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Abstract. In this article we describe an approach to the construction of a general learning mechanism 

based on chunking in Soar. Chunking is a learning mechanism that acquires rules from goal-based ex- 

perience. Soar is a general problem-solving architecture with a rule-based memory. In previous work we 

have demonstrated how the combination of chunking and Soar could acquire search-control knowledge 

(strategy acquisition) and operator implementation rules in both search-based puzzle tasks and 

knowledge-based expert-systems tasks. In this work we examine the anatomy of chunking in Soar and pro- 

vide a new demonstration of its learning capabilities involving the acquisition and use of macro-operators. 

1. I n t r o d u c t i o n  

T h e  g o a l  o f  the  S o a r  p r o j e c t  is to  bu i ld  a sys tem c a p a b l e  o f  gene ra l  in te l l igen t  

b e h a v i o r .  W e  seek to  u n d e r s t a n d  w h a t  m e c h a n i s m s  a re  necessa ry  fo r  in te l l igen t  

b e h a v i o r ,  w h e t h e r  t h e y  a re  a d e q u a t e  fo r  a w ide  r a n g e  o f  tasks  - i nc lud ing  sea rch-  

i n t ens ive  tasks ,  k n o w l e d g e - i n t e n s i v e  tasks ,  and  a l g o r i t h m i c  tasks  - a n d  h o w  t h e y  

w o r k  t o g e t h e r  to  f o r m  a gene ra l  c o g n i t i v e  a r ch i t e c tu r e .  O n e  neces sa ry  c o m p o n e n t  o f  

such  an a r c h i t e c t u r e ,  and  the  o n e  on  w h i c h  we focus  in this  p a p e r ,  is a gene ra l  l ea rn-  

ing m e c h a n i s m .  In tu i t i ve ly ,  a gene ra l  l e a rn ing  m e c h a n i s m  s h o u l d  be c a p a b l e  o f  learn-  

ing  all t ha t  needs  to  be l e a rned .  T o  be  a bit  m o r e  prec ise ,  a s s u m e  tha t  we h a v e  a 
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general performance system capable of  solving any problem in a broad set of  do- 

mains. Then, a general learning mechanism for that performance system would 

possess the following three properties: t 

• Task generality. It can improve the system's performance on all of  the tasks 

in the domains.  The scope of  the learning component  should be the same as 

that of  the performance component.  

• Knowledge generality. It can base its improvements on any knowledge 

available about  the domain.  This knowledge can be in the form of  examples, 

instructions, hints, its own experience, etc. 

• Aspect  generality. It can improve all aspects of  the system. Otherwise there 

would be a wandering-bottleneck problem (Mitchell, 1983), in which those 

aspects not open to improvement  would come to dominate the overall perfor- 

mance effort  of  the system. 

These properties relate to the scope of the learning, but they say nothing concerning 

the generality and effectiveness of  what is learned. Therefore we add a fourth 

property. 

Transfer o f  learning. What is learned in one situation will be used in other 

situations to improve performance.  It is through the transfer of  learned 

material that generalization, as it is usually studied in artificial intelligence, 

reveals itself in a learning problem solver. 

Generality thus plays two roles in a general learning mechanism: in the scope of  ap- 

plication of  the mechanism and the generality of  what it learns. 

There are many  possible organizations for a general learning mechanism, each 

with different behavior and implications. Some of  the possibilities that have been in- 

vestigated within AI  and psychology include: 

• A Multistrategy Learner. Given the wide variety of  learning mechanisms cur- 

rently being investigated in AI and psychology, one obvious way to achieve a 

general learner is to build a system containing a combination of  these mecha- 

nisms. The best example of  this to date is Anderson 's  (1983a) ACT* system 

which contains six learning mechanisms. 

• A Deliberate Learner. Given the breadth required of a general learning 

mechanism, a natural way to build one is as a problem solver that deliberately 

devises modifications that will improve performance.  The modifications are 

i These properties are related to, but not isomorphic with, the three dimensions of variation of learning 
mechanisms described in Carbonell, Michalski, and Mitchell (1983) - application domain, underlying 
learning strategy, and representation of knowledge. 
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usually based on analyses of  the tasks to be accomplished, the structure of the 

problem solver, and the system's performance on the tasks. Sometimes this 

problem solving is done by the performance system itself, as in Lenat 's A M  

(1976) and Eurisko (1983) programs, or in a production system that employs 

a build operation (Waterman, 1975) - whereby productions can themselves 

create new productions - as in Anzai and Simon's (1979) work on learning 

by doing. Sometimes the learner is constructed as a separate critic with its own 

problem solver (Smith, Mitchell, Chestek, & Buchanan, 1977; Rendell, 1983), 

or as a set of  critics as in Sussman's (1977) Hacker program. 

A Simple Experience Learner. There is a single learning mechanism that bases 

its modifications on the experience of  the problem solver. The learning 

mechanism is fixed, and does not perform any complex problem solving. Ex- 

amples of  this approach are memo functions (Michie, 1968; Marsh, 1970), 

macro-operators in Strips (Fikes, Hart  & Nilsson, 1972), production composi- 

tion (Lewis, 1978; Neves & Anderson, 1981) and knowledge compilation 

(Anderson, 1983b). 

The third approach, the simple experience learner, is the one adopted in Soar. In 

some ways it is the most parsimonious of the three alternatives: it makes use of  only 

one learning mechanism, in contrast to a multistrategy learner; it makes use of  only 

one problem solver, in contrast to a critic-based deliberate learner; and it requires 

only problem solving about the actual task to be performed, in contrast to both kinds 

of  deliberate learner. Counterbalancing the parsimony is that it is not obvious a priori 

that a simple experience learner can provide an adequate foundation for the construc- 

tion of a general learning mechanism. At first glance, it would appear that such a 

mechanism would have difficulty learning from a variety of  sources of  knowledge, 

learning about all aspects of  the system, and transferring what it has learned to new 

situations. 

The hypothesis being tested in the research on Soar is that chunking, a simple 

experience-based learning mechanism, can form the basis for a general learning 

mechanism, z Chunking is a mechanism originally developed as part of  a 

psychological model of  memory (Miller, 1956). The concept of  a chunk - a symbol 

that designates a pattern of  other symbols - has been much studied as a model of  

memory organization. It has been used to explain such phenomena as why the span 

of  short-term memory is approximately constant, independent of  the complexity of 

the items to be remembered (Miller, 1956), and why chess masters have an advantage 

over novices in reproducing chess positions from memory (Chase & Simon, 1973). 

Newell and Rosenbloom (1981) proposed chunking as the basis for a model of  

2 For a comparison of  chunking to other simple mechanisms for learning by experience, see 

Rosenbloom and Newell (1986). 
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human practice and used it to model the ubiquitous power law of practice - that 

the time to perform a task is a power-law function of the number  of  times the task 

has been performed. The model was based on the idea that practice improves perfor- 

mance via the acquisition of  knowledge about  patterns in the task environment, that 

is, chunks. When the model was implemented as part  o f  a production-system ar- 

chitecture, this idea was instantiated with chunks relating patterns of  goal parameters 

to patterns of  goal results (Rosenbloom, 1983; Rosenbloom & Newell, 1986). By 

replacing complex processing in subgoals with chunks learned during practice, the 

model could improve its speed in performing a single task or set of  tasks. 

To increase the scope of  the learning beyond simple practice, a similar chunking 

mechanism has been incorporated into the Soar problem-solving architecture (Laird, 

Newell & Rosenbloom, 1985). In previous work we have demonstrated how chunking 

can improve Soar's performance on a variety of  tasks and in a variety of  ways (Laird, 

Rosenbloom & Newell, 1984). In this article we focus on presenting the details of  how 

chunking works in Soar (Section 3), and describe a new application involving the ac- 

quisition of  macro-operators  similar to those reported by Korf  (1985a) (Section 4). 

This demonstration extends the claims of  generality, and highlights the ability of  

chunking to transfer learning between different situations. 

Before proceeding to the heart of  this work - the examination of  the anatomy of 

chunking and a demonstrat ion of  its capabilities - it is necessary to make a fairly 

extensive digression into the structure and performance of  the Soar architecture (Sec- 

tion 2). In contrast to systems with multistrategy or deliberate learning mechanisms, 

the learning phenomena exhibited by a system with only a simple experience-based 

learning mechanism is a function not only of  the learning mechanism itself, but also 

of  the problem-solving component  of  the system. The two components are closely 

coupled and mutually supportive. 

2.  S o a r  - an archi tecture  f o r  genera l  in te l l i gence  

Soar is an architecture for general intelligence that has been applied to a variety of  

tasks (Laird, Newell, & Rosenbloom, 1985; Rosenbloom, Laird, McDermott ,  

Newell, & Orciuch, 1985): many of  the classic AI  toy tasks such as the Tower of  

Hanoi,  and the Blocks World: tasks that appear to involve non-search-based reason- 

ing, such as syllogisms, the three-wise-men puzzle, and sequence extrapolation; and 

large tasks requiring expert-level knowledge, such as the R1 computer  configuration 

task (McDermott ,  1982). In this section we briefly review the Soar architecture and 

present an example of  its performance in the Eight Puzzle. 
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2.1 The architecture 

Performance in Soar is based on the problem space hypothesis: all goal-oriented 

behavior occurs as search in problem spaces (Newell, 1980). A problem space for a 

task domain consists o f  a set of  states representing possible situations in the task do- 

main and a set o f  operators that t ransform one state into another one. For example, 

in the chess domain the states are configurations of  pieces on the board, while the 

operators are the legal moves, such as P-K4. In the computer-configuration domain 

the states are partially configured computers,  while the operators add components 

to the existing configuration (among other actions). Problem solving in a problem 

space consists o f  starting at some given initialstate, and applying operators (yielding 

intermediate states) until a desired state is reached that is recognized as achieving the 

goal. 

In Soar, each goal has three slots, one each for a current problem space, state, and 

operator.  Together these four components - a goal along with its current problem 

space, state and operator  - comprise a context. Goals can have subgoals (and 

associated contexts), which form a strict goal-subgoal hierarchy. All objects (such as 

goals, problem spaces, states, and operators) have a unique identifier, generated at 

the time the object was created. Further descriptions of  an object are called augmen- 

tations. Each augmentat ion has an identifier, an attribute, and a value. The value 

can either be a constant value, or the identifier of  another object. All objects are con- 

nected via augmentations (either directly, or indirectly via a chain of  augmentations) 

to one of the objects in a context, so that the identifiers of  objects act as nodes of  

a semantic network, while the augmentations represent the arcs or links. 

Throughout  the process of  satisfying a goal, Soar makes decisions in order to select 

between the available problem spaces, states, and operators.  Every problem-solving 

episode consists of  a sequence of  decisions and these decisions determine the behavior 

of  the system. Problem solving in pursuit of  a goal begins with the selection of  a prob- 

lem space for the goal. This is followed by the selection of  an initial state, and then 

an operator to apply to the state. Once the operator is selected, it is applied to create 

a new state. The new state can then be selected for further processing (or the current 

state can be kept, or some previously generated state can be selected), and the process 

repeats as a new operator  is selected to apply to the selected state. The weak methods 

can be represented as knowledge for controlling the selection of  states and operators 

(Laird & Newell, 1983a). The knowledge that controls these decisions is collectively 

called search control. Problem solving without search contol is possible in Soar, but 

it leads to an exhaustive search of  the problem space. 

Figure 1 shows a schematic representation of a series of  decisions. To bring the 

available search-control knowledge to bear on the making of  a decision, each deci- 

sion involves a monotonic elaboration phase. During the elaboration phase, all 

directly available knowledge relevant to the current situation is brought to bear. This 

is the act of  retrieving knowledge from memory  to be used to control problem solv- 
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Figure I. The Soar decision cycle. 

ing. In Soar, the  long- te rm m e m o r y  is s t ruc tured  as a p r o d u c t i o n  system, with all  

direct ly  avai lab le  knowledge  represented  as p roduc t ions .  3 The  e l abo ra t i on  phase  

consists o f  one or  more  cycles o f  p roduc t ion  execut ion  in which all o f  the  eligible p ro-  

duct ions  are  f ired in paral le l .  The  contexts  o f  the  goal  h ie ra rchy  and their  augmen ta -  

t ions serve as the work ing  m e m o r y  for  these p roduc t ions .  The  i n f o r m a t i o n  a d d e d  

dur ing  the e l a b o r a t i o n  phase  can take  one o f  two forms .  Fi rs t ,  existing objec ts  m a y  

have their  descr ip t ions  e l abo ra t ed  (via augmenta t ions )  with new or  existing objects ,  

such as the  add i t i on  o f  an eva lua t ion  to  a state.  Second ,  da t a  s t ructures  called 

preferences can be crea ted  tha t  specify  the des i rabi l i ty  o f  an ob jec t  for  a slot in a con-  

text.  Each preference  indicates  the context  in which it is re levant  by  specifying the 

a p p r o p r i a t e  goal ,  p r o b l e m  space,  s tate and  ope ra to r .  

When  the e l a b o r a t i o n  phase  reaches  quiescence - when no  more  p roduc t ions  are  

eligible to fire - a f ixed decision procedure is run  tha t  ga thers  and  in terpre ts  the 

preferences  p rov ided  by  the e l a b o r a t i o n  phase  to p roduc e  a specific decision.  Prefer -  

ences o f  type  acceptable and reject de te rmine  whether  or  not  an ob jec t  is a cand ida te  

for  a context .  Preferences  o f  type  better, equal, and  worse de te rmine  the relat ive 

wor th  o f  objects .  Preferences  o f  type  best, indifferent and worst make  abso lu te  

judgement s  a b o u t  the  wor th  o f  objects .  4 Star t ing f rom the oldest  context ,  the  deci- 

s ion p rocedu re  uses the  preferences  to de te rmine  if  the cur ren t  p r o b l e m  space,  s tate ,  

3 We will use the terms production and rule interchangeably throughout this paper. 

4 There is also a parallel preference that can be used to assert that two operators should execute 
simultaneously. 
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or operator  in any of the contexts should be changed. The problem space is con- 

sidered first, followed by the state and then the operator .  A change is made if one 

of  the candidate objects for the slot dominates (based on the preferences) all of  the 

others, or if a set o f  equal objects dominates all of  the other objects. In the latter 

case, a random selection is made between the equal objects. Once a change has been 

made, the subordinate positions in the context (state and operator  if a problem space 

is changed) are initialized to undecided, all o f  the more recent contexts in the stack 

are discarded, the decision procedure terminates, and a new decision commences.  

I f  sufficient knowledge is available during the search to uniquely determine a deci- 

sion, the search proceeds unabated.  However,  in many  cases the knowledge encoded 

into productions may  be insufficient to allow the direct application of an operator  

or the making of  a search-control decision. That  is, the available preferences do not 

determine a unique, uncontested change in a context, causing an impasse in problem 

solving to occur (Brown & VanLehn,  1980). Four classes of  impasses can arise in 

Soar: (1) no-change (the elaboration phase ran to quiescence without suggesting any 

changes to the contexts), (2) tie (no single object or group of  equal objects was better 

than all of  the other candidate objects), (3) conflict (two or more candidate objects 

were better than each other), and (4) rejection (all objects were rejected, even the cur- 

rent one). All types of  impasse can occur for any of  the three context slots associated 

with a goal - problem space, state, and operator  - and a no-change impasse can 

occur for the goal. For example, a state tie occurs whenever there are two or more 

competing states and no directly available knowledge to compare  them. An operator  

no-change occurs whenever no context changes are suggested after an operator  is 

selected (usually because not enough information is directly available to allow the 

creation of  a new state). 

Soar responds to an impasse by creating a subgoal (and an associated context) to 

resolve the impasse. Once a subgoal is created, a problem space must be selected, 

'followed by an initial state, and then an operator .  I f  an impasse is reached in any 

of  these decisions, another  subgoal will be created to resolve it, leading to the hierar- 

chy of goals in Soar. By generating a subgoal for each impasse, the full problem- 

solving power of  Soar can be brought  to bear to resolve the impasse. These subgoals 

correspond to all of  the types of  subgoals created in standard AI systems (Laird, 

Newell, & Rosenbloom, 1985). This capability to generate automatically all subgoals 

in response to impasses and to open up all aspects o f  problem-solving behavior to 

problem solving when necessary is called universal subgoaling (Laird, 1984). 

Because all goals are generated in response to impasses, and each goal can have 

at most one impasse at a time, the goals (contexts) in working memory  are structured 

as a stack, referred to as the context stack. A subgoal terminates when its impasse 

is resolved. For example,  if a tie impasse arises, the subgoal generated for it will ter- 

~minate when sufficient preferences have been created so that a single object (or set 

o f  equal objects) dominates the others. When a subgoal terminates, Soar pops the 

context stack, removing f rom working memory  all augmentat ions created in that 
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subgoal that are not connected to a prior context, either directly or indirectly (by a 

chain of  augmentations),  and preferences whose context objects do not match ob- 

jects in prior contexts. Those augmentations and preferences that are not removed 

are the results of the subgoal. 

Default knowledge (in the form of  productions) exists in Soar to cope with any of  

the subgoals when no additional knowledge is available. For some subgoals (those 

created for all types of  rejection impasses and no-change impasses for goals, 

problem-spaces, and states) this involves simply backing up to a prior choice in the 

context, but for other subgoals (those created for tie, conflict and operator no- 

change impasses), this involves searches for knowledge that will resolve the subgoal 's  

impasse. I f  additional non-default  knowledge is available to resolve an impasse, it 

dominates the default knowledge (via preferences) and controls the problem solving 

within the subgoal. 

2.2 An example problem solving task 

Consider the Eight Puzzle, in which there are eight numbered, movable tiles set in 

a 3 x 3 frame. One cell of  the frame is always empty (the blank), making it possible 

to move an adjacent tile into the empty cell. The problem is to t ransform one con- 

figuration of  tiles into a second configuration by moving the tiles. The states of  the 

eight-puzzle problem space are configurations of  the numbers 1 - 8  in a 3 x 3 grid. 

There is a single general operator  to move adjacent tiles into the empty cell. For a 

given state, an instance of  this operator  is created for each of  the cells adjacent to 

the empty cell. Each of  these operator  instances is instantiated with the empty cell 

and one of  the adjacent cells. To simplify our discussion, we will refer to these instan- 

tiated operators by the direction they move a tile into the empty cell: up, down, left, 

or right. Figure 2 shows an example of  the initial and desired states of  an Eight Puzzle 

problem. 

To encode this task in Soar, one must include productions that propose the ap- 

propriate problem space, create the initial state of  that problem space, implement the 

operators of  the problem space, and detect the desired state when it is achieved. I f  

In itial State Desi red State 

2 3 1 1 2 3 

8 4 8 4 

7 6 5 7 6 5 

Figure 2. Example initial and desired states of the Eight Puzzle. 
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no additional knowledge is available, an exhaustive depth-first search occurs as a 

result of  the default processing for tie impasses. Tie impasses arise each time an 

operator  has to be selected. In response to the subgoals for these impasses, alter- 

natives are investigated to determine the best move. Whenever another tie impasse 

arises during the investigation of  one of  the alternatives, an additional subgoal is 

generated, and the search deepens. If  additional search-control knowledge is added 

to provide an evaluation of  the states, the search changes to steepest-ascent hill climb- 

ing. As more or different search-control knowledge is added, the behavior of  the 

search changes in response to the new knowledge. One of  the properties of  Soar is 

that the weak methods,  such as generate and test, means-ends analysis, depth-first 

search and hill climbing, do not have to be explicitly selected, but instead emerge 

f rom the structure of  the task and the available search-control knowledge (Laird & 

Newell, 1983a; Laird & Newell, 1983b; Laird, 1984). 

Another  way to control the search in the Eight Puzzle is to break it up into a set 

of  subgoals to get the individual tiles into position. We will look at this approach in 

some detail because it forms the basis for the use of  macro-operators  for the Eight 

Puzzle. Means-ends analysis is the standard technique for solving problems where the 

goal can be decomposed into a set of  subgoals, but it is ineffective for problems such 

as the Eight Puzzle that have non-serializable subgoals - tasks for which there exists 

no ordering of  the subgoals such that successive subgoals can be achieved without 

undoing what was accomplished by earlier subgoals (Korf, 1985a). Figure 3 shows 

an intermediate state in problem solving where tiles 1 and 2 are in their desired posi- 

tions. In order to move tile 3 into its desired position, tile 2 must be moved out of 

its desired position. Non-serializable subgoals can be tractable if they are serially 

decomposable (Korf, 1985a). A set of  subgoals is serially decomposable if there is 

an ordering of  them such that the solution to each subgoal depends only on that 

subgoal and on the preceding ones in the solution order. In the Eight Puzzle the 

subgoals are, in order: (1) have the blank in its correct position; (2) have the blank 

and the first tile in their correct positions; (3) have the blank and the first two tiles 

in their correct positions; and so on through the eighth tile. Each subgoal depends 

only on the positions of  the blank and the previously placed tiles. Within one subgoal 

a previous subgoal may be undone, but if it is, it must be re-achieved before the 

current subgoal is completed. 

Intermediate State Desired State 

1 2 4 1 2 3 

3 8 8 4 

7 6 5 7 6 5 

Figure 3. Non-serializable subgoals in the Eight Puzzle. 
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1 61 so l ve -e igh t -puzz le  
2 Pl e igh t -puzz ]e -sd  
3 Sl 

2 3 1 

8 4 

7 6 5 

4 01 place-blank 
5 ==>G2 (resolve-no-change) 
6 P2 e igh t -puzz le  
7 $1 
8 --)G3 ( r e s o l v e - L i e  operator) 
9 P3 t t e  
10 SZ { l e f t ,  up, down} 
11 05 e v a l u a t a - o b J e c t ( O 2 ( l e f t ) )  
12 -=>G4 (resolve-no-change) 
13 P2 e igh t -puzz le  
14 51 
15 02 l e f t  
16 $3 

2 3 1 

8 4 

7 6 5 

17 OZ l e f t  
18 $4 
19 $4 
ZO 08 place-1 

Figure 4. A problem-solving trace for the Eight Puzzle. Each line of  the trace includes, f rom left to right, 

the decision number ,  the identifier of  the object selected, and possibly a short description of  the object. 

Adopting this approach does not result in new knowledge for directly controlling 

the selection of operators and states in the eight-puzzle problem space. Instead it pro- 

vides knowledge about how to structure and decompose the puzzle. This knowledge 

consists of the set of serially decomposable subgoals, and the ordering of those 

subgoals. To encode this knowledge in Soar, we have added a second problem space, 

eight-puzzle-sd, with a set of nine operators corresponding to the nine subgoalsfl For 

example, the operator place-2 will place tile 2 in its desired position, while assuring 

that the blank and the first tile will also be in position. The ordering of the subgoals 

is encoded as search-control knowledge that creates preferences for the operators. 

Figure 4 shows a trace of the decisions for a short problem-solving episode for the 

initial and desired states from Figure 2. This example is heavily used in the remainder 

5 Both place-7 and place-8 are always no-ops because once the blank and tiles 1 -6  are in place, either 

tiles 7 and 8 must  also be in place, or  the problem is unsolvable. They can therefore be safely ignored. 
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of the paper,  so we shall go through it in some detail. To start problem solving, the 

current goal is initialized to be solve-eight-puzzle (in decision 1). The goal is 

represented in working memory  by an identifier, in this case G1. Problem solving 

begins in the eight-puzzle-sd problem space. Once the initial state, S1, is selected, 

preferences are generated that order the operators  so that place-blank is selected. Ap- 

plication of  this operator ,  and all of  the eight-puzzle-sd operators,  is complex, often 

requiring extensive problem solving. Because the problem-space hypothesis implies 

that such problem solving should occur in a problem space, the operator  is not direct- 

ly implemented as rules. Instead, a no-change impasse leads to a subgoal to imple- 

ment place-blank, which will be achieved when the blank is in its desired position. 

The place-blank operator  is then implemented as a search in the eight-puzzle problem 

space for a state with the blank in the correct position. This search can be carried 

out using any of  the weak methods described earlier, but for this example, let us 

assume there is no additional search-control knowledge. 

Once the initial state is selected (decision 7), a tie impasse occurs among the 

operators that move the three adjacent tiles into the empty cell (left, up and down). 

A resolve-tie-subgoal (G3) is automatically generated for this impasse, and the tie 

problem space is selected. Its states are sets of  objects being considered, and its 

operators evaluate objects so that preferences can be created. One of these evaluate- 

object operators (05) is selected to evaluate the operator  that moves tile 8 to the left, 

and a resolve-no-change subgoal (G4) is generated because there are no productions 

that directly compute  an evaluation of  the iefl operator  for state S1. Default  search- 

control knowledge attempts to implement the evaluate-object operator  by applying 

the left operator  to state S1. This is accomplished in the subgoal (decisions 13-16), 

yielding the desired state ($3). Because the left operator  led to a solution for the goal, 

a preference is returned for it that allows it to be selected immediately for state S1 

(decision 17) in goal G2, flushing the two lower subgoals (G3 and G4). I f  this state 

were not the desired state, another tie impasse would arise and the tie problem space 

would be selected for this new subgoal. The subgoal combinat ion of  a resolve-tie 

followed by a resolve-no-change on an evaluate-object operator  would recur, giving 

a depth-first search. 

Applying the left operator  to state S1 yields state $4, which is the desired result 

o f  the place-blank operator  in goal G1 above. The place-1 operator  (08) is then 

selected as the current operator .  As with place-blank, place-1 is implemented by a 

search in the eight-puzzle problem space. It succeeds when both tile 1 and the blank 

are in their desired positions. With this problem-solving strategy, each tile is moved 

into place by one of  the operators  in the eight-puzzle-sd problem space. In the 

subgoals that implement the eight-puzzle-sd operators,  many  of  the tiles already in 

place might be moved out o f  place, however, they must be back in place for the 

operator  to terminate successfully. 
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3. Chunking in Soar 

Soar was originally designed to be a general (non-learning) problem solver. Never- 

theless, its problem-solving and memory structures support learning in a number of  

ways. The structure of  problem solving in Soar determines when new knowledge is 

needed, what that knowledge might be, and when it can be acquired. 

• Determining when new knowledge is needed. In Soar, impasses occur if and 

only if the directly available knowledge is either incomplete or inconsistent. 

Therefore, impasses indicate when the system should attempt to acquire new 

knowledge. 

• Determining what to learn. While problem solving within a subgoal, Soar can 

discover informat ion  that will resolve an impasse. This information, if 

remembered, can avert similar impasses in future problem solving. 

• Determining when new knowledge can be acquired. When a subgoal com- 

pletes, because its impasse has been resolved, an opportunity exists to add new 

knowledge that was not already explicitly known. 

Soar's long-term memory, which is based on a production system and the workings 

of the elaboration phase, supports learning in two ways: 

• Integrating new knowledge. Productions provide a modular representation of  

knowledge, so that the integration of  new knowledge only requires adding a 

new production to production memory and does not require a complex 

analysis of  the previously stored knowledge in the system (Newell, 1973; 

Waterman, 1975; Davis & King, 1976; Anderson, 1983b). 

• Using new knowledge. Even if the productions are syntactically modular, there 

is no guarantee that the information they encode can be integrated together 

when it is needed. The elaboration phase of  Soar brings all appropriate 

knowledge to bear, with no requirement of  synchronization (and no conflict 

resolution). The decision procedure then integrates the results of  the elabora- 

tion phase. 

Chunking in Soar takes advantage of  this support to create rules that summarize 

the processing of  a subgoal, so that in the future, the costly problem solving in the 

subgoal can be replaced by direct rule application. When a subgoal is generated, a 

learning episode begins that could lead to the creation of  a chunk. During problem 

solving within the subgoal, information accumulates on which a chunk can be based. 

When the subgoal terminates, a chunk can be created. Each chunk is a rule (or set 

of rules) that gets added to the production memory. Chunked knowledge is brought 

to bear during the elaboration phase of  later decisions. In the remainder of  this 

section we look in more detail at the process of  chunk creation, evaluate the scope  

of chunking as a learning mechanism, and examine the sources of chunk generality: 
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3.1 Cons truc t ing  c h u n k s  

Chunks  are based on  the work ing -memory  elements that  are either examined or 

created dur ing  p rob lem solving within a subgoal.  The condi t ions  consist  of  those 

aspects of  the s i tua t ion that  existed prior  to the goal, and  which were examined 

dur ing  the processing of  the goal, while the actions consist of  the results of  the goal. 

W h e n  the subgoal  terminates,6 the collected work ing -memory  elements are converted 

into the condi t ions  and  actions of  one or more  product ions .  7 In this subsect ion,  we 

describe in detail the three steps in chunk  creat ion:  (1) the collection of  condi t ions  

and actions,  (2) the var iabi l iza t ion of  identifiers,  and  (3) chunk  opt imiza t ion .  

3.1.1 Collect ing condi t ions  and  act ions  

The condi t ions  of  a chunk  should test those aspects of the s i tuat ion existing prior  to 

the creat ion of  the goal that  are relevant  to the results that  satisfy the goal. In Soar 

this corresponds  to the work ing -memory  elements that  were matched by product ions  

that  fired in the goal (or one of  its subgoals),  bu t  that  existed before the goal was 

created. These are the elements that  the problem solving implicit ly deemed to be rele- 

vant  to the sat isfact ion of  the subgoal .  This collection of  work ing -memory  elements 

is ma in t a ined  for each active goal in the goal ' s  referenced-l ist .  8 Soar  allows produc-  

t ions be longing  to any  goal in the context  stack to execute at any  time, so upda t ing  

the correct referenced-list  requires de termining  for which goal in the stack the pro- 

duc t ion  fired. This is the most  recent of  the goals matched by the p roduc t ion ' s  condi-  

t ions. The p roduc t i on ' s  firing affects the chunks  created for that  goal and  all of  its 

supergoals,  but  because the firing is independen t  of  the more  recent subgoals,  it has 

no effect on the chunks  buil t  for those subgoals.  No chunk  is created if the subgoal ' s  

results were no t  based on prior  i n fo rma t ion ;  for example,  when an object  is input  

6 The default behavior for Soar is to create a chunk always; that is, every time a subgoal terminates. 

The major alternative to creating chunks for all terminating goals is to chunk buttom-up, as was done 

in modeling the power law of practice (Rosenbloom, 1983). In bottom-up chunking, only terminal goals 

- goals for which no subgoals were generated - are chunked. As chunks are learned for subgoals, the 

subgoals need no longer be generated (the chunks accomplish the subgoals' tasks before the impasses 

occur), and higher goals in the hierarchy become eligible for chunking. It is unclear whether chunking 

always or bottom-up will prove more advantageous in the long run, so to facilitate experimentation, both 

options are available in Soar. 

7 Production composition (Lewis, 1978) has also been used to learn productions that summarize goals 

(Anderson, 1983b). It differs most from chunking in that it examines the actual definitions of the produc- 

tions that fired in addition to the working-memory elements referenced and created by the productions. 

8 If a fired production has a negated condition - a condition testing for the absence in working memory 

of an element matching its pattern - then the negated condition is instantiated with the appropriate 

variable bindings from the production's positive conditions. If the identifier of the instantiated condition 

_existed prior to the goal, then the instantiated condition is included in the referenced-list. 
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from the outside, or when an impasse is resolved by domain-independent default 

knowledge. 

The actions of  a chunk are based on the results of  the subgoal for which the chunk 

was created. No chunk is created if there are no results. This can happen, for exam- 

ple, when a result produced in a subgoal leads to the termination of  a goal much 

higher in the goal hierarchy. All of  the subgoals that are lower in the hierarchy will 

also be terminated, but they may not generate results. 

For an example of  chunking in action, consider the terminal subgoal (G4) f rom 

the problem-solving episode in Figure 4. This subgoal was created as a result of  a no- 

change impasse for the evaluate-object operator  that should evaluate the operator 

that will move tile 8 to the left. The problem solving within goal G4 must implement 

the evaluate-object operator .  Figure 5 contains a graphic representation of part of  

the working memory  for this subgoal near the beginning of  problem solving (A) and 

just before the subgoal is terminated (B). The working memory  that existed before 

the subgoal was created consisted of  the augmentations of  the goal to resolve the tie 

between the eight-puzzle operators,  G3, and its supergoals (G2 and G1, not shown). 

The tie problem space is the current problem space of  G3, while state $2 is the current 

state and the evaluate-object operator (05) is the current operator.  D1 is the desired 

state of  having the blank in the middle, but with no constraint on the tiles in the other 

cells (signified by the X's  in the figure). All of  these objects have further descriptions, 

some only partially shown in the figure. 

The purpose of goal G4 is to evaluate operator  02,  that will move tile 8 to the left 

in the initial state (S1). The first steps are to augment the goal with the desired state 

(D1) and then select the eight-puzzle problem space (P2), the state to which the 

operator  will be applied (S1), and finally the operator  being evaluated (02). To do 

this, the augmentations f rom the evaluate-object operator  (05) to these objects are 

accessed and therefore added to the referenced list (the highlighted arrows in part  (A) 

of  Figure 5). Once operator  02  is selected, it is applied by a production that creates 

a new state ($3). The application of  the operator depends on the exact representation 

used for the states of  the problem space. State S1 and desired state D1, which were 

shown only schematically in Figure 5, are shown in detail in Figure 6. The states are 

built out o f  cells and tiles (only some of  the cells and tiles are shown in Figure 6). 

The nine cells (C1-C9) represent the structure of  the Eight Puzzle frame. They form 

a 3 × 3 grid in which each cell points to its adjacent cells. There are eight numbered 

tiles (T2-T9), and one blank (T1). Each tile points to its name, 1 through 8 for the 

numbered tiles and 0 for the blank. Tiles are associated with cells by objects called 

bindings. Each state contains 9 bindings, each of  which associates one tile with the 

cell where it is located. The bindings for the desired state, D1, are L1-L9, while the 

bindings for state S1 are B1-B9. The fact that the blank is in the center of  the desired 

state is represented by binding L2, which points to the blank tile (T1) and the center" 

cell (C5). All states (and desired states) in both the eight-puzzle and eight-puzzle-sd 

problem spaces share this same cell structure. 
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I A ' l  
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Figure 5. An example of the working-memory elements used to create a chunk. (A) shows working 

-memory near the beginning of the subgoal to implement the evaluate-object operator. (B) shows working 

memory at the end of the subgoal. The circled symbols represent identifiers and the arrows represent 

augmentations. The identifiers and augmentations above the horizontal lines existed before the subgoal 

was created. Below the lines, the identifiers marked by doubled circles, and all of the augmentations, are 

created in the subgoal. The other identifiers below the line are not new; they are actually the same as the 

corresponding ones above the lines. The highlighted augmentations were referenced during the problem 

solving in the subgoal and will be the basis of the conditions of the chunk. The augmentation that was 

created in the subgoal but originates from an object existing before the subgoal (El ~SUCCESS) will be 

the basis for the action of the chunk. 

To  apply  the ope ra to r  and create a new state, a new state symbol  is created ($3) 

with two new bindings,  one for  the moved  tile and one for  the blank.  The  binding 

for  the m o v e d  tile points  to the tile (T9) and to the cell where it will be (C4). The  bind- 

ing for the b lank points  to the b lank (T1) and to the cell that  will be empty  (C5). All  

the other  bindings are then copied to the new state. This processing accesses the 

relative posi t ions o f  the b lank and the moved  tile, and the bindings for  the remaining  

tiles in current  state (S1). The  augmenta t ions  o f  the ope ra to r  are tested for the cell 

that  contains  the tile to be moved .  

Once the new state ($3) is selected, a p roduc t ion  generates  the opera tors  that  can 
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Figure 6. Example of working-memory elements representing the state used to create a chunk. The 
highlighted augmentations were referenced during the the subgoal. 

apply to the new state. All cells that are adjacent to the blank cell (C2, C4, C6, and 

C8) are used to create operators. This requires testing the structure of  the board as 

encoded in the connections between the cells. Following the creation of the operators 

that can apply to state $3, the operator that would undo the previous operator is 

rejected so that unnecessary backtracking is avoided. During the same elaboration 

phase, the state is tested to determine whether a tile was just moved into or out of  

its correct position. This information is used to generate an evaluation based on the 

sum of the number of  tiles that do not have to be in place and the number of tiles 

that both have to be in place and are in place. This computation, whose result is 

represented by the object X1 with a value of  8 in Figure 5, results in the accessing 

of  those aspects of the desired state highlighted in Figure 6. The value of  8 means 

that the goal is satisfied, so the evaluation (El) for the operator has the value sueeess. 

Because E1 is an identifier that existed before the subgoal was created and the sneeess 

augmentation was created in the subgoal, this augmentation becomes an action. If  
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success had further augmentations,  they would also be included as actions. The 

augmentations of  the subgoal (G4), the new state ($3), and its sub-object (X1) that 

point to objects created before the subgoal are not included as actions because they 

are not augmentations,  either directly or indirectly, of  an object that existed prior 

to the creation of  the subgoal. 

When goal G4 terminates, the initial set of  conditions and actions have been deter- 

mined for the chunk. The conditions test that there exists an evaluate-object operator 

whose purpose is to evaluate the operator that moves the blank into its desired loca- 

tion, and that all of  the tiles are either in position or irrelevant for the current eight- 

puzzle-sd operator .  The action is to mark the evaluation as successful, meaning that 

the operator being evaluated will achieve the goal. This chunk should apply in similar 

future situations, directly implementing the evaluate-object operator,  and avoiding 

the no-change impasse and the resulting subgoal. 

3.1.2 Identifier variabilization 

Once the conditions and actions have been determined, all of  the identifiers are 

replaced by production (pattern-match) variables, while the constants, such as 

evaluate-object, eight-puzzle, and 0 are left unchanged. An identifier is a label by 

which a particular instance of an object in working memory  can be referenced. It is 

a short-term symbol that lasts only as long as the object is in working memory.  Each 

time the object reappears in working memory it is instantiated with a new identifier. 

I f  a chunk that is based on working-memory elements is to reapply in a later situa- 

tion, it must not mention specific identifiers. In essence the variabilization process 

is like replacing an 'eq '  test in Lisp (which requires pointer identity) with an 'equal '  

test (which only requires value identity). 

All occurrences of  a single identifier are replaced with the same variable and all 

occurrences of  different identifiers are replaced by different variables. This assures 

that the chunk will match in a new situation only if there is an identifier that appears 

in the same places in which the original identifier appeared. The production is also 

modified so that no two variables can match the same identifier. Basically, Soar is 

guessing which identifiers must be equal and which must be distinct, based only on 

the information about  equality and inequality in working memory.  All identifiers 

that are the same are assumed to require equality. All identifiers that are not the same 

are assumed to require inequality. Biasing the generalization in these ways assures 

that the chunks will not be overly general (at least because of  these modifications), 

but they may be overly specific. The only problem this causes is that additional 

chunks may need to be learned if the original ones suffer f rom overspecialization. 

In practice, these modifications have not led to overly specific chunks. 
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3.1.3 Chunk optimization 

At this point in the chunk-creation process the semantics of  the chunk are deter- 

mined. However,  three additional processes are applied to the chunks to increase the 

efficiency with which they are matched against working memory (all related to the 

use in Soar of the Ops5 rule matcher (Forgy, 1981)). The first process is to remove 

conditions from the chunk that provide (almost) no constraint on the match process. 

A condition is removed if it has a variable in the value field of  the augmentat ion that 

is not bound elsewhere in the rule (either in the conditions or the actions). This pro- 

cess recurses, so that a long linked-list of  conditions will be removed if the final one 

in the list has a variable that is unique to that condition. For the chunk based on 

Figures 5 and 6, the bindings and tiles that were only referenced for copying (B1, B4, 

B5, B6, B7, B8, B9, and T9) and the cells referenced for creating operator instantia- 

tions (C2, C6, and C8) are all removed. The evaluation object, E l ,  in Figure 5 is not 

removed because it is included in the action. Eliminating the bindings does not in- 

crease the generality of  the chunk, because all states must have nine bindings. 

However,  the removal of  the cells does increase the generality, because they (along 

with the test of  cell C4) implicitly test that there must be four cells adjacent to the 

one to which the blank will be moved.  Only the center has four adjacent cells, so the 

removal of  these conditions does increase the generality. This does increase slightly. 

the chance of the chunk being over-general, but in practice it has never caused a 

problem, and it can significantly increase the efficiency of the match by removing 

unconstrained conditions. 

The second optimization is to eliminate potential combinatorial  matches in the 

conditions of  productions whose actions are to copy a set of  augmentations f rom aft 

existing object to a new object. A common strategy for implementing operators in 

subgoals is to create a new state containing only the new and changed information,  

and then to copy over pointers to the rest of  the previous state. The chunks built for 

these subgoals contain one condition for each of  the copied pointers. If, as is usually 

the case, a set of  similar items are being copied, then the copy conditions end up dif- 

fering only in the names of  variables. Each augmentation can match each of these 

conditions independently, generating a combinatorial  number of  instantiations. This 

problem would arise if a subgoal were used to implement the eight-puzzle operators 

instead of  the rules used in our current implementation. A single production would 

be learned that created new bindings for the moved tile and the blank, and also copied 

all of  the other bindings. There would be seven conditions that tested for the bin- 

dings, but each of  these conditions could match any of  the bindings that had to be 

copied, generating 7! (5040) instantiations. This problem is solved by collapsing the 

set of  similar copy conditions down to one. All of  the augmentations can still be 

copied over, but it now occurs via multiple instantiations (seven of  them) of th~ 

simpler rule. Though this reduces the number of  rule instantiations to linear in the 

number  of  augmentations to be copied, it still means that the other non-copying ac- 



C H U N K I N G  IN SOAR 29 

tions are done more than once. This problem is solved by splitting the chunk into two 

productions. One production does everything the subgoal did except for the copying. 

"The other production just does the copying. If there is more than one set of augmen- 

tations to be copied, each set is collapsed into a single condition and a separate rule 

is created for each. 9 

The final optimization process consists of applying a condition-recording 

algorithm to the chunk productions. The efficiency of  the Rete-network matcher 

(Forgy, 1982) used in Soar is sensitive to the order in which conditions are specified. 

By taking advantage of  the known structure of  Soar's working memory, we have 

developed a static reordering algorithm that significantly increases the efficiency of  

the macth. Execution time is sometimes improved by more than an order of  

magnitude, almost duplicating the efficiency that would be achieved if the reordering 

was done by hand. This reordering process preserves the existing semantics of  the 

chunk. 

3.2 The scope o f  chunking 

In Section 1 we defined the scope of  a general learning mechanism in terms of  three 

properties: task generality, knowledge generality, and aspect generality. Below we 

briefly discuss each of  these with respect to chunking in Soar. 

Task generality. Soar provides a single formalism for all behavior - heuristic 

• search of  problem spaces in pursuit of  goals. This formalism has been widely used 

in Artificial Intelligence (Feigenbaum & Feldman, 1963; Nilsson, 1980; Rich, 1983) 

and it has already worked well in Soar across a wide variety of problem domains 

(Laird, Newell, & Rosenbloom, 1985). If  the problem-space hypothesis (Newell, 

1980) does hold, then this should cover all problem domains for which goal-oriented 

156havior is appropriate. Chunking can be applied to all of  the domains for which 

Soar is used. Though it remains to be shown that useful chunks can be learned for 

this wide range of  domains, our preliminary experience suggests that the combination 

of Soar and chunking has the requisite generality. 1° 

Knowledge generality. Chunking learns from the experiences of  the problem 

solver. At first glance, it would appear to be.unable to make use of instructions, ex- 

amples, analogous problems, or other similar sources of  knowledge. However, by 

using such information to help make decisions in subgoals, Soar can learn chunks 

that incorporate the new knowledge. This approach has worked for a simple form 

9 The inelegance of  this solution leads us to believe that we do not  yet have the right assumptions  about 

l~ow new objects are to be created from old ones. 

10 For demonstra t ions  of  chunking in Soar on the Eight Puzzle, Tic-Tac-Toe, and the R1 computer-  

configurat ion task, see Laird, Rosenbloom,  & Newell (1984), Rosenbloom, Laird, McDermott ,  Newell, 

& Orciuch (1985), and van de Brug, Rosenbloom,  & Newell (1985). 
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of  user direction, and is under investigation for learning by analogy. The results are 

preliminary, but it establishes that the question of knowledge generality is open for 

Soar. 

Aspect generality. Three conditions must be met for chunking to be able to learn 

about all aspects of  Soar's problem solving. The first condition is that all aspects 

must be open to problem solving. This condition is met because Soar creates subgoals 

for all of  the impasses it encounters during the problem solving process. These 

subgoals allow for problem solving on any of the problem solver's functions: creating 

a problem space, selecting a problem space, creating an initial state, selecting a state, 

selecting an operator,  and applying an operator.  These functions are both necessary 

and sufficient for Soar to solve problems. So far chunking has been demonstrated 

for the selection and application of  operators (Laird, Rosenbloom & Newell, 1984); 

that is, strategy acquisition (Langley, 1983; Mitchell, 1983) and operator  implemen- 

tation. However,  demonstrations of  chunking for the other types of  subgoals remain 

to be done. 11 

The second condition is that the chunking mechanism must be able to create the 

long-term memory  structures in which the new knowledge is to be represented. Soar 

represents all of  its long-term knowledge as productions, and chunking acquires new 

productions. By restricting the kinds of  condition and action primitives allowed in 

productions (while not losing Turing equivalence), it is possible to have a production. 

language that is coextensive syntactically with the types of  rules learned by chunking; 

that is, the chunking mechanism can create rules containing all of  the syntactic con- 

structs available in the language. 

The third condition is that the chunking mechanism must be able to acquire rules 

with the requisite content. In Soar, this means that the problem solving on which the 

requisite chunks are to be based must be understood. The current biggest limitations 

on coverage stem from our lack of  understanding of the problem solving underlying 

such aspects as problem-space creation and change of representation (Hayes & 

Simon, 1976; Korf, 1980; Lenat, 1983; Utgoff ,  1984). 

3.3 Chunk generality 

One of  the critical questions to be asked about  a simple mechanism for learning from 

experience is the degree to which the information learned in one problem can transfer 

to other problems. If  generality is lacking, and little transfer occurs, the learning 

mechanism is simply a caching scheme. The variabilization process described in Sec- 

tion 3.1.2 is one way in which cunks are made general. However,  this process would 

by itself not lead to chunks that could exhibit non-trivial forms of  transfer. All it does 

H In part this issue is one of rarity. For example, selection of problem spaces is not yet problematical, 
and conflict impasses have not yet been encountered. 
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is allow the chunk to match another instance of the same exact situation. The prin- 

cipal source of  generality is the implicit generalization that results from basing 

chunks on only the aspects of the situation that were referenced during problem solv- 

ing. In the example in Section 3.1.1, only a small percentage of  the augmentations 

in working memory ended up as conditions of  the chunk. The rest of the information, 

such as the identity of  the tile being moved and its absolute location, and the identities 

and locations of  the other tiles, was not examined during problem solving, and 

therefore had no effect on the chunk. 

Together, the representation of  objects in working memory and the knowledge 

used during problem solving combine to form the bias for the implicit generalization 

process (Utgoff, 1984); that is, they determine which generalizations are embodied 

in the chunks learned. The object representation defines a language for the implicit 

generalization process, bounding the potential generality of  the chunks that can be 

learned. The problem solving determines (indirectly, by what it examines) which 

generalizations are actually embodied in the chunks. 

Consider the state representation used in Korf 's (1985a) work on the Eight Puzzle 

(recall Section 2.2). In his implementation, the state of  the board was represented as 

a vector containing the positions of  each of  the tiles. Location 0 contained the coor- 

dinates of  the position that was blank, location 1 contained the coordinates of  the 

first tile, and so on. This is a simple and concise representation, but because aspects 

of  the representation are overloaded with more than one functional concept, it pro- 

vides poor support for implicit generalization (or for that matter, any traditional 

conditition-finding method). For example, the vector indices have two functions: 

they specify the identity of  the tile, and they provide access to the tile's position. 

~When using this state representation it is impossible to access the position of  a tile 

without looking at its identity. Therefore, even when the problem solving is only 

dependent on the locations of  the tiles, the chunks learned would test the tile iden- 

tities, thus failing to apply in situations in which they rightly could. A second prob- 

lem with the representation is that some of  the structure of  the problem is implicit 

in the representation. Concepts that are required for good generalizations, such as 

the relative positions of  two tiles, cannot be captured in chunks because they are not 

explicitly represented in the structure of the state. Potential generality is maximized 

if an object is represented so that functionally independent aspects are explicitly 

represented and can be accessed independently. For example, the Eight Puzzle state 

representation shown in Figure 6 breaks each functional role into separate working- 

memory objects. This representation, while not predetermining what generalizations 

are to be made, defines a class of  possible generalizations that include good ones for 

the Eight Puzzle. 

The actual generality of  the chunk is maximized (within the constraints established 

by the representation) if the problem solyer only examines those features of  the situa- 

tion that are absolutely necessary to the solution of  the problem. When the problem 

solver knows what it is doing, everything works fine, but generality can be lost when 
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information that turns out to be irrelevant is accessed. For example, whenever a new 

state is selected, productions fire to suggest operators to apply to the state. This 

preparat ion goes on in parallel with the testing of  the state to see if it matches the 

goal. I f  the state does satisfy the goal, then the preparat ion process was unnecessary. 

However,  if the preparat ion process referenced aspects of  the prior situation that 

were not accessed by previous productions, then irrelevant conditions will be added 

to the chunk. Another  example occurs when false paths - searches that lead of f  of  

the solution path - are investigated in a subgoal. The searches down unsuccessful 

paths may reference aspects of  the state that would not have been tested if only the 

successful path were followed. 12 

4. A demonstrat ion  - acquis i t ion o f  macro-operators 

In this section we provide a demonstrat ion of  the capabilities of  chunking in Soar 

involving the acquistion of  macro-operators  in the Eight Puzzle for serially decom- 

posable goals (see Section 2). We begin with a brief review of  Korf ' s  (1985a) original 

implementation of  this technique. We follow this with the details of  its implementa- 

tion in Soar, together with an analysis of  the generality of  the macro-operators  

learned. This demonstrat ion of  macro-operators  in Soar is o f  particular interest. 

because: we are using a general problem solver and learner instead of  special-purpose 

programs developed specifically for learning and using macro-operators;  and because 

it allows us to investigate the generality of  the chunks learned in a specific application. 

4.1 Macro problem solving 

Korf  (1985a) has shown that problems that are serially decomposable can be effi- 

ciently solved with the aid of  a table of  macro-operators. A macro-operator  (or 

macro for short) is a sequence of operators that can be treated as a single operator 

(Fikes, Har t  & Nilsson, 1972). The key to the utility of  macros for serially decom- 

posable problems is to define each macro so that after it is applied, all subgoals that 

had been previously achieved are still satisfied, and one new subgoal is achieved. 

Means-ends analysis is thus possible when these macro-operators  are used. Table 1 

shows Korf ' s  (1985a) macro table for the Eight Puzzle task of  getting all of  the tiles 

in order, clockwise around the frame, with the 1 in the upper left hand corner, and 

the blank in the middle (the desired state in Figure 3). Each column contains the 

macros required to achieve one of  the subgoals of  placing a tile. The rows give the 

12 An experimental version of chunking has been implemented that overcomes these problems by per, 

forming a dependency analysis on traces of the productions that fired in a snbgoal. The production traces 

are used to determine which conditions were necessary to produce results of  the subgoal. All of the results 

of  this paper are based on the version of  chunking without the dependency analysis. 
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Table 1. Macro table for the Eight Puzzle (from Korf, 1985, Table 1). The primitive operators move a 
tile one step in a particular direction; u (up), d (down), l (left), and r (right). 

0 1 2 

A 

B ul 

C u rdlu 

D ur dlurrdlu dlur 

E r Idrurdlu ldru 

F dr uldrurdldrul lurdldru 

G d urdldrul ulddru 

H dl rulddrul druuldrdlu 

I 1 drul rullddru 

Tiles 
3 4 5 6 

rdllurdrul 

ldrnlurddlru lurd 

urddluldrrul uldr 

ruldrdluldrrul urdluldr 

rdluldrrul rulldr 

rdlluurdldrrul 

uldrurdllurd urdl 

uldrruldlurd ruld 

a p p r o p r i a t e  m a c r o  accord ing  to the  current  pos i t i on  o f  the  tile, where  the  pos i t ions  

are labe led  A - I  as in F igure  7. F o r  example ,  if  the  goal  is to move  the b l ank  (tile 0) 

into the center ,  and  it is cu r ren t ly  in the t op  left  corner  ( loca t ion  B), then the o p e r a t o r  

sequence ul will accompl i sh  it. 

K o r f ' s  i m p l e m e n t a t i o n  o f  m a c r o  p r o b l e m  solving used two p rog rams :  a p r o b l e m  

solver  and  a learner .  The  p r o b l e m  solver  could  use m a c r o  tables  acqui red  by  the 

"learner to  solve ser ial ly  d e c o m p o s a b l e  p r o b l e m s  eff ic ient ly .  Using  Table  1, the 

p rob lem-so lv ing  p r o g r a m  could  solve any Eight  Puzzle  p r o b l e m  with the same 

desired state (the ini t ia l  s tate m a y  vary) .  The  p rocedu re  went  as fol lows:  (a) the  posi-  

"tion o f  the  b l a n k  was de te rmined ;  (b) the a p p r o p r i a t e  m a c r o  was f o u n d  by  using this 

pos i t ion  to  index into the first  co lumn of  the  table ;  (c) the  ope ra to r s  in this  m a c r o  

were app l ied  to the  state,  mov ing  the b l ank  into  pos i t ion ;  (d) the  pos i t ion  o f  the  first  

t i le was de te rmined ;  (e) the a p p r o p r i a t e  m a c r o  was found  by  using this pos i t ion  to  

index into  the second  co lumn o f  the table;  (f) the  ope ra to r s  in this m a c r o  were app l i ed  

to the  s tate ,  mov ing  the first  t i le (and the b lank)  in to  pos i t ion ;  and  so on unt i l  all o f  

the tiles were in place.  

B C D 

I A E 

H G F 

Figure 7. The positions (A-I) in the Eight Puzzle frame. 
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To discover the macros, the learner started with the desired state, and performed 

an iterative-deepening search (for example, see Korf, 1985b) using the elementary 

tile-movement operators.13 As the search progressed, the learner detected sequences 

of operators that left some of  the tiles invariant, but moved others. When an operator 

sequence was found that left an initial sequence of  the subgoals invariant - that is, 

for some tile k, the operator moved that tile while leaving tiles 1 through k-1 where 

they were - the operator sequence was added to the macro table in the appropriate 

column and row. In a single search from the desired state, all macros could be found. 

Since the search used iterative-deepening, the first macro found was guaranteed to 

be the shortest for its slot in the table. 

4.2 Macro problem solving in Soar 

Soar's original design criteria did not include the ability to employ serially decom- 

posable subgoals or to acquire and use macro-operators to solve problems structured 

by such subgoals. However, Soar's generality allows it to do so with no changes to 

the architecture (including the chunking mechanism). Using the implementation of  

the Eight Puzzle described in Sections 2.2 and 3.1.1, Soar's problem solving and 

learning capabilities work in an integrated fashion to learn and use macros for serially 

decomposable subgoals. 

The opportunity to learn a macro-operator exists each time a goal for implement- 

ing one of  the eight-puzzle-sd operators, such as place-5, is achieved. When the goal 

is achieved there is a stack of  subgoals below it, one for each of the choice points 

that led up to the desired state in the eight-puzzle problem space. As described in Sec- 

tion 2, all of  these lower subgoals are terminated when the higher goal is achieved. 

As each subgoal terminates, a chunk is built that tests the relevant conditions and 

produces a preference for one of  the operators at the choice point. TM This set of ° 

chunks encodes the path that was successful for the eight-puzzle-sd operator. In 

future problems, these chunks will act as search-control knowledge, leading the prob- 

lem solver directly to the solution without any impasses or subgoals. Thus, Soar 

learns macro-operators, not as monolithic data structures, but as sets of  chunks that 

determine at each point in the search which operator to select next. This differs from 

previous realizations of  macros where a single data structure contains the macro, 

either as a list of  operators, as in Korf 's  work, or as a triangle table, as in Strips 

(Fikes, Hart  & Nilsson, 1972). Instead, for each operator in the macro-operator se- 

13 For very deep searches, other more efficient techniques such as bidirectional search and macro- 
operator composition were used. 

14 Additional chunks are created for the subgoals resulting from no-change impasses on the evaluate- 

object operators, such as the example chunk in Section 3.1.1, but these become irrelevant for this task 
once the rules that embody preferences are learned. 
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Figure 8. Searches performed for the first three eight-puzzle-sd operators in an example problem. The left 

column shows the search without learning. The horizontal arrows represent points in the search where no 

choice (and therefore no chunk) is required. The middle column shows the search during learning. A' + '  

signifies that a chunk was learned that preferred a given operator. A ' ' signifies that a chunk was learned 

to avoid an operator. The boxed numbers show where a previously learned chunk was applied to avoid 

search during learning. The right column shows the search after learning. 

quence,  there is a chunk  that  causes it to be selected (and therefore applied) at the 

right time. On  later problems (and even the same problem),  these chunks control  the 

search when they can, giving the appearance  of  macro  p rob lem solving, and  when 

they cannot ,  the p rob lem solver resorts to search. W h e n  the latter succeeds, more  

chunks are learned,  and  more  of  the macro  table is covered. By represent ing macros  

as sets of  independen t  p roduc t ions  that  are learned when the appropr ia te  p rob lem 

arises, the processes of  learning,  storing, and  using macros  become both  incrementa l  

and  simplified. 

Figure 8 shows the p rob lem solving and  learning that  Soar does while pe r fo rming  

iterative-deepening searches for the first three e i g h t - p u z z l e - s d  operators  of  an exam- 
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pie problem. The figure shows the searches for which the depth is sufficient to imple- 

ment each operator.  The first eight-puzzle-sd operator,  place-blank, moves the blank 

to the center. Without learning, this yields the search shown in the left column of  the 

first row. During learning (the middle column), a chunk is first learned to avoid an 

operator that does not achieve the goal within the current depth limit (2). This is 

marked by a '  - '  and the number  1 in the figure. The unboxed numbers give the order 

that the chunks are learned, while the boxed numbers show where the chunks are used 

in later problem solving. Once the goal is achieved, signified by the darkened circle, 

a chunk is learned that prefers the first move over all other alternatives, marked by 

' + ' in the figure. No chunk is learned for the final move to the goal since the only 

other alternative at that point has already been rejected, eliminating any choice, and 

thereby eliminating the need to learn a chunk. The right column shows that on a sec- 

ond attempt,  chunk 2 applied to select the first operator.  After the operator applied, 

chunk 1 applied to reject the operator  that did not lead to the goal. This leaves only 

the operator  that leads to the goal, which is selected and applied. In this scheme, the 

chunks control the problem solving within the subgoals that implement the eight- 

puzzle-sd operator ,  eliminating search, and thereby encoding a macro-operator .  

The examples in the second and third rows of  Figure 8 show more complex searches 

and demonstrate how the chunks learned during problem solving for one eight- 

puzzle-sd operator  can reduce the search both within that operator  and within other 

operators.  In all of  these examples, a macro-opera tor  is encoded as a set of  chunks 

that are learned during problem solving and that will eliminate the search the next 

time a similar problem is presented. 

In addition to learning chunks for each of  the operator-selection decisions, Soar 

can learn chunks that directly implement instances of  the operators in the eight- 

puzzle-sd problem space. They directly create a new state where the tiles have been 

moved so that the next desired tile is in place, a process that usually involves many 

Eight Puzzle moves. These chunks would be ideal macro-operators  if it were no( 

necessary to actually apply each eight-puzzle operator  to a physical puzzle in the real 

world. As it is, the use of  such chunks can lead to illusions about having done 

something that was not actually done. We have not yet implemented in Soar a general 

solution to the problem posed by such chunks. One possible solution - whose conse- 

quences we have not yet analyzed in depth - is to have chunking automatically 

turned of f  for any goal in which an action occurs that affects the outside world. For 

this work we have simulated this solution by disabling chunking for the eight-puzzle 
problem space. Only search-control chunks (generated for the tie problem space) are 

learned. 

The searches within the eight-puzzle problem space can be controlled by a variety 

of  different problem solving strategies, and any heuristic knowledge that is available 

can be used to avoid a brute-force search. Both iterative-deepening and breadth-firsf 
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search 15 strategies were implemented and tested. Only one piece of  search control was 

employed - do not apply an operator that will undo the effects of  the previous 

operator.  Unfortunately,  Soar is too slow to be able to generate a complete macro 

table for the Eight Puzzle by search. Soar was unable to learn the eight macros in 

columns three and five in Figure 1. These macros require searches to at least a depth 

of eight. 16 

The actual searches used to generate the chunks for a complete macro table were 

done by having a user lead Soar down the path to the correct solution. At each 

resolve-tie subgoal, the user specified which of the tied operators should be evaluated 

first, insuring that the correct path was always tried first. Because the user specified 

which operator  should be evaluated first, and not which operator  should actually be 

applied, Soar proceeded to try out the choice by selecting the specified evaluate- 

object operator  and entering a subgoal in which the relevant eight-puzzle operator 

was applied. Soar verified that the choice made by the user was correct by searching 

until the choice led to either success or failure. During the verification, the appro- 

priate objects were automatically referenced so that a correct chunk was generated. 

This is analogous to the explanation-based learning approach (for example, see De 

Jong, 1981 or Mitchell, Keller, & Kedar-Cabelli,  1986), though the explanation and 

learning processes differ. 

Soar's inability to search quickly enough to complete the macro table autonomous-  

ly is the one limitation on a claim to have replicated Korf ' s  (1985a) results for the 

Eight Puzzle. This, in part,  reflects a t rade-off  between speed (Korf 's  system) and 

generality (Soar). But it is also partially a consequence of  our not using the fastest 

production-system technology available. Significant improvements  in Soar's perfor- 

mance should be possible by reimplementing it using the software technology 

developed for Ops83 (Forgy, 1984). 

4.3 Chunk generality and transfer 

Korf ' s  (1985a) work on macro problem solving shows that a large class of  problems 

- for example, all Eight Puzzle problems with the same desired state - can be solved 

efficiently using a table with a small number of  macros.  This is possible only because 

the macros ignore the positions of  all tiles not yet in place. This degree of generality 

occurs in Soar as a direct consequence of  implicit generalization. I f  the identities of  

the tiles not yet placed are not examined during problem solving, as they need not 

15 This was actually a parallel breadth-first search in which the operators at each depth were executed 

.in parallel. 

~6 Although some of the macros are fourteen operators long, not every operator selection requires a 

choice (some are forced moves) and, in addition, Soar is able to make use of  transfer from previously 

learned chunks (Section 4.3). 
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be, then the chunks will also not examine them. However,  this does not tap all of  

the possible sources of  generality in the Eight Puzzle. In the remainder of  this subsec- 

tion we will describe two additional forms of  transfer available in the Soar 

implementation. 

4.3.1 Different goal states 

One limitation on the generality of  the macro table is that it can only be used to solve 

for the specific final configuration in Figure 3. Korf  (1985a) described one way to 

overcome this limitation. For other desired states with the blank in the center it is 

possible to use the macro table by renumbering the tiles in the desired state to corre- 

spond to the ordering in Figure 3, and then using the same transformation for the 

initial state. In the Soar implementation this degree of  generality occurs automatical- 

ly as a consequence of  implicit generalization. The problem solver must care that a 

tile is in its desired location, but it need not care which tile it actually is. The chunks 

learned are therefore independent of  the exact numbering on the tiles. Instead they 

depend on the relationship between where the tiles are and where they should be. 

For desired states that have the blank in a different position, Korf  (1985a) 

described a three-step solution method. First find a path f rom the initial state to a 

state with the blank in the center; second, find a path f rom the desired state to the 

same state with the blank in the middle; and third, combine the solution to the first 

problem with the inverse of  the solution to the second problem - assuming the in- 

verse of  every operator  is both defined and known - to yield a solution to the overall 

problem. In Soar this additional degree of generality can be achieved with the learn- 

ing of only two additional chunks. This is done by solving the problem using the 

following subgoals (see Figure 9): (a) get the blank in the middle, (b) get the first six 

tiles into their correct positions, and (c) get the blank in its final position. The first 

7 moves can be performed directly by the chunks making up the macro table, while 

the last step requires 2 additional chunks. 

(A) (B) (C) 

X X X 1 2 3 1 2 3 

X X X 4 8 4 

X x X x 6 5 7 6 5 
J 

Figure 9. Problems with different goals states, with different positions of the blank, can be solved by: (a) 

moving the blank into the center, (b) moving the first six tiles into position, and (c) moving the blank into 

its desired position. 
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4.3.2 Transfer between macro-operators 

In addition to the transfer of  learning between desired states, we can identify four 

different levels of  generality that are based on increasing the amount of  transfer that 

occurs between the macro-operators in the table: no transfer, simple transfer, sym- 

metry transfer (within column), and symmetry transfer (across column). The lowest 

level, no transfer, corresponds to the generality provided directly by the macro table. 

It uses macro-operators quite generally, but shows no transfer between the macro- 

operators. Each successive level has all of  the generality of  the previous level, plus 

one additional variety of transfer. The actual runs were done for the final level, which 

maximizes transfer. The number of  chunks required for the other cases were com- 

puted by hand. Let us consider each of  them in turn. 

No transfer. The no-transfer situation is identical to that employed by Korf 

(1985a). There is no transfer of  learning between macro-operators. In Soar, a total 

of  230 chunks would be required for this case. 17 This is considerably higher than the 

number of  macro-operators (35) because one chunk must be learned for each 

operator in the table (if there is no search control) rather than for each macro- 

operator. If  search control is available to avoid undoing the previous operator, only 

170 chunks must be learned. 

Simple transfer. Simple transfer occurs when two entries in the same column of 

the macro table end in exactly the same set of  moves. For example, in the first column 

of  Table 1, the macro that moves the blank to the center from the upper-right corner 

uses the macro-operator ur (column 0, row D in the table). The chunk learned for 

the second operator in this sequence, which moves the blank to the center from the 

-position to the right of  the center (by moving the center tile to the right), is dependent 

on the state of  the board following the first operator, but independent of  what the 

first operator actually was. Therefore, the chunk for the last half of this macro- 

~operator is exactly the chunk/macro-operator  in column 0, row E of  the table. This 

type of  transfer is always available in Soar, and reduces the number of  chunks needed 

to encode the complete macro table from 170 to 112. The amount of  simple transfer 

is greater than a simple matching of the terminal sequences of  operators in the macros 

in Table 1 would predict because different macro operators of the same length as 

those in the table can be found that provide greater transfer. 

Symmetry transfer (within column). Further transfer can occur when two macro- 

operators for the same subgoal are identical except for rotations or reflections. 

Figure 10 contains two examples of  such transfer. The desired state for both is to 

move the 1 to the upper left corner. The X's  represent tiles whose values are irrelevant 

to the specific subgoal and the arrow shows the path that the blank travels in order 

to achieve the subgoal. In (a), a simple rotation of  the blank is all that is required, 

while in (b), two rotations of  the blank must be made. Within both examples the 

17 These numbers include only the chunks for the resolve-tie subgoals. If the chunks generated for the 
evaluate-object operators were included, the chunk counts given in this section would be doubled. 
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Desired State 

[ 
Symmetric Initial States 

× r 4  × ×rL × × 

xL-+ x < > ,L~>' x 

X X X X X X 

I I I I  

H 
i i m  

X 

(b) 

Symmetric Initial States 

X r ]  X ~  r -7  1 X X X 

xl +1 J× < > x _~ x 
L - - -J  

X X X 1 X X 

Figure 10. Two examples of within-column symmetry transfer. 

pattern of  moves remains the same, but the orientation of the pattern with respect 

to the board changes. The ability to achieve this type of  transfer by implicit general- 

ization is critically dependent upon the representation of  the states (and operators) 

discussed in Section 3.3. The representation allows the topological relationships 

among the affected cells (which cells are next to which other cells) and the operators 

(which cells are affected by the operators) to be examined while the absolute locations 

of  the cells and the names of  the operators are ignored. This type of  transfer reduces 

the number of required chunks from 112 to 83 over the simple-transfer case. 

Symmetry transfer (across column). The final level of  transfer involves the carry- 

over of learning between different subgoals. As shown by the example in Figure 11, 

this can involve far from obvious similarities between two situations. What is im- 

portant in this case is: (1) that a particular three cells are not affected by the moves 

(the exact three cells can vary); (2) the relative position of  the tile to be placed with" 

respect to where it should be; and (3) that a previously placed piece that is affected 

(a) 

Different Intermediate Subgoals 

Place Tile 2 Place Tile 4 

t 2 X 1 2 3 

X X < > X 4 

X X X X X X 

Symmetric Initial States 

1 X 2 1 2 3 

r - ' 7  
i 

J x  x x 
x <-- < > ~ - I  

k J  
X X X X X 4 

(b) 

Different Intermediate Subgoals 

Place Tile 3 Place Tile 5 

1 2 3 1 2 3 

X X < > X 4 

X X X X X 5 

Symmetric Initial States 

I l m U  

Figure 11. An example of across-column symmetry transfer. 



CHUNKING IN SOAR 

Table 2. Structure of the chunks that encode the macro table for the Eight Puzzle. 

41 

0 1 2 

A 

B 2,1 

P 

o C 1 4,3,1 

s 

i D 2 7,6,5,4 15,14,1 

t 

i E 1 10,9,8,4 18,17,16 

O 

n 

s F 2 13,12,11,10 21,20,19,18 

Tiles 

3 4 5 6 

34,33,32,31,30, 

29,• 

40,39,38,37,36, 

35,30 

15 

G 1 10 23,22,•7 46,45,44,43,42, 18 61,60,59,58, 

41,30 56,55,29 

H 2 7 26,25,24,23 54,53,52,51,50, 21 40 15 

49,48,47,46,29 

I 1 4 28,27,22 51 23 46 18 

by the moves gets returned to its original position. Across-column symmetry transfer 

reduces the number  of  chunks to be learned f rom 83 to 61 over the within-column 

case. 18 Together,  the three types of  transfer make it possible for S o a r  to learn the 

complete macro table in only three carefully selected trials. 

Table 2 contains the macro-table structure of  the chunks learned when all three 

levels of  transfer are available (and search control to avoid undoing the previous 

operator is included). In place of  operator  sequences, the table contains numbers for 

the chunks that encode the macros. There is no such table actually in S o a r  - all 

chunks (productions) are simply stored, unordered, in production memory.  The pur- 

pose of this table is to show the actual transfer that was achieved for the Eight Puzzle. 

The order in which the subgoals are presented has no effect on the collection of 

chunks that are learned for the macro table, because if a chunk will transfer to a new 

situation (a different place in the macro table) the chunk that would have been 

learned in the new situation would be identical to the one that applied instead. 

18 The number of chunks can be reduced further, to 54, by allowing the learning of macros that are not 

of minimum length. This increases the total path length by 2 for 14°70 of the problems, by 4 for 26°70 of 

the problems and 6 for 7°70 of the problems. 



42 J.E. LAIRD, P.S. ROSENBLOOM AND A. NEWELL 

Though this is not true for all tasks, it is true in this case. Therefore, we can just 

assume that the chunks are learned starting in the upper left corner, going top to bot- 

tom and left to right. The first chunk learned is number  1 and the last chunk learned 

is number 61. When the number  for a chunk is highlighted, it stands for all of  the 

chunks that followed in its first unhighlighted occurrence. For example, for tile 1 in 

position F, the chunks listed are 13, 12, 11, 10. However,  10 signifies the sequence 

beginning with chunk 10: 10, 9, 8, 4. The terminal 4 in this sequence signifies the 

sequence beginning with chunk 4: 4, 3, 1. Therefore, the entire sequence for this 

macro is: 13, 12, 11, 10, 9, 8, 4, 3, 1. 

The abbreviated macro format  used in Table 2 is more than just a notational con- 

venience; it directly shows the transfer of  learning between the macro-operators.  

Simple transfer and within-column symmetry transfer show up as the use of  a macro 

that is defined in the same column. For example, the sequence starting with chunk 

51 is learned in column 3 row H, and used in the same column in row I. The extreme 

case is column 0, where the chunks learned in the top row can be used for all of  the 

other rows. Across-column symmetry transfer shows up as the reoccurrence of  a 

chunk in a later column. For example, the sequence starting with chunk 29 is learned 

in column 3 (row E) and used in column 5 (row G). The extreme examples of  this 

are columns 4 and 6 where all of  the macros were learned in earlier columns of  the 

table. 

4.4 Other tasks 

The macro technique can also be used in the Tower of  Hanoi  (Korf, 1985a). The 

three-peg, three-disk version of  the Tower of  Hanoi  has been implemented as a set 

of  serially decomposable subgoals in Soar. In a single trial (moving three disks f rom 

one peg to another), Soar learns eight chunks that completely encode Korf ' s  (1985a) 

macro table (six macros). Only a single trial was required because significant within 

and across column transfer was possible. The chunks learned for the three-peg, three- 

disk problem will also solve the three-peg, two-disk problem. These chunks also 

transfer to the final moves of the three-peg, N-disk problem when the three smallest 

disks are out of  place. Korf  (1985a) demonstrated the macro table technique on three 

additional tasks: the Fifteen Puzzle, Think-A-Dot and Rubik 's  Cube. The technique 

for learning and using macros in Soar should be applicable to all of  these problems. 

However,  the performance of  the current implementation would require user- 

directed searches for the Fifteen Puzzle and Rubik 's  Cube because of  the size of  the 

problems. 
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5. Conclusion 

In this article we have laid out how chunking works in Soar. Chunking is a learning 

mechanism that is based on the acquisition of  rules from goal-based experience. As 

such, it is related to a number of  other learning mechanisms. However, it obtains ex- 

tra scope and generality from its intimate connection with a sophisticated problem 

solver (Soar) and the memory organization of  the problem solver (a production 

system). This is the most important lesson of  this research. The problem solver pro- 

vides many things: the opportunities to learn, direction as to what is relevant (biases) 

and what is needed, and a consumer for the learned information. The memory pro- 

vides a means by which the newly learned information can be integrated into the ex- 

isting system and brought to bear when it is relevant. 

In previous work we have demonstrated how the combination of  chunking and 

Soar could acquire search-control knowledge (strategy acquisition) and operator im- 

plementation rules in both search-based puzzle tasks and knowledge-based expert 

systems tasks (Laird, Rosenbloom & Newell, 1984; Rosenbloom, Laird, McDermott,  

Newell, & Orciuch, 1985). In this paper we have provided a new demonstration of 

the capabilities of  chunking in the context of  the macro-operator learning task in- 

vestigated by Korf  (1985a). This demonstration shows how: (1) the macro-operator 

technique can be used in a general, learning problem solver without the addition of 

new mechanisms; (2) the learning can be incremental during problem solving rather 

than requiring a preprocessing phase; (3) the macros can be used for any goal state 

in the problem; and (4) additional generality can be obtained via transfer of  learning 

between macro-operators,  provided an appropriate representation of the task is 

available. 

Although chunking displays many of  the properties of  a general learning mecha- 

nism, it has not yet been demonstrated to be truly general. It can not yet learn new 

"problem spaces or new representations, nor can it yet make use of the wide variety 

of  potential knowledge sources, such as examples or analogous problems. Our 

approach to all o f  these insufficiences will be to look to the problem solving. Goals 

will have to occur in which new problem spaces and representations are developed, 

and in which different types of  knowledge can be used. The knowledge can then be 

captured by chunking. 
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