than the condition in Theorem 4.1 of [19], but we obtain better upper and lower
bounds for the limiting constant (see Remark 6.2 below). Our approach is to start with a crude
upper bound and then optimize it using an approximation argument based on anisotropic lattice
points. We also refine the the proof in [19] based on the strong LND property and a conditioning
argument to get a sharper lower bound.
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The rest of the paper is organized as follows. In Section 2, we state the assumptions for
the Gaussian random fields to be considered in this paper and give some remarks about the
assumptions. We also briefly discuss the difference in the LND properties between stochastic heat
and wave equations. In Section 3, we prove zero–one laws which will be useful for establishing
the Chung-type LIL and the exact local and uniform moduli of continuity. In Section 4, we
establish small ball probability estimates and Chung’s LIL. In Sections 5 and 6, we prove the
exact local and uniform moduli of continuity, respectively. In Section 7, we consider as an
application a class of linear SPDEs driven by a fractional-colored Gaussian noise [3, 7]. We
establish harmonizable-type representations and strong LND property for the solutions, and
apply our results to obtain Chung’s LIL and exact local and uniform moduli of continuity.
These results improve significantly those in [7, 24]. Finally, in Section 8, we provide another
example of anisotropic Gaussian random fields that do not have stationary increments and satisfy
Assumptions 2.1 and 2.2 of the present paper.

2. Assumptions

Consider a real-valued continuous centered Gaussian random field v = {v(x), x ∈ R
k}. Let T

be a compact rectangle in R
k. We introduce some assumptions for v. Notice that Assumption

2.1 is from [6] and Assumption 2.2 is from [27].

Assumption 2.1. There exists a centered Gaussian random field {v(A, x), A ∈ B(R+), x ∈ T},
where B(R+) is the Borel σ-algebra on R+ := [0,∞), such that the following properties hold:

(a) For every x ∈ T , A 7→ v(A, x) is an independently scattered Gaussian noise such that
v(R+, x) = v(x) and the processes v(A, ·) and v(B, ·) are independent whenever A and B are
disjoint.

(b) There exist constants c0 > 0, a0 ≥ 0, and γj > 0, j = 1, . . . , k, such that for all a0 ≤ a <
b ≤ ∞ and x, y ∈ T ,

∥∥v([a, b), x) − v(x)− v([a, b), y) + v(y)
∥∥
L2 ≤ c0

( k∑

j=1

aγj |xj − yj|+ b−1

)
(2.1)

and

∥∥v([0, a0), x)− v([0, a0), y)
∥∥
L2 ≤ c0

k∑

j=1

|xj − yj|. (2.2)

In the above, ‖X‖L2 := [E(X2)]1/2 for a random variable X.

Define αj (j = 1, . . . , k) by the relation γj = α−1
j − 1, that is, αj = (γj + 1)−1. Note that

0 < αj < 1. The parameters αj characterize the Hölder regularity of v (see Lemma 2.4 below).

Let Q =
∑k

j=1 α
−1
j and define the metric ∆ by

∆(x, y) :=

k∑

j=1

|xj − yj|αj , x, y ∈ R
k. (2.3)

We will also use the canonical metric d = dv associated with v. It is defined by

d(x, y) = dv(x, y) :=
∥∥v(x)− v(y)

∥∥
L2 , x, y ∈ R

k. (2.4)

Assumption 2.2. There exists a constant c2 > 0 such that for all integers n ≥ 1, for all
x, x1, . . . , xn ∈ T ,

Var
(
v(x)|v(x1), . . . , v(xn)

)
≥ c2 min

0≤i≤n
∆2(x, xi),

where x0 = 0.
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Assumption 2.3. There exists a constant c3 > 0 such that for all x, y ∈ T ,
∥∥v(x)− v(y)

∥∥
L2 ≥ c3∆(x, y).

The following are some remarks about these assumptions. Assumption 2.1 above is the same
as Assumption 2.1 in [6] and [5], and is satisfied by many Gaussian random fields that have
a spectral or harmonizable-type representation, or more generally, a stochastic integral repre-
sentation. For example, it is shown in [6] that the solutions of linear stochastic heat and wave
equations admit harmonizable-type representations and satisfy Assumption 2.1. The same is
true for fractional Brownian sheets [5]. Assumption 2.1 implies an upper bound for the incre-
ments of v in L2-norm in terms of the metric ∆:

Lemma 2.4. Under Assumption 2.1, there exist constants ε1 > 0 and c1 such that for all
x, y ∈ T with ∆(x, y) ≤ ε1,

‖v(x)− v(y)‖L2 ≤ c1∆(x, y). (2.5)

Proof. This is a consequence of Proposition 2.2 of [6] where ε1 = min{a−1
0 , 1} and c1 = 4c0. �

Assumption 2.2 is known as the property of strong local nondeterminism (strong LND) with
respect to the metric ∆, which has found various applications in studying probabilistic, analytic
and fractal properties of Gaussian random fields (cf. [26, 27]). For Gaussian random fields with
stationary increments, [16] provides sufficient conditions in terms of their spectral measures for
them to have the property of strong LND. In Sections 7 and 8, we will show that the solutions
of a class of linear SPDEs driven by a fractional-colored Gaussian noise and a class of Gaussian
random fields with non-stationary increments also have the property of strong LND.

Assumption 2.2 implies the lower bound in Assumption 2.3 if T ⊂ R
k\{0} is compact: for all

x, y ∈ T ⊂ R
k\{0},

‖v(x) − v(y)‖L2 ≥ √
c2∆(x, y). (2.6)

The strong LND property (Assumption 2.2) will be used to prove optimal bounds for the
small ball probability, which is the main ingredient of the proof of Chung’s LIL (Theorem 4.4).
This property will also be needed in the proof of the lower bound for the exact uniform modulus
of continuity (Theorem 6.1). Assumption 2.3 is much weaker than Assumption 2.2. To establish
the exact local modulus of continuity, or the ordinary LIL (Theorem 5.2), we will use Assumption
2.3, but not Assumption 2.2.

In Lemma 7.3 of this paper, we will prove that the solutions of a class of linear SPDEs with a
fractional-colored Gaussian noise, including the stochastic heat equation, satisfy the strong LND
property. We remark that, on the other hand, the solution of the linear stochastic wave equation
does not satisfy the strong LND property, but satisfies a different form of LND [13, 12]. For
this reason, the Chung-type LIL for the stochastic wave equation has a different form than the
stochastic heat equation; see [11]. The uniform modulus of continuity for the stochastic wave
equation is also established in [13, 12]. For the local modulus of continuity, our Theorem 5.2 still
applies to the stochastic wave equation because it does not require the strong LND property. It
also applies to fractional Brownian sheets.

3. Zero–one laws

In Lemma 3.1 below, we establish zero–one laws for the Chung-type LIL and the local and
uniform moduli of continuity, showing that the limit in each of these laws is equal to a constant
almost surely. At this stage, we do not rule out the possibility that the constant could be zero
or infinity. Later in our main theorems, we will strengthen these zero–one laws and prove that
the limiting constants are indeed positive and finite.
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Lemma 3.1. The following statements hold under Assumption 2.1.

(i) For any fixed x0 ∈ T , there exists a constant 0 ≤ κ1 ≤ ∞ which may depend on x0 such
that

lim inf
r→0+

sup
x∈T :∆(x,x0)≤r

|v(x) − v(x0)|
r(log log(1/r))−1/Q

= κ1 a.s. (3.1)

(ii) For any fixed x0 ∈ T , there exists a constant 0 ≤ κ2 ≤ ∞ which may depend on x0 such
that

lim
r→0+

sup
x∈T : 0<∆(x,x0)≤r

|v(x) − v(x0)|
∆(x, x0)

√
log log(∆(x, x0)−1)

= κ2 a.s. (3.2)

(iii) There exists a constant 0 ≤ κ3 ≤ ∞ such that

lim
r→0+

sup
x,y∈T : 0<∆(x,y)≤r

|v(x) − v(y)|
∆(x, y)

√
log(∆(x, y)−1)

= κ3 a.s. (3.3)

Moreover, under Assumptions 2.1 and 2.3, (3.2) and (3.3) also hold when ∆ is replaced by the
canonical metric d, with possibly different constants.

Proof. By Assumption 2.1, v(x) can be represented as the infinite sum

v(x) =

∞∑

n=0

vn(x), (3.4)

where vn(x) = v([n, n+1), x) and vn = {vn(x), x ∈ T} (n = 0, 1, . . . ) is a sequence of independent
Gaussian random fields. Let Fn be the σ-algebra generated by the processes {vm,m ≥ n} and
the null events, and let F∞ =

⋂∞
n=0 Fn be the σ-algebra of all tail events. By Kolmogorov’s

zero–one law, P(A) = 0 or 1 for A ∈ F∞.
To prove (i), we will show that for any fixed x0 ∈ T , the random variable

X := lim inf
r→0+

sup
x∈T :∆(x,x0)≤r

|v(x)− v(x0)|
r(log log(1/r))−1/Q

is measurable with respect to the σ-algebra F∞. For any n ≥ 1 and x ∈ T , let

Yn(x) =
n−1∑

m=0

vm(x) and Zn(x) =
∞∑

m=n

vm(x).

Note that v(x) = Yn(x) + Zn(x) and Yn(x) = v([0, n), x). Consider n ≥ a0, where a0 is the
constant in Assumption 2.1. Then by (2.1) with a = n and b = ∞, for all x, y ∈ T , we have

‖Yn(x)− Yn(y)‖L2 ≤ c0

k∑

j=1

nγj |xj − yj|.

Since Yn is Gaussian, this implies that for any p ≥ 2, there is a finite constant C which depends
on n such that for all x, y ∈ T ,

E(|Yn(x)− Yn(y)|p) ≤ C|x− y|p.
Then, by Kolmogorov’s continuity theorem, for any 0 < β < 1, with probability one, x 7→ Yn(x)
is β-Hölder continuous on T . If we choose β such that max{α1, . . . , αk} < β < 1, then for a.e. ω,
there exists C = C(ω, n) <∞ such that for all x, y ∈ T ,

|Yn(x)− Yn(y)| ≤ C
k∑

j=1

|xj − yj|β (3.5)
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This implies that for any x0 ∈ T ,

lim
r→0+

sup
x∈T :∆(x,x0)≤r

|Yn(x)− Yn(x0)|
r(log log(1/r))−1/Q

= 0 a.s.

Since v = Yn + Zn, we have

X = lim inf
r→0+

sup
x∈T :∆(x,x0)≤r

|Zn(x)− Zn(x0)|
r(log log(1/r))−1/Q

a.s.

This means that X is an Fn-measurable random variable, and this is true for arbitrary n ≥ a0.
Therefore, X is F∞-measurable. By Kolmogorov’s zero–one law, this implies (i).

For (ii) and (iii), notice that the limits on the left-hand side of (3.2) and (3.3) both exist by
monotonicity. Moreover, similarly to the above arguments, for any n ≥ a0, by (3.5), we have

lim
r→0+

sup
x∈T : 0<∆(x,x0)≤r

|Yn(x)− Yn(x0)|
∆(x, x0)

√
log log(∆(x, x0)−1)

= 0 a.s. (3.6)

and

lim
r→0+

sup
x,y∈T : 0<∆(x,y)≤r

|Yn(x)− Yn(y)|
∆(x, y)

√
log(∆(x, y)−1)

= 0 a.s. (3.7)

It follows that the left-hand side of (3.2) and (3.3) are F∞-measurable random variables and
therefore are constants a.s. by Kolmogorov’s zero–one law.

Finally, to see that (3.2) and (3.3) also hold when ∆ is replaced by d, note that for each
n ≥ a0, by (3.5) and Assumption 2.3, for a.e. ω, there exists C = C(ω, n) <∞ such that for all
x, y ∈ T with d(x, y) ≤ r, we have

|Yn(x)− Yn(y)| ≤ Crβ−α∗
d(x, y),

where α∗ = max{α1, . . . , αk}. Therefore, (3.6) and (3.7) hold with ∆ being replaced by d, and
the desired result follows from the fact that v = Yn + Zn and Kolmogorov’s zero–one law. �

4. Chung-type law of the iterated logarithm

This section is devoted to proving the Chung-type LIL. It is well known that the small ball
probability is a key step in establishing Chung’s LIL ([18, 14]). The following lemma is a
reformulation of Talagrand’s lower bound for small ball probabilities of Gaussian processes [23,
Lemma 2.2]. See Ledoux [9, p.257] for a proof.

Lemma 4.1. Let {X(t), t ∈ S} be a separable, real-valued, mean-zero Gaussian process indexed
by a bounded set S with canonical metric dX(s, t) = ‖X(s)−X(t)‖L2 . Let N(S, dX , ε) denote the
smallest number of dX-balls of radius ε needed to cover the set S. Suppose there is a decreasing
function ψ : (0, δ) → (0,∞) such that N(S, dX , ε) ≤ ψ(ε) for all ε ∈ (0, δ) and there are
constants a2 ≥ a1 > 1 such that for all ε ∈ (0, δ),

a1ψ(ε) ≤ ψ(ε/2) ≤ a2ψ(ε). (4.1)

Then, there is a finite constant K depending only on a1 and a2 such that for all u ∈ (0, δ),

P

{
sup
s,t∈S

|X(s) −X(t)| ≤ u

}
≥ exp (−Kψ(u)) . (4.2)

Recall the metric ∆ defined in (2.3). Let B∆(x, r) = {y ∈ R
k : ∆(x, y) ≤ r} be the closed

∆-ball centered at x of radius r. In the proposition below, we prove optimal bounds for the
small ball probability of v around a fixed point x0, which generalizes Theorem 5.1 in [27] (or
Lemma 2.2 of [15]), where the case of x0 = 0 and r = 1 was considered.
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Proposition 4.2. Under Assumptions 2.1 and 2.2, there exist positive finite constants C1, C2

and r0 > 0 small such that for any 0 < u < r ≤ r0 and x0 ∈ T with B∆(x0, r) ⊂ T , we have

exp
(
−C1(r/u)

Q
)
≤ P

{
sup

x∈B∆(x0,r)
|v(x) − v(x0)| ≤ u

}
≤ exp

(
−C2(r/u)

Q
)
. (4.3)

Proof. We first prove the lower bound in (4.3). Consider the Gaussian random field {v(x), x ∈ T}
and the canonical metric dv(x, y) = ‖v(x) − v(y)‖L2 . By Assumption 2.1 and Lemma 2.4, we
can find some small r0 > 0 such that dv(x, y) ≤ c1∆(x, y) for all x, y ∈ T with ∆(x, y) ≤ r and
0 < r ≤ r0. This implies N(B∆(x0, r), dv , ε) ≤ C0(r/ε)

Q for all ε > 0 small, where C0 does
not depend on r or ε. Take S = B∆(x0, r) and ψ(ε) = C0(r/ε)

Q. Then ψ satisfies (4.1) with
a1 = a2 = 2Q > 1. Hence, the lower bound in (4.3) follows from Lemma 4.1.

The proof of the upper bound in (4.3) is based on Assumption 2.2 and a conditioning argu-
ment. Suppose 0 < u < r ≤ r0 and B∆(x0, r) ⊂ T . Notice that, for x0 = (x0,1, . . . , x0,k), the

rectangle I :=
∏k

j=1[x0,j, x0,j+(k−1r)1/αj ] is contained in B∆(x0, r). For simplicity, we consider

the case where x0 lies in the orthant [0,∞)k, so that the interior of I does not contain the origin
(otherwise, in order to retain this latter property for I, we can modify the definition of I by

using the interval [x0,j − (k−1r)1/αj , x0,j ] for x0,j < 0 and the rest of the proof is similar). It
suffices to prove that

P

{
sup
x∈I

|v(x) − v(x0)| ≤ u

}
≤ exp

(
−C2(r/u)

Q
)
. (4.4)

Since r/u > 1, we can find an integer n ≥ 2 such that n−1 < r/u ≤ n (in particular, n/2 < r/u).

Divide I into sub-rectangles of side lengths
(
r/(kn)

)1/αj (j = 1, . . . , k). The number of sub-

rectangles is N ∼ nQ. Let xi (1 ≤ i ≤ N) denote the upper-right vertices of the sub-rectangles
in any order. For each 1 ≤ j ≤ N , let

Aj =

{
max
1≤i≤j

|v(xi)− v(x0)| ≤ u

}
.

Then by conditioning,

P(Aj) = E

[
1Aj−1

P

{
|v(xj)− v(x0)| ≤ u

∣∣∣ v(xi) : 0 ≤ i ≤ j − 1
}]
. (4.5)

By Assumption 2.2, the property that the xi’s are separated by a ∆-distance of at least r/(kn)
and that the interior of I does not contain the origin, we have

Var
(
v(xj)

∣∣v(xi) : 0 ≤ i ≤ j − 1
)
≥ c2 min

0≤i≤j−1
∆2(xj , xi) ≥ c2(r/(kn))

2. (4.6)

Since the random field v is Gaussian, the conditional distribution of v(xj) given all the v(xi), with
0 ≤ i ≤ j−1, is a Gaussian distribution with conditional variance Var(v(xj)|v(xi) : 0 ≤ i ≤ j−1).
Then, (4.6) and Anderson’s inequality [2, Theorem 2] imply that

P

{
|v(xj)− v(x0)| ≤ u

∣∣∣ v(xi) : 0 ≤ i ≤ j − 1
}
≤ P

{
|Z| ≤ u√

c2(r/(kn))

}
≤ exp(−C), (4.7)

where Z is a standard Gaussian random variable and the last inequality holds for some constant
C > 0 since k ≤ knu/r ≤ 2k. Then, based on (4.5) and (4.7), we can use induction to deduce
that

P

{
max
1≤i≤N

|v(xi)− v(x0)| ≤ u

}
= P(AN ) ≤ exp(−CN).

Since N ∼ nQ and n− 1 < r/u ≤ n, this implies (4.4) and completes the proof. �
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The next lemma is an isoperimetric inequality for general Gaussian processes.

Lemma 4.3. [10, p.302] There is a universal constant K0 such that the following statement
holds. Let S be a bounded set and {X(s), s ∈ S} be a separable Gaussian process. Let D =
sup{dX(s, t) : s, t ∈ S} be the diameter of S in metric dX . Then for any u > 0,

P

{
sup
s,t∈S

|X(s)−X(t)| ≥ K0

(
u+

∫ D

0

√
logN(S, dX , ε)dε

)}
≤ exp

(
− u2

D2

)
.

Now, we are ready to prove the Chung-type LIL.

Theorem 4.4. Under Assumptions 2.1 and 2.2, for any fixed x0 ∈ T , there exists a positive
finite constant κ which may depend on x0 such that

lim inf
r→0+

sup
x∈T :∆(x,x0)≤r

|v(x) − v(x0)|
r(log log(1/r))−1/Q

= κ1/Q a.s.

and C2 ≤ κ ≤ C1, where C1 and C2 are the constants in Proposition 4.2. In particular, κ
coincides with the following limit, which is called the small ball constant of v on {x ∈ T :
∆(x, x0) ≤ r}, if it exists:

κ = − lim
r→0,u/r→0

(u
r

)Q
logP

{
sup

x∈T :∆(x,x0)≤r
|v(x)− v(x0)| ≤ u

}
. (4.8)

Proof of Theorem 4.4. Fix x0 ∈ T . To simplify notations, define h(r) := r(log log(1/r))−1/Q

and

L(r) := sup
x∈T :∆(x,x0)≤r

|v(x) − v(x0)|
h(r)

.

By Lemma 3.1, lim infr→0+ L(r) = κ1 a.s. for some constant 0 ≤ κ1 ≤ ∞. To prove the theorem,
we will show that

lim inf
r→0+

L(r) ≥ C
1/Q
2 a.s. (4.9)

and
lim inf
r→0+

L(r) ≤ C
1/Q
1 a.s. (4.10)

We first prove the lower bound (4.9). Let a > 1 be a constant. For each n ≥ 1, let rn = a−n.

Consider a constant K such that 0 < K < a−1C
1/Q
2 and consider the event

An =

{
sup

x∈T :∆(x,x0)≤rn

|v(x)− v(x0)| ≤ Kh(rn−1)

}
.

By the small ball probability estimates in Proposition 4.2,

P(An) ≤ exp
(
−C2(aK)−Q log log(1/rn−1)

)

= ((n − 1) log a)−C2(aK)−Q

.

Then
∑∞

n=1 P(An) < ∞ since C2(aK)−Q > 1. By using the Borel–Cantelli lemma and letting

K ↑ a−1C
1/Q
2 along a rational sequence, we get that

lim inf
n→∞

sup
x∈T :∆(x,x0)≤rn

|v(x) − v(x0)|
h(rn−1)

≥ a−1C
1/Q
2 a.s. (4.11)

Note that h is increasing for r > 0 small. For any r > 0 small, we can find n large enough such
that rn ≤ r ≤ rn−1 and h(r) ≤ h(rn−1). Then, by (4.11), we have

lim inf
r→0+

L(r) ≥ a−1C
1/Q
2 a.s.,
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which implies (4.9) since a > 1 is arbitrary.
Now, we turn to the proof of the upper bound (4.10). It relies on Assumption 2.1 which allows

us to create independence. Fix δ > 0 small. For any n ≥ 1, let ρn = exp(−(nδ + n1+δ)) and
bn = exp(n1+δ). For any x ∈ T , let vn(x) = v([bn, bn+1), x) and ṽn(x) = v(R+ \ [bn, bn+1), x) so
that v(x) = vn(x)+ ṽn(x). By Assumption 2.1(a), the processes v1, v2, . . . are independent, and
for each n ≥ 1, vn and ṽn are also independent.

Let K := ((1 + δ)C1)
1/Q. Since v(x) = vn(x) + ṽn(x) and vn and ṽn are independent, we can

apply Anderson’s inequality [2, Theorem 2] to get that

P

{
sup

x∈T :∆(x,x0)≤ρn

|vn(x)− vn(x0)| ≤ Kh(ρn)

}
≥ P

{
sup

x∈T :∆(x,x0)≤ρn

|v(x)− v(x0)| ≤ Kh(ρn)

}
.

Then, by Proposition 4.2, the right-hand side is at least

exp
(
−C1K

−Q log log(1/ρn)
)
= (nδ + n1+δ)−C1K−Q

≥ (2n1+δ)−C1K−Q

.

Since (1 + δ)C1K
−Q = 1, we have

∞∑

n=1

P

{
sup

x∈T :∆(x,x0)≤ρn

|vn(x)− vn(x0)| ≤ Kh(ρn)

}
= ∞.

Since v1, v2, . . . are independent, the second Borel–Cantelli lemma implies

lim inf
n→∞

sup
x∈T :∆(x,x0)≤ρn

|vn(x)− vn(x0)|
h(ρn)

≤ ((1 + δ)C1)
1/Q a.s. (4.12)

To complete the proof of (4.10), we claim that

lim sup
n→∞

sup
x∈T :∆(x,x0)≤ρn

|ṽn(x)− ṽn(x0)|
h(ρn)

= 0 a.s. (4.13)

We prove this by using Lemma 4.3. Consider the process ṽn on the set Sn := B∆(x0, ρn). By
(2.1) of Assumption 2.1, for all x, y ∈ Sn,

‖ṽn(x)− ṽn(y)‖L2 ≤ c0

( k∑

j=1

b
γj
n |xj − yj|+ b−1

n+1

)
. (4.14)

Recall that γj = α−1
j − 1. Let Dn be the diameter of Sn in the metric dṽn . Then

Dn ≤ Cρn

( k∑

j=1

(bnρn)
α−1
j −1 + (bn+1ρn)

−1

)
. (4.15)

Note that bnρn = exp(−nδ). Also, by the mean value theorem, (n + 1)1+δ − n1+δ ≥ (1 + δ)nδ ,
which implies bn+1ρn ≥ exp(δnδ). Provided δ ≤ min{α−1

1 − 1, . . . , α−1
k − 1}, we have

Dn ≤ Cρn exp(−δnδ). (4.16)

Also, by the independence of vn and ṽn and Lemma 2.4, for n large, for all x, y ∈ Sn,

‖ṽn(x)− ṽn(y)‖L2 ≤ ‖v(x) − v(y)‖L2 ≤ c1∆(x, y).
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This implies N(Sn, dṽn , ε) ≤ C(ρn/ε)
Q for ε > 0 small. Then for n large,

∫ Dn

0

√
logN(Sn, dṽn , ε) dε ≤ C

∫ Cρn exp(−δnδ)

0

√
log(ρn/ε) dε

= Cρn

∫ C exp(−δnδ)

0

√
log(1/ε) dε

≤ Cρn exp(−δnδ)
√
δnδ.

The last inequality can be verified using the change of variable ε = e−u2

and the elementary

inequality
∫∞
x u2e−u2

du ≤ Cxe−x2

for x large. Let ζ > 0. Then for n large, we have

2K0ζh(ρn) ≥ K0

(
ζh(ρn) +

∫ Dn

0

√
logN(Sn, dṽn , ε) dε

)
,

where K0 is the universal constant in Lemma 4.3. Then, by that lemma and (4.16), we have

P

{
sup

x∈T :∆(x,x0)≤ρn

|ṽn(x)− ṽn(x0)| ≥ 2K0ζh(ρn)

}
≤ exp

(
− ζ2h(ρn)

2

D2
n

)

≤ exp

(
− ζ2 exp(2δnδ)

C2(log(nδ + n1+δ))2/Q

)
.

Hence ∞∑

n=1

P

{
sup

x∈T :∆(x,x0)≤ρn

|ṽn(x)− ṽn(x0)| ≥ 2K0ζh(ρn)

}
<∞.

By the Borel–Cantelli lemma,

lim sup
n→∞

sup
x∈T :∆(x,x0)≤ρn

|ṽn(x)− ṽn(x0)|
h(ρn)

≤ 2K0ζ a.s.

Since ζ > 0 is arbitrary, we get (4.13).
Finally, recall that v(x) = vn(x) + ṽn(x). Combining (4.12) and (4.13) yields

lim inf
r→0+

L(r) ≤ ((1 + δ)C1)
1/Q a.s.

Since δ > 0 is arbitrary, we get (4.10). The proof of Theorem 4.4 is complete. �

5. The exact local modulus of continuity

In this section, we are going to prove the exact local modulus of continuity, which takes the
form of the ordinary LIL. First, let us recall the following result of Talagrand [22, Theorem 2.4].

Lemma 5.1. Let {X(t), t ∈ S} be a mean-zero continuous Gaussian process. Let

σ2 := sup
t∈S

‖X(t)‖2L2 .

Consider the canonical metric dX on S defined by dX(s, t) = ‖X(s)−X(t)‖L2 . Assume that for
some constant M > σ, some p > 0 and some 0 < ε0 ≤ σ, we have

N(S, dX , ε) ≤ (M/ε)p for all ε < ε0.

Then for u > σ2[(1 +
√
p)/ε0], we have

P

{
sup
t∈S

X(t) ≥ u

}
≤
(
KMu√
p σ2

)p

Φ
(u
σ

)
,

where Φ(x) = (2π)−1/2
∫∞
x e−y2/2 dy and K is a universal constant.
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The following Gaussian estimate is standard:

1

2
√
2πx

e−x2/2 ≤ Φ(x) ≤ 1√
2π
e−x2/2 for all x ≥ 1. (5.1)

Recall that d(x, y) = ‖v(x) − v(y)‖L2 is the canonical metric of v. The following theorem gives
the exact local modulus of continuity under the metrics d and ∆, respectively. Note that the
strong LND property (Assumption 2.2) is not required for this result.

Theorem 5.2. Under Assumptions 2.1 and 2.3, for any fixed x0 ∈ T , we have

lim
r→0+

sup
x∈T : 0<d(x,x0)≤r

|v(x) − v(x0)|
d(x, x0)

√
log log(d(x, x0)−1)

=
√
2 a.s. (5.2)

and

lim
r→0+

sup
x∈T : 0<∆(x,x0)≤r

|v(x) − v(x0)|
∆(x, x0)

√
log log(∆(x, x0)−1)

= κ a.s. (5.3)

for some positive finite constant κ satisfying
√
2 c3 ≤ κ ≤

√
2 c1,

where c1 is the constant in (2.5) and c3 is the constant in Assumption 2.3.

Remark 5.3. Meerschaert et al. [19] have considered Gaussian random fields that have station-
ary increments and satisfy d(x, y) ≍ ∆(x, y), but only proved that the limit in (5.2) is equal to
some finite constant κ1 ≥

√
2. Our theorem does not require stationarity of increments and we

obtain the exact constant κ1 =
√
2. Meerschaert et al. [19] also proved another form of LIL:

lim sup
|ε|→0+

sup
s: |sj |≤|εj|

|v(x0 + s)− v(x0)|
d(s, 0)

√
log log(1 +

∏k
j=1 |sj|−αj )

= κ2 a.s.

Proof of Theorem 5.2. Fix x0 ∈ T . For r > 0, define

L(r) := sup
x∈T : 0<d(x,x0)≤r

|v(x) − v(x0)|
d(x, x0)

√
log log(d(x, x0)−1)

.

By Lemma 3.1, limr→0+ L(r) = κ a.s. for some constant 0 ≤ κ ≤ ∞. To prove (5.2), we claim
that

lim sup
r→0+

L(r) ≤
√
2 a.s. (5.4)

and

lim sup
r→0+

L(r) ≥
√
2 a.s. (5.5)

We first prove the upper bound (5.4). Let a > 1 and ζ > 0 be constants. For each n ≥ 1, let

rn = a−n and un = (1 + ζ)rn
√

2 log log(1/rn).

Consider the event

An =

{
sup

x∈T :d(x,x0)≤rn

|v(x)− v(x0)| > un

}
.

We are going to use Lemma 5.1 to derive an upper bound for P(An). Fix a large n. Consider
S := {x ∈ T : d(x, x0) ≤ rn} and X(x) := v(x)− v(x0) for x ∈ S. Then,

σ2 := sup
x∈S

‖X(x)‖2L2 = r2n
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and by Lemma 2.4, for all x, y ∈ S,

dX(x, y) ≤ c1

k∑

j=1

|xj − yj|αj .

Then N(S, dX , ε) ≤ C0(rn/ε)
Q for 0 < ε < σ, where C0 is a constant independent of ε or n, and

can be chosen such that M := C
1/Q
0 rn > σ. For n large enough, un > rn(1 +

√
Q). Take ε0 = σ

and p = Q. Then by Lemma 5.1, we have

P(An) ≤ 2

(
KC

1/Q
0 rnun√
Qr2n

)Q

Φ(un/rn).

Using the estimate (5.1), we get that

P(An) ≤ C(log n)Q/2 n−(1+ζ)2 .

Hence,
∑∞

n=1 P(An) <∞. By the Borel–Cantelli lemma,

lim sup
n→∞

sup
x∈T : 0<d(x,x0)≤rn

|v(x)− v(x0)|
rn
√

log log(1/rn)
≤ (1 + ζ)

√
2 a.s.

and thus

lim sup
n→∞

sup
x∈T : rn+1≤d(x,x0)≤rn

|v(x)− v(x0)|
rn+1

√
log log(1/rn)

≤ a(1 + ζ)
√
2 a.s.

This implies that

lim sup
r→0+

L(r) ≤ a(1 + ζ)
√
2 a.s.

Letting a ↓ 1 and ζ ↓ 0 along rational sequences, we get (5.4).
We turn to the proof of the lower bound (5.5). Fix 0 < ε < 1. Let 0 < δ < 1 be a small fixed

number (depending on ε) to be determined. Write x0 = (x0,1, . . . , x0,k). For each n ≥ 1, let

xn =
(
x0,1 + ρ

α−1
1

n , . . . , x0,k + ρ
α−1
k

n

)
,

where ρn = exp(−(nδ+n1+δ)). With Assumption 2.1, we can write v(x) = vn(x)+ ṽn(x), where

vn(x) = v([bn, bn+1), x), ṽn(x) = v(R+ \ [bn, bn+1), x),

and bn = exp(n1+δ). We aim to prove that

lim sup
n→∞

|vn(xn)− vn(x0)|
d(xn, x0)

√
log log(d(xn, x0)−1)

≥ (1− ε)
√
2 a.s. (5.6)

and

lim sup
n→∞

|ṽn(xn)− ṽn(x0)|
d(xn, x0)

√
log log(d(xn, x0)−1)

≤ ε a.s. (5.7)

To prove (5.6), we consider for each n ≥ 1 the event

Bn =
{
|vn(xn)− vn(x0)| ≥ (1− ε)d(xn, x0)

√
2 log log(d(xn, x0)−1)

}
.

Similarly to (4.14)–(4.16) in the proof of Theorem 4.4, we can deduce from Assumption 2.1 that,
provided δ ≤ min{α−1

1 − 1, . . . , α−1
k − 1},

‖ṽn(xn)− ṽn(x0)‖L2 ≤ c0

( k∑

j=1

b
γj
n |xn,j − x0,j|+ b−1

n+1

)

≤ K1ρn exp(−δnδ).
(5.8)
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Note that ∆(xn, x0) = kρn. By Assumption 2.3 and Lemma 2.4,

c3∆(x, x0) ≤ d(x, x0) ≤ c1∆(x, x0) (5.9)

for all x in a neighbourhood of x0. Then, for n large,

c3kρn ≤ d(xn, x0) ≤ c1kρn. (5.10)

Therefore, by the triangle inequality, (5.8) and (5.10), we have

‖vn(xn)− vn(x0)‖L2 ≥ ‖v(xn)− v(x0)‖L2 − ‖ṽn(xn)− ṽn(x0)‖L2

≥ (1−K2 exp(−δnδ))d(xn, x0).
(5.11)

Now, (5.11) and (5.10) imply that for n large,

Bn ⊃
{
|vn(xn)− vn(x0)| ≥ (1− ε/2)‖vn(xn)− vn(x0)‖L2

√
2 log log(C/ρn)

}
,

where C is a suitable constant. Then, by the standard Gaussian estimate (5.1), we get that, for
n large,

P(Bn) ≥ K(log n)−1/2n−(1−ε/2)2(1+δ).

By choosing δ small enough such that (1− ε/2)2(1 + δ) ≤ 1, we have
∑∞

n=1 P(Bn) = ∞. Hence,
by the independence among v1, v2, . . . and the second Borel–Cantelli lemma, we get (5.6).

For (5.7), we use (5.8) and (5.10) above to get that

P

{
|ṽn(xn)− ṽn(x0)| ≥ εd(xn, x0)

√
log log(d(xn, x0)−1)

}

≤ P

{
|ṽn(xn)− ṽn(x0)| ≥ Kε‖ṽn(xn)− ṽn(x0)‖L2 exp(δnδ)

√
log log(C/ρn)

}
.

This probability, by standard Gaussian estimate, is bounded above by

C ′ exp

(
−1

2
K2ε2 exp(2δnδ) log log(C/ρn)

)
≤ C ′n−2

for n large. Thus, the Borel–Cantelli lemma implies (5.7). Since v(x) = vn(x)+ṽn(x), combining
(5.6) and (5.7) yields

lim sup
n→∞

|v(xn)− v(x0)|
d(xn, x0)

√
log log(d(xn, x0)−1)

≥ (1− ε)
√
2− ε a.s.

Since d(xn, x0) → 0, this implies lim supr→0+ L(r) ≥ (1 − ε)
√
2 − ε a.s. Letting ε ↓ 0 along

a rational sequence, we get (5.5). This completes the proof of (5.2). Finally, (5.3) is a direct
consequence of Lemma 3.1, (5.2) and (5.9). �

6. The exact uniform modulus of continuity

The following theorem establishes the exact uniform modulus of continuity for v.

Theorem 6.1. Under Assumptions 2.1, 2.2, and 2.3, we have

lim
r→0+

sup
x,y∈T : 0<∆(x,y)≤r

|v(x)− v(y)|
∆(x, y)

√
log(∆(x, y)−1)

= κ a.s. (6.1)

and

lim
r→0+

sup
x,y∈T : 0<d(x,y)≤r

|v(x)− v(y)|
d(x, y)

√
log(d(x, y)−1)

= κ′ a.s. (6.2)

for some positive finite constants κ and κ′ satisfying
√

2Qc2 ≤ κ ≤
√

2Qc1 and
√

2Qc2 c
−1
1 ≤ κ′ ≤

√
2Q, (6.3)
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where Q =
∑k

j=1 α
−1
j , c1 is the constant in (2.5) and c2 is the constant in Assumption 2.2.

Remark 6.2. Our Assumption 2.2 of strong LND is stronger than condition (A2) in Theorem
4.1 of Meerschaert et al. [19], which is known as the sectorial LND property. But our estimates
(6.3) for the constants are sharper than the estimates (4.3) in [19].

Proof of Theorem 6.1. For any r > 0, let

L(r) := sup
x,y∈T : 0<∆(x,y)≤r

|v(x)− v(y)|
∆(x, y)

√
log(∆(x, y)−1)

.

By Lemma 3.1, limr→0+ L(r) = κ a.s. for some constant 0 ≤ κ ≤ ∞. To prove (6.1), we aim to
show that

lim
r→0+

L(r) ≤
√

2Qc1 a.s. (6.4)

and
lim

r→0+
L(r) ≥

√
2Qc2 a.s. (6.5)

For the upper bound (6.4), we first prove that there is a finite constant C0 such that for any
fixed b > 1,

lim sup
n→∞

sup
x,y∈T :∆(x,y)≤2kb−n

|v(x)− v(y)|
b−n

√
log bn

≤ C0 a.s. (6.6)

Indeed, by Theorem 1.3.5 in [1], there exists a universal constant K0 such that for a.e. ω, there
exists r0 = r0(ω) such that for all 0 < r < r0,

sup
x,y∈T : d(x,y)≤r

|v(x) − v(y)| ≤ K0

∫ r

0

√
logN(T, d, ε) dε,

where d is the canonical metric of v. By Lemma 2.4, N(T, d, ε) ≤ Cε−Q for all ε > 0 small, thus
for r > 0 small, ∫ r

0

√
logN(T, d, ε) dε ≤ Cr

√
log(1/r).

Also, by Lemma 2.4, if ∆(x, y) ≤ 2kb−n and if n ≥ n0(ω) is large enough, then d(x, y) would be
less than r0(ω). Hence, (6.6) follows immediately.

Of course, (6.6) implies lim supr→0+ L(r) ≤ κ for some finite constant κ. In order to improve
this and get the sharper bound (6.4), we use an approximation argument based on anisotropic

lattice points. Let ε > 0 and 1 < a < 2. Choose b such that a < b < a1+ε/(2Q). Let n ≥ 1 be
an integer. For each i = (i1, . . . , ik) ∈ Z

k and m = (m1, . . . ,mk) ∈ Z
k, define the anisotropic

lattice points zn,i and hn,m in
∏k

j=1 b
−n/αjZ by

zn,i = (i1b
−n/α1 , . . . , ikb

−n/αk) and hn,m = (m1b
−n/α1 , . . . ,mkb

−n/αk).

Let

In = {i ∈ Z
k : zn,i ∈ T} and Mn =

{
m ∈ Z

k :

k∑

j=1

|mj|αjb−n ≤ a−n

}
.

Consider the event

An =

{
max
i∈In

max
m∈Mn

|v(zn,i + hn,m)− v(zn,i)| > c1a
−n
√

2(Q+ ε) log an
}
.

By Lemma 2.4, for i ∈ In, m ∈Mn and n large,

‖v(zn,i + hn,m)− v(zn,i)‖L2 ≤ c1

k∑

j=1

|mj|αj b−n ≤ c1a
−n.
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Also, the cardinality of In is ≤ CbQn and that of Mn is ≤ C(b/a)Qn. It follows that

P(An) ≤ CbQn

(
b

a

)Qn

max
i∈In

max
m∈Mn

P

{ |v(zn,i + hn,m)− v(zn,i)|
‖v(zn,i + hn,m)− v(zn,i)‖L2

>
√

2(Q+ ε) log an
}
.

Then by the standard Gaussian estimate (5.1), for n large,

P(An) ≤ C

(
b2

a

)Qn

exp(−(Q+ ε) log an) = C

(
b2

a2+ε/Q

)Qn

.

The choice of b implies that
∑∞

n=1 P(An) <∞. By the Borel–Cantelli lemma,

lim sup
n→∞

max
i∈In

max
m∈Mn

|v(zn,i + hn,m)− v(zn,i)|
a−n

√
log an

≤ c1
√

2(Q+ ε) a.s. (6.7)

To prove (6.4), we consider x, y ∈ T such that a−n−1 ≤ ∆(x, y) ≤ a−n, and approximate
them by lattice points. Write x = (x1, . . . , xk) and y = (y1, . . . , yk). Choose i ∈ In such that

zn,i = zn,i(x) = (i1b
−n/α1 , . . . , ikb

−n/αk) is the lattice point that is closest to x. In particular,

for all j ∈ {1, . . . , k}, we have |xj − ijb
−n/αj | ≤ b−n/αj . Since ∆(x, y) ≤ a−n, we can also find

m ∈Mn such that for all j ∈ {1, . . . , k},
mjb

−n/αj ≤ yj − xj ≤ (mj + 1)b−n/αj if yj − xj ≥ 0,

(mj − 1)b−n/αj ≤ yj − xj ≤ mjb
−n/αj if yj − xj < 0.

Let hn,m = hn,m(x, y) = (m1b
−n/α1 , . . . ,mkb

−n/αk) and write

v(y)− v(x) = [v(y)− v(zn,i + hn,m)] + [v(zn,i + hn,m)− v(zn,i)] + [v(zn,i)− v(x)].

Note that

∆(zn,i, x) ≤
k∑

j=1

|xj − ijb
−n/αj |αj ≤ kb−n

and

∆(y, zn,i + hn,m) ≤ ∆(y, x+ hn,m) + ∆(x, zn,i)

≤
k∑

j=1

|yj − xj −mjb
−n/αj |αj +

k∑

j=1

|xj − ijb
−n/αj |αj

≤ 2kb−n.

Then, since b > a, (6.6) implies that

lim sup
n→∞

sup
x,y∈T : a−n−1≤∆(x,y)≤a−n

|v(y) − v(zn,i + hn,m)|
a−n

√
log an

= 0 a.s.

and

lim sup
n→∞

sup
x,y∈T : a−n−1≤∆(x,y)≤a−n

|v(zn,i)− v(x)|
a−n

√
log an

= 0 a.s.

Therefore, together with (6.7), we have

lim sup
n→∞

sup
x,y∈T : a−n−1≤∆(x,y)≤a−n

|v(y)− v(x)|
a−n

√
log an

≤ c1
√
2(Q+ ε) a.s.

This implies that

lim sup
r→0+

sup
x,y∈T : 0<∆(x,y)≤r

|v(y) − v(x)|
∆(x, y)

√
log(∆(x, y)−1)

≤ ac1
√
2(Q+ ε) a.s.
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Letting ε ↓ 0 and a ↓ 1 along rational sequences, we get the upper bound (6.4).
Next, we prove the lower bound (6.5) using the strong LND property from Assumption 2.2.

Let T =
∏k

j=1[tj − sj, tj + sj]. For simplicity, we consider the case where (t1, . . . , tk) ∈ [0,∞)k

(the proof is similar for other cases). In this case, it is enough to prove (6.5) with T being

replaced by T̃ =
∏k

j=1[tj, tj + sj], whose interior does not contain the origin. For each n ≥ 1,

let rn = 2−n. For each i = (i1, . . . , ik) ∈ Z
k, denote

i− 1∗ = (i1 − 1, i2 . . . , ik).

Define the lattice points xn,i by

xn,i = (i12
−n/α1 , . . . , ik2

−n/αk).

Let

In = {i ∈ Z
k : xi ∈ T̃ and xi−1∗ ∈ T̃} and I ′n = {i ∈ Z

k : xi ∈ T̃}.
Note that ∆(xn,i, xn,i−1∗) = rn and the function r 7→ r

√
log(1/r) is increasing for r > 0 small.

Then

lim
r→0+

L(r) ≥ lim
n→∞

sup
x,y∈T̃ : 0<∆(x,y)≤rn

|v(x)− v(y)|
∆(x, y)

√
log(∆(x, y)−1)

≥ lim inf
n→∞

Ln,

where

Ln := max
i∈In

|v(xn,i)− v(xn,i−1∗)|
rn
√

log(1/rn)
.

To prove (6.5), it suffices to prove that

lim inf
n→∞

Ln ≥
√

2Qc2 a.s. (6.8)

To this end, let 0 < K <
√
2Qc2. Fix a large integer n and write xi = xn,i for simplicity. We

claim that there is a constant C independent of n or i such that for all i ∈ In,

P

{ |v(xi)− v(xi−1∗)|
rn
√

log(1/rn)
≤ K

∣∣∣∣ v(xj) : j ∈ I ′n \ {i}
}

≤ exp

(
−C2−nK2/(2c2)

√
n

)
. (6.9)

Indeed, for all i ∈ In, by Assumption 2.2 and the property that the interior of T̃ does not contain
the origin,

Var
(
v(xi)

∣∣v(xj) : j ∈ I ′n \ {i}
)
≥ c2 min

j∈I′n∪{0}\{i}
∆2(xi, xj) = c2 r

2
n. (6.10)

The conditional distribution of v(xi) given {v(xj) : j ∈ I ′n \ {i}} is Gaussian with conditional
variance Var(v(xi)|v(xj) : j ∈ I ′n \ {i}), and v(xi−1∗) is constant given {v(xj) : j ∈ I ′n \ {i}}.
Then, by Anderson’s inequality [2] and (6.10), we have

P

{ |v(xi)− v(xi−1∗)|
rn
√

log(1/rn)
≤ K

∣∣∣∣ v(xj) : j ∈ I
′
n \ {i}

}
≤ P

{
|Z| ≤ K

√
c−1
2 log(1/rn)

}
,

where Z is a standard Gaussian random variable. Hence, we can derive (6.9) using the Gaussian
estimate (5.1) and the elementary inequality 1− x ≤ exp(−x).

Let N = N(n) be the cardinality of In. Order the members of In by i(1), . . . , i(N) in a way
such that the value of the first coordinate of i is nondecreasing. For each m ∈ {1, . . . , N}, let
In(m) = {i(1), . . . , i(m)} and consider the event

Bm =

{
max

i∈In(m)

|v(xi)− v(xi−1∗)|
rn
√

log(1/rn)
≤ K

}
.
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Notice that, for each 2 ≤ m ≤ N , the event Bm−1 depends on the value of process v at points
among {xi(1)−1∗ , xi(1), . . . , xi(m−1)−1∗ , xi(m−1)}, none of which coincides with xi(m) because of
the way we order the members of In. Therefore, Bm−1 ∈ σ{v(xj) : j ∈ I ′n \ {i(m)}}. It follows
from (6.9) that

P(Bm) = E

[
1Bm−1

P

{ |v(xi(m))− v(xi(m)−1∗ )|
rn
√

log(1/rn)
≤ K

∣∣∣∣ v(xj) : j ∈ I ′n \ {i(m)}
}]

≤ P(Bm−1) exp

(
−C2−nK2/(2c2)

√
n

)
.

Note that N ∼ C2nQ. By induction, we get that

P(Ln ≤ K) = P(BN ) ≤ exp

(
−C2nQ

2−nK2/(2c2)

√
n

)
.

Since Q−K2/(2c2) > 0, we have
∑∞

n=1 P(Ln ≤ K) <∞. Hence, by the Borel–Cantelli lemma,

lim inf
n→∞

Ln ≥ K a.s.

Now, we let K ↑ √
2Qc2 along a rational sequence to get (6.8). This proves (6.1).

We turn to the proof of (6.2). Let

L̃(r) := sup
x,y∈T : 0<d(x,y)≤r

|v(x)− v(y)|
d(x, y)

√
log(d(x, y)−1)

.

By Lemma 3.1, limr→0+ L̃(r) = κ′ a.s. for some constant 0 ≤ κ′ ≤ ∞. Moreover, (6.1) and
Lemma 2.4 imply that

lim
r→0+

L̃(r) ≥
√

2Qc2 c
−1
1 a.s.

It remains to prove that

lim
r→0+

L̃(r) ≤
√

2Q a.s. (6.11)

This can be proved by a similar argument that led to (6.4) above. In fact, the proof of (6.6)
above shows that for any fixed b > 1,

lim sup
n→∞

sup
x,y∈T : d(x,y)≤b−n

|v(x)− v(y)|
b−n

√
log bn

≤ C a.s. (6.12)

Let ε > 0, 1 < a < 2 and b be such that a < b < a1+ε/(2Q). We modify the above approximation
argument as follows. For fixed n, choose any minimal cover {Bd(zn,i, b

−n)}i of T consisting of
d-balls with centers zn,i ∈ T , and define In = {zn,i}i. For each zn,i, define Mn,i = {hn,i,m}m
such that {Bd(zn,i+hn,i,m, b

−n)}m is a minimal cover of Bd(zn,i, (1+ε)a
−n). Consider the event

An =
{

max
zn,i∈In

max
hn,i,m∈Mn,i

|v(zn,i + hn,i,m)− v(zn,i)| > (1 + ε)a−n
√

2(Q+ ε) log an
}
.

Since d is comparable to ∆ by Assumption 2.3 and Lemma 2.4, the cardinality of In is ≤ CbnQ

and that of Mn,i is ≤ C(b/a)nQ. Also, ‖v(zn,i + hn,i,m) − v(zn,i)‖L2 ≤ (1 + ε)a−n. Then, as
before, we can show that

∑∞
n=1 P(An) <∞ and

lim sup
n→∞

max
zn,i∈In

max
hn,i,m∈Mn,i

|v(zn,i + hn,i,m)− v(zn,i)|
a−n

√
log an

≤ (1 + ε)
√

2(Q+ ε) a.s. (6.13)

Consider x, y ∈ T such that a−n−1 ≤ d(x, y) ≤ a−n. Then, we can find zn,i = zn,i(x) ∈ In such
that d(zn,i, x) ≤ b−n. Since d(zn,i, y) ≤ d(zn,i, x) + d(x, y) ≤ b−n + a−n ≤ (1+ ε)a−n for n large,
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we can also find hn,i,m = hn,i,m(x, y) ∈Mn,i such that d(zn,i + hn,i,m, y) ≤ b−n. Then, by (6.12)
and b > a, we get

lim sup
n→∞

sup
x,y∈T : a−n−1≤d(x,y)≤a−n

|v(zn,i)− v(x)|
a−n

√
log an

= 0 a.s.

and

lim sup
n→∞

sup
x,y∈T : a−n−1≤d(x,y)≤a−n

|v(zn,i + hn,i,m)− v(y)|
a−n

√
log an

= 0 a.s.

Combining this with (6.13), we get

lim sup
n→∞

sup
x,y∈T :a−n−1≤d(x,y)≤a−n

|v(y) − v(x)|
a−n

√
log an

≤ (1 + ε)
√

2(Q+ ε) a.s.

which implies that

lim sup
r→0+

sup
x,y∈T : 0<d(x,y)≤r

|v(y)− v(x)|
d(x, y)

√
log(d(x, y)−1)

≤ (1 + ε)a
√

2(Q+ ε) a.s.

Letting ε ↓ 0 and a ↓ 1 yields (6.11). This completes the proof of Theorem 6.1. �

7. Linear SPDEs driven by fractional-colored noise

In this section, we give an application of our main results to a class of linear SPDEs. Consider
the equation

∂

∂t
u(t, x) = L u(t, x) + Ẇ (t, x), t ≥ 0, x ∈ R

d, (7.1)

with zero initial condition u(0, x) = 0. Here, L is the infinitesimal generator of a symmetric

Lévy process X = {X(t), t ≥ 0} taking values in R
d, and Ẇ is a fractional-colored (or white-

colored) centered Gaussian noise with Hurst index 1/2 ≤ H < 1 in time and spatial covariance
f , i.e.,

E[Ẇ (t, x)Ẇ (s, y)] = ρH(t− s)f(x− y),

where

ρH(t− s) =

{
aH |t− s|2H−2 if 1/2 < H < 1,

δ(t− s) if H = 1/2,

and where aH = H(2H − 1) and δ is the delta function. When X is a Brownian motion, L is
the Laplace operator and (7.1) is the stochastic heat equation. Furthermore, when H = 1/2,
(7.1) is the stochastic heat equation considered in [6].

The existence of the solution to (7.1) has been studied in [3, 7] (and in [4] for H = 1/2), and
the space-time regularity of the solution has been studied in [24, 7]. Herrell et al. [7] used the
the idea of string processes of Mueller and Tribe [20] and showed that {u(t, x), t ≥ 0, x ∈ R

k}
admits the decomposition

u(t, x) = U(t, x)− Y (t, x), (7.2)

where {U(t, x), t ≥ 0, x ∈ R
k} has stationary increments and satisfies the property of strong

LND, while {Y (t, x), t ≥ 0, x ∈ R
k} has smooth sample paths. Consequently, certain regularity

properties of u(t, x) can be deduced from those of U(t, x). Now we can deal with {u(t, x), t ≥
0, x ∈ R

k} directly.
We assume that f is the Fourier transform of a tempered measure µ which is absolutely

continuous with respect to the Lebesgue measure with density h, i.e., µ(dξ) = h(ξ)dξ. A typical
example is h(ξ) = |ξ|−β , 0 < β < d. In this case, f is called the Riesz kernel: f(x) = C|x|β−d,
where C is some suitable constant depending on β and d; see [21, §V].
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Let Ψ(ξ) be the characteristic exponent of X given by

E[eiξ·X(t)] = e−tΨ(ξ), t ≥ 0, ξ ∈ R
d.

Note that Ψ(ξ) = Ψ(−ξ) ≥ 0 for all ξ ∈ R
d since X is assumed to be symmetric. Assume that

X(t) has a probability density function given by

pt(x) =
1

(2π)d

∫

Rd

e−iξ·xe−tΨ(ξ)dξ, t > 0, x ∈ R
d. (7.3)

Let T0 > 0. Recall that the Gaussian noise W defines a linear isometry from the Hilbert
space completion HP of the space C∞

c ((0, T0) × R
d) of compactly supported smooth functions

with respect to the inner product 〈·, ·〉HP into the Gaussian space in L2(P):

ϕ 7→W (ϕ) :=

∫ T0

0

∫

Rd

ϕ(s, y)W (ds, dy),

E[W (ϕ)W (ψ)] = 〈ϕ,ψ〉HP .
(7.4)

For test functions ϕ,ψ on (0, T0)×R
d, the inner product 〈ϕ,ψ〉HP is defined by

〈ϕ,ψ〉HP :=

∫ T0

0

∫ T0

0
ds dr

∫

Rd

∫

Rd

dy dz ϕ(s, y)ρH (s− r)f(y − z)ψ(r, z)

= bH

∫

R

dτ |τ |1−2H

∫

Rd

∫

Rd

dy dz f(y − z)F(ϕ(·, y)1[0,T0 ](·))(τ)F(ψ(·, z)1[0,T0 ](·))(τ)

= cH,d

∫

R

dτ |τ |1−2H

∫

Rd

dξ h(ξ)F(ϕ1[0,T0 ])(τ, ξ)F(ψ1[0,T0 ])(τ, ξ),

(7.5)

where bH = aH(22(1−H)√π )−1Γ(H − 1/2)/Γ(1−H) and cH,d = bH(2π)−d, for 1/2 < H < 1; see
[3, 7]. In fact, the equalities in (7.5) also hold for H = 1/2 with b1/2 = (2π)−1. In the above, F
denotes the Fourier transform defined, for any functions g : R → C and ϕ : R1+d → C, by

Fg(τ) =
∫

R

e−iτsg(s) ds, Fϕ(τ, ξ) =
∫

R1+d

e−iτs−iξ·yϕ(s, y) ds dy.

If follows from [7] and [4] (for 1/2 < H < 1 and H = 1/2 respectively) that if
∫

Rd

µ(dξ)

1 + Ψ(ξ)2H
<∞, (7.6)

then (7.1) has a random field solution on [0, T0] which is given by

u(t, x) =

∫ t

0

∫

Rd

pt−s(x− y)W (ds, dy).

Denote Gt,x(s, y) = pt−s(x− y)1[0,t](s). It follows from (7.5) that for any a1, . . . , an ∈ R, for

any t1, . . . , tn ∈ [0, T0] and x
1, . . . , xn ∈ R

d, we have

E

[( n∑

j=1

aju(t
j, xj)

)2
]
= cH,d

∫

R

dτ |τ |1−2H

∫

Rd

dξ h(ξ) |FG(τ, ξ)|2 , (7.7)

where G =
∑n

j=1 ajGtj ,xj . Note that pt(·) is equal to the inverse Fourier transform of ξ 7→ e−tΨ(ξ)

since Ψ(ξ) = Ψ(−ξ). Hence, it can be verified that the Fourier transform of Gt,x(·, ·) is

FGt,x(τ, ξ) =
e−iξ·x(e−iτt − e−tΨ(ξ))

Ψ(ξ)− iτ
, τ ∈ R, ξ ∈ R

d. (7.8)
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Dalang et al. [6] have established a harmonizable representation for the solution of the sto-
chastic heat equation

∂

∂t
u(t, x) = ∆u(t, x) + Ẇ (t, x),

where Ẇ is a spatially homogeneous Gaussian noise that is white in time and colored in space. In
the following, we follow the approach of [6] to establish a similar representation for the solution
of equation (7.1) driven by the fractional-colored Gaussian noise.

Let W̃1, W̃2 be independent space-time Gaussian white noise on R×R
d. Let W̃ = W̃1 + iW̃2.

For each (t, x) ∈ [0, T0]× Rd, define

v(t, x) = c
1/2
H,d Re

∫∫

R×Rd

FGt,x(τ, ξ) |τ |
1−2H

2 h
1
2 (ξ)W̃ (dτ, dξ). (7.9)

The following lemma verifies that v(t, x) has the same law as the solution u(t, x) of equation
(7.1). We will call (7.9) the harmonizable representation of u(t, x).

Lemma 7.1. The Gaussian random field v = {v(t, x), (t, x) ∈ [0, T0]×R
d} has the same law as

the solution u = {u(t, x), (t, x) ∈ [0, T0]× R
d} of equation (7.1).

Proof. It is clear that v is Gaussian. By (7.5), for any (t, x), (s, y) ∈ [0, T0]× R
d,

E[v(t, x)v(s, y)] =

∫∫

R×Rd

FGt,x(τ, ξ)FGs,y(τ, ξ) |τ |1−2Hh(ξ) dτ dξ

= 〈Gt,x, Gs,y〉HP

= E[u(t, x)u(s, y)].

Hence v and u have the same law. �

From now on, suppose that there exist positive finite constants cΨ and CΨ such that

cΨ|ξ|α ≤ Ψ(ξ) ≤ CΨ|ξ|α for all ξ ∈ R
d, where 0 < α ≤ 2, (7.10)

and there exist positive finite constants ch and Ch such that

ch|ξ|−β ≤ h(ξ) ≤ Ch|ξ|−β for all ξ ∈ R
d, where 0 < β < d. (7.11)

Define

θ1 := H − d− β

2α
and θ2 := αθ1 = αH − d− β

2
.

These are the Hölder exponents of u(t, x) in time and space respectively. By (7.6), if β > d−2αH,
or equivalently, θ1 > 0, then (7.1) has a solution. Consider the following metric on R× R

d:

∆((t, x), (s, y)) = |t− s|θ1 +
d∑

j=1

|xj − yj|θ2 . (7.12)

We always have θ1 < 1 since H < 1 and β < d. Furthermore, we assume the following condition:

θ1 > 0 and θ2 < 1. (7.13)

The condition θ2 < 1 is equivalent to β < d− 2αH + 2.
We now verify Assumptions 2.1 and 2.2 for the solution of (7.1) using the harmonizable

representation (7.9).
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Lemma 7.2. Suppose Ψ and h satisfy conditions (7.10) and (7.11) respectively. Suppose θ1 and
θ2 satisfy condition (7.13). Let T be a compact rectangle in (0,∞) × R

d. Then the Gaussian
random field {v(A, t, x), A ∈ B(R+), (t, x) ∈ T} defined by

v(A, t, x) = c
1/2
H,d Re

∫∫

{(τ,ξ):max(|τ |θ1 ,|ξ|θ2)∈A}
FGt,x(τ, ξ) |τ |

1−2H
2 h

1
2 (ξ)W̃ (dτ, dξ) (7.14)

satisfies Assumption 2.1(a). Moreover, there exists a finite constant c0 such that for all 0 ≤ a <
b ≤ ∞ and all (t0, x0), (t, x) ∈ T ,

‖v([a, b), t, x) − v(t, x)− v([a, b), t0, x0) + v(t0, x0)‖L2

≤ c0

(
aγ1 |t− t0|+ aγ2

d∑

j=1

|xj − x0,j |+ b−1

)
,

(7.15)

where γ1 = θ−1
1 − 1 and γ2 = θ−1

2 − 1. In particular, Assumption 2.1(b) is satisfied for a0 = 0.

Proof. It is obvious that v(A, t, x) satisfies part (a) of Assumption 2.1. For part (b), the proof
is similar to that of Lemma 7.3 in [6]: First,

v([a, b), t, x) − v(t, x) − v([a, b), t0, x0) + v(t0, x0)

= v([0, a), t0, x0)− v([0, a), t, x) + v([b,∞), t0, x0)− v([b,∞), t, x).

By (7.7) and (7.8),

E[(v([0, a), t, x) − v([0, a), t0, x0))
2]

= C

∫∫

D1(a)

∣∣∣∣
(e−iτt − e−tΨ(ξ))− e−iξ·(x0−x)(e−iτt0 − e−t0Ψ(ξ))

Ψ(ξ)− iτ

∣∣∣∣
2

|τ |1−2Hh(ξ) dτ dξ

= C

∫∫

D1(a)

ϕ1(t, x, τ, ξ)
2 + ϕ2(t, x, τ, ξ)

2

Ψ(ξ)2 + |τ |2 |τ |1−2Hh(ξ) dτ dξ

(7.16)

and

E[(v([b,∞), t, x) − v([b,∞), t0, x0))
2]

= C

∫∫

D2(b)

ϕ1(t, x, τ, ξ)
2 + ϕ2(t, x, τ, ξ)

2

Ψ(ξ)2 + |τ |2 |τ |1−2Hh(ξ) dτ dξ,
(7.17)

where

D1(a) = {(τ, ξ) ∈ R× R
d : max(|τ |θ1 , |ξ|θ2) < a},

D2(b) = {(τ, ξ) ∈ R× R
d : max(|τ |θ1 , |ξ|θ2) ≥ b},

ϕ1(t, x, τ, ξ) = cos(τt)− e−tΨ(ξ) − cos(ξ · (x0 − x) + τt0) + e−t0Ψ(ξ) cos(ξ · (x0 − x)),

ϕ2(t, x, τ, ξ) = − sin(τt) + sin(ξ · (x0 − x) + τt0)− e−t0Ψ(ξ) sin(ξ · (x0 − x)).

Consider (7.16). Note that ϕ1(t0, x0, τ, ξ) = 0 = ϕ2(t0, x0, τ, ξ), and

|∂tϕj | ≤ |τ |+Ψ(ξ) and |∂xϕj | ≤ 2|ξ|, j = 1, 2.
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Then, by the mean value theorem,

E[(v([0, a), t, x) − v([0, a), t0, x0))
2]

≤ C

∫∫

D1(a)

(
4(|τ |2 +Ψ(ξ)2)|t− t0|2 + 8|ξ|2|x− x0|2

) |τ |1−2H |ξ|−β

Ψ(ξ)2 + |τ |2 dτ dξ

= 4C|t− t0|2
∫∫

D1(a)
|τ |1−2H |ξ|−βdτ dξ + 8C|x− x0|2

∫∫

D1(a)

|τ |1−2H |ξ|2−β

Ψ(ξ)2 + |τ |2 dτ dξ

=: 4C|t− t0|2I1 + 8C|x− x0|2I2.

Using polar coordinates r = |ξ|,

I1 = C

∫∫

{(τ,r)∈R×R+:max(|τ |θ1 ,rθ2)<a}
|τ |1−2Hrd−β−1dτ dr

≤ C

∫ aθ
−1
1

−aθ
−1
1

dτ |τ |1−2H

∫ aθ
−1
2

0
dr rd−β−1

= Ca(2−2H)θ−1
1 +(d−β)θ−1

2 .

Since θ2 = αθ1 and γ1 = θ−1
1 − 1, we get that I1 ≤ Ca2γ1 .

For I2, we use the condition c|ξ|α ≤ Ψ(ξ) ≤ C|ξ|α, polar coordinates r = |ξ|, and symmetry
of the integrand in τ to get that

I2 ≤ C

∫∫

{(τ,r)∈R2
+:max(τθ1 ,rθ2)<a}

τ1−2Hrd−β−1

(c2 ∧ 1)(r2α + τ2)
dτ dr.

Putting ρ = rα and |z| the Euclidean norm of z = (τ, ρ) in R
2, we get that

I2 ≤ C

∫∫

{(τ,ρ)∈R2
+:max(τ,ρ)<aθ

−1
1 }

τ1−2Hρα
−1(d−β+2)−1

ρ2 + τ2
dτ dρ

≤ C

∫∫

{z∈R2
+:|z|<

√
2aθ

−1
1 }

|z|−2H+α−1(d−β+2)−2dz

= Caθ
−1
1 (−2H+α−1(d−β+2)) = Ca2γ2 .

Therefore, we have

E[(v([0, a), t, x) − v([0, a), t0, x0))
2] ≤ C

(
a2γ1 |t− t0|2 + a2γ2 |x− x0|2

)
. (7.18)

For (7.17), we can use the bounds |ϕ1| ≤ 4 and |ϕ2| ≤ 3 to deduce that

E[(v([b,∞), t, x) − v([b,∞), t0, x0))
2] ≤ C

∫∫

D2(b)

|τ |1−2H |ξ|−β

c2|ξ|2α + |τ |2 dτ dξ.

To estimate the above integral, we split D2(b) into two parts:

D2(b) =
{
|τ |θ1 ≤ |ξ|θ2 , |ξ|θ2 ≥ b

}
∪
{
|τ |θ1 > |ξ|θ2 , |τ |θ1 ≥ b

}
.
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Passing to polar coordinates, we have
∫∫

D2(b)

|τ |1−2H |ξ|−β

c2|ξ|2α + |τ |2 dτ dξ

≤ C

∫∫

{|τ |θ1≤rθ2 ,rθ2≥b}

|τ |1−2Hrd−β−1

c2r2α
dτ dr + C

∫∫

{|τ |θ1>rθ2 ,|τ |θ1≥b}

|τ |1−2Hrd−β−1

|τ |2 dτ dr

= C

∫ ∞

bθ
−1
2

dr rd−β−1−2α

∫ rα

−rα
dτ |τ |1−2H + C

∫ ∞

bθ
−1
1

dτ |τ |−1−2H

∫ |τ |α−1

0
dr rd−β−1

= Cb−2.

We have shown that

E[(v([b,∞), t, x) − v([b,∞), t0, x0))
2] ≤ Cb−2. (7.19)

Therefore, (7.15) follows immediately from (7.18) and (7.19). �

The following result shows that u(t, x) satisfies strong LND with respect to the metric ∆
defined in (7.12) above, thus verifies Assumption 2.2.

Lemma 7.3. Suppose Ψ and h satisfy conditions (7.10) and (7.11) respectively. Suppose θ1
and θ2 satisfy (7.13). Let T be a compact rectangle in (0,∞)×R

d. Then there exists a constant
c2 > 0 such that for any n ≥ 1, for any (t, x), (t1, x1), . . . , (tn, xn) ∈ T , we have

Var(u(t, x)|u(t1, x1), . . . , u(tn, xn)) ≥ c2 min
1≤j≤n

∆2((t, x), (tj , xj)).

In particular, this implies that ‖u(t, x)−u(s, y)‖L2 ≥ √
c2∆((t, x), (s, y)) for all (t, x), (s, y) ∈ T .

Proof. We may assume that T = [a, a′] × [−b, b]d, where 0 < a < a′ < ∞ and 0 < b < ∞. It
suffices to show that there exists a positive constant C such that

E

[(
u(t, x)−

n∑

j=1

aju(t
j , xj)

)2
]
≥ Cr2θ2 ,

for any n ≥ 1, any (t, x), (t1, x1), . . . , (tn, xn) ∈ T , and any a1, . . . , an ∈ R, where

r = min
1≤j≤n

(|t− tj|1/α ∨ |x− xj|).

From (7.7) and (7.8), we see that

E

[(
u(t, x)−

n∑

j=1

aju(t
j , xj)

)2
]

(7.20)

≥ K0

∫

R

dτ

∫

Rd

dξ

∣∣∣∣e
−iξ·x(e−iτt − e−tΨ(ξ))−

n∑

j=1

aje
−iξ·xj

(e−iτtj − e−tjΨ(ξ))

∣∣∣∣
2 |τ |1−2H |ξ|−β

C2
Ψ|ξ|2α + |τ |2 ,

where K0 = cH,d ch. Let M be a finite constant such that |t − t′|1/α ∨ |x − x′| ≤ M for all
(t, x), (t′, x′) ∈ T . Let ρ = min{a/Mα, 1}. Choose and fix two nonnegative smooth test functions
f : R → R+ and g : Rd → R+ which vanish outside [−ρ, ρ] and the unit ball respectively, and
satisfy f(0) = g(0) = 1. Let fr(τ) = r−αf(r−ατ), gr(ξ) = r−dg(r−1ξ), and denote the Fourier

transforms of fr and gr by f̂r and ĝr respectively. Consider the integral

I :=

∫

R

dτ

∫

Rd

dξ

[
e−iξ·x(e−iτt − e−tΨ(ξ))−

n∑

j=1

aje
−iξ·xj

(e−iτtj − e−tjΨ(ξ))

]
eiξ·xeiτtf̂r(τ)ĝr(ξ).
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By inverse Fourier transform and (7.3), we have

I = (2π)1+d

[
fr(0)gr(0)−fr(t)(pt ∗ gr)(0)

−
n∑

j=1

aj

(
fr(t− tj)gr(x− xj)− fr(t)(ptj ∗ gr)(x− xj)

)]
.

By the definition of r, for every j, either |t−tj| ≥ rα or |x−xj| ≥ r, thus fr(t−tj)gr(x−xj) = 0.
Moreover, since t/rα ≥ a/Mα ≥ ρ, we have fr(t) = 0 and hence

I = (2π)1+dr−α−d. (7.21)

On the other hand, by the Cauchy–Schwarz inequality and (7.20),

I2 ≤ 1

K0
E

[(
u(t, x)−

n∑

j=1

aju(t
j , xj)

)2] ∫

R

∫

Rd

∣∣f̂r(τ)ĝr(ξ)
∣∣2(C2

Ψ|ξ|2α + |τ |2
)
|τ |2H−1|ξ|βdτ dξ.

Note that f̂r(τ) = f̂(rατ) and ĝr(ξ) = ĝ(rξ). Then by scaling, we have
∫

R

∫

Rd

∣∣f̂r(τ)ĝr(ξ)
∣∣2(C2

Ψ|ξ|2α + |τ |2
)
|τ |2H−1|ξ|βdτ dξ

= r−2α−2αH−β−d

∫

R

∫

Rd

∣∣f̂(τ)ĝ(ξ)
∣∣2(C2

Ψ|ξ|2α + |τ |2
)
|τ |2H−1|ξ|βdτ dξ

=: r−2α−2αH−β−dC0,

where C0 is a finite constant since f̂ and ĝ are rapidly decreasing functions. It follows that

I2 ≤ C0

K0
r−2α−2αH−β−d

E

[(
u(t, x)−

n∑

j=1

aju(t
j , xj)

)2
]
. (7.22)

Combining (7.21) and (7.22), we conclude that

E

[(
u(t, x)−

n∑

j=1

aju(t
j , xj)

)2
]
≥ (2π)2+2dK0

C0
r2θ2 .

This completes the proof of Lemma 7.3. �

Under conditions (7.10), (7.11) and (7.13), Lemmas 2.4, 7.2 and 7.3 imply that for any
compact rectangle T in (0,∞)×R

d, there exist positive finite constants c1 and c3 such that for
all (t, x), (s, y) ∈ T ,

c3∆((t, x), (s, y)) ≤ ‖u(t, x) − u(s, y)‖L2 ≤ c1∆((t, x), (s, y)). (7.23)

See also [8, Theorem 4.1].
By applying our results, we obtain the following theorem, which strengthens the regularity

results in Propositions 3.7 and 3.10 of [7] and provides more precise information and bounds for
the limiting constants.

Theorem 7.4. Suppose Ψ and h satisfy conditions (7.10) and (7.11) respectively. Suppose θ1
and θ2 satisfy condition (7.13). Then the following statements hold.

(i) Chung-type law of the iterated logarithm: For any fixed (t0, x0) ∈ (0,∞) × R
d,

lim inf
r→0+

sup
t>0, x∈Rd:

∆((t,x),(t0,x0))≤r

|u(t, x)− u(t0, x0)|
r(log log(1/r))−1/Q

= κ
1/Q
1 a.s.,
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where Q = 1
θ1

+ d
θ2

and κ1 is a positive finite constant given by Theorem 4.4.

(ii) The exact local modulus of continuity: For any fixed (t0, x0) ∈ (0,∞) × R
d,

lim
r→0+

sup
t>0, x∈Rd:

0<d((t,x),(t0 ,x0))≤r

|u(t, x) − u(t0, x0)|
d((t, x), (t0, x0))

√
log log(d((t, x), (t0, x0))−1)

=
√
2 a.s.,

where d((t, x), (t0, x0)) = ‖u(t, x)− u(t0, x0)‖L2 , and

lim
r→0+

sup
t>0, x∈Rd:

0<∆((t,x),(t0,x0))≤r

|u(t, x)− u(t0, x0)|
∆((t, x), (t0, x0))

√
log log(∆((t, x), (t0, x0))−1)

= κ2 a.s.

for some positive finite constant κ2 such that
√
2 c3 ≤ κ2 ≤

√
2 c1,

where c1, c3 are constants satisfying (7.23), with T being any neighborhood of (t0, x0).

(iii) The exact uniform modulus of continuity: For any compact rectangle T in (0,∞) × R
d,

lim
r→0+

sup
(t,x),(s,y)∈T :

0<d((t,x),(s,y))≤r

|u(t, x)− u(s, y)|
d((t, x), (s, y))

√
log(d((t, x), (s, y))−1)

= κ3 a.s.

and

lim
r→0+

sup
(t,x),(s,y)∈T :

0<∆((t,x),(s,y))≤r

|u(t, x) − u(s, y)|
∆((t, x), (s, y))

√
log(∆((t, x), (s, y))−1)

= κ4 a.s.

for some positive finite constants κ3, κ4 satisfying
√
2Qc2 c

−1
1 ≤ κ3 ≤

√
2Q and

√
2Qc2 ≤ κ4 ≤

√
2Qc1,

where Q = 1
θ1

+ d
θ2
, c1 is the constant in (7.23) and c2 is the constant in Lemma 7.3.

Proof. By Lemma 7.1, (i)–(iii) hold if and only if they hold for the Gaussian random field
v(t, x) defined in (7.9). By Lemmas 7.2 and 7.3, v(t, x) satisfies Assumptions 2.1, 2.2 and 2.3.
Therefore, the desired results follows from Theorems 4.4, 5.2 and 6.1. �

Remark 7.5. The constants κ1 and κ2 are independent of the point (t0, x0). This is due to
the decomposition (7.2) above and the fact that the random field {U(t, x), t ≥ 0, x ∈ R

k} has
stationary increments [7].

In the theorem below, we consider the special case that Ψ(ξ) = |ξ|α, which corresponds to

the equation (7.1) with L being the fractional Laplacian −(−∆)α/2. We are able to obtain
the exact constants for the LIL in time variable and space variable respectively. This result
strengthens Corollaries 3.8 and 3.9 of [7].

Theorem 7.6. Suppose Ψ(ξ) = |ξ|α and h(ξ) = |ξ|−β , where 0 < α ≤ 2, 0 < β < d. Suppose θ1
and θ2 satisfy condition (7.13). Then, for any fixed (t0, x0) ∈ (0,∞)× R

d, almost surely,

lim sup
δ→0

|u(t0 + δ, x0)− u(t0, x0)|
|δ|θ1

√
log log(1/|δ|)

=

(
2cH,d

∫∫

R×Rd

|e−iτ − 1|2 |τ |
1−2H |ξ|−β

|τ |2 + |ξ|2α dτ dξ

)1/2

(7.24)

and

lim sup
|ε|→0

|u(t0, x0 + ε)− u(t0, x0)|
|ε|θ2

√
log log(1/|ε|)

=

(
2cH,d

∫∫

R×Rd

|e−iξ1 − 1|2 |τ |
1−2H |ξ|−β

|τ |2 + |ξ|2α dτ dξ

)1/2

. (7.25)
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Proof. Let κ5 and κ6 denote the quantity on the right-hand sides of (7.24) and (7.25) respectively.
Fix (t0, x0) ∈ (0,∞)× R

d. We claim that

‖(u(t0 + s, x0)− u(t0, x0)‖L2 = |s|θ1
(
κ5 + o(1)

)
as s→ 0, (7.26)

and

‖(u(t0, x0 + y)− u(t0, x0)‖L2 = |y|θ2
(
κ6 + o(1)

)
as |y| → 0. (7.27)

Once the claims are proved to be true, we can consider a sequence of neighborhoods converging
to the point t0 and x0 respectively, and apply Theorem 5.2 to the processes {u(t, x0), t > 0} and
{u(t0, x), x ∈ R

d} to obtain (7.24) and (7.25) respectively.
To prove (7.26), for s > 0, we use (7.7) to get that

‖u(t0 + s, x0)− u(t0, x0)‖2L2

= cH,d

∫∫

R×Rd

∣∣(e−iτ(t0+s) − e−(t0+s)|ξ|α)− (e−iτt0 − e−t0|ξ|α)
∣∣2 |τ |

1−2H |ξ|−β

|τ |2 + |ξ|2α dτ dξ

= cH,d

∫∫

R×Rd

∣∣e−iτt0(e−iτs − 1)− e−t0|ξ|α(e−s|ξ|α − 1)
∣∣2 |τ |

1−2H |ξ|−β

|τ |2 + |ξ|2α dτ dξ.

Then the change of variables τ 7→ s−1τ and ξ 7→ s−1/αξ leads to

‖u(t0 + s, x0)− u(t0, x0)‖2L2

= cH,d s
2θ1

∫∫

R×Rd

∣∣(e−iτ − 1)− es
−1(iτt0−t0|ξ|α)(e−|ξ|α − 1)

∣∣2 |τ |
1−2H |ξ|−β

|τ |2 + |ξ|2α dτ dξ.

Similarly, for s > 0 small,

‖u(t0 − s, x0)− u(t0, x0)‖2L2

= cH,d s
2θ1

∫∫

R×Rd

∣∣(e−iτ − 1)− es
−1(iτ(t0−s)−(t0−s)|ξ|α)(e−|ξ|α − 1)

∣∣2 |τ |
1−2H |ξ|−β

|τ |2 + |ξ|2α dτ dξ.

Since 0 ≤ 1− e−|ξ|α ≤ min(1, |ξ|α) and
∫∫

R×Rd

min(1, |ξ|2α) |τ |
1−2H |ξ|−β

|τ |2 + |ξ|2α dτ dξ <∞,

by the dominated convergence theorem, we have |s|−2θ1‖u(t0 + s, x0) − u(t0, x0)‖2L2 → κ25 as
s→ 0, which is exactly (7.26).

For (7.27), we let y ∈ R
d \ {0} and use (7.7) again to get that

‖u(t0, x0 + y)− u(t0, x0)‖2L2

= cH,d

∫∫

R×Rd

∣∣e−iξ·(x0+y)(e−iτt0 − e−t0|ξ|α)− e−iξ·x0(e−iτt0 − e−t0|ξ|α)
∣∣2 |τ |

1−2H |ξ|−β

|τ |2 + |ξ|2α dτ dξ

= cH,d

∫∫

R×Rd

∣∣(e−iξ·y − 1)(1 − eiτt0−t0|ξ|α)
∣∣2 |τ |

1−2H |ξ|−β

|τ |2 + |ξ|2α dτ dξ.

By the change of variables τ 7→ |y|−ατ and ξ 7→ |y|−1ξ, the above expression is equal to

cH,d |y|2θ2
∫∫

R×Rd

∣∣(e−iξ· y
|y| − 1

)(
1− e|y|

−α(iτt0−t0|ξ|α))∣∣2 |τ |
1−2H |ξ|−β

|τ |2 + |ξ|2α dτ dξ.
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Then, by a rotation of the variable ξ which takes the unit vector y
|y| to the basis vector e1 =

(1, 0, . . . , 0), we deduce that

‖u(t0, x0 + y)− u(t0, x0)‖2L2

= cH,d |y|2θ2
∫∫

R×Rd

∣∣(e−iξ1 − 1
)(
1− e|y|

−α(iτt0−t0|ξ|α))∣∣2 |τ |
1−2H |ξ|−β

|τ |2 + |ξ|2α dτ dξ.

By the dominated convergence theorem, we get (7.27) as y → 0. The proof is complete. �

8. Strongly LND anisotropic Gaussian fields with non-stationary increments

Finally, we construct a class of anisotropic Gaussian random fields that have strong LND
property but do not have stationary increments. Let f : Rk → R be a nonnegative function such
that for all ξ ∈ R

k,
C1

(
∑k

j=1 |ξj|αj )Q+2
≤ f(ξ) ≤ C2

(
∑k

j=1 |ξj |αj )Q+2
, (8.1)

where 0 < αj < 1, Q =
∑k

j=1 α
−1
j and C1, C2 are positive finite constants. It can be verified

that f satisfies ∫

Rk

min{1, |ξ|2}f(ξ)dξ <∞.

Define the Gaussian random field v = {v(x), x ∈ R
k} by

v(x) =

∫

Rk

k∏

j=1

(eixjξj − 1)W (dξ), (8.2)

where W is a centered complex-valued Gaussian random measure whose control measure has
density f , meaning that for all Borel sets A,B ⊂ R

k,

E[W (A)W (B)] =

∫

A∩B
f(ξ)dξ, and W (−A) =W (A).

This implies that v is real-valued. Note that v does not have stationary increments. Still, we
can verify that v satisfies Assumptions 2.1 and 2.2 in Lemmas 8.1 and 8.2 below.

Lemma 8.1. Let T be a compact rectangle in R
k. Then the process {v(A, x), A ∈ B(R+), x ∈ T}

defined by

v(A, x) =

∫

{maxj |ξj |αj∈A}

k∏

j=1

(eixjξj − 1)W (dξ)

satisfies Assumption 2.1(a). Moreover, there exists a finite constant c0 such that for all 0 ≤ a <
b ≤ ∞ and all x, y ∈ T ,

‖v(x) − v([a, b), x) − v(y) + v([a, b), y)‖L2 ≤ c0

( k∑

j=1

aγj |xj − yj|+ b−1

)
, (8.3)

where γj = α−1
j − 1. In particular, Assumption 2.1(b) is satisfied for a0 = 0.

Proof. It is clear that v(A, x) satisfies Assumption 2.1(a). For (8.3), by writing v(x) − v(y) as
the telescoping sum

[v(x1, . . . , xk)− v(y1, x2, . . . , xk)] + [v(y1, x2, . . . , xk)− v(y1, y2, x3, . . . , xk)]

+ · · · + [v(y1, . . . , yk−1, xk)− v(y1, . . . , yk)]
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and similarly for v([a, b), x) − v([a, b), y), it is enough to prove (8.3) for x and y that only
differ in one coordinate. By re-arranging coordinates, we only need to consider the case that
x = (x1, . . . , xk) and y = (y1, x2, . . . , xk). Note that

v(x) − v([a, b), x) − v(y) + v([a, b), y)

= [v([0, a), x) − v([0, a), y)] + [v([b,∞), x) − v([b,∞), y)].

We estimate the two terms separately. By |eiz − eiz
′ | ≤ |z − z′|, |eiz − 1| ≤ 2 and (8.1),

‖v([0, a), x) − v([0, a), y)‖2L2

=

∫

{maxj |ξj |αj<a}

∣∣∣∣
k∏

j=1

(eixjξj − 1)− (eiy1ξ1 − 1)

k∏

j=2

(eixjξj − 1)

∣∣∣∣
2

f(ξ) dξ

≤ 22k−2C2|x1 − y1|2
∫

{maxj |ξj |αj<a}

|ξ1|2

(
∑k

j=1 |ξj |αj )Q+2
dξ.

Note that |ξ1|2 = (|ξ1|α1)2+2(1−α1)/α1 ≤ (
∑k

j=1 |ξj |αj )2+2(1−α1)/α1 . Then, by the change of

variables ξj 7→ aα
−1
j ξj, followed by another change ξj 7→ z

2/αj

j , the last integral is equal to

a2α
−1
1 −2

∫

{maxj |ξj |αj<1}

( k∑

j=1

|ξj|αj

)−Q+2(1−α1)/α1

dξ

≤ a2α
−1
1 −2

k∏

j=1

(2/αj)

∫

{maxj |zj |2<1}
|z|−k+4(1−α1)/α1dz

≤ Ca2α
−1
1 −2,

where C is a finite constant, so we get the estimate ‖v([0, a), x)−v([0, a), y)‖2L2 ≤ Ca2γj |x1−y1|2.
On the other hand, by |eiz − 1| ≤ 2 and (8.1),

‖v([b,∞), x) − v([b,∞), y)‖2L2 ≤ 22kC2

∫

{maxj |ξj |αj≥b}

1

(
∑k

j=1 |ξj|αj )Q+2
dξ.

Now, by similar changes of variables ξj 7→ bα
−1
j ξj and then ξj 7→ z

2/αj

j , we get that ‖v([b,∞), x)−
v([b,∞), y)‖2L2 ≤ Cb−2. Combining the two estimates above finishes the proof of (8.3). �

Lemma 8.2. Define ∆(x, y) =
∑k

j=1 |xj − yj|αj . Let T be a compact rectangle in R
k away

from the axes. Then, there exists a positive finite constant c2 such that for all n ≥ 1, for all
x, x1, . . . , xn ∈ T ,

Var(v(x)|v(x1), . . . , v(xn)) ≥ c2 min
1≤ℓ≤n

∆2(x, xℓ).

In particular, this implies that ‖v(x)− v(y)‖L2 ≥ √
c2∆(x, y) for all x, y ∈ T .

Proof. We may assume that a ≤ |xj | ≤ b for all x = (x1, . . . , xk) ∈ T , where 0 < a < 1 < b <∞
are constants. It suffices to prove that there exists a positive finite constant c such that for all
n ≥ 1, for all x, x1, . . . , xn ∈ T and all a1, . . . , an ∈ R,

E

[(
v(x)−

n∑

ℓ=1

aℓv(x
ℓ)
)2]

≥ cr2, where r = min
1≤ℓ≤n

max
1≤j≤k

|xj − xℓj|αj . (8.4)



CHUNG-TYPE LIL AND EXACT MODULI OF CONTINUITY 29

By (8.1),

E

[(
v(x)−

n∑

ℓ=1

aℓv(x
ℓ)
)2]

≥ C1

∫

Rk

∣∣∣∣
k∏

j=1

(eixjξj − 1)−
n∑

ℓ=1

aℓ

k∏

j=1

(eix
ℓ
jξj − 1)

∣∣∣∣
2 dξ

(
∑k

j=1 |ξj|αj )Q+2
.

(8.5)

Let ρ = min{1, a(2b)−α∗/α∗}, where α∗ = max{α1, . . . , αk} and α∗ = min{α1, . . . , αk}. For each
j = 1, . . . , k, let φj : R → R+ be a nonnegative smooth function supported on [−ρ, ρ] satisfying
φj(0) = 1. Let φjr(z) = r−α−1

j φj(r−α−1
j z) and let φ̂jr denote the Fourier transform of φjr. Consider

the integral

I :=

∫

Rk

[ k∏

j=1

(eixjξj − 1)−
n∑

ℓ=1

aℓ

k∏

j=1

(eix
ℓ
jξj − 1)

] k∏

j=1

[
e−ixjξj φ̂jr(ξj)

]
dξ.

Then, by inverse Fourier transform,

I = (2π)k
[ k∏

j=1

(φjr(0)− φjr(xj))−
n∑

ℓ=1

aℓ

k∏

j=1

(φjr(xj − xℓj)− φjr(xj))

]
.

Note that φjr(0) = r−Q. Since r ≤ (2b)α
∗
, we have r−α−1

j |xj | ≥ a(2b)−α∗/α∗ ≥ ρ, thus φjr(xj) = 0.

Also, for each ℓ, by the definition of r, maxj |xj − xℓj|αj ≥ r, so there exists some j such that

|xj − xℓj|αj ≥ r. For this j, r−α−1
j |xj − xℓj| ≥ 1 ≥ ρ, and hence φjr(xj − xℓj) = 0. This implies

that for each ℓ,
k∏

j=1

(φjr(xj − xℓj)− φjr(xj)) = 0.

Therefore, we have

I = (2π)kr−Q. (8.6)

On the other hand, by the Cauchy–Schwarz inequality and (8.5) above,

I2 ≤ 1

C1
E

[(
v(x)−

n∑

ℓ=1

aℓv(x
ℓ)
)2]

×
∫

Rk

k∏

j=1

|φ̂jr(ξj)|2
( k∑

j=1

|ξj |αj

)Q+2
dξ.

By φ̂jr(ξj) = φ̂j(rα
−1
j ξj) and the change of variables ξj 7→ r−α−1

j ξj , the integral on the right-hand
side is equal to

r−2Q−2

∫

Rk

k∏

j=1

|φ̂j(ξj)|2
( k∑

j=1

|ξj|αj

)Q+2
dξ = C0r

−2Q−2.

Therefore, together with (8.6), we have

(2π)2kr−2Q = I2 ≤ C0

C1
r−2Q−2

E

[(
v(x)−

n∑

ℓ=1

aℓv(x
ℓ)
)2]

and (8.4) follows. The proof is complete. �

Corollary 8.3. Let T be a compact rectangle in R
k away from the axes. Then, Theorems 4.4,

5.2 and 6.1 can be applied to the Gaussian random field v defined by (8.2).
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We point out that even though the Gaussian random field v = {v(x), x ∈ R
k} defined by (8.2)

and the fractional Brownian sheet with parameters (α1, . . . , αk) ∈ (0, 1)k share some similarity
in their definitions and many sample path properties, some of their other fine properties such as
Chung’s LILs and exact Hausdorff measure functions are rather different (see Lee [11]). Instead,
it can be proved that these latter properties of v = {v(x), x ∈ R

k} are similar to those in [15, 16]
for Gaussian random fields with stationary increments and spectral density f that satisfies (8.1).
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