Chunikhin's existence theorem for subgroups of a finite group

C. D. H. Cooper

Abstract

We give a simplified proof of a general theorem of Chunikhin on existence of subgroups of a finite group. The proof avoids the technical device of "indexials" which Chunikhin set up for this purpose.

1. Introduction

In [2] (and later in [1], pp. 79-100), Chunikhin proves a very general theorem which asserts, for any finite group and any normal series of that group, the existence of a subgroup having a certain relationship with the terms of the normal series. It includes as special cases the existence of a Hall π-subgroup in a π-soluble group and the existence of subgroups of all possible π-orders in a π-supersoluble group. In this paper we give a much more direct proof than the one in [1], avoiding the elaborate machinery of "indexials" which Chunikhin sets up.

Throughout the paper, all groups are assumed to be finite.
THEOREM 1 (Chunikhin [1], pp. 79-100). Suppose that the group G has a series $1=G_{0} \leq G_{1} \leq \ldots \leq G_{2 n}=G$ such that if $1 \leq i \leq n-1$, $G_{2 i} \leq G$ and $G=G_{2 i} N_{G}\left(G_{2 i-1}\right)$. If $0 \leq i \leq n-1$, let θ_{i} be the set of primes which divide $\left|G_{2 j+1} / G_{2 j}\right|$ for some $j \in\{i, \ldots, n-1\}$. Then there exists a subgroup H of G such that if $H_{i}=H \cap G_{i}$ for $0 \leq i \leq 2 n$,
(1) $G_{2 i+1}=H_{2 i+1} G_{2 i}$ for $0 \leq i \leq n-1$,
(2) $H_{i} \leq H$ for $0 \leq i \leq 2 n$,
(3) $H_{2 i} / H_{2 i-1}$ is a nilpotent θ_{i}-group for $1 \leq i \leq n$,
(4) $H_{2 i+1} / H_{2 i} \cong G_{2 i+1} / G_{2 i}$ for $0 \leq i \leq n-1$,
(5) $\left|H_{2 i} / H_{2 i-1}\right|$ divides $\left|G_{2 i}: G_{2 i-1}\right|$ for $1 \leq i \leq n$,
(6) H is a θ_{0}-group.

2. Some definitions

If π is any set of primes, π^{\prime} denotes the complement of π in the set of all primes. A n-number is an integer whose only prime divisors are elements of π, and a π-group is a group whose order is a π-number. A Hall π-subgroup, H, of a group G is a π-subgroup of G whose index in G is a π^{\prime}-number.

A group G is π-supersoluble if each chief factor is either a cyclic group of order p for some $p \in \pi$, or a π^{\prime}-group. G is π-soluble if each composition factor (chief factor) is either a p-group for some $p \in \pi$ or a π^{\prime}-group. G is π-separable if each composition factor (chief factor) is a π-group or a π^{\prime}-group. G is π-decomposable if the order of each composition factor (chief factor) is divisible by at most one prime from $\pi . G$ is π-partible if the order of each composition factor (chief factor) is a π-number, or is divisible by at most one prime from π.

We are here following Gorenstein [3] in the use of the term " π-separable". Chunikhin uses " π-separable" to refer to what we call π-decomposable. The fact that the above definitions, with the exception of π-supersolubility, can be stated in terms of composition factors or chief factors follows from the fact that every chief factor is a direct product of isomorphic copies of some composition factor.

A π-supersoluble group is clearly π-soluble. A group is π-soluble if and only if it is both π-separable and π-decomposable. π-separability and π-decomposability each imply π-partibility. Subgroups and factor groups of π-supersoluble, π-soluble, π-separable, π-decomposable and π-partible groups are respectively π-supersoluble, π-soluble, π-separable, π-decomposable and π-partible. π-supersoluble and
π-soluble groups are respectively, π_{1}-supersoluble and π_{1}-soluble for all $\pi_{1} \subseteq \pi$. A π-separable group is π^{\prime}-separable.

3. Preliminary lemmas

LEMMA 1. Suppose $B \leq A \leq G$ and $C \leq G$ such that B permites with C. Then
(a) $A \cap B C=B(A \cap C)$,
(b) $|A \cap C| /|B \cap C|$ divides $|A| /|B|$,
(c) if $A \leq B C$ and $B \subseteq A$ then $A \cap C / B \cap C \cong A / B$.

Proof. (a) is the modularity law ([4], p. 124).
(b). $\quad|B(A \cap C)|=|B| \cdot|A \cap C| /|B \cap C|$ whence $\quad|A \cap C| /|B \cap C|=|B(A \cap C)| /|B|$ which divides $|A| /|B|$.
(c). $A=A \cap B C=B(A \cap C)$ by (a) whence $A / B \cong A \cap C /(A \cap C) \cap B=A \cap C / B \cap C$.

LEMMA 2. (Schur-Zassenhaus [4], p. 224). If H is a normal Hall π-subgroup of G, G contains a Hall π^{\prime}-subgroup.

LEMLA 3. Conclusions (4) to (6) of Theorem 1 are consequences of (1) to (3).

Proof. (4) follows from (1) by the second isomorphism theorem.
(5). Suppose $1 \leq i \leq n$. Then

$$
\begin{aligned}
G_{2 i-1} H & =H_{2 i-1} G_{2 i-2} H \text { by }(1), \\
& =H G_{2 i-2},
\end{aligned}
$$

since $G_{2 i-2} \unlhd G$. Similarly $H G_{2 i-1}=H G_{2 i-2}$ and so $G_{2 i-1}$ is permutable with H. (5) now follows from Lemma 1 (b) on putting $A=G_{2 i}, \quad B=G_{2 i-1}, \quad C=H$.
(6). If $0 \leq i \leq n-1, H_{2 i+1} / H_{2 i}$ is a θ_{i}-group by (4), and if $1 \leq i \leq n, H_{2 i} / H_{2 i-1}$ is a θ_{i}-group by (3).

Since $\theta_{0} \supseteq \theta_{1} \supseteq \cdots \supseteq \theta_{n}, H$ is a θ_{0}-group.
LEMA 4. If $1=G_{0} \leq G_{1} \leq \ldots \leq G_{2 n}=G$ is a chain of subgroups of
G such that if $1 \leq i \leq n, G_{2 i} \unlhd G$ and $G=G_{2 i} N_{G}\left(G_{2 i-1}\right)$ and if S is a subgroup of G such that $G_{1} \leq S \leq N_{G}\left(G_{1}\right)$ and $G=G_{2} S$, then putting $S_{i}=S \cap G_{i}$,
(a) $G_{i}=G_{2} S_{i}$ for $2 \leq i \leq 2 n$, and
(b) $S=S_{2 i} N_{S}\left(S_{2 i-1}\right)$ and $S_{2 i} \unlhd S$ for $I \leq i \leq n$.

Proof. (a). Suppose $i \geq 2$. Then

$$
\begin{aligned}
G_{i}=G_{i} \cap G_{2} S & =G_{2}\left(G_{i} \cdot \cap S\right) \text { by Lemma } 1(a) \\
& =G_{2} S_{i}
\end{aligned}
$$

(b). If $i \geq 2$,

$$
\begin{aligned}
S=S \cap G & =S \cap G_{2 i} N_{G}\left(G_{2 i-1}\right) \\
& =S \cap G_{2} S_{2 i} N_{G}\left(G_{2 i-1}\right) \text { by }(a), \\
& =S \cap S_{2 i} N_{G}\left(G_{2 i-1}\right) \text { since } G_{2} \leq G_{2 i-1} \leq N_{G}\left(G_{2 i-1}\right), \\
& =S_{2 i}\left(S_{R} N N_{G}\left(G_{2 i-1}\right)\right) \text { by Lemma } 1(a), \\
& =S_{2 i} N_{S}\left(G_{2 i-1}\right) \leq S_{2 i} N_{S}\left(S_{2 i-1}\right) .
\end{aligned}
$$

But $S_{2 i} N_{S}\left(S_{2 i-1}\right) \leq S$ and so $S=S_{2 i} N_{S}\left(S_{2 i-1}\right)$.
If $i=1, S_{2 i-1}=S_{1}=G_{1} \unlhd S$ whence $N_{S}\left(S_{2 i-1}\right)=S$.

4. Proof of Theorem 1

We suppose that the theorem is false and throughout this section G is assumed to be a minimal counter-example. We suppose further that the theorem fails for G in respect of the chain $1=G_{0} \leq G_{1} \leq \ldots \leq G_{2 n}=G$, ($n \geq 1$) but holds for every shorter chain. For $0 \leq i \leq n-1, \theta_{i}$ denotes the set of primes which divide some $\left|G_{2 j+1} / G_{2 j}\right|$ for $j \geq i$.

LEMMA 5. If $G_{1} \leq S \leq N_{G}\left(G_{1}\right)$ and $G=G_{2} S$ then $S=G$.
Proof. Suppose $S<G$. It follows from Lemma $4(b)$ and the fact that G is a minimal counter-example that there exist $H \leq S$ such that if
for $0 \leq i \leq n-1, \phi_{i}$ denotes the set of primes which divide some $\left|S_{2 j+1} / S_{2 j}\right|$ for $j \geq i$, then
(i) $S_{2 i+1}=H_{2 i+1} S_{2 i}$ for $0 \leq i \leq n-1$,
(ii) $H_{i} \unlhd H$ for $0 \leq i \leq 2 n$,
(iii) $H_{2 i} / H_{2 i-1}$ is a nilpotent ϕ_{i}-group for $1 \leq i \leq n$, where H_{i} is defined to be $H \cap S_{i}$ for $0 \leq i \leq 2 n$.

Now if $i \geq 1$,

$$
\begin{aligned}
G_{2 i+1} & =G_{2} S_{2 i+1} \text { by Lemma } 4(a) \\
& =G_{2} H_{2 i+1} S_{2 i} \text { by (i) } \\
& =G_{2} S_{2 i} H_{2 i+1} \\
& =G_{2 i} H_{2 i+1} \text { by Lemma } 4(a)
\end{aligned}
$$

If $i=0$,

$$
\begin{aligned}
G_{2 i+1}=G_{1}=S_{1} & =H_{1} S_{0} \text { by (i) }, \\
& =H_{1} .
\end{aligned}
$$

Thus (1) holds for G.
If $0 \leq j \leq n-1$ it follows from Lemma 1 (b) that $\left|S_{2 j+1} / S_{2 j}\right|$ divides $\left|G_{2 j+1} / G_{2 j}\right|$ and so $\phi_{i} \subseteq \theta_{i}$ for $0 \leq i \leq n-1$. Finally, $H \cap S_{i}=H \cap G_{i}$ for $0 \leq i \leq 2 n$ and so from (ii), (iii) it follows that (2) and (3) hold for G. Hence by Lemma 3, the theorem holds for G, a contradiction. Hence $S=G$.

LEMiA 6. If $G_{1} \unlhd G$ then $G_{1}=1$.
Proof. Suppose that $G_{1} \neq 1$. Using the symbol "" to denote images of subgroups of G in G / G_{1}, we have by the assumptions on the $G_{i}, \quad \bar{G}_{2 i} a \bar{G}$ and $\bar{G}=\bar{G}_{2 i}{\left.\bar{N} \bar{G}^{(G} G_{2 i-1}\right)}=\bar{G}_{2 i} N_{G}\left(G_{2 i-1}\right)$. Hence by the minimality of G, there is a subgroup H of G such that $G_{1} \leq H$ and such that if for $0 \leq i \leq n-1, \alpha_{i}$ denotes the set of primes which divide
some $\left|\bar{G}_{2 j+1} / \bar{G}_{2 j}\right|$ for $j \geq i$,
(i) $\bar{G}_{2 i+1}=\bar{H}_{2 i+1} \bar{G}_{2 i}$ for $0 \leq i \leq n-1$,
(ii) $\vec{H}_{i} \unlhd \bar{H}$ for $0 \leq i \leq 2 n$,
(iii) $\bar{H}_{2 i} / \bar{H}_{2 i-1}$ is a nilpotent α_{i}-group for $l \leq i \leq n$,
where H_{i} is defined to be $H \cap G_{i}$ for $0 \leq i \leq 2 n$.
If $i \geq 1$, it follows from (i) that $G_{2 i+1}=H_{2 i+1}{ }^{G} 2 i$. Moreover $G_{1} \leq H$ and so $G_{1}=H_{1}=H_{1} G_{0}$. Thus (1) holds for G. From (ii), $H_{i} \leq H$ for $i \geq 1$, and clearly $H_{0} \leq H$. Hence (2) holds for G. If $j \geq 1, \bar{G}_{2 j+1} / \bar{G}_{2 j} \cong G_{2 j+1} / G_{2 j}$. Moreover $\bar{G}_{1} / \bar{G}_{0}$ is trivial. Hence if $0 \leq i \leq n-1, \alpha_{i} \subseteq \theta_{i}$. If $i \geq 1, \bar{H}_{2 i} / \bar{H}_{2 i-1} \cong H_{2 i} / H_{2 i-1}$ and so by (iii), $H_{2 i} / H_{2 i-1}$ is a nilpotent θ_{i}-group and so (3) holds for G. Thus, by Lemma 3, the theorem holds for G, a contradiction. Hence $G_{1}=1$.

LEMMA 7. If $G_{1}=1$ and G_{2} is ni ipotent then $G_{2}=1$.
Proof. Suppose that $G_{2} \neq 1$. Using the symbol " "" to denote images of subgroups of G in G / G_{2}, then by the assumptions on the G_{i}, $\bar{G}_{2 i} \subseteq \bar{G}$ and $\bar{G}=\bar{G}_{2 i} \overline{N_{G}\left(G_{2 i-1}\right)}=\bar{G}_{2 i} N_{G}\left(\bar{G}_{2 i-1}\right)$. Hence by the minimality of G, there is a subgroup K of G such that $G_{2} \leq K$ and such that if for $0 \leq i \leq n-1, \alpha_{i}$ denotes the set of primes which divide some $\left|\bar{G}_{2 j+1} / \bar{G}_{2 j}\right|$ for $j \geq i$,
(i) $\bar{G}_{2 i+1}=\bar{K}_{2 i+1} \bar{G}_{2 i}$ for $0 \leq i \leq n-1$,
(ii) $\bar{K}_{i} \unlhd \bar{K}$ for $0 \leq i \leq 2 n$,
(iii) $\bar{K}_{2 i} / \bar{K}_{2 i-1}$ is a nilpotent α_{i}-group for $1 \leq i \leq n$,
(iv) \bar{K} is an α_{0}-group,
where K_{i} is defined to be $K \cap G_{i}$ for $0 \leq i \leq 2 n$.

If $j \geq 1, \quad \bar{G}_{2 j+1} / \bar{G}_{2 j} \cong G_{2 j+1} / G_{2 j}$, and so $\alpha_{j}=\theta_{j}$. Since $\bar{G}_{1} / \bar{G}_{0}$ is trivial, $\alpha_{0}=\alpha_{1}=\theta_{1}$. Thus by (iv), K / G_{2} is a θ_{1}-group.

Since G_{2} is nilpotent it contains a unique Hall θ_{1}^{\prime}-subgroup, M. M is characteristic in G_{2} and hence normal in $G . G_{2} / M$ is a θ_{1}-group and so K / M is a θ_{1}-group. By Lemma 2, there exists a Hall θ_{1}-subgroup H of K. Thus $K=M H$ and $M \cap H=1$.

$$
\text { If } i \geq 2 \text {, then since } M \leq G_{2} \text {, we have by Lemma } 1(a) \text { that }
$$ $K_{i}=K \cap G_{i}=M H \cap G_{i}=M\left(H \cap G_{i}\right)=M H_{i}$ where H_{i} is defined to be $H \cap G_{i}$ for $0 \leq i \leq 2 n$. If $i \geq 1$ we have from (i) that $G_{2 i+1}=K_{2 i+1} G_{2 i}=M H_{2 i+1} G_{2 i}=H_{2 i+1} G_{2 i}$. Moreover G_{1} and H_{1} are trivial, so $G_{1}=H_{1} G_{0}$. Thus (1) holds for G.

$$
\text { If } i \geq 2 \text {, it follows from (ii) that } K_{i} \unlhd K \text { and so } M H_{i} \unlhd M H \text {. }
$$

Hence

$$
\begin{aligned}
H_{i}^{H} \leq M H_{i} \cap H & =H_{i}(M \cap H) \text { by Lemma } 1(a), \\
& =H_{i} .
\end{aligned}
$$

Thus $H_{i} \unlhd H$. Moreover $H_{2}=G_{2} \unlhd H$ and $H_{1}=G_{1}=1 \unlhd H$. Thus (2) holds for G.

If $i \geq 2, \quad \bar{K}_{2 i} / \bar{K}_{2 i-1} \cong K_{2 i} / K_{2 i-1}=M H_{2 i} / M H_{2 i-1} \cong H_{2 i} / H_{2 i-1}$ and so by (iii), $H_{2 i} / H_{2 i-1}$ is a nilpotent α_{i}-group and so a nilpotent θ_{i}-group. Since $H_{1}=2, H_{2} / H_{1} \cong H_{2}$ and is nilpotent since G_{2} is nilpotent. Since K / M is a θ_{1}-group, so is H_{2}. Hence (3) holds for G and so by Lemma 3, the theorem holds for G, a contradiction. Hence $G_{2}=1$.

Proof of Theorem 1. We obtain our ultimate contradiction through an interplay of Lemmas 5, 6 and 7. Taking $S=N_{G}\left(G_{1}\right)$ in Lemma 5 we conclude that $G_{1} \leq G$. Hence by Lemma $\sigma_{, ~} G_{1}=1$. Thus if S is any subgroup of G such that $G=G_{2} S$, then by Lemma 5, $S=G$. Hence G_{2}
is contained in the Frattini subgroup of G, whence it is nilpotent. By Lemma 7; $G_{2}=1$. Since the theorem holds for G in respect of the shorter chain $1=G_{2} \leq G_{3} \leq \ldots \leq G_{2 n}=G$, it must hold in respect of the original chain, a contradiction.

5. Consequences of Theorem 1

THEOREM 2. Suppose that

$$
1=G_{0}<G_{2}<G_{4}<\ldots<G_{2 n}=G
$$

is a normal series for G. If for $1 \leq i \leq n-1$, the factor $G_{2 i} / G_{2 i-2}$ contains a single conjugacy class of Hall π-subgroups and if $G / G_{2 n-2}$ contains a HalZ π-subgroup then G contains a Hall π-subgroup. If these Hall π-subgroups are soluble, G contains a soluble Hall π-subgroup.

Proof. For $1 \leq i \leq n$, choose $G_{2 i-1}$ so that $G_{2 i-1} / G_{2 i-2}$ is a Hall π-subgroup of $G_{2 i} / G_{2 i-2}$. If $1 \leq i \leq n-1$, all Hall π-subgroups of $G_{2 i} / G_{2 i-2}$ are conjugate whence $G / G_{2 i-2}=G_{2 i} / G_{2 i-2}$, $N_{G / G_{2 i-2}}\left(G_{2 i-1} / G_{2 i-2}\right)$ and so $G=G_{2 i} N_{G}\left(G_{2 i-1}\right)$. By Theorem 1 there exists a subgroup H of G having properties (1) to (6).

$$
\begin{aligned}
|G: H| & =\prod_{i=1}^{n} \frac{\left|G_{2 i-1}: G_{2 i-2}\right|}{\left.\right|_{2 i-1}: H_{2 i-2} \mid} \times \prod_{i=1}^{n} \frac{\left|G_{2 i}: G_{2 i-1}\right|}{\left|{ }_{2 i}: H_{2 i-1}\right|} \\
& =\prod_{i=1}^{n} \frac{\left|G_{2 i}: G_{2 i-1}\right|}{\left.\right|_{2 i}: H_{2 i-1} \mid} \text { by (4), }
\end{aligned}
$$

which divides $\prod_{i=1}^{n}\left|G_{2 i}: G_{2 i-1}\right|$ and so is a π^{\prime}-number. Since for $0 \leq i \leq n-1, \quad G_{2 i+1} / G_{2 i}$ is a $\pi-\operatorname{group}, \theta_{i} \subseteq \pi$ for all i. In particular $\theta_{0} \subseteq \pi . H$ is a θ_{0}-group by (6) and so a π-group. Hence it is a Hall π-subgroup of G.

If the Hall π-subgroups of the factors of G are soluble, $G_{2 i-1} / G_{2 i-2}$, and hence by (4) $H_{2 i-1} / H_{2 i-2}$ is soluble for $1 \leq i \leq n$.

Since, by (3), $H_{2 i} / H_{2 i-1}$ is nilpotent for $l \leq i \leq n, H$ is soluble.*
COROLLARY. The theorem holds if $1=G_{0}<G_{2}<\ldots<G_{2 n}=G$ is a composition series.

Proof. If A is a direct product of isomorphic copies of B, then A has a single conjugacy class of Hall π-subgroups if and only if B has. Since each chief factor of G is a direct product of isomorphic copies of some composition factor, the assumptions on the composition factors carry over to the chief factors.

THEOREM 3 ([1], Theorem 3.9.1). If G is π-partible then it contains a Hall π-subgroup. If for some $\pi_{1} \subseteq \pi, G$ is π_{1}-decomposable and ($\pi-\pi_{1}$)-separable then it contains a π_{1}-soluble Hall π-subgroup.

Proof. Let $1=G_{0}<G_{2}<G_{4}<\ldots<G_{2 n}=G$ be a chief series for G. If ρ is the set of prime divisors for some chief factor then by the π-partibility of G,
(i) $\rho \subseteq \pi$, or
(ii) $\rho \subseteq \pi^{\prime}$, or
(iii) $\rho \cap \pi=\{p\}$ for some prime p.

In case (i) the factor is a π-group and so has a unique Hall π-subgroup (namely itself). In case (ii) the factor is a π^{\prime}-group and so has a unique Hall π-subgroup (namely the trivial subgroup). In case (iii) the factor has a single conjugacy class of Hall π-subgroups (namely the Sylow p-groups). Hence by Theorem 2, there exists a Hall π-subgroup H of G satisfying (1) to (6) of Theorem 1.

Suppose that G is π_{1}-decomposable and $\left(\pi-\pi_{1}\right)$-separable. If ρ is the set of prime divisors of $\left|G_{2 i} / G_{2 i-2}\right|, \rho \subseteq \pi_{1}^{\prime}$ or $\rho \cap \pi_{1}=\{p\}$ by π_{1}-decomposability. If $\rho \cap \pi_{1}=\{p\}$ then by ($\pi-\pi_{1}$)-separability, $\rho \cap\left(\pi-\pi_{1}\right)=\emptyset$ that is $\rho \cap \pi=\rho \cap \pi_{1}$. Let τ be the set of prime divisors of $\left|H_{2 i-1} / H_{2 i-2}\right|$. Then by (4), $\tau \subseteq \rho$ and by (6), $\tau \subseteq \theta_{0}=\pi$. Hence $\tau \subseteq \rho \cap \pi$. Thus either $\tau \subseteq \rho \subseteq \pi^{\prime}$ or

* In fact by (5) and (6), each $H_{2 i} / H_{2 i-1}$ is trivial.
$\tau \subseteq \rho \cap \pi=\rho \cap \pi_{1}=\{p\}$. Finally for $1 \leq i \leq n, H_{2 i} / H_{2 i-1}$ is, by (5), a π^{\prime}-group.* Hence H is π_{1}-soluble.

References

[1] S.A. Chunikhin, Subgroups of finite groups (Translated from the Russian and edited by Elizabeth Rowlinson. Wolters-Noordhoff, Groningen, 1969).
[2] S.A. Cunihin, "A general test for the existence of subgroups in finite groups" (Russian), Mat. Sb. (N.S.) 55 (97) (1961), 101-124. English translation, Amer. Math. Soc. Transl. (2) 45 (1965), 79-104.
[3] Daniel Gorenstein, Finite groups (Harper and Row, New York, Evanston, London, 1968).
[4] Marshall Hall, Jr, The theory of groups (The Macmillan Company, New York, 1959).

School of Mathematics,
Macquarie University,
North Ryde, NSW.

* In fact, since H is a π-group, $H_{2 i} / H_{2 i-1}$ is trivial.

