
Machine Learning 1: 11-46, 1986

© 1986 Kluwer Academic Publishers, Boston Manufactured in The Netherlands

Chunking in Soar:

The Anatomy of a General Learning Mechanism

JOHN E. LAIRD

Intelligent Systems Laboratory, Xerox Palo Alto Research Center,

3333 Coyote Hill Rd., Palo Alto, CA 94304, U.S.A.

(LAIRD. PA @ XEROX.ARPA)

PAUL S. ROSENBLOOM (ROSENBLOOM @ SUMEX-AIM.ARPA)

Departments of Computer Science and Psychology, Stanford University, Stanford, CA 94305, U.S.A.

ALLEN NEWELL (NEWELL @ A.CS.CMU.EDU)

Department of Computer Science, Carnegie-Mellon University, Pittsburgh, PA 15213, U.S.A.

(Received August 1, 1985)

Key words: learning from experience, general learning mechanisms, problem solving, chunking,

production systems, macro-operators, transfer

Abstract. In this article we describe an approach to the construction of a general learning mechanism

based on chunking in Soar. Chunking is a learning mechanism that acquires rules from goal-based ex-

perience. Soar is a general problem-solving architecture with a rule-based memory. In previous work we

have demonstrated how the combination of chunking and Soar could acquire search-control knowledge

(strategy acquisition) and operator implementation rules in both search-based puzzle tasks and

knowledge-based expert-systems tasks. In this work we examine the anatomy of chunking in Soar and pro-

vide a new demonstration of its learning capabilities involving the acquisition and use of macro-operators.

1. I n t r o d u c t i o n

T h e g o a l o f the S o a r p r o j e c t is to bu i ld a sys tem c a p a b l e o f gene ra l in te l l igen t

b e h a v i o r . W e seek to u n d e r s t a n d w h a t m e c h a n i s m s a re necessa ry fo r in te l l igen t

b e h a v i o r , w h e t h e r t h e y a re a d e q u a t e fo r a w ide r a n g e o f tasks - i nc lud ing sea rch-

i n t ens ive tasks , k n o w l e d g e - i n t e n s i v e tasks , and a l g o r i t h m i c tasks - a n d h o w t h e y

w o r k t o g e t h e r to f o r m a gene ra l c o g n i t i v e a r ch i t e c tu r e . O n e neces sa ry c o m p o n e n t o f

such an a r c h i t e c t u r e , and the o n e on w h i c h we focus in this p a p e r , is a gene ra l l ea rn-

ing m e c h a n i s m . In tu i t i ve ly , a gene ra l l e a rn ing m e c h a n i s m s h o u l d be c a p a b l e o f learn-

ing all t ha t needs to be l e a rned . T o be a bit m o r e prec ise , a s s u m e tha t we h a v e a

12 J.E. LAIRD, P.S. ROSENBLOOM AND A. NEWELL

general performance system capable of solving any problem in a broad set of do-

mains. Then, a general learning mechanism for that performance system would

possess the following three properties: t

• Task generality. It can improve the system's performance on all of the tasks

in the domains. The scope of the learning component should be the same as

that of the performance component.

• Knowledge generality. It can base its improvements on any knowledge

available about the domain. This knowledge can be in the form of examples,

instructions, hints, its own experience, etc.

• Aspect generality. It can improve all aspects of the system. Otherwise there

would be a wandering-bottleneck problem (Mitchell, 1983), in which those

aspects not open to improvement would come to dominate the overall perfor-

mance effort of the system.

These properties relate to the scope of the learning, but they say nothing concerning

the generality and effectiveness of what is learned. Therefore we add a fourth

property.

Transfer o f learning. What is learned in one situation will be used in other

situations to improve performance. It is through the transfer of learned

material that generalization, as it is usually studied in artificial intelligence,

reveals itself in a learning problem solver.

Generality thus plays two roles in a general learning mechanism: in the scope of ap-

plication of the mechanism and the generality of what it learns.

There are many possible organizations for a general learning mechanism, each

with different behavior and implications. Some of the possibilities that have been in-

vestigated within AI and psychology include:

• A Multistrategy Learner. Given the wide variety of learning mechanisms cur-

rently being investigated in AI and psychology, one obvious way to achieve a

general learner is to build a system containing a combination of these mecha-

nisms. The best example of this to date is Anderson 's (1983a) ACT* system

which contains six learning mechanisms.

• A Deliberate Learner. Given the breadth required of a general learning

mechanism, a natural way to build one is as a problem solver that deliberately

devises modifications that will improve performance. The modifications are

i These properties are related to, but not isomorphic with, the three dimensions of variation of learning
mechanisms described in Carbonell, Michalski, and Mitchell (1983) - application domain, underlying
learning strategy, and representation of knowledge.

C H U N K I N G IN SOAR 13

usually based on analyses of the tasks to be accomplished, the structure of the

problem solver, and the system's performance on the tasks. Sometimes this

problem solving is done by the performance system itself, as in Lenat 's A M

(1976) and Eurisko (1983) programs, or in a production system that employs

a build operation (Waterman, 1975) - whereby productions can themselves

create new productions - as in Anzai and Simon's (1979) work on learning

by doing. Sometimes the learner is constructed as a separate critic with its own

problem solver (Smith, Mitchell, Chestek, & Buchanan, 1977; Rendell, 1983),

or as a set of critics as in Sussman's (1977) Hacker program.

A Simple Experience Learner. There is a single learning mechanism that bases

its modifications on the experience of the problem solver. The learning

mechanism is fixed, and does not perform any complex problem solving. Ex-

amples of this approach are memo functions (Michie, 1968; Marsh, 1970),

macro-operators in Strips (Fikes, Hart & Nilsson, 1972), production composi-

tion (Lewis, 1978; Neves & Anderson, 1981) and knowledge compilation

(Anderson, 1983b).

The third approach, the simple experience learner, is the one adopted in Soar. In

some ways it is the most parsimonious of the three alternatives: it makes use of only

one learning mechanism, in contrast to a multistrategy learner; it makes use of only

one problem solver, in contrast to a critic-based deliberate learner; and it requires

only problem solving about the actual task to be performed, in contrast to both kinds

of deliberate learner. Counterbalancing the parsimony is that it is not obvious a priori

that a simple experience learner can provide an adequate foundation for the construc-

tion of a general learning mechanism. At first glance, it would appear that such a

mechanism would have difficulty learning from a variety of sources of knowledge,

learning about all aspects of the system, and transferring what it has learned to new

situations.

The hypothesis being tested in the research on Soar is that chunking, a simple

experience-based learning mechanism, can form the basis for a general learning

mechanism, z Chunking is a mechanism originally developed as part of a

psychological model of memory (Miller, 1956). The concept of a chunk - a symbol

that designates a pattern of other symbols - has been much studied as a model of

memory organization. It has been used to explain such phenomena as why the span

of short-term memory is approximately constant, independent of the complexity of

the items to be remembered (Miller, 1956), and why chess masters have an advantage

over novices in reproducing chess positions from memory (Chase & Simon, 1973).

Newell and Rosenbloom (1981) proposed chunking as the basis for a model of

2 For a comparison of chunking to other simple mechanisms for learning by experience, see

Rosenbloom and Newell (1986).

14 J.E. LAIRD, P.S. ROSENBLOOM AND A. NEWELL

human practice and used it to model the ubiquitous power law of practice - that

the time to perform a task is a power-law function of the number of times the task

has been performed. The model was based on the idea that practice improves perfor-

mance via the acquisition of knowledge about patterns in the task environment, that

is, chunks. When the model was implemented as part o f a production-system ar-

chitecture, this idea was instantiated with chunks relating patterns of goal parameters

to patterns of goal results (Rosenbloom, 1983; Rosenbloom & Newell, 1986). By

replacing complex processing in subgoals with chunks learned during practice, the

model could improve its speed in performing a single task or set of tasks.

To increase the scope of the learning beyond simple practice, a similar chunking

mechanism has been incorporated into the Soar problem-solving architecture (Laird,

Newell & Rosenbloom, 1985). In previous work we have demonstrated how chunking

can improve Soar's performance on a variety of tasks and in a variety of ways (Laird,

Rosenbloom & Newell, 1984). In this article we focus on presenting the details of how

chunking works in Soar (Section 3), and describe a new application involving the ac-

quisition of macro-operators similar to those reported by Korf (1985a) (Section 4).

This demonstration extends the claims of generality, and highlights the ability of

chunking to transfer learning between different situations.

Before proceeding to the heart of this work - the examination of the anatomy of

chunking and a demonstrat ion of its capabilities - it is necessary to make a fairly

extensive digression into the structure and performance of the Soar architecture (Sec-

tion 2). In contrast to systems with multistrategy or deliberate learning mechanisms,

the learning phenomena exhibited by a system with only a simple experience-based

learning mechanism is a function not only of the learning mechanism itself, but also

of the problem-solving component of the system. The two components are closely

coupled and mutually supportive.

2. S o a r - an archi tecture f o r genera l in te l l i gence

Soar is an architecture for general intelligence that has been applied to a variety of

tasks (Laird, Newell, & Rosenbloom, 1985; Rosenbloom, Laird, McDermott ,

Newell, & Orciuch, 1985): many of the classic AI toy tasks such as the Tower of

Hanoi, and the Blocks World: tasks that appear to involve non-search-based reason-

ing, such as syllogisms, the three-wise-men puzzle, and sequence extrapolation; and

large tasks requiring expert-level knowledge, such as the R1 computer configuration

task (McDermott , 1982). In this section we briefly review the Soar architecture and

present an example of its performance in the Eight Puzzle.

C H U N K I N G IN SOAR 15

2.1 The architecture

Performance in Soar is based on the problem space hypothesis: all goal-oriented

behavior occurs as search in problem spaces (Newell, 1980). A problem space for a

task domain consists o f a set of states representing possible situations in the task do-

main and a set o f operators that t ransform one state into another one. For example,

in the chess domain the states are configurations of pieces on the board, while the

operators are the legal moves, such as P-K4. In the computer-configuration domain

the states are partially configured computers, while the operators add components

to the existing configuration (among other actions). Problem solving in a problem

space consists o f starting at some given initialstate, and applying operators (yielding

intermediate states) until a desired state is reached that is recognized as achieving the

goal.

In Soar, each goal has three slots, one each for a current problem space, state, and

operator. Together these four components - a goal along with its current problem

space, state and operator - comprise a context. Goals can have subgoals (and

associated contexts), which form a strict goal-subgoal hierarchy. All objects (such as

goals, problem spaces, states, and operators) have a unique identifier, generated at

the time the object was created. Further descriptions of an object are called augmen-

tations. Each augmentat ion has an identifier, an attribute, and a value. The value

can either be a constant value, or the identifier of another object. All objects are con-

nected via augmentations (either directly, or indirectly via a chain of augmentations)

to one of the objects in a context, so that the identifiers of objects act as nodes of

a semantic network, while the augmentations represent the arcs or links.

Throughout the process of satisfying a goal, Soar makes decisions in order to select

between the available problem spaces, states, and operators. Every problem-solving

episode consists of a sequence of decisions and these decisions determine the behavior

of the system. Problem solving in pursuit of a goal begins with the selection of a prob-

lem space for the goal. This is followed by the selection of an initial state, and then

an operator to apply to the state. Once the operator is selected, it is applied to create

a new state. The new state can then be selected for further processing (or the current

state can be kept, or some previously generated state can be selected), and the process

repeats as a new operator is selected to apply to the selected state. The weak methods

can be represented as knowledge for controlling the selection of states and operators

(Laird & Newell, 1983a). The knowledge that controls these decisions is collectively

called search control. Problem solving without search contol is possible in Soar, but

it leads to an exhaustive search of the problem space.

Figure 1 shows a schematic representation of a series of decisions. To bring the

available search-control knowledge to bear on the making of a decision, each deci-

sion involves a monotonic elaboration phase. During the elaboration phase, all

directly available knowledge relevant to the current situation is brought to bear. This

is the act of retrieving knowledge from memory to be used to control problem solv-

16 J.E. LAIRD, P.S. ROSENBLOOM AND A. NEWELL

DECISION 1

Elaboration
~¢ Phase ~

Y
Quiescence

Deciz~on
Pro~dure

Gather
Preferences

DECISION

4,
4,,1,4,

Replace
Interpret ~ Context

Preferences Object

+
Impasse

Create
Subgoal

/
DECISION 3

)

Figure I. The Soar decision cycle.

ing. In Soar, the long- te rm m e m o r y is s t ruc tured as a p r o d u c t i o n system, with all

direct ly avai lab le knowledge represented as p roduc t ions . 3 The e l abo ra t i on phase

consists o f one or more cycles o f p roduc t ion execut ion in which all o f the eligible p ro-

duct ions are f ired in paral le l . The contexts o f the goal h ie ra rchy and their augmen ta -

t ions serve as the work ing m e m o r y for these p roduc t ions . The i n f o r m a t i o n a d d e d

dur ing the e l a b o r a t i o n phase can take one o f two forms . Fi rs t , existing objec ts m a y

have their descr ip t ions e l abo ra t ed (via augmenta t ions) with new or existing objects ,

such as the add i t i on o f an eva lua t ion to a state. Second , da t a s t ructures called

preferences can be crea ted tha t specify the des i rabi l i ty o f an ob jec t for a slot in a con-

text. Each preference indicates the context in which it is re levant by specifying the

a p p r o p r i a t e goal , p r o b l e m space, s tate and ope ra to r .

When the e l a b o r a t i o n phase reaches quiescence - when no more p roduc t ions are

eligible to fire - a f ixed decision procedure is run tha t ga thers and in terpre ts the

preferences p rov ided by the e l a b o r a t i o n phase to p roduc e a specific decision. Prefer -

ences o f type acceptable and reject de te rmine whether or not an ob jec t is a cand ida te

for a context . Preferences o f type better, equal, and worse de te rmine the relat ive

wor th o f objects . Preferences o f type best, indifferent and worst make abso lu te

judgement s a b o u t the wor th o f objects . 4 Star t ing f rom the oldest context , the deci-

s ion p rocedu re uses the preferences to de te rmine if the cur ren t p r o b l e m space, s tate ,

3 We will use the terms production and rule interchangeably throughout this paper.

4 There is also a parallel preference that can be used to assert that two operators should execute
simultaneously.

CHUNKING IN SOAR 17

or operator in any of the contexts should be changed. The problem space is con-

sidered first, followed by the state and then the operator . A change is made if one

of the candidate objects for the slot dominates (based on the preferences) all of the

others, or if a set o f equal objects dominates all of the other objects. In the latter

case, a random selection is made between the equal objects. Once a change has been

made, the subordinate positions in the context (state and operator if a problem space

is changed) are initialized to undecided, all o f the more recent contexts in the stack

are discarded, the decision procedure terminates, and a new decision commences.

I f sufficient knowledge is available during the search to uniquely determine a deci-

sion, the search proceeds unabated. However, in many cases the knowledge encoded

into productions may be insufficient to allow the direct application of an operator

or the making of a search-control decision. That is, the available preferences do not

determine a unique, uncontested change in a context, causing an impasse in problem

solving to occur (Brown & VanLehn, 1980). Four classes of impasses can arise in

Soar: (1) no-change (the elaboration phase ran to quiescence without suggesting any

changes to the contexts), (2) tie (no single object or group of equal objects was better

than all of the other candidate objects), (3) conflict (two or more candidate objects

were better than each other), and (4) rejection (all objects were rejected, even the cur-

rent one). All types of impasse can occur for any of the three context slots associated

with a goal - problem space, state, and operator - and a no-change impasse can

occur for the goal. For example, a state tie occurs whenever there are two or more

competing states and no directly available knowledge to compare them. An operator

no-change occurs whenever no context changes are suggested after an operator is

selected (usually because not enough information is directly available to allow the

creation of a new state).

Soar responds to an impasse by creating a subgoal (and an associated context) to

resolve the impasse. Once a subgoal is created, a problem space must be selected,

'followed by an initial state, and then an operator . I f an impasse is reached in any

of these decisions, another subgoal will be created to resolve it, leading to the hierar-

chy of goals in Soar. By generating a subgoal for each impasse, the full problem-

solving power of Soar can be brought to bear to resolve the impasse. These subgoals

correspond to all of the types of subgoals created in standard AI systems (Laird,

Newell, & Rosenbloom, 1985). This capability to generate automatically all subgoals

in response to impasses and to open up all aspects o f problem-solving behavior to

problem solving when necessary is called universal subgoaling (Laird, 1984).

Because all goals are generated in response to impasses, and each goal can have

at most one impasse at a time, the goals (contexts) in working memory are structured

as a stack, referred to as the context stack. A subgoal terminates when its impasse

is resolved. For example, if a tie impasse arises, the subgoal generated for it will ter-

~minate when sufficient preferences have been created so that a single object (or set

o f equal objects) dominates the others. When a subgoal terminates, Soar pops the

context stack, removing f rom working memory all augmentat ions created in that

18 J.E. LAIRD, P.S. ROSENBLOOM AND A. NEWELL

subgoal that are not connected to a prior context, either directly or indirectly (by a

chain of augmentations), and preferences whose context objects do not match ob-

jects in prior contexts. Those augmentations and preferences that are not removed

are the results of the subgoal.

Default knowledge (in the form of productions) exists in Soar to cope with any of

the subgoals when no additional knowledge is available. For some subgoals (those

created for all types of rejection impasses and no-change impasses for goals,

problem-spaces, and states) this involves simply backing up to a prior choice in the

context, but for other subgoals (those created for tie, conflict and operator no-

change impasses), this involves searches for knowledge that will resolve the subgoal 's

impasse. I f additional non-default knowledge is available to resolve an impasse, it

dominates the default knowledge (via preferences) and controls the problem solving

within the subgoal.

2.2 An example problem solving task

Consider the Eight Puzzle, in which there are eight numbered, movable tiles set in

a 3 x 3 frame. One cell of the frame is always empty (the blank), making it possible

to move an adjacent tile into the empty cell. The problem is to t ransform one con-

figuration of tiles into a second configuration by moving the tiles. The states of the

eight-puzzle problem space are configurations of the numbers 1 - 8 in a 3 x 3 grid.

There is a single general operator to move adjacent tiles into the empty cell. For a

given state, an instance of this operator is created for each of the cells adjacent to

the empty cell. Each of these operator instances is instantiated with the empty cell

and one of the adjacent cells. To simplify our discussion, we will refer to these instan-

tiated operators by the direction they move a tile into the empty cell: up, down, left,

or right. Figure 2 shows an example of the initial and desired states of an Eight Puzzle

problem.

To encode this task in Soar, one must include productions that propose the ap-

propriate problem space, create the initial state of that problem space, implement the

operators of the problem space, and detect the desired state when it is achieved. I f

In itial State Desi red State

2 3 1 1 2 3

8 4 8 4

7 6 5 7 6 5

Figure 2. Example initial and desired states of the Eight Puzzle.

CHUNKING IN SOAR 19

no additional knowledge is available, an exhaustive depth-first search occurs as a

result of the default processing for tie impasses. Tie impasses arise each time an

operator has to be selected. In response to the subgoals for these impasses, alter-

natives are investigated to determine the best move. Whenever another tie impasse

arises during the investigation of one of the alternatives, an additional subgoal is

generated, and the search deepens. If additional search-control knowledge is added

to provide an evaluation of the states, the search changes to steepest-ascent hill climb-

ing. As more or different search-control knowledge is added, the behavior of the

search changes in response to the new knowledge. One of the properties of Soar is

that the weak methods, such as generate and test, means-ends analysis, depth-first

search and hill climbing, do not have to be explicitly selected, but instead emerge

f rom the structure of the task and the available search-control knowledge (Laird &

Newell, 1983a; Laird & Newell, 1983b; Laird, 1984).

Another way to control the search in the Eight Puzzle is to break it up into a set

of subgoals to get the individual tiles into position. We will look at this approach in

some detail because it forms the basis for the use of macro-operators for the Eight

Puzzle. Means-ends analysis is the standard technique for solving problems where the

goal can be decomposed into a set of subgoals, but it is ineffective for problems such

as the Eight Puzzle that have non-serializable subgoals - tasks for which there exists

no ordering of the subgoals such that successive subgoals can be achieved without

undoing what was accomplished by earlier subgoals (Korf, 1985a). Figure 3 shows

an intermediate state in problem solving where tiles 1 and 2 are in their desired posi-

tions. In order to move tile 3 into its desired position, tile 2 must be moved out of

its desired position. Non-serializable subgoals can be tractable if they are serially

decomposable (Korf, 1985a). A set of subgoals is serially decomposable if there is

an ordering of them such that the solution to each subgoal depends only on that

subgoal and on the preceding ones in the solution order. In the Eight Puzzle the

subgoals are, in order: (1) have the blank in its correct position; (2) have the blank

and the first tile in their correct positions; (3) have the blank and the first two tiles

in their correct positions; and so on through the eighth tile. Each subgoal depends

only on the positions of the blank and the previously placed tiles. Within one subgoal

a previous subgoal may be undone, but if it is, it must be re-achieved before the

current subgoal is completed.

Intermediate State Desired State

1 2 4 1 2 3

3 8 8 4

7 6 5 7 6 5

Figure 3. Non-serializable subgoals in the Eight Puzzle.

20 J.E. LAIRD, P.S. ROSENBLOOM AND A. N E W E L L

1 61 so l ve -e igh t -puzz le
2 Pl e igh t -puzz]e -sd
3 Sl

2 3 1

8 4

7 6 5

4 01 place-blank
5 ==>G2 (resolve-no-change)
6 P2 e igh t -puzz le
7 $1
8 --)G3 (r e s o l v e - L i e operator)
9 P3 t t e
10 SZ { l e f t , up, down}
11 05 e v a l u a t a - o b J e c t (O 2 (l e f t))
12 -=>G4 (resolve-no-change)
13 P2 e igh t -puzz le
14 51
15 02 l e f t
16 $3

2 3 1

8 4

7 6 5

17 OZ l e f t
18 $4
19 $4
ZO 08 place-1

Figure 4. A problem-solving trace for the Eight Puzzle. Each line of the trace includes, f rom left to right,

the decision number , the identifier of the object selected, and possibly a short description of the object.

Adopting this approach does not result in new knowledge for directly controlling

the selection of operators and states in the eight-puzzle problem space. Instead it pro-

vides knowledge about how to structure and decompose the puzzle. This knowledge

consists of the set of serially decomposable subgoals, and the ordering of those

subgoals. To encode this knowledge in Soar, we have added a second problem space,

eight-puzzle-sd, with a set of nine operators corresponding to the nine subgoalsfl For

example, the operator place-2 will place tile 2 in its desired position, while assuring

that the blank and the first tile will also be in position. The ordering of the subgoals

is encoded as search-control knowledge that creates preferences for the operators.

Figure 4 shows a trace of the decisions for a short problem-solving episode for the

initial and desired states from Figure 2. This example is heavily used in the remainder

5 Both place-7 and place-8 are always no-ops because once the blank and tiles 1 -6 are in place, either

tiles 7 and 8 must also be in place, or the problem is unsolvable. They can therefore be safely ignored.

CHUNKING IN SOAR 21

of the paper, so we shall go through it in some detail. To start problem solving, the

current goal is initialized to be solve-eight-puzzle (in decision 1). The goal is

represented in working memory by an identifier, in this case G1. Problem solving

begins in the eight-puzzle-sd problem space. Once the initial state, S1, is selected,

preferences are generated that order the operators so that place-blank is selected. Ap-

plication of this operator , and all of the eight-puzzle-sd operators, is complex, often

requiring extensive problem solving. Because the problem-space hypothesis implies

that such problem solving should occur in a problem space, the operator is not direct-

ly implemented as rules. Instead, a no-change impasse leads to a subgoal to imple-

ment place-blank, which will be achieved when the blank is in its desired position.

The place-blank operator is then implemented as a search in the eight-puzzle problem

space for a state with the blank in the correct position. This search can be carried

out using any of the weak methods described earlier, but for this example, let us

assume there is no additional search-control knowledge.

Once the initial state is selected (decision 7), a tie impasse occurs among the

operators that move the three adjacent tiles into the empty cell (left, up and down).

A resolve-tie-subgoal (G3) is automatically generated for this impasse, and the tie

problem space is selected. Its states are sets of objects being considered, and its

operators evaluate objects so that preferences can be created. One of these evaluate-

object operators (05) is selected to evaluate the operator that moves tile 8 to the left,

and a resolve-no-change subgoal (G4) is generated because there are no productions

that directly compute an evaluation of the iefl operator for state S1. Default search-

control knowledge attempts to implement the evaluate-object operator by applying

the left operator to state S1. This is accomplished in the subgoal (decisions 13-16),

yielding the desired state ($3). Because the left operator led to a solution for the goal,

a preference is returned for it that allows it to be selected immediately for state S1

(decision 17) in goal G2, flushing the two lower subgoals (G3 and G4). I f this state

were not the desired state, another tie impasse would arise and the tie problem space

would be selected for this new subgoal. The subgoal combinat ion of a resolve-tie

followed by a resolve-no-change on an evaluate-object operator would recur, giving

a depth-first search.

Applying the left operator to state S1 yields state $4, which is the desired result

o f the place-blank operator in goal G1 above. The place-1 operator (08) is then

selected as the current operator . As with place-blank, place-1 is implemented by a

search in the eight-puzzle problem space. It succeeds when both tile 1 and the blank

are in their desired positions. With this problem-solving strategy, each tile is moved

into place by one of the operators in the eight-puzzle-sd problem space. In the

subgoals that implement the eight-puzzle-sd operators, many of the tiles already in

place might be moved out o f place, however, they must be back in place for the

operator to terminate successfully.

22 J.E. LAIRD, P.S. ROSENBLOOM AND A. NEWELL

3. Chunking in Soar

Soar was originally designed to be a general (non-learning) problem solver. Never-

theless, its problem-solving and memory structures support learning in a number of

ways. The structure of problem solving in Soar determines when new knowledge is

needed, what that knowledge might be, and when it can be acquired.

• Determining when new knowledge is needed. In Soar, impasses occur if and

only if the directly available knowledge is either incomplete or inconsistent.

Therefore, impasses indicate when the system should attempt to acquire new

knowledge.

• Determining what to learn. While problem solving within a subgoal, Soar can

discover informat ion that will resolve an impasse. This information, if

remembered, can avert similar impasses in future problem solving.

• Determining when new knowledge can be acquired. When a subgoal com-

pletes, because its impasse has been resolved, an opportunity exists to add new

knowledge that was not already explicitly known.

Soar's long-term memory, which is based on a production system and the workings

of the elaboration phase, supports learning in two ways:

• Integrating new knowledge. Productions provide a modular representation of

knowledge, so that the integration of new knowledge only requires adding a

new production to production memory and does not require a complex

analysis of the previously stored knowledge in the system (Newell, 1973;

Waterman, 1975; Davis & King, 1976; Anderson, 1983b).

• Using new knowledge. Even if the productions are syntactically modular, there

is no guarantee that the information they encode can be integrated together

when it is needed. The elaboration phase of Soar brings all appropriate

knowledge to bear, with no requirement of synchronization (and no conflict

resolution). The decision procedure then integrates the results of the elabora-

tion phase.

Chunking in Soar takes advantage of this support to create rules that summarize

the processing of a subgoal, so that in the future, the costly problem solving in the

subgoal can be replaced by direct rule application. When a subgoal is generated, a

learning episode begins that could lead to the creation of a chunk. During problem

solving within the subgoal, information accumulates on which a chunk can be based.

When the subgoal terminates, a chunk can be created. Each chunk is a rule (or set

of rules) that gets added to the production memory. Chunked knowledge is brought

to bear during the elaboration phase of later decisions. In the remainder of this

section we look in more detail at the process of chunk creation, evaluate the scope

of chunking as a learning mechanism, and examine the sources of chunk generality:

CHUNKING IN SOAR 23

3.1 Cons truc t ing c h u n k s

Chunks are based on the work ing -memory elements that are either examined or

created dur ing p rob lem solving within a subgoal. The condi t ions consist of those

aspects of the s i tua t ion that existed prior to the goal, and which were examined

dur ing the processing of the goal, while the actions consist of the results of the goal.

W h e n the subgoal terminates,6 the collected work ing -memory elements are converted

into the condi t ions and actions of one or more product ions . 7 In this subsect ion, we

describe in detail the three steps in chunk creat ion: (1) the collection of condi t ions

and actions, (2) the var iabi l iza t ion of identifiers, and (3) chunk opt imiza t ion .

3.1.1 Collect ing condi t ions and act ions

The condi t ions of a chunk should test those aspects of the s i tuat ion existing prior to

the creat ion of the goal that are relevant to the results that satisfy the goal. In Soar

this corresponds to the work ing -memory elements that were matched by product ions

that fired in the goal (or one of its subgoals), bu t that existed before the goal was

created. These are the elements that the problem solving implicit ly deemed to be rele-

vant to the sat isfact ion of the subgoal . This collection of work ing -memory elements

is ma in t a ined for each active goal in the goal ' s referenced-l ist . 8 Soar allows produc-

t ions be longing to any goal in the context stack to execute at any time, so upda t ing

the correct referenced-list requires de termining for which goal in the stack the pro-

duc t ion fired. This is the most recent of the goals matched by the p roduc t ion ' s condi-

t ions. The p roduc t i on ' s firing affects the chunks created for that goal and all of its

supergoals, but because the firing is independen t of the more recent subgoals, it has

no effect on the chunks buil t for those subgoals. No chunk is created if the subgoal ' s

results were no t based on prior i n fo rma t ion ; for example, when an object is input

6 The default behavior for Soar is to create a chunk always; that is, every time a subgoal terminates.

The major alternative to creating chunks for all terminating goals is to chunk buttom-up, as was done

in modeling the power law of practice (Rosenbloom, 1983). In bottom-up chunking, only terminal goals

- goals for which no subgoals were generated - are chunked. As chunks are learned for subgoals, the

subgoals need no longer be generated (the chunks accomplish the subgoals' tasks before the impasses

occur), and higher goals in the hierarchy become eligible for chunking. It is unclear whether chunking

always or bottom-up will prove more advantageous in the long run, so to facilitate experimentation, both

options are available in Soar.

7 Production composition (Lewis, 1978) has also been used to learn productions that summarize goals

(Anderson, 1983b). It differs most from chunking in that it examines the actual definitions of the produc-

tions that fired in addition to the working-memory elements referenced and created by the productions.

8 If a fired production has a negated condition - a condition testing for the absence in working memory

of an element matching its pattern - then the negated condition is instantiated with the appropriate

variable bindings from the production's positive conditions. If the identifier of the instantiated condition

_existed prior to the goal, then the instantiated condition is included in the referenced-list.

24 J.E. LAIRD, P.S. ROSENBLOOM AND A. NEWELL

from the outside, or when an impasse is resolved by domain-independent default

knowledge.

The actions of a chunk are based on the results of the subgoal for which the chunk

was created. No chunk is created if there are no results. This can happen, for exam-

ple, when a result produced in a subgoal leads to the termination of a goal much

higher in the goal hierarchy. All of the subgoals that are lower in the hierarchy will

also be terminated, but they may not generate results.

For an example of chunking in action, consider the terminal subgoal (G4) f rom

the problem-solving episode in Figure 4. This subgoal was created as a result of a no-

change impasse for the evaluate-object operator that should evaluate the operator

that will move tile 8 to the left. The problem solving within goal G4 must implement

the evaluate-object operator . Figure 5 contains a graphic representation of part of

the working memory for this subgoal near the beginning of problem solving (A) and

just before the subgoal is terminated (B). The working memory that existed before

the subgoal was created consisted of the augmentations of the goal to resolve the tie

between the eight-puzzle operators, G3, and its supergoals (G2 and G1, not shown).

The tie problem space is the current problem space of G3, while state $2 is the current

state and the evaluate-object operator (05) is the current operator. D1 is the desired

state of having the blank in the middle, but with no constraint on the tiles in the other

cells (signified by the X's in the figure). All of these objects have further descriptions,

some only partially shown in the figure.

The purpose of goal G4 is to evaluate operator 02, that will move tile 8 to the left

in the initial state (S1). The first steps are to augment the goal with the desired state

(D1) and then select the eight-puzzle problem space (P2), the state to which the

operator will be applied (S1), and finally the operator being evaluated (02). To do

this, the augmentations f rom the evaluate-object operator (05) to these objects are

accessed and therefore added to the referenced list (the highlighted arrows in part (A)

of Figure 5). Once operator 02 is selected, it is applied by a production that creates

a new state ($3). The application of the operator depends on the exact representation

used for the states of the problem space. State S1 and desired state D1, which were

shown only schematically in Figure 5, are shown in detail in Figure 6. The states are

built out o f cells and tiles (only some of the cells and tiles are shown in Figure 6).

The nine cells (C1-C9) represent the structure of the Eight Puzzle frame. They form

a 3 × 3 grid in which each cell points to its adjacent cells. There are eight numbered

tiles (T2-T9), and one blank (T1). Each tile points to its name, 1 through 8 for the

numbered tiles and 0 for the blank. Tiles are associated with cells by objects called

bindings. Each state contains 9 bindings, each of which associates one tile with the

cell where it is located. The bindings for the desired state, D1, are L1-L9, while the

bindings for state S1 are B1-B9. The fact that the blank is in the center of the desired

state is represented by binding L2, which points to the blank tile (T1) and the center"

cell (C5). All states (and desired states) in both the eight-puzzle and eight-puzzle-sd

problem spaces share this same cell structure.

CHUNKING IN SOAR 25

I A ' l

NO-Cl-

I r ~

NO-G~-

Figure 5. An example of the working-memory elements used to create a chunk. (A) shows working

-memory near the beginning of the subgoal to implement the evaluate-object operator. (B) shows working

memory at the end of the subgoal. The circled symbols represent identifiers and the arrows represent

augmentations. The identifiers and augmentations above the horizontal lines existed before the subgoal

was created. Below the lines, the identifiers marked by doubled circles, and all of the augmentations, are

created in the subgoal. The other identifiers below the line are not new; they are actually the same as the

corresponding ones above the lines. The highlighted augmentations were referenced during the problem

solving in the subgoal and will be the basis of the conditions of the chunk. The augmentation that was

created in the subgoal but originates from an object existing before the subgoal (El ~SUCCESS) will be

the basis for the action of the chunk.

To apply the ope ra to r and create a new state, a new state symbol is created ($3)

with two new bindings, one for the moved tile and one for the blank. The binding

for the m o v e d tile points to the tile (T9) and to the cell where it will be (C4). The bind-

ing for the b lank points to the b lank (T1) and to the cell that will be empty (C5). All

the other bindings are then copied to the new state. This processing accesses the

relative posi t ions o f the b lank and the moved tile, and the bindings for the remaining

tiles in current state (S1). The augmenta t ions o f the ope ra to r are tested for the cell

that contains the tile to be moved .

Once the new state ($3) is selected, a p roduc t ion generates the opera tors that can

26 J.E. LAIRD, P.S. ROSENBLOOM AND A. NEWELL

Figure 6. Example of working-memory elements representing the state used to create a chunk. The
highlighted augmentations were referenced during the the subgoal.

apply to the new state. All cells that are adjacent to the blank cell (C2, C4, C6, and

C8) are used to create operators. This requires testing the structure of the board as

encoded in the connections between the cells. Following the creation of the operators

that can apply to state $3, the operator that would undo the previous operator is

rejected so that unnecessary backtracking is avoided. During the same elaboration

phase, the state is tested to determine whether a tile was just moved into or out of

its correct position. This information is used to generate an evaluation based on the

sum of the number of tiles that do not have to be in place and the number of tiles

that both have to be in place and are in place. This computation, whose result is

represented by the object X1 with a value of 8 in Figure 5, results in the accessing

of those aspects of the desired state highlighted in Figure 6. The value of 8 means

that the goal is satisfied, so the evaluation (El) for the operator has the value sueeess.

Because E1 is an identifier that existed before the subgoal was created and the sneeess

augmentation was created in the subgoal, this augmentation becomes an action. If

CHUNKING IN SOAR 27

success had further augmentations, they would also be included as actions. The

augmentations of the subgoal (G4), the new state ($3), and its sub-object (X1) that

point to objects created before the subgoal are not included as actions because they

are not augmentations, either directly or indirectly, of an object that existed prior

to the creation of the subgoal.

When goal G4 terminates, the initial set of conditions and actions have been deter-

mined for the chunk. The conditions test that there exists an evaluate-object operator

whose purpose is to evaluate the operator that moves the blank into its desired loca-

tion, and that all of the tiles are either in position or irrelevant for the current eight-

puzzle-sd operator . The action is to mark the evaluation as successful, meaning that

the operator being evaluated will achieve the goal. This chunk should apply in similar

future situations, directly implementing the evaluate-object operator, and avoiding

the no-change impasse and the resulting subgoal.

3.1.2 Identifier variabilization

Once the conditions and actions have been determined, all of the identifiers are

replaced by production (pattern-match) variables, while the constants, such as

evaluate-object, eight-puzzle, and 0 are left unchanged. An identifier is a label by

which a particular instance of an object in working memory can be referenced. It is

a short-term symbol that lasts only as long as the object is in working memory. Each

time the object reappears in working memory it is instantiated with a new identifier.

I f a chunk that is based on working-memory elements is to reapply in a later situa-

tion, it must not mention specific identifiers. In essence the variabilization process

is like replacing an 'eq ' test in Lisp (which requires pointer identity) with an 'equal '

test (which only requires value identity).

All occurrences of a single identifier are replaced with the same variable and all

occurrences of different identifiers are replaced by different variables. This assures

that the chunk will match in a new situation only if there is an identifier that appears

in the same places in which the original identifier appeared. The production is also

modified so that no two variables can match the same identifier. Basically, Soar is

guessing which identifiers must be equal and which must be distinct, based only on

the information about equality and inequality in working memory. All identifiers

that are the same are assumed to require equality. All identifiers that are not the same

are assumed to require inequality. Biasing the generalization in these ways assures

that the chunks will not be overly general (at least because of these modifications),

but they may be overly specific. The only problem this causes is that additional

chunks may need to be learned if the original ones suffer f rom overspecialization.

In practice, these modifications have not led to overly specific chunks.

28 J.E. LAIRD, P.S. ROSENBLOOM AND A. NEWELL

3.1.3 Chunk optimization

At this point in the chunk-creation process the semantics of the chunk are deter-

mined. However, three additional processes are applied to the chunks to increase the

efficiency with which they are matched against working memory (all related to the

use in Soar of the Ops5 rule matcher (Forgy, 1981)). The first process is to remove

conditions from the chunk that provide (almost) no constraint on the match process.

A condition is removed if it has a variable in the value field of the augmentat ion that

is not bound elsewhere in the rule (either in the conditions or the actions). This pro-

cess recurses, so that a long linked-list of conditions will be removed if the final one

in the list has a variable that is unique to that condition. For the chunk based on

Figures 5 and 6, the bindings and tiles that were only referenced for copying (B1, B4,

B5, B6, B7, B8, B9, and T9) and the cells referenced for creating operator instantia-

tions (C2, C6, and C8) are all removed. The evaluation object, E l , in Figure 5 is not

removed because it is included in the action. Eliminating the bindings does not in-

crease the generality of the chunk, because all states must have nine bindings.

However, the removal of the cells does increase the generality, because they (along

with the test of cell C4) implicitly test that there must be four cells adjacent to the

one to which the blank will be moved. Only the center has four adjacent cells, so the

removal of these conditions does increase the generality. This does increase slightly.

the chance of the chunk being over-general, but in practice it has never caused a

problem, and it can significantly increase the efficiency of the match by removing

unconstrained conditions.

The second optimization is to eliminate potential combinatorial matches in the

conditions of productions whose actions are to copy a set of augmentations f rom aft

existing object to a new object. A common strategy for implementing operators in

subgoals is to create a new state containing only the new and changed information,

and then to copy over pointers to the rest of the previous state. The chunks built for

these subgoals contain one condition for each of the copied pointers. If, as is usually

the case, a set of similar items are being copied, then the copy conditions end up dif-

fering only in the names of variables. Each augmentation can match each of these

conditions independently, generating a combinatorial number of instantiations. This

problem would arise if a subgoal were used to implement the eight-puzzle operators

instead of the rules used in our current implementation. A single production would

be learned that created new bindings for the moved tile and the blank, and also copied

all of the other bindings. There would be seven conditions that tested for the bin-

dings, but each of these conditions could match any of the bindings that had to be

copied, generating 7! (5040) instantiations. This problem is solved by collapsing the

set of similar copy conditions down to one. All of the augmentations can still be

copied over, but it now occurs via multiple instantiations (seven of them) of th~

simpler rule. Though this reduces the number of rule instantiations to linear in the

number of augmentations to be copied, it still means that the other non-copying ac-

C H U N K I N G IN SOAR 29

tions are done more than once. This problem is solved by splitting the chunk into two

productions. One production does everything the subgoal did except for the copying.

"The other production just does the copying. If there is more than one set of augmen-

tations to be copied, each set is collapsed into a single condition and a separate rule

is created for each. 9

The final optimization process consists of applying a condition-recording

algorithm to the chunk productions. The efficiency of the Rete-network matcher

(Forgy, 1982) used in Soar is sensitive to the order in which conditions are specified.

By taking advantage of the known structure of Soar's working memory, we have

developed a static reordering algorithm that significantly increases the efficiency of

the macth. Execution time is sometimes improved by more than an order of

magnitude, almost duplicating the efficiency that would be achieved if the reordering

was done by hand. This reordering process preserves the existing semantics of the

chunk.

3.2 The scope o f chunking

In Section 1 we defined the scope of a general learning mechanism in terms of three

properties: task generality, knowledge generality, and aspect generality. Below we

briefly discuss each of these with respect to chunking in Soar.

Task generality. Soar provides a single formalism for all behavior - heuristic

• search of problem spaces in pursuit of goals. This formalism has been widely used

in Artificial Intelligence (Feigenbaum & Feldman, 1963; Nilsson, 1980; Rich, 1983)

and it has already worked well in Soar across a wide variety of problem domains

(Laird, Newell, & Rosenbloom, 1985). If the problem-space hypothesis (Newell,

1980) does hold, then this should cover all problem domains for which goal-oriented

156havior is appropriate. Chunking can be applied to all of the domains for which

Soar is used. Though it remains to be shown that useful chunks can be learned for

this wide range of domains, our preliminary experience suggests that the combination

of Soar and chunking has the requisite generality. 1°

Knowledge generality. Chunking learns from the experiences of the problem

solver. At first glance, it would appear to be.unable to make use of instructions, ex-

amples, analogous problems, or other similar sources of knowledge. However, by

using such information to help make decisions in subgoals, Soar can learn chunks

that incorporate the new knowledge. This approach has worked for a simple form

9 The inelegance of this solution leads us to believe that we do not yet have the right assumptions about

l~ow new objects are to be created from old ones.

10 For demonstra t ions of chunking in Soar on the Eight Puzzle, Tic-Tac-Toe, and the R1 computer-

configurat ion task, see Laird, Rosenbloom, & Newell (1984), Rosenbloom, Laird, McDermott , Newell,

& Orciuch (1985), and van de Brug, Rosenbloom, & Newell (1985).

30 J.E. LAIRD, P.S. ROSENBLOOM AND A. NEWELL

of user direction, and is under investigation for learning by analogy. The results are

preliminary, but it establishes that the question of knowledge generality is open for

Soar.

Aspect generality. Three conditions must be met for chunking to be able to learn

about all aspects of Soar's problem solving. The first condition is that all aspects

must be open to problem solving. This condition is met because Soar creates subgoals

for all of the impasses it encounters during the problem solving process. These

subgoals allow for problem solving on any of the problem solver's functions: creating

a problem space, selecting a problem space, creating an initial state, selecting a state,

selecting an operator, and applying an operator. These functions are both necessary

and sufficient for Soar to solve problems. So far chunking has been demonstrated

for the selection and application of operators (Laird, Rosenbloom & Newell, 1984);

that is, strategy acquisition (Langley, 1983; Mitchell, 1983) and operator implemen-

tation. However, demonstrations of chunking for the other types of subgoals remain

to be done. 11

The second condition is that the chunking mechanism must be able to create the

long-term memory structures in which the new knowledge is to be represented. Soar

represents all of its long-term knowledge as productions, and chunking acquires new

productions. By restricting the kinds of condition and action primitives allowed in

productions (while not losing Turing equivalence), it is possible to have a production.

language that is coextensive syntactically with the types of rules learned by chunking;

that is, the chunking mechanism can create rules containing all of the syntactic con-

structs available in the language.

The third condition is that the chunking mechanism must be able to acquire rules

with the requisite content. In Soar, this means that the problem solving on which the

requisite chunks are to be based must be understood. The current biggest limitations

on coverage stem from our lack of understanding of the problem solving underlying

such aspects as problem-space creation and change of representation (Hayes &

Simon, 1976; Korf, 1980; Lenat, 1983; Utgoff , 1984).

3.3 Chunk generality

One of the critical questions to be asked about a simple mechanism for learning from

experience is the degree to which the information learned in one problem can transfer

to other problems. If generality is lacking, and little transfer occurs, the learning

mechanism is simply a caching scheme. The variabilization process described in Sec-

tion 3.1.2 is one way in which cunks are made general. However, this process would

by itself not lead to chunks that could exhibit non-trivial forms of transfer. All it does

H In part this issue is one of rarity. For example, selection of problem spaces is not yet problematical,
and conflict impasses have not yet been encountered.

CHUNKING IN SOAR 31

is allow the chunk to match another instance of the same exact situation. The prin-

cipal source of generality is the implicit generalization that results from basing

chunks on only the aspects of the situation that were referenced during problem solv-

ing. In the example in Section 3.1.1, only a small percentage of the augmentations

in working memory ended up as conditions of the chunk. The rest of the information,

such as the identity of the tile being moved and its absolute location, and the identities

and locations of the other tiles, was not examined during problem solving, and

therefore had no effect on the chunk.

Together, the representation of objects in working memory and the knowledge

used during problem solving combine to form the bias for the implicit generalization

process (Utgoff, 1984); that is, they determine which generalizations are embodied

in the chunks learned. The object representation defines a language for the implicit

generalization process, bounding the potential generality of the chunks that can be

learned. The problem solving determines (indirectly, by what it examines) which

generalizations are actually embodied in the chunks.

Consider the state representation used in Korf 's (1985a) work on the Eight Puzzle

(recall Section 2.2). In his implementation, the state of the board was represented as

a vector containing the positions of each of the tiles. Location 0 contained the coor-

dinates of the position that was blank, location 1 contained the coordinates of the

first tile, and so on. This is a simple and concise representation, but because aspects

of the representation are overloaded with more than one functional concept, it pro-

vides poor support for implicit generalization (or for that matter, any traditional

conditition-finding method). For example, the vector indices have two functions:

they specify the identity of the tile, and they provide access to the tile's position.

~When using this state representation it is impossible to access the position of a tile

without looking at its identity. Therefore, even when the problem solving is only

dependent on the locations of the tiles, the chunks learned would test the tile iden-

tities, thus failing to apply in situations in which they rightly could. A second prob-

lem with the representation is that some of the structure of the problem is implicit

in the representation. Concepts that are required for good generalizations, such as

the relative positions of two tiles, cannot be captured in chunks because they are not

explicitly represented in the structure of the state. Potential generality is maximized

if an object is represented so that functionally independent aspects are explicitly

represented and can be accessed independently. For example, the Eight Puzzle state

representation shown in Figure 6 breaks each functional role into separate working-

memory objects. This representation, while not predetermining what generalizations

are to be made, defines a class of possible generalizations that include good ones for

the Eight Puzzle.

The actual generality of the chunk is maximized (within the constraints established

by the representation) if the problem solyer only examines those features of the situa-

tion that are absolutely necessary to the solution of the problem. When the problem

solver knows what it is doing, everything works fine, but generality can be lost when

32 J.E. LAIRD, P.S. ROSENBLOOM AND A. NEWELL

information that turns out to be irrelevant is accessed. For example, whenever a new

state is selected, productions fire to suggest operators to apply to the state. This

preparat ion goes on in parallel with the testing of the state to see if it matches the

goal. I f the state does satisfy the goal, then the preparat ion process was unnecessary.

However, if the preparat ion process referenced aspects of the prior situation that

were not accessed by previous productions, then irrelevant conditions will be added

to the chunk. Another example occurs when false paths - searches that lead of f of

the solution path - are investigated in a subgoal. The searches down unsuccessful

paths may reference aspects of the state that would not have been tested if only the

successful path were followed. 12

4. A demonstrat ion - acquis i t ion o f macro-operators

In this section we provide a demonstrat ion of the capabilities of chunking in Soar

involving the acquistion of macro-operators in the Eight Puzzle for serially decom-

posable goals (see Section 2). We begin with a brief review of Korf ' s (1985a) original

implementation of this technique. We follow this with the details of its implementa-

tion in Soar, together with an analysis of the generality of the macro-operators

learned. This demonstrat ion of macro-operators in Soar is o f particular interest.

because: we are using a general problem solver and learner instead of special-purpose

programs developed specifically for learning and using macro-operators; and because

it allows us to investigate the generality of the chunks learned in a specific application.

4.1 Macro problem solving

Korf (1985a) has shown that problems that are serially decomposable can be effi-

ciently solved with the aid of a table of macro-operators. A macro-operator (or

macro for short) is a sequence of operators that can be treated as a single operator

(Fikes, Har t & Nilsson, 1972). The key to the utility of macros for serially decom-

posable problems is to define each macro so that after it is applied, all subgoals that

had been previously achieved are still satisfied, and one new subgoal is achieved.

Means-ends analysis is thus possible when these macro-operators are used. Table 1

shows Korf ' s (1985a) macro table for the Eight Puzzle task of getting all of the tiles

in order, clockwise around the frame, with the 1 in the upper left hand corner, and

the blank in the middle (the desired state in Figure 3). Each column contains the

macros required to achieve one of the subgoals of placing a tile. The rows give the

12 An experimental version of chunking has been implemented that overcomes these problems by per,

forming a dependency analysis on traces of the productions that fired in a snbgoal. The production traces

are used to determine which conditions were necessary to produce results of the subgoal. All of the results

of this paper are based on the version of chunking without the dependency analysis.

CHUNKING IN SOAR 33

Table 1. Macro table for the Eight Puzzle (from Korf, 1985, Table 1). The primitive operators move a
tile one step in a particular direction; u (up), d (down), l (left), and r (right).

0 1 2

A

B ul

C u rdlu

D ur dlurrdlu dlur

E r Idrurdlu ldru

F dr uldrurdldrul lurdldru

G d urdldrul ulddru

H dl rulddrul druuldrdlu

I 1 drul rullddru

Tiles
3 4 5 6

rdllurdrul

ldrnlurddlru lurd

urddluldrrul uldr

ruldrdluldrrul urdluldr

rdluldrrul rulldr

rdlluurdldrrul

uldrurdllurd urdl

uldrruldlurd ruld

a p p r o p r i a t e m a c r o accord ing to the current pos i t i on o f the tile, where the pos i t ions

are labe led A - I as in F igure 7. F o r example , if the goal is to move the b l ank (tile 0)

into the center , and it is cu r ren t ly in the t op left corner (loca t ion B), then the o p e r a t o r

sequence ul will accompl i sh it.

K o r f ' s i m p l e m e n t a t i o n o f m a c r o p r o b l e m solving used two p rog rams : a p r o b l e m

solver and a learner . The p r o b l e m solver could use m a c r o tables acqui red by the

"learner to solve ser ial ly d e c o m p o s a b l e p r o b l e m s eff ic ient ly . Using Table 1, the

p rob lem-so lv ing p r o g r a m could solve any Eight Puzzle p r o b l e m with the same

desired state (the ini t ia l s tate m a y vary) . The p rocedu re went as fol lows: (a) the posi-

"tion o f the b l a n k was de te rmined ; (b) the a p p r o p r i a t e m a c r o was f o u n d by using this

pos i t ion to index into the first co lumn of the table ; (c) the ope ra to r s in this m a c r o

were app l ied to the state, mov ing the b l ank into pos i t ion ; (d) the pos i t ion o f the first

t i le was de te rmined ; (e) the a p p r o p r i a t e m a c r o was found by using this pos i t ion to

index into the second co lumn o f the table; (f) the ope ra to r s in this m a c r o were app l i ed

to the s tate , mov ing the first t i le (and the b lank) in to pos i t ion ; and so on unt i l all o f

the tiles were in place.

B C D

I A E

H G F

Figure 7. The positions (A-I) in the Eight Puzzle frame.

34 J.E. LAIRD, P.S. ROSENBLOOM AND A. NEWEL[

To discover the macros, the learner started with the desired state, and performed

an iterative-deepening search (for example, see Korf, 1985b) using the elementary

tile-movement operators.13 As the search progressed, the learner detected sequences

of operators that left some of the tiles invariant, but moved others. When an operator

sequence was found that left an initial sequence of the subgoals invariant - that is,

for some tile k, the operator moved that tile while leaving tiles 1 through k-1 where

they were - the operator sequence was added to the macro table in the appropriate

column and row. In a single search from the desired state, all macros could be found.

Since the search used iterative-deepening, the first macro found was guaranteed to

be the shortest for its slot in the table.

4.2 Macro problem solving in Soar

Soar's original design criteria did not include the ability to employ serially decom-

posable subgoals or to acquire and use macro-operators to solve problems structured

by such subgoals. However, Soar's generality allows it to do so with no changes to

the architecture (including the chunking mechanism). Using the implementation of

the Eight Puzzle described in Sections 2.2 and 3.1.1, Soar's problem solving and

learning capabilities work in an integrated fashion to learn and use macros for serially

decomposable subgoals.

The opportunity to learn a macro-operator exists each time a goal for implement-

ing one of the eight-puzzle-sd operators, such as place-5, is achieved. When the goal

is achieved there is a stack of subgoals below it, one for each of the choice points

that led up to the desired state in the eight-puzzle problem space. As described in Sec-

tion 2, all of these lower subgoals are terminated when the higher goal is achieved.

As each subgoal terminates, a chunk is built that tests the relevant conditions and

produces a preference for one of the operators at the choice point. TM This set of °

chunks encodes the path that was successful for the eight-puzzle-sd operator. In

future problems, these chunks will act as search-control knowledge, leading the prob-

lem solver directly to the solution without any impasses or subgoals. Thus, Soar

learns macro-operators, not as monolithic data structures, but as sets of chunks that

determine at each point in the search which operator to select next. This differs from

previous realizations of macros where a single data structure contains the macro,

either as a list of operators, as in Korf 's work, or as a triangle table, as in Strips

(Fikes, Hart & Nilsson, 1972). Instead, for each operator in the macro-operator se-

13 For very deep searches, other more efficient techniques such as bidirectional search and macro-
operator composition were used.

14 Additional chunks are created for the subgoals resulting from no-change impasses on the evaluate-

object operators, such as the example chunk in Section 3.1.1, but these become irrelevant for this task
once the rules that embody preferences are learned.

Place Blank
in Cell A

4 2

3 1 8

5 6 7

1
Place Tile

in Cell B

4 1 2

3 8

5 6 7

Place Tile
in Cell C

1 3] 2

4 ' 8

5 6 7

m

Without Learning During Learning After Learning
[1 1 l I l

CHUNKING IN SOAR

3

35

Figure 8. Searches performed for the first three eight-puzzle-sd operators in an example problem. The left

column shows the search without learning. The horizontal arrows represent points in the search where no

choice (and therefore no chunk) is required. The middle column shows the search during learning. A' + '

signifies that a chunk was learned that preferred a given operator. A ' ' signifies that a chunk was learned

to avoid an operator. The boxed numbers show where a previously learned chunk was applied to avoid

search during learning. The right column shows the search after learning.

quence, there is a chunk that causes it to be selected (and therefore applied) at the

right time. On later problems (and even the same problem), these chunks control the

search when they can, giving the appearance of macro p rob lem solving, and when

they cannot , the p rob lem solver resorts to search. W h e n the latter succeeds, more

chunks are learned, and more of the macro table is covered. By represent ing macros

as sets of independen t p roduc t ions that are learned when the appropr ia te p rob lem

arises, the processes of learning, storing, and using macros become both incrementa l

and simplified.

Figure 8 shows the p rob lem solving and learning that Soar does while pe r fo rming

iterative-deepening searches for the first three e i g h t - p u z z l e - s d operators of an exam-

36 J.E. LAIRD, P.S. ROSENBLOOM AND A. NEWELL

pie problem. The figure shows the searches for which the depth is sufficient to imple-

ment each operator. The first eight-puzzle-sd operator, place-blank, moves the blank

to the center. Without learning, this yields the search shown in the left column of the

first row. During learning (the middle column), a chunk is first learned to avoid an

operator that does not achieve the goal within the current depth limit (2). This is

marked by a ' - ' and the number 1 in the figure. The unboxed numbers give the order

that the chunks are learned, while the boxed numbers show where the chunks are used

in later problem solving. Once the goal is achieved, signified by the darkened circle,

a chunk is learned that prefers the first move over all other alternatives, marked by

' + ' in the figure. No chunk is learned for the final move to the goal since the only

other alternative at that point has already been rejected, eliminating any choice, and

thereby eliminating the need to learn a chunk. The right column shows that on a sec-

ond attempt, chunk 2 applied to select the first operator. After the operator applied,

chunk 1 applied to reject the operator that did not lead to the goal. This leaves only

the operator that leads to the goal, which is selected and applied. In this scheme, the

chunks control the problem solving within the subgoals that implement the eight-

puzzle-sd operator , eliminating search, and thereby encoding a macro-operator .

The examples in the second and third rows of Figure 8 show more complex searches

and demonstrate how the chunks learned during problem solving for one eight-

puzzle-sd operator can reduce the search both within that operator and within other

operators. In all of these examples, a macro-opera tor is encoded as a set of chunks

that are learned during problem solving and that will eliminate the search the next

time a similar problem is presented.

In addition to learning chunks for each of the operator-selection decisions, Soar

can learn chunks that directly implement instances of the operators in the eight-

puzzle-sd problem space. They directly create a new state where the tiles have been

moved so that the next desired tile is in place, a process that usually involves many

Eight Puzzle moves. These chunks would be ideal macro-operators if it were no(

necessary to actually apply each eight-puzzle operator to a physical puzzle in the real

world. As it is, the use of such chunks can lead to illusions about having done

something that was not actually done. We have not yet implemented in Soar a general

solution to the problem posed by such chunks. One possible solution - whose conse-

quences we have not yet analyzed in depth - is to have chunking automatically

turned of f for any goal in which an action occurs that affects the outside world. For

this work we have simulated this solution by disabling chunking for the eight-puzzle
problem space. Only search-control chunks (generated for the tie problem space) are

learned.

The searches within the eight-puzzle problem space can be controlled by a variety

of different problem solving strategies, and any heuristic knowledge that is available

can be used to avoid a brute-force search. Both iterative-deepening and breadth-firsf

CHUNKING IN SOAR 37

search 15 strategies were implemented and tested. Only one piece of search control was

employed - do not apply an operator that will undo the effects of the previous

operator. Unfortunately, Soar is too slow to be able to generate a complete macro

table for the Eight Puzzle by search. Soar was unable to learn the eight macros in

columns three and five in Figure 1. These macros require searches to at least a depth

of eight. 16

The actual searches used to generate the chunks for a complete macro table were

done by having a user lead Soar down the path to the correct solution. At each

resolve-tie subgoal, the user specified which of the tied operators should be evaluated

first, insuring that the correct path was always tried first. Because the user specified

which operator should be evaluated first, and not which operator should actually be

applied, Soar proceeded to try out the choice by selecting the specified evaluate-

object operator and entering a subgoal in which the relevant eight-puzzle operator

was applied. Soar verified that the choice made by the user was correct by searching

until the choice led to either success or failure. During the verification, the appro-

priate objects were automatically referenced so that a correct chunk was generated.

This is analogous to the explanation-based learning approach (for example, see De

Jong, 1981 or Mitchell, Keller, & Kedar-Cabelli, 1986), though the explanation and

learning processes differ.

Soar's inability to search quickly enough to complete the macro table autonomous-

ly is the one limitation on a claim to have replicated Korf ' s (1985a) results for the

Eight Puzzle. This, in part, reflects a t rade-off between speed (Korf 's system) and

generality (Soar). But it is also partially a consequence of our not using the fastest

production-system technology available. Significant improvements in Soar's perfor-

mance should be possible by reimplementing it using the software technology

developed for Ops83 (Forgy, 1984).

4.3 Chunk generality and transfer

Korf ' s (1985a) work on macro problem solving shows that a large class of problems

- for example, all Eight Puzzle problems with the same desired state - can be solved

efficiently using a table with a small number of macros. This is possible only because

the macros ignore the positions of all tiles not yet in place. This degree of generality

occurs in Soar as a direct consequence of implicit generalization. I f the identities of

the tiles not yet placed are not examined during problem solving, as they need not

15 This was actually a parallel breadth-first search in which the operators at each depth were executed

.in parallel.

~6 Although some of the macros are fourteen operators long, not every operator selection requires a

choice (some are forced moves) and, in addition, Soar is able to make use of transfer from previously

learned chunks (Section 4.3).

38 J.E. LAIRD, P.S. ROSENBLOOM AND A. NEWELL

be, then the chunks will also not examine them. However, this does not tap all of

the possible sources of generality in the Eight Puzzle. In the remainder of this subsec-

tion we will describe two additional forms of transfer available in the Soar

implementation.

4.3.1 Different goal states

One limitation on the generality of the macro table is that it can only be used to solve

for the specific final configuration in Figure 3. Korf (1985a) described one way to

overcome this limitation. For other desired states with the blank in the center it is

possible to use the macro table by renumbering the tiles in the desired state to corre-

spond to the ordering in Figure 3, and then using the same transformation for the

initial state. In the Soar implementation this degree of generality occurs automatical-

ly as a consequence of implicit generalization. The problem solver must care that a

tile is in its desired location, but it need not care which tile it actually is. The chunks

learned are therefore independent of the exact numbering on the tiles. Instead they

depend on the relationship between where the tiles are and where they should be.

For desired states that have the blank in a different position, Korf (1985a)

described a three-step solution method. First find a path f rom the initial state to a

state with the blank in the center; second, find a path f rom the desired state to the

same state with the blank in the middle; and third, combine the solution to the first

problem with the inverse of the solution to the second problem - assuming the in-

verse of every operator is both defined and known - to yield a solution to the overall

problem. In Soar this additional degree of generality can be achieved with the learn-

ing of only two additional chunks. This is done by solving the problem using the

following subgoals (see Figure 9): (a) get the blank in the middle, (b) get the first six

tiles into their correct positions, and (c) get the blank in its final position. The first

7 moves can be performed directly by the chunks making up the macro table, while

the last step requires 2 additional chunks.

(A) (B) (C)

X X X 1 2 3 1 2 3

X X X 4 8 4

X x X x 6 5 7 6 5
J

Figure 9. Problems with different goals states, with different positions of the blank, can be solved by: (a)

moving the blank into the center, (b) moving the first six tiles into position, and (c) moving the blank into

its desired position.

CHUNKING IN SOAR 39

4.3.2 Transfer between macro-operators

In addition to the transfer of learning between desired states, we can identify four

different levels of generality that are based on increasing the amount of transfer that

occurs between the macro-operators in the table: no transfer, simple transfer, sym-

metry transfer (within column), and symmetry transfer (across column). The lowest

level, no transfer, corresponds to the generality provided directly by the macro table.

It uses macro-operators quite generally, but shows no transfer between the macro-

operators. Each successive level has all of the generality of the previous level, plus

one additional variety of transfer. The actual runs were done for the final level, which

maximizes transfer. The number of chunks required for the other cases were com-

puted by hand. Let us consider each of them in turn.

No transfer. The no-transfer situation is identical to that employed by Korf

(1985a). There is no transfer of learning between macro-operators. In Soar, a total

of 230 chunks would be required for this case. 17 This is considerably higher than the

number of macro-operators (35) because one chunk must be learned for each

operator in the table (if there is no search control) rather than for each macro-

operator. If search control is available to avoid undoing the previous operator, only

170 chunks must be learned.

Simple transfer. Simple transfer occurs when two entries in the same column of

the macro table end in exactly the same set of moves. For example, in the first column

of Table 1, the macro that moves the blank to the center from the upper-right corner

uses the macro-operator ur (column 0, row D in the table). The chunk learned for

the second operator in this sequence, which moves the blank to the center from the

-position to the right of the center (by moving the center tile to the right), is dependent

on the state of the board following the first operator, but independent of what the

first operator actually was. Therefore, the chunk for the last half of this macro-

~operator is exactly the chunk/macro-operator in column 0, row E of the table. This

type of transfer is always available in Soar, and reduces the number of chunks needed

to encode the complete macro table from 170 to 112. The amount of simple transfer

is greater than a simple matching of the terminal sequences of operators in the macros

in Table 1 would predict because different macro operators of the same length as

those in the table can be found that provide greater transfer.

Symmetry transfer (within column). Further transfer can occur when two macro-

operators for the same subgoal are identical except for rotations or reflections.

Figure 10 contains two examples of such transfer. The desired state for both is to

move the 1 to the upper left corner. The X's represent tiles whose values are irrelevant

to the specific subgoal and the arrow shows the path that the blank travels in order

to achieve the subgoal. In (a), a simple rotation of the blank is all that is required,

while in (b), two rotations of the blank must be made. Within both examples the

17 These numbers include only the chunks for the resolve-tie subgoals. If the chunks generated for the
evaluate-object operators were included, the chunk counts given in this section would be doubled.

40 J.E. LAIRD, P.S. ROSENBLOOM AND A. NEWELL

Desired State

[
Symmetric Initial States

× r 4 × ×rL × ×

xL-+ x < > ,L~>' x

X X X X X X

I I I I

H
i i m

X

(b)

Symmetric Initial States

X r] X ~ r -7 1 X X X

xl +1 J× < > x _~ x
L - - -J

X X X 1 X X

Figure 10. Two examples of within-column symmetry transfer.

pattern of moves remains the same, but the orientation of the pattern with respect

to the board changes. The ability to achieve this type of transfer by implicit general-

ization is critically dependent upon the representation of the states (and operators)

discussed in Section 3.3. The representation allows the topological relationships

among the affected cells (which cells are next to which other cells) and the operators

(which cells are affected by the operators) to be examined while the absolute locations

of the cells and the names of the operators are ignored. This type of transfer reduces

the number of required chunks from 112 to 83 over the simple-transfer case.

Symmetry transfer (across column). The final level of transfer involves the carry-

over of learning between different subgoals. As shown by the example in Figure 11,

this can involve far from obvious similarities between two situations. What is im-

portant in this case is: (1) that a particular three cells are not affected by the moves

(the exact three cells can vary); (2) the relative position of the tile to be placed with"

respect to where it should be; and (3) that a previously placed piece that is affected

(a)

Different Intermediate Subgoals

Place Tile 2 Place Tile 4

t 2 X 1 2 3

X X < > X 4

X X X X X X

Symmetric Initial States

1 X 2 1 2 3

r - ' 7
i

J x x x
x <-- < > ~ - I

k J
X X X X X 4

(b)

Different Intermediate Subgoals

Place Tile 3 Place Tile 5

1 2 3 1 2 3

X X < > X 4

X X X X X 5

Symmetric Initial States

I l m U

Figure 11. An example of across-column symmetry transfer.

CHUNKING IN SOAR

Table 2. Structure of the chunks that encode the macro table for the Eight Puzzle.

41

0 1 2

A

B 2,1

P

o C 1 4,3,1

s

i D 2 7,6,5,4 15,14,1

t

i E 1 10,9,8,4 18,17,16

O

n

s F 2 13,12,11,10 21,20,19,18

Tiles

3 4 5 6

34,33,32,31,30,

29,•

40,39,38,37,36,

35,30

15

G 1 10 23,22,•7 46,45,44,43,42, 18 61,60,59,58,

41,30 56,55,29

H 2 7 26,25,24,23 54,53,52,51,50, 21 40 15

49,48,47,46,29

I 1 4 28,27,22 51 23 46 18

by the moves gets returned to its original position. Across-column symmetry transfer

reduces the number of chunks to be learned f rom 83 to 61 over the within-column

case. 18 Together, the three types of transfer make it possible for S o a r to learn the

complete macro table in only three carefully selected trials.

Table 2 contains the macro-table structure of the chunks learned when all three

levels of transfer are available (and search control to avoid undoing the previous

operator is included). In place of operator sequences, the table contains numbers for

the chunks that encode the macros. There is no such table actually in S o a r - all

chunks (productions) are simply stored, unordered, in production memory. The pur-

pose of this table is to show the actual transfer that was achieved for the Eight Puzzle.

The order in which the subgoals are presented has no effect on the collection of

chunks that are learned for the macro table, because if a chunk will transfer to a new

situation (a different place in the macro table) the chunk that would have been

learned in the new situation would be identical to the one that applied instead.

18 The number of chunks can be reduced further, to 54, by allowing the learning of macros that are not

of minimum length. This increases the total path length by 2 for 14°70 of the problems, by 4 for 26°70 of

the problems and 6 for 7°70 of the problems.

42 J.E. LAIRD, P.S. ROSENBLOOM AND A. NEWELL

Though this is not true for all tasks, it is true in this case. Therefore, we can just

assume that the chunks are learned starting in the upper left corner, going top to bot-

tom and left to right. The first chunk learned is number 1 and the last chunk learned

is number 61. When the number for a chunk is highlighted, it stands for all of the

chunks that followed in its first unhighlighted occurrence. For example, for tile 1 in

position F, the chunks listed are 13, 12, 11, 10. However, 10 signifies the sequence

beginning with chunk 10: 10, 9, 8, 4. The terminal 4 in this sequence signifies the

sequence beginning with chunk 4: 4, 3, 1. Therefore, the entire sequence for this

macro is: 13, 12, 11, 10, 9, 8, 4, 3, 1.

The abbreviated macro format used in Table 2 is more than just a notational con-

venience; it directly shows the transfer of learning between the macro-operators.

Simple transfer and within-column symmetry transfer show up as the use of a macro

that is defined in the same column. For example, the sequence starting with chunk

51 is learned in column 3 row H, and used in the same column in row I. The extreme

case is column 0, where the chunks learned in the top row can be used for all of the

other rows. Across-column symmetry transfer shows up as the reoccurrence of a

chunk in a later column. For example, the sequence starting with chunk 29 is learned

in column 3 (row E) and used in column 5 (row G). The extreme examples of this

are columns 4 and 6 where all of the macros were learned in earlier columns of the

table.

4.4 Other tasks

The macro technique can also be used in the Tower of Hanoi (Korf, 1985a). The

three-peg, three-disk version of the Tower of Hanoi has been implemented as a set

of serially decomposable subgoals in Soar. In a single trial (moving three disks f rom

one peg to another), Soar learns eight chunks that completely encode Korf ' s (1985a)

macro table (six macros). Only a single trial was required because significant within

and across column transfer was possible. The chunks learned for the three-peg, three-

disk problem will also solve the three-peg, two-disk problem. These chunks also

transfer to the final moves of the three-peg, N-disk problem when the three smallest

disks are out of place. Korf (1985a) demonstrated the macro table technique on three

additional tasks: the Fifteen Puzzle, Think-A-Dot and Rubik 's Cube. The technique

for learning and using macros in Soar should be applicable to all of these problems.

However, the performance of the current implementation would require user-

directed searches for the Fifteen Puzzle and Rubik 's Cube because of the size of the

problems.

CHUNKING IN SOAR 43

5. Conclusion

In this article we have laid out how chunking works in Soar. Chunking is a learning

mechanism that is based on the acquisition of rules from goal-based experience. As

such, it is related to a number of other learning mechanisms. However, it obtains ex-

tra scope and generality from its intimate connection with a sophisticated problem

solver (Soar) and the memory organization of the problem solver (a production

system). This is the most important lesson of this research. The problem solver pro-

vides many things: the opportunities to learn, direction as to what is relevant (biases)

and what is needed, and a consumer for the learned information. The memory pro-

vides a means by which the newly learned information can be integrated into the ex-

isting system and brought to bear when it is relevant.

In previous work we have demonstrated how the combination of chunking and

Soar could acquire search-control knowledge (strategy acquisition) and operator im-

plementation rules in both search-based puzzle tasks and knowledge-based expert

systems tasks (Laird, Rosenbloom & Newell, 1984; Rosenbloom, Laird, McDermott,

Newell, & Orciuch, 1985). In this paper we have provided a new demonstration of

the capabilities of chunking in the context of the macro-operator learning task in-

vestigated by Korf (1985a). This demonstration shows how: (1) the macro-operator

technique can be used in a general, learning problem solver without the addition of

new mechanisms; (2) the learning can be incremental during problem solving rather

than requiring a preprocessing phase; (3) the macros can be used for any goal state

in the problem; and (4) additional generality can be obtained via transfer of learning

between macro-operators, provided an appropriate representation of the task is

available.

Although chunking displays many of the properties of a general learning mecha-

nism, it has not yet been demonstrated to be truly general. It can not yet learn new

"problem spaces or new representations, nor can it yet make use of the wide variety

of potential knowledge sources, such as examples or analogous problems. Our

approach to all o f these insufficiences will be to look to the problem solving. Goals

will have to occur in which new problem spaces and representations are developed,

and in which different types of knowledge can be used. The knowledge can then be

captured by chunking.

Acknowledgements

We would like to thank Pat Langley and Richard Korf for their comments on an

earlier draft of this paper.

This research was sponsored by the Defense Advanced Research Projects Agency

(DOD), ARPA Order No. 3597, monitored by the Air Force Avionics Laboratory

44 J.E. LAIRD, P.S. ROSENBLOOM AND A. NEWELL

under contracts F33615-81-K-1539 and N00039-83-C-0136, and by the Personnel and

Training Research Programs, Psychological Sciences Division, Office of Naval

Research, under contract number N00014-82C-0067, contract authority identifica-

tion number NR667-477. The views and conclusions contained in this document are

those of the authors and should not be interpreted as representing the official

policies, either expressed or implied, of the Defense Advanced Research Projects

Agency, the Office of Naval Research, or the US Government.

References

Anderson, J.R. (1983). The architecture of cognition. Cambridge: Harvard University Press.

Anderson, J.R. (1983). Knowledge compilation: The general learning mechanism. In R.S. Michalski, J.G.

Carbonell, & T.M. Mitchell (Eds.). Proceedings of the 1983 Machine Learning Workshop. University

of Illinois at Urbana-Champaign.

Anzai, Y., & Simon, H.A. (1979). The theory of learning by doing. Psychological Review, 86, 124-140.

Brown, J.S., & VanLehn, K. (1980). Repair theory: A generative of bugs in procedural skills. Cognitive

Science, 4, 379-426.

Carbonell, J.G., Michalski, R.S., & Mitchell, T.M. (1983). An overview of machine learning. In R.S.

Michalski, J.G. Carbonell, T.M. Mitchell (Eds.). Machine learning: An artificial intelligence approach.

Los Altos, CA: Morgan Kaufmann.

Chase, W.G., & Simon, H.A. (1973). Perception in chess. Cognitive Psychology, 4 55-81.

Davis, R., & King, J. (1976). An overview of production systems. In E.W. Elcock & D. Michie (Ed.),

Machine intelligence 8. New York: American Elsevier.

DeJong, G. (1981). Generalizations based on explanations. Proceedings of the Seventh International Joint

Conference on Artificial Intelligence (pp. 67-69). Vancouver, B.C., Canada: Morgan Kaufmann.

Feigenbaum, E.A., & Feldman, J. (Eds.) (1963). Computers and thought. New York: McGraw-Hill.

Fikes, R.E., Hart, P.E. & Nilsson, N.J. (1972). Learning and executing generalized robot plans. Artificial

intelligence, 3, 251-288.

Forgy, C.L. (1981). OPS5 manual (Technical Report). Pittsburgh, PA: Computer Science Department,

Carnegie-Mellon University.

Forgy, C.L. (1982). Rete: A fast algorithm for the many pattern/many object pattern match problem.

Artificial intelligence, 19, 17-37.

Forgy, C.L. (1984). The 0PS83 Report (Tech. Rep. #84-133). Pittsburgh, PA: Computer Science

Department, Carnegie-Mellon University.

Hayes, J.R., & Simon, H.A. (1976). Understanding complex task instructions. In Klahr, D.(Ed.), Cogni-

tion and instruction. Hillsdale, N J: Erlbaum.

Korf, R.E. (1980). Toward a model of representation changes. Artificial intelligence, 14, 41-78.

Korf, R.E. (1985). Macro-operators: A weak method for learning. Artificial intelligence, 26, 35-77.

Korf, R.E. (1985). Depth-first iterative-deepening: An optimal admissable tree search. Artificial intel-

ligence, 27, 97 - 110.

Laird, J.E. (1984). Universal subgoaling. Doctoral dissertation, Computer Science Department, Carnegie-

Mellon University, Pittsburgh, PA.

Laird, J.E., & Newell, A. (1983). A universal weak method: Summary of results. Proceedings o f the

Eighth International Joint Conference on Artificial Intelligence (pp. 771 - 773). Karlsruhe, West Ger~

many: Morgan Kaufmann.

Laird, J.E., & Newell, A. (1983). A universal weak method (Tech. Rep. # 83-141). Pittsburgh, PA: Com-

puter Science Department, Carnegie-Mellon University.

CHUNKING IN SOAR 45

Laird, J.E., Newell, A., & Rosenbloom, P.S. (1985). Soar: An architecture for general intelligence. In

preparation.

Laird, J.E., Rosenbloom, P.S., & Newell, A. (1984). Towards chunking as a general learning mechanism.

Proceedings of the National Conference on ArtificialIntelligence (pp. 188 - 192). Austin, TX: Morgan

Kaufmann.

Langley P. (1983). Learning Effective Search Heuristics. Proceedings o f the Eighth International Joint

Conference on Artificial Intelligence (pp. 419- 425). Karlsruhe, West Germany: Morgan Kaufmann.

Lenat, D. (1976). AM: An artificial intelligence approach to discovery in mathematics as heuristic search.

Doctoral dissertation, Computer Science Department, Stanford University, Stanford, CA.

Lenat, D.B. (1983). Eurisko: A program that learns new heuristics and domain concepts. Artificial intel-

ligence, 21, 61-98.

Lewis, C.H. (1978). Production system models of practice effects. Doctoral dissertation, University of

Michigan, Ann Arbor, Michigan.

Marsh, D. (1970). Memo functions, the graph traverser, and a simple control situation. In B. Meltzer &

D. Michie (Eds.), Machine intelligence 5. New York: American Elsevier.

McDermott, J. (1982). RI: A rule-based configurer of computer systems. Artificial intelligence, 19,

39-88.

Michie, D. (1968). 'Memo' functions and machine learning. Nature, 218, 19-22.

Miller, G.A. (1956). The magic number seven, plus or minus two: Some limits on our capacity for process-

ing information. Psychological Review, 63, 81-97.

Mitchell, T.M. (1983). Learning and problem solving. Proceedings o f the Eighth International Joint Con-

ference on Artificial Intelligence (pp. 1139- 1151). Karlsruhe, West Germany: Morgan Kaufmann.

Mitchell, T.M., Keller, R.M., & Kedar-Cabelli, S.T. (1986). Explanation-based generalization: A unifying

view. Machine learning, 1: 4 7 - 80.

Neves, D.M., & Anderson, J.R. (1981). Knowledge compilation: Mechanisms for the automatization of

cognitive skills. In Anderson, J.R. (Ed.), Cognitive skills and their acquisition. Hillsdale, N J: Erlbaum.

Newell, A. (1973). Production systems: Models of control structures. In Chase, W. (Ed.). Visualinforma-

tion processing. New York: Academic.

Newell, A. (1980). Reasoning, problem solving and decision processes: The problem space as a fundamen-

tal category. In R. Nickerson (Ed.), Attention and performance VIII. Hillsdale, N.J.: Erlbaum. (Also

available as CMU CSD Technical Report, Aug 79).

Newell, A., & Rosenbloom, P.S. (1981). Mechanisms of skill acquisition and the law of practice. In J.R.

Anderson (Ed.), Cognitive skills and their acquisition. Hillsdale, N J: Erlbaum. (Also available as

Carnegie-Mellon University Computer Science Tech.Rep. # 80-145).

Nilsson, N. (1980). Principles of artificial intelligence. Palo Alto, CA: Tioga.

Rendell, L.A. (1983). A new basis for state-space learning systems and a successful implementation. Ar-

tificial intelligence, 20, 369-392.

Rich, E. (1983). Artificial intelligence. New York: McGraw-Hill.

Rosenbloom, P.S. (1983). The chunking of goal hierarchies: A model o f practice and stimulus-response

compatibility. Doctoral dissertation, Carnegie-Mellon University, Pittsburgh, PA. (Available as

Carnegie-Mellon University Computer Science Teeh. Rep. #83-148).

Rosenbloom, P.S., & Newell, A. (1986). The chunking of goal hierarchies: A generalized model of prac-

tice. In R.S. Michalski, J,G. Carbonell, & T.M. Mitchell (Eds.), Machine Learning: An Artificial In-

telligence Approach, Volume H. Los Altos, CA: Morgan Kaufmann Publishers, Inc. In press (Also

available in Proceedings o f the Second International Machine Learning Workshop, Urbana: 1983).

Rosenbloom, P.S., Laird, J.E., McDermott, J., Newell, A., & Orciuch, E. (1985). R1-Soar: An experi-

ment in knowledge-intensive programming in a problem-solving architecture. IEEE Transactions on

Pattern Analysis and Machine Intelligence, 7, 561- 569. (Also available in Proceedings o f the IEEE

Workshop on Principles of Knowledge-Based Systems, Denver: IEEE Computer Society, 1984, and as

part of Carnegie-Mellon University Computer Science Tech. Rep. # 8 5 - 110).

46 J.E. LAIRD, P.S. ROSENBLOOM AND A. NEWELL

Smith, R.G., Mitchell, T.M., Chestek, R.A., & Buchanan, B.G. (1977). A model for learning systems.

Proceedings o f the Fifth International Joint Conference on Artificial Intelligence. (pp. 338- 343).

Cambridge, Mass.: Morgan Kaufmann.

Sussman, G.J. (1977). A computer model o f skill acquisition. New York: Elsevier.

Utgoff, P.E. (1984). Shift o f bias for inductive concept learning. Doctoral dissertation, Rutgers Univer-

sity, New Brunswick, NJ.

van de Brug, A., Rosenbloom, P.S., & Newell, A. (1985). Some experiments with R1-Soar (Tech. Rep.).

Computer Science Department, Carnegie-Mellon University, Pittsburgh, PA. In preparation.

Waterman, D.A. (1975). Adaptive production systems. Proceedings o f the Fourth International Joint

Conference on Artificial Intelligence (pp. 296 - 303). Tbilisi, USSR: Morgan Kaufmann.

