

 / 1

CHUNKING AND PHRASING AND THE DESIGN

OF HUMAN-COMPUTER DIALOGUES1

William Buxton

Computer Systems Research Institute

University of Toronto

Toronto, Ontario

Canada, M5S 1A4

(416)-978-6320

buxton.dgp.toronto.edu

INTRODUCTION

It is no secret that the user interface of most computer systems could be improved.

Systems are often intimidating, prone to error, and require a high investment in effort

before productive work can be undertaken. A desire to make systems easier to use is a

good starting point, but we can't get very far without some theory of how to do so.

"Easier to use" is easy to say, but it suggests little about how to reduce errors and

frustration and promote faster learning. In order to make some headway in this

direction, we might best reformulate the problem as "How can we accelerate the process

whereby novices begin to perform like experts?". Underlying this formulation is an

assumption that there is a qualitative difference between how experts and novices

achieve particular goals. This assumption is supported by much of the recent literature

in problem solving and the acquisition of cognitive skills (e.g., Anderson, 1980).

Experts and novices differ in the coarseness of granularity with which they view the

constituent elements of a particular problem or task. Novices are attentive to

low-level details. For example, operational details such as finding a particular

character on the keyboard or remembering the name of a command involve problem

solving. The result is that valuable cognitive resources are diverted from the central

problem at hand.

With experts, these low-level details can be performed automatically. Hence, the size

of the chunks of the problem to which they are attentive are much larger. The skills

that permit these tasks to be performed automatically, however, must be highly learned,

usually through repetition (Newell & Rosenbloom, 1980). The acquisition of skills,

therefore, can be characterized by developing an ability to perform ever-larger chunks of

a problem automatically.

1 Citation: Buxton, W. (1986). Chunking and phrasing and the design of human-computer

dialogues, Proceedings of the IFIP World Computer Congress, Dublin, Ireland, 475-480.

 / 2

We can now return to our reformulation of the problem at hand, "How can we

accelerate the process whereby novices begin to perform like experts?". Our premise is

that there should be as close a match as possible between the structure of how we think

about problems and the language or representation that we use in solving them. In

what follows we argue that this can be achieved by engineering the pragmatics of the

human-computer dialogue (Buxton, 1983) to reinforce the chunking that we believe

would used by an expert working in the domain. Another way of stating this is that the

dialogue structure, especially the pragmatics, can be engineered so as to maximize

compatibility (Fitts & Seeger, 1953; John, Rosenbloom & Newell, 1985) with the

problem domain.

SYNTAX: TWO APPROACHES

The design of the syntax has a major effect on the quality of the user interface of an

interactive system. It affects learnability, the frequency and nature of user errors, the

retention of skills (as with non-regular users) and the speed of task performance. A

major problem for users is the cognitive load imposed by remembering the tokens of a

command and their order (see, for example, Barnard, Hammond, Mortan, Long &

Clark, 1981).

One approach that designers have taken to avoid such problems is to limit the number of

arguments to a command. The user interface of the Macintosh computer, for example,

limits operators to having only one explicit argument. This causes problems, however,

for operations such as move which require both a direct and indirect object. To get

around this, applications such as MacWrite (Apple, 1984) replace the single command

move with two lower-level commands cut and paste. While the new primitives have

a simpler syntax, the user's mental model must be restructured to map the concept move

onto these two new primitives. Rather than simplifying the user interface, therefore, it

is possible that the single-operand-per-verb strategy simply redistributes the cognitive

loading.

An alternative design strategy exists. If move, for example, is the primitive that most

closely corresponds to the user's model, then the design problem is to use it while

minimizing the burden of remembering the arguments and their ordering. Proof-reader's

symbols offer one approach to doing so. An example is shown in Figure 1.

 / 3

Figure 1: Proof-Reader's Symbol Specifying "Move."

Contrast the directness of this with the "cut-and-paste" strategy

utilized by MacWrite (Apple, 1984).

There are at least three points worth noting about this example, especially in contrast

with the "cut-and-paste" strategy for specifying the same operation:

• the entire transaction, verb, direct object, and indirect object are all specified in a

single gesture;

• there will never be an error in syntax since the ordering is implicit in the gesture;

• the operation is specified using existing skills and does not require restructuring

of existing mental models.

PHRASING AND GESTURE

We can think about the components of the move command in the previous example as

being woven together by a thread of continuity similar to that binds together a musical

phrase. The "statement" is initiated in a state of neutrality, is articulated by a

continuous gesture, and upon closure, returns to neutral state where another phrase

can be introduced by either party. As in music, the phrase is characterized by tension

(in this case muscular) and the neutral state delimiting the start and finish by relaxation.

One of our main arguments is that we can use tension and closure to develop a phrase

structure to our human-computer dialogues which reinforces the chunking that we are

trying to establish.

In the "body-language" of haptic input, kinesthetics and muscular tension are the raw

materials of establishing a phrase structure. With the gesture comes heightened arousal

and performance (Yerkes & Dodson, 1908), and in the periods of relaxation, a clear

indication that it is aright to be interrupted, or move on to the next step.

 / 4

 Figure 2: Yerkes-Dodson law relating performance to arousal (From

Kantowitz & Sorkin, 1983, p. 606)

COMPOUND TASKS

Problems that we saw previously in the syntax of a single command also appear at

another level of the human-computer dialogue. In actual applications, many of the

transactions which we perform consist of compound tasks. Selecting an electrical

component and positioning it in a circuit board layout would be an example of a

selection/positioning task (Buxton, 1982). Similarly, identifying a word by finding it

in a document and then selecting it would be an example of a navigation/selection

task (Buxton & Myers, 1986). In many such cases, we would argue that the user

models the compound task as a single entity. In such cases, having to address the

sub-tasks independently may result in an additional burden comparable to using cut and

paste instead of move. Furthermore, we claim that the use of phrasing through

kinesthetic gesture can be used to overcome this problem.

Pop-up menus provide a good example to illustrate our point. In general, one would

consider making a selection from a pop-up menu as being a single task. However, on

closer examination, it is seen to consist of three sub-tasks:

• invoke the menu : by depressing the mouse button;

• navigate to selection : by moving mouse while button is depressed;

• make selection and return : release mouse button.

In this case, the "glue" that ties the three sub-tasks together is the tension of holding the

mouse button down throughout the transaction. By designing the dialogue in this way,

errors of syntax and mode errors are virtually impossible to make since the concluding

action (articulated by the mouse button being released) is the unique and natural

consequence to the initial action (depressing the mouse button). Furthermore, the

tension of the finger holding down the button gives constant feedback that we are in a

temporary state, or mode. (There is a slight irony to this, since it is precisely in

so-called "modeless" interfaces that pop-up menus are most commonly found.)

 / 5

PHRASING AND COGNITIVE SKILLS

In their 1983 study, Card, Moran and Newell discussed how experts collapsed low-level

text editing tasks into cognitive "subroutines" that they termed "routine cognitive skills".

Anderson (1982) describes the acquisition of such skills as being based upon the

compilation and proceduralization of knowledge about the underlying sub-tasks. We

believe that phrasing can be used to organize these sub-tasks to accelerate this process.

PRAGMATICS AND THE COMPONENTS OF INPUT

If Card, Moran and Newell's routine cognitive skills are compilations of lower-level

primitives, one could try to determine the basic building blocks. One possible answer

comes from Foley, Wallace and Chan (1984). They tried to characterize human input

to computer systems from the user's perspective. In so doing, they came up with six

basic primitives:

• Select an item in 1, 2, or 3D;

• Position an item in 1, 2, or 3D;

• Orient (rotate) an item in 1, 2, or 3D;

• Path : specify a path, such as in inking in a paint program;

• Quantify : specify a numerical value;

• Text : enter text, as in word processing

On closer examination, however, we see that these primitives are not necessarily all at

the same level. Let us use the position primitive as an example.

If we use a mouse or a tablet, positioning an object in 2D can be viewed as a single task.

However, the moment that we change transducers and use a QWERTY keyboard,

specifying the same coordinates involves two primitives, namely quantify X and

quantify Y.

Figure 3. Position as an Aggregate of 2 Quantify Tasks

We see from this example that even Foley, Wallace and Chan's six primitives have a

deep structure. Whether the sub-tasks are consciously perceived, however, is very

much influenced by the gesture (and capturing transducer) used. When appropriate, a

single gesture (pointing) can be used to articulate a single concept (position).

We can build further upon the previous example. Let us look at a simple system for

transcribing common music notation (Buxton, Sniderman, Reeves, Patel & Baecker,

 / 6

1979). Notes are entered using a simple short-hand notation. Using a stylus and

digitizing tablet, the user points at where a note is to appear and enters one of the

shorthand symbols shown in Figure 4.

 Figure 4. Short-Hand Symbols for Transcribing Musical Notation.

(From Buxton, Sniderman, Reeves, Patel & Baecker, 1979.)

Figure 5. Entering a 16th Note Using a Single Gesture.

Using this system to enter a 16th note is shown in Figure 5.

The underlying structure of adding notes using this technique is shown in Figure 6. We

see that adding a note, like positioning, is actually made up of a number of sub-tasks.

However, when implemented as described, these sub-tasks all collapse into the single

primitive add note.

 / 7

Figure 6. Task Hierarchy in Add Note Task

GRAMMARS, PRAGMATICS AND COMPLEXITY

If the sub-tasks of a higher-level concept like "Add Note" can collapse into a single

gesture, is there any model that helps predict the savings? One approach, based on

recent studies, attempts to obtain a measure of the difficulty of a user interface by

analyzing its underlying grammar. This work was pioneered by Reisner (1981), and

further developed by Green & Payne (1984) and Green, Payne, Gilmore and Mepham

(1984).

In her original work, Reisner developed a set of heuristics which she used to analyze the

grammar of the interaction language of a particular system. From this analysis she

would derive a value which gave a measure of the system's learnability and proneness to

error. The heuristics that she used were based upon:

• Number of productions

• Number of terminals

• Length of productions

We can apply such an analysis to the grammar of our Add Note primitive, shown below

(non-terminals start with upper case, terminals start with lower case):

AddNote:= quantifyDuration PositionPitchTime

PositionPitchTime := quantifyPitch quantifyStartTime

We can apply an approximation of Reisner's heuristics on this grammar in which we

assume that the weight of each production and each terminal is 1 unit. Since we have

two productions and three terminals, the total weight is therefore 5.

 / 8

However, if we use the character recognition technique described above, we would

argue (from experience) that the real weight of the entire transaction is closer to the

weight contributed by a single terminal, namely weight 1. Our explanation for this is

that the user need not be attentive to any of the operational details of the component

sub-tasks. The complete concept can be expressed in a single fluid compatible gesture.

GESTURE AND PRAGMATICS
The notion of physical gesture is central to virtually all of the examples discussed. In

each case, the key to using a particular gesture is having the appropriate transducer.

Conversely, the main limiting factor, restricting the range of available gestures in our

repertoire is the sorry state of current practice in input. The lack of pressure sensitive

devices (such as mouse buttons to control line thickness), foot controls, and two-handed

input are just a few obvious examples.

To this point all of our examples have involved sequential bindings. However, as

changing gears with a manual transmission illustrates, the binding among related tasks

can be in parallel and across limbs. This is demonstrated in a recent study by Buxton &

Myers (1986).

CONCLUSIONS

We have argued that user interface pragmatics can be designed to accelerate the

acquisition of expert operational skills. The key is gesture-based phrasing to chunk the

dialogue into units meaningful to the application. Any concept or transaction that can

be described in a single word or phrase should be able to be articulated by a single

gesture. This desired one-to-one correspondence between concept and gesture leads

towards interfaces which are more compatible with the user's model.

The work described is based on practice and experience rather than formal

experimentation. It is preliminary, and a great deal of research remains to be done.

However, the examples discussed are sufficiently persuasive to warrant an examination

of current design practice.

REFERENCES/BIBLIOGRAPHY

Anderson, J.R. (Ed.) (1980). Cognitive Skills and their Acquisition, Hillsdale, N.J.:

Lawrence Erlbaum & Associates.

Anderson, J.R. (1982). Acquisition of Cognitive Skill, Psychological Review, 89(4),

369-406.

Apple (1984), MacWrite User's Manual, Apple Computer Inc., Cupertino, CA.

Barnard, P.J., Hammond, N.V., Mortan, J., Long, J.B. & Clark, I.A. (1981).

Consistency and Compatibility in Human-Computer Dialogue, IJMMS, 15(1),

87-134.

Buxton, W. (1982). An Informal Study of Selection-Positioning Tasks, Proceedings

of Graphics Interface '82, 323-328.

Buxton, W. (1983), Lexical and Pragmatic Considerations of Input Structure, Computer

Graphics, 17(1), 31-37.

 / 9

Buxton, W. & Myers, B. (1986). A Study in Two-Handed Input, Proceedings of

CHI '86, to appear.

Buxton, W., Sniderman, R., Reeves, W., Patel, S. & Baecker, R. (1979). The

Evolution of the SSSP Score Editing Tools. Computer Music Journal , 3(4),

14-25.

Card, S., Moran, T. & Newell, A. (1983), The Psychology of Human-Computer

Interaction, Hillsdale, N.J.: Lawrence Erlbaum Associates.

Fitts, P.M. & Seeger, C.M. (1953), S-R compatability: Spatial characteristics of

stimulus and response codes. Journal of Experimental Psychology, 46,

199-210.

Foley, J., Wallace, V.L. & Chan, P.(1984), The Human Factors of Computer Graphics

Interaction Techniques, IEEE CG&A, 4(11), 13-48.

Green, T.R.G. & Payne, S.J. (1984). Organization and Learnability in Computer

Languages, IJMMS , 21(1), 7-18.

Green, T.R.G., Payne, S.J., Gilmore, D.J. & Mepham, M. (1984). Predicting Expert

Slips, Proceedings of Interact '84, Vol. 1, 92-98.

John, Rosenbloom, P.S. & Newell, A. (1985). A Theory of Stimulus-Response

Compatability Applied to Human-Computer Interaction, Proceedings of CHI'85,

213-220.

Kantowitz, B.H. & Sorkin, R.D. (1983). Human Factors: Understanding

People-System Relationships, New York: John Wiley & Sons.

Newell, A. & Rosenbloom, P.S. (1980). Mechanisms of Skill Acquisition and the

Law of Practice, in Anderson, J.R. (1980). op cit.

Reisner, P. (1981). Formal Grammar and Human Factors Design of an Interactive

Graphics System, IEEE Transactions on Software Engineering, 7 (2), 229-240.

Yerkes, R.M. & Dodson, J.D. (1908). The Relative Strength of Stimulus to Rapidity

of Habit-Formation, Journal of Comparative and Neurological Psychology, 18,

459-482.

