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Church’s Thesis and the Conceptual
Analysis of Computability

Michael Rescorla

Abstract Church’s thesis asserts that a number-theoretic function is intuitively
computable if and only if it is recursive. A related thesis asserts that Turing’s
work yields a conceptual analysis of the intuitive notion of numerical com-
putability. I endorse Church’s thesis, but I argue against the related thesis. I argue
that purported conceptual analyses based upon Turing’s work involve a subtle but
persistent circularity. Turing machines manipulate syntactic entities. To specify
which number-theoretic function a Turing machine computes, we must correlate
these syntactic entities with numbers. I argue that, in providing this correlation,
we must demand that the correlation itself be computable. Otherwise, the Tur-
ing machine will compute uncomputable functions. But if we presuppose the
intuitive notion of a computable relation between syntactic entities and numbers,
then our analysis of computability is circular.

1 Turing Machines and Number-Theoretic Functions

A Turing machine manipulates syntactic entities: strings consisting of strokes and
blanks. I restrict attention to Turing machines that possess two key properties. First,
the machine eventually halts when supplied with an input of finitely many adjacent
strokes. Second, when the machine halts, the machine tape is inscribed with a string
of adjacent strokes. Any machine that possesses these two properties computes a
string-theoretic function: a function from strings of strokes to strings of strokes.
If we denote a string of n strokes by “n”, then a Turing machine that doubles the
number of strokes computes the function φ(n) = 2n.

Our main interest is not string-theoretic functions but number-theoretic functions.
We want to investigate computable functions from the natural numbers to the natural
numbers. To do so, we must correlate strings of strokes with numbers. Only then
can we talk about a Turing machine computing a function defined over numbers. As
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Boolos and Jeffrey put it, “before we can speak of Turing machines as computing
numerical functions, we must specify the notation in which the numerical arguments
and values are to be represented on the machine’s tape” ([1], p. 43). Strings of strokes
are not numbers. They are syntactic entities. Someone who conflates numbers with
strings commits a use-mention error. He confuses a symbolic item with what that
item symbolizes.

Different textbooks employ different correlations between Turing machine syn-
tax and the natural numbers. The following three correlations are among the most
popular:

d1(n) = n.

d2(n + 1) = n.

d3(n + 1) = n, as an input.
d3(n) = n, as an output.

A machine that doubles the number of strokes computes f (n) = 2n under d1,
g(n) = 2n + 1 under d2, and h(n) = 2n + 2 under d3. Thus, the same Turing
machine computes different numerical functions relative to different correlations be-
tween symbols and numbers.

More formally, let us define a semantics for a set of symbols as a bijective map-
ping d from the symbols to the natural numbers. We say that Turing machine M
computes number-theoretic function f relative to semantics d just in case the Turing
machine computes a string-theoretic function ϕ such that

ϕ(n) = m iff f (d(n)) = d(m).

We say that a number-theoretic function is Turing-computable relative to semantics
d just in case some Turing machine computes it relative to d .

These definitions reflect a relativity inherent to Turing-computability. The su-
perficially two-place relation “Turing machine M computes number-theoretic func-
tion f ” disguises a suppressed parameter. It results from holding fixed one element
in a three-place relation: “Turing machine M computes number-theoretic function f
relative to semantics d .” When we hold parameter d constant, we obtain a two-place
relation between Turing machines and number-theoretic functions. But the two-place
relation instantiates a more general three-place relation.

There exist uncountably many correlations between numbers and syntactic
strings. As we will see in Section 2, many of these correlations seem highly anoma-
lous. In Sections 3 and 4, I investigate how the anomalous correlations bear upon
Church’s thesis. In Section 5, I argue that, by distinguishing between acceptable
and unacceptable correlations, we inject a persistent circularity into our analysis of
computability.

2 Semantics and Turing-Computability

In the previous section, we considered three possible correlations between num-
bers and strings of strokes: d1, d2, and d3. The same number-theoretic functions
are Turing-computable relative to each of these correlations. In this sense, d1, d2,
and d3 are computationally equivalent. They demarcate the same privileged class
of number-theoretic functions. Following standard usage, I call these privileged
functions “recursive.” (Note that here I follow the common practice of using the
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term “recursive” in connection with Turing’s formalism for analyzing computability.
Soare [24] criticizes this practice. As Soare argues, the term “recursive” was ini-
tially introduced in connection with the equation calculus. Only later did “recursive”
come to mean something like “Turing-computable relative to d1.” The two concepts
are extensionally equivalent, but they are intensionally distinct. Soare argues that
we should return to the original usage, which was strongly favored by both Turing
and Gödel. While I share Soare’s concerns, I will follow current standard usage. In
general, these intensional distinctions will not affect my discussion, although they
become fleetingly relevant near the end of Section 3.)

If we employ a semantics sufficiently different from d1–d3, then various nonre-
cursive functions become Turing-computable. Suppose X is an infinite, coinfinite
subset of the natural numbers. Enumerate the elements of X and N \ X in ascend-
ing order as follows: X = {x0, x1, x2, . . . } and N \ X = {y0, y1, y2, . . . }. Define
semantics dX by

dX (n) = xn/2, if n is even,

dX (n) = y(n−1)/2, if n is odd.

We can then program a Turing machine that computes the characteristic function of
X , relative to dX . The Turing machine proceeds as follows: when supplied with
a string of n strokes, the machine examines whether n is even or odd; if n is even
then the machine outputs d−1

X (0); if n is odd, then the machine outputs d−1
X (1).

This technique applies to any infinite, coinfinite set X , whether or not X possesses a
recursive characteristic function.

Say that a semantics is uniform if it assigns the same number to each string n
when n appears as an input and when n appears as an output. Semantics d3 is not
uniform, but d1, d2, and dX are uniform. The construction from the previous para-
graph generalizes, yielding the following result: any number-theoretic function with
finite range is Turing-computable relative to some uniform semantics. Similar tech-
niques establish that there exist uncountably many number-theoretic functions with
infinite range that are Turing-computable relative to some uniform semantics. There
exist only countably many recursive functions. So the number-theoretic functions
Turing-computable relative to some uniform semantics outstrip the recursive func-
tions.

It is easy to show that every number-theoretic function is Turing-computable rela-
tive to some nonuniform semantics. However, there exist number-theoretic functions
that are not Turing-computable relative to any uniform semantics. For an example of
such a function, see Shapiro [18].1 Shapiro’s example generalizes, yielding the fol-
lowing result: there exist uncountably many number-theoretic functions that are not
Turing-computable relative to any uniform semantics. Hence, the functions Turing-
computable relative to some uniform semantics comprise a substantial but highly
nonexhaustive subset of the number-theoretic functions.

To simplify matters, I henceforth restrict myself to uniform semantic relations. In
what follows, “semantics” means “uniform semantics.”

3 A Difficulty Surrounding Church’s Thesis

Intuitively speaking, a function is “computable” just in case there exists a mechanical
procedure for determining what value the function attains on a given input. Accord-
ing to Church’s thesis, a number-theoretic function is intuitively computable if and
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only if it is recursive.2 I will not discuss the right-to-left direction of Church’s thesis,
except to note that, like most commentators, I find it relatively evident. Traditionally,
the left-to-right direction has been viewed as much more problematic. I now want to
explore an apparent difficulty surrounding it. In Section 4, I will try to resolve the
difficulty.3

Let X consist of the Gödel numbers of sentences provable in Peano Arithmetic,
under some fixed Gödel-numbering. Let fX be the characteristic function of X .
In the previous section, we constructed a semantics dX such that fX is Turing-
computable relative to dX . Imagine, then, a philosopher who reasons as follows:

If Peano Arithmetic is consistent, then fX is not recursive. But that
does not show that fX is uncomputable. On the contrary, it shows
that Church’s thesis enshrines an overly restrictive conception of com-
putability. We must expand our conception, supplementing meager
semantic relations like d1 with more useful relations like dX . Once
we adopt these additional semantic relations, many additional func-
tions become computable. There are numerous computable functions
beyond the recursive functions.

This line of reasoning seems dubious. But why? Why should we believe that every
intuitively computable function is Turing-computable relative to a simple semantics
like d1, as opposed to a more intricate semantics like dX ? In other words, why
should we accept the strong thesis that every intuitively computable function is re-
cursive, rather than the weak thesis that every intuitively computable function is
Turing-computable relative to some semantics?

Faced with such questions, one naturally consults Turing’s classic [25]. Many lo-
gicians and philosophers regard this paper as providing the most convincing defense
of Church’s thesis. Famously, Gödel did not accept Church’s thesis until encounter-
ing Turing’s article.

I follow closely the interpretation of Turing developed by Gandy [5] and Sieg [19],
[20]. On this interpretation, Turing’s argument contains two parts. First, Turing
adduces constraints upon the mechanical activity of idealized human agents. Second,
Turing argues that any function computable within these constraints is recursive.

Turing begins by imagining an idealized computing agent who performs calcula-
tions on a piece of paper. Following Gandy and Sieg, let us call Turing’s idealized
computing agent a “computor.” The computor’s paper is divided into squares, and
each square is either blank or else contains a symbol. To calculate, the computor ma-
nipulates the symbols inscribed upon the paper. Turing isolates five constraints gov-
erning these symbolic manipulations, summarized as follows by Sieg ([19], p. 93):

(a) The behavior of a computor is determined uniquely at any moment by two
factors: (1) the symbols or symbolic configurations he observes, and (2) his
“state of mind” or “internal state.”

(b) There is a fixed finite number of symbolic configurations a computor can
immediately recognize.

(c) There is a fixed finite number of states of mind which need to be taken into
account.

(d) Only elements of observed symbolic configurations can be changed.
(e) The distribution of observed squares can be changed, but each of the new

observed squares must be within a bounded distance L of an immediately
previously observed square.4
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According to Turing, constraints (a) – (e) govern the mechanical activity of any hu-
man computing agent. Turing motivates these constraints by citing various limits
upon our perceptual and cognitive apparatus.5

Turing then presents a key result, which Sieg labels Turing’s theorem and for-
mulates as follows: “Any number-theoretic function f that can be computed by
a computor, satisfying . . . [conditions (a) – (e)], can be computed by a Turing ma-
chine” ([19], p. 94). The basic idea is this: given a computor who satisfies (a) – (e),
we construct a Turing machine that mimics the computor’s computational activity.
If we accept that constraints (a) – (e) demarcate the intuitively computable functions,
then Turing’s theorem establishes that every intuitively computable number-theoretic
function is computable by some Turing machine.

Two caveats regarding this argument deserve emphasis. First, Turing’s analysis
concerns only human mechanical activity, not general mechanical activity. For in-
stance, constraints (b) and (d) imply that there exists some fixed upper bound on
the number of symbols that the computor can manipulate simultaneously. This con-
sequence seems plausible for humans but not for all possible computing devices.
As Gandy notes, “we can conceive of a machine which prints an arbitrary number
of symbols simultaneously” ([5], p. 125). Such a machine would not impugn Tur-
ing’s analysis, because constraints (a) – (e) do not purport to encompass all possible
computations. They describe only human computations. For Turing, “computable”
means “computable by a human,” not “computable by some possible machine.”6

Second, Turing’s analysis concerns human mechanical activity, not human cogni-
tion in general. As Gödel puts it, “the question of whether there exist finite nonme-
chanical procedures, not equivalent with any algorithm, has nothing whatsoever to
do with the adequacy of the definition of . . . ‘mechanical procedure’ ” ([8], p. 370).
Constraints (a) – (e) do not purport to govern all possible processes for determining
some function’s value. Imagine a computor who possesses a mysterious cognitive
faculty, which enables him to determine some uncomputable function’s value upon
any input. When presented with an input, the computor “just knows” the correct
answer. Constraints (a) – (e) do not deny the existence of this mysterious cognitive
faculty. They merely deny that someone who deploys the faculty thereby computes
a number-theoretic function. By employing the faculty, the computor introduces an
essentially nonmechanical element into his mathematical activity. He implements
a nonalgorithmic cognitive strategy. We cannot deny a priori that such cognitive
strategies exist. But we can expunge them from our account of computation. That is
precisely what (a) – (e) seek to accomplish.

Given these caveats, how convincing is Turing’s argument? I find certain aspects
of it puzzling. For instance, constraints (a) and (c) include the rather ill-defined
phrase “state of mind.” What are these states of mind, and why should we assume
that only finitely many of them are relevant to a given computation?7 I also harbor
some worries about “Turing’s theorem,” which asserts that any function computable
within constraints (a) – (e) is computable by a Turing machine. Turing’s defense of
this “theorem” is so elliptical that I find it difficult to understand.8

I set such worries aside. Even if they prove surmountable, a more serious worry
remains. As I will now argue, Turing’s argument exhibits a crucial lacuna. At best,
Turing establishes that every intuitively computable function is Turing-computable
relative to some semantics, not that every intuitively computable function is Turing-
computable relative to semantics d1.
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Turing adduces constraints upon mechanical manipulation of syntactic items.
Constraint (a) demands that computational processes be somehow deterministic.
Constraints (b) and (c) mandate that the perceptual and cognitive capacities de-
ployed during computation be finitely limited. Constraints (d) and (e) impose
spatial bounds upon the computor’s ability to observe and adjust symbols. All five
constraints concern how the computor manipulates symbolic representations for
numbers. They do not address how symbolic representations and numbers relate
to one another. They therefore provide no basis for commending certain semantic
relations over others. In particular, they do not favor d1 over dX .9

Consider the following scenario: a computor manipulates symbols that possess
semantics dX , conforming his manipulations to (a) – (e). Should we classify this
scenario as computation? Should we say that the computor computes nonrecursive
functions, such as fX ? The scenario satisfies constraints (a) – (e), which are the only
constraints Turing advances. Thus, based on Turing’s analysis, the proposed scenario
counts as computational. Yet to classify the scenario as computational would be to
classify certain nonrecursive functions as computable, contradicting Church’s thesis.

Of course, if we restrict the computor to a semantics like d1, then the computor
can compute only recursive functions. Unfortunately, Turing’s discussion provides
no reason for imposing this restriction. The proposed scenario is anomalous be-
cause the computor manipulates items that possess deviant meanings, not because
he manipulates syntactic items in a deviant way. The computor employs a deviant
representational relation between symbols and numbers. Turing cannot criticize the
representational relation as deviant, for he recognizes no constraints governing how
symbols represent numbers. He focuses exclusively upon syntactic manipulation,
at the expense of meaning. So he lacks the resources needed for dismissing dX as
unacceptable. He provides no basis for classifying the proposed scenario as noncom-
putational.

Turing therefore fails to establish Church’s thesis. At best, Turing shows that
Turing machines can replicate all syntactic operations implemented mechanically
by humans. He shows that all intuitively computable string-theoretic functions are
Turing-computable. But that implies only that each intuitively computable number-
theoretic function is Turing-computable relative to some semantics, not that each in-
tuitively computable number-theoretic function is Turing-computable relative to d1.
Turing does not exclude the possibility of a computor who computes nonrecursive
functions.

To buttress my argument, I now consider the following objection.10 I just
conceded that every intuitively computable string-theoretic function is Turing-
computable. Thus, given any human string-theoretic computation that proceeds
relative to some semantics, there is a Turing-machine that computes the same
number-theoretic function relative to that same semantics. It follows that every
intuitively computable number-theoretic function is Turing-computable. At best,
then, my argument shows that Turing fails to establish the following: every Turing-
computable number-theoretic function is recursive. But it is a mathematical theorem
that every Turing-computable function is general recursive, where “general recur-
sive” is understood in terms of Kleene’s equation calculus. Once supplemented by
this mathematical theorem, Turing’s argument establishes the desired conclusion.
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The flaw in this objection lies in a crucial ambiguity surrounding the phrase
“Turing-computable.” If that phrase means something like Turing-computable rela-
tive to d1 (or to some other fixed semantics), then the third sentence of the preceding
paragraph does not follow from the second sentence. We cannot conclude from the
fact that a number-theoretic function is intuitively computable that it is computed rel-
ative to d1 either by some intuitively computable string-theoretic function or by some
Turing-computable string-theoretic function. To draw this inference would beg the
question, since we are investigating whether computability relative to d1 exhausts the
intuitive notion of numerical computability. So far, we have seen no reason to think
that every intuitively computable number-theoretic function is computable relative
to d1.

On the other hand, if we understand the phrase “Turing-computable” to mean
“Turing-computable relative to some semantics,” then the third sentence follows
from the second sentence, given the plausible assumption that any intuitively com-
putable numerical function is computed relative to some semantics by some intu-
itively computable string-theoretic function. But, under this alternative interpreta-
tion of “Turing-computable,” we can no longer say that every Turing-computable
number-theoretic function is general recursive. On the contrary, function fX from
Section 2 is a counterexample. In the standard mathematical theorem that every
Turing-computable function is general recursive, “Turing-computable” means some-
thing like Turing-computable relative to d1 (or to some other fixed semantics). Under
this interpretation, the theorem is unimpeachable. But the theorem becomes false
if we interpret “Turing-computable” to mean Turing-computable relative to some
semantics. Of course, we might also alter the definition of “general recursive” to
mean something like computable in the equation calculus relative to some seman-
tics, where we allow deviant semantic relations like dX . Then it would once again
become correct to say that every Turing-computable numerical function is general
recursive. But this hardly establishes that every intuitively computable numerical
function is general recursive in the normal sense of “general recursive.”

My objections apply to many discussions besides Turing’s. Consider Boolos and
Jeffrey [1]. Boolos and Jeffrey initially characterize Church’s thesis as the statement
that “any mechanical routine for symbolic manipulation can be carried out in effect
by some Turing machine or other” (p. 52). This characterization is not quite accurate,
since it admits nonrecursive functions that are Turing-computable relative to deviant
notations like dX . To ensure a more accurate characterization, Boolos and Jeffrey
supplement their initial statement with the stipulation that Turing machine syntax
possesses semantics d1. They call this semantics “monadic notation.” Boolos and
Jeffrey acknowledge the possibility of semantic relations besides monadic notation.
They provide no argument for privileging monadic notation over its rivals. Instead,
they write,

No end of notations might be invented, and there is no hope of proving that
everything computable in any of them is computable in monadic notation.
It is for this reason that we adopt the monadic notation at the outset: define
Turing-computability as computability . . . [relative to monadic notation]; and
interpret [Church’s thesis] in light of that definition.11

Clearly, we may offer whatever definitions we like. But if we want to defend
Church’s thesis, mere stipulation does not suffice. If we want to show that every
intuitively computable function is Turing-computable relative to monadic notation,
we cannot simply assume that all computations proceed relative to monadic notation.
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Establishing Church’s thesis requires us to move beyond constraints governing
syntactic manipulation. We must address the semantic relation between symbols and
numbers. In addressing this relation, we cannot merely stigmatize correlations like
dX as “deviant,” “artificial,” or “unreasonable.” Nor can we confine ourselves to
praising correlations like d1 as “privileged,” “natural,” or “canonical.” The question
is not whether certain semantic relations are privileged over others. The question
is what privileges certain semantic relations over others. This question deserves a
principled answer, one which yields an invidious distinction between the anodyne d1
and the deviant dX .

In the next section, I address the semantic relation between symbols and numbers,
and I present an emended argument for Church’s thesis.12

4 A Proposed Solution to the Difficulty

Just as we possess the intuitive notion computable number-theoretic function, we
possess the intuitive notion computable semantics. A semantics for some set of
symbols is computable just in case there exists a mechanical procedure for com-
puting what number a given symbol denotes. For instance, the correlations d1–d3
are clearly computable. The concept computable semantics will strike some philoso-
phers as mysterious or obscure. But why should the idea of a computable function
from symbols to numbers seem any more obscure than that of a computable function
from numbers to numbers? If we accept the latter as legitimate, we should likewise
accept the former.

The notion computable semantics is the key ingredient missing from Turing’s
account. By embracing it, we can construct an improved argument for Church’s
thesis. In presenting this argument, I presuppose “Turing’s theorem”: I assume that
Turing machines can replicate all mechanical symbolic manipulation implemented
by humans. In other words, I assume that all intuitively computable string-theoretic
functions are Turing-computable. Due to this assumption, my argument faces many
obstacles that face Turing’s. For instance, any worries regarding Turing’s locution
“state of mind” also infect my argument. I continue to set such worries aside.

My argument for Church’s thesis invokes two intuitive principles:

1. The composition of two computable functions is computable;
2. The inverse of a bijective computable function is computable.

The first principle, which says that the computable functions are closed under com-
position, applies to all computable functions. (Informal proof : given an algorithm
for computing f and an algorithm for computing g, compute f (g(x)) by applying
the second algorithm to x and then applying the first algorithm to the result.) The
second principle applies to those computable functions defined over domains whose
elements one can mechanically enumerate. (Informal proof : given a computable
function f , and given y, here is an algorithm for computing f −1(y): enumerate
the elements of the domain, computing the value that f attains on each element in
the enumeration, until encountering an element x such that f (x) = y; take x to be
f −1(y).)

One might worry about the assumption, which underlies our second intuitive prin-
ciple, that one can mechanically enumerate the elements of the relevant domains.
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Don’t we need Church’s thesis in order to say which domains conform to the assump-
tion? And, if so, won’t an argument for Church’s thesis based upon that assumption
beg the question?13

I respond that, although we may require Church’s thesis to offer a general, precise
characterization of the domains whose elements we can mechanically enumerate,
we do not require Church’s thesis to recognize certain specific examples of mechan-
ically enumerable domains. Similarly, although we may require Church’s thesis to
characterize which number-theoretic functions are intuitively computable, we do not
require Church’s thesis to recognize that certain particular functions are intuitively
computable. We intuitively recognize that the natural numbers are mechanically
enumerable, via the successor function, and that the stroke language is mechanically
enumerable, via adjunction by an additional stroke. This recognition does not depend
upon Church’s thesis. In general, all the domains relevant to this paper are intuitively
recognizable as mechanically enumerable, without reliance upon Church’s thesis.
(I will henceforth ignore the assumption of mechanical enumerability, somewhat
sloppily describing the computable functions as being closed under inverses.)

Given our two intuitive principles, we can easily establish Church’s thesis. Sup-
pose f is an intuitively computable numerical function. Define ϕ = d−1

1 f d1. Note
that

ϕ(n) = m iff f (d1(n)) = d1(m),

and hence that ϕ is a string-theoretic function that computes f relative to d1. Since
d1 is intuitively computable, and since the computable functions are closed under
inverses and composition, ϕ is computable. By Turing’s theorem, ϕ is Turing-
computable. Thus, f is Turing-computable relative to d1. In other words, f is
recursive.14

Although the proof is mathematically trivial, it introduces a crucial conceptual
ingredient missing from Turing’s original account: the notion of a computable se-
mantics. Our proof deploys this notion to establish that d1 yields a notation for
the natural numbers sufficiently general for computing any intuitively computable
numerical function. Crucially, our proof invokes no features of d1 beyond its intu-
itive computability. So it would work equally well for any intuitively computable
semantics. Indeed, we may instructively view the proof as exploiting the following
generalization:

(∗) If a number-theoretic function f is intuitively computable, then, for any
intuitively computable semantics d , there exists an intuitively computable
string-theoretic function that computes f relative to d.

This generalization follows from the fact that the computable functions are closed
under inverses and composition.

The notion of a computable semantics does not merely help us prove Church’s
thesis. It also helps pinpoint what Turing’s constraints (a) – (e) omit.

Consider again the scenario described by Turing: an idealized human computor
manipulates symbols inscribed on paper. The computor manipulates these symbols
because he wants to calculate the value some number-theoretic function assumes on
some input. The computor starts with a symbolic representation for the input, per-
forms a series of syntactic operations, and arrives at a symbolic representation for
the output. This procedure succeeds only when the computor can understand the
symbolic representations he manipulates. The computor need not know in advance
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which number a given symbol represents, but he must be capable, in principle, of de-
termining which number the symbol represents. Only then does his syntactic activity
constitute a computation of the relevant number-theoretic function. If the computor
lacks any potential understanding of the relevant syntactic items, then his activity
counts as mere manipulation of syntax, rather than calculation of one number from
another.

These reflections suggest an important new constraint upon Turing’s computor, to
supplement Turing’s original constraints (a) – (e):

The Computability Constraint: The symbols that the computor manipulates bear a
computable semantic relation to the numbers they
denote.

If the computor manipulates syntactic items that possess a noncomputable seman-
tics, then he cannot mechanically determine which number a given symbol denotes.
He cannot understand the symbols through purely algorithmic means. But then he
cannot calculate which numerical value the desired function assumes on a given in-
put.

I must emphasize that, like Turing’s constraints (a) – (e), the Computability Con-
straint concerns human mechanical activity. Suppose that our computor possesses
a mysterious cognitive faculty that enables him to understand uncomputable nota-
tions. When confronted with symbolic representations for the natural numbers, the
computor “just knows” which number a given symbolic representation denotes. The
Computability Constraint does not deny that such a faculty exists. It merely denies
that someone who exploits the faculty thereby computes a number-theoretic function.
Someone who employs the mysterious faculty introduces an essentially nonmechan-
ical element into his mathematical activity. He understands the symbols he manipu-
lates, but he understands them in an irreducibly nonmechanical way. He implements
a nonalgorithmic cognitive strategy. We cannot deny a priori that such cognitive
strategies exist. But we can expunge them from our account of computation.

The Computability Constraint provides a straightforward diagnosis for why se-
mantics dX seems deviant. Suppose that X is a nonrecursive set. If dX were com-
putable, it would follow that fX , the characteristic function of X , was computable.
By Church’s thesis, it would follow that fX was recursive. But fX is not recursive.
Hence, dX is not computable. There exists no mechanical procedure for determin-
ing which number a given symbol denotes under dX . This renders dX useless for
computation.

Thus, the notion of a computable semantics considerably illuminates the diffi-
culties raised in Section 4. It helps us elaborate Turing’s original treatment into a
rigorous argument for Church’s thesis. And it allows us, through the Computability
Constraint, to pinpoint why semantics dX seems so deviant. I urge that we supple-
ment Turing’s account with the notion of a computable semantics.

5 The Conceptual Analysis of Computability

In Section 4, I presented an emended argument for Church’s thesis. I now want to dis-
cuss a related thesis, according to which Turing provides a conceptual analysis of the
intuitive notion computable number-theoretic function. From this perspective, Tur-
ing’s account transcends mere extensional equivalence with our intuitive notion of
computability: it somehow explicates or captures the intuitive notion. Thus, Gandy
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declares that Turing “provid[es] the definitive meaning of ‘computable function’ ”
and that “Turing’s work is a paradigm of philosophical analysis: it shows that what
appears to be a vague intuitive notion has in fact a unique meaning which can be
stated with complete precision” ([6], p. 84, 86). Similarly, Gödel writes that “Tur-
ing’s work gives an analysis of the concept of ‘mechanical procedure’ (alias ‘algo-
rithm’ or ‘computation procedure’ or ‘finite combinatory procedure’). This concept
is shown to be equivalent with that of a ‘Turing machine’ ” ([8], p. 369–70). Gödel
contrasts Turing favorably with logicians like Church, Kleene, and Gödel himself.
According to Gödel, these other logicians offered extensionally adequate characteri-
zations of computability, but they did not analyze it. The omission left us with little
reason to believe that their definitions were extensionally adequate. Turing offered a
genuine analysis, thereby establishing Church’s thesis.

Sieg, who develops the position more fully than Gödel or Gandy, writes:

Church’s or Turing’s thesis [asserts] that an informal notion of effective
calculability is captured fully by a particular precise mathematical concept.
Church’s thesis, for example, claims in its original form that the effectively
calculable number-theoretic functions are exactly those functions whose val-
ues are computable in Gödel’s equation calculus. My strategy, when arguing
for the adequacy of a notion, is to bypass theses altogether and avoid the fruit-
less discussion of their (un)-provability. This can be achieved by conceptual
analysis . . . There is general agreement that Turing, in 1936, gave the most
convincing analysis of effective calculability . . . It can be argued that he gave
the only convincing analysis . . . The detailed conceptual analysis of effec-
tive calculability yields rigorous characterizations that dispense with theses,
reveal human and machine calculability as axiomatically given mathematical
concepts, and allow their systematic reduction to Turing computability. ([20],
p. 391)

Sieg centers his account around Turing’s constraints (a) – (e). According to Sieg,
(a) – (e) analyze the intuitive concept of computability. More precisely, we can ana-
lyze mechanical procedure carried out by a computor as computation of a computor
satisfying constraints (a) – (e). This analysis, coupled with Turing’s theorem, under-
writes our confidence in Church’s thesis.15

Obviously, in evaluating whether Turing analyzes computability, much depends
upon what we mean by “conceptual analysis.” Gandy, Gödel, and Sieg are not very
explicit on this point. However, most philosophers would probably acknowledge the
following three desiderata for a good analysis:

1. The analysis is extensionally adequate.
2. The analysis is noncircular, that is, it does not employ the concept being

analyzed.
3. The analysis “captures the meaning” of the original concept.

The third desideratum is the most problematic, since what it is to “capture the mean-
ing” of a concept remains quite unclear. Nevertheless, something along these lines
seems integral to analyzing a concept, as opposed to offering necessary and suffi-
cient conditions. I will argue that Turing’s work provides no analysis of computable
number-theoretic function satisfying all three desiderata.16

I begin with a concession: Turing may well successfully analyze computable
string-theoretic function. I find it plausible that constraints (a) – (e), or constraints
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much like them, explicate the concept mechanical procedure for manipulating syn-
tactic items. Thus, I concede that Turing analyzes what it is to compute a string-
theoretic function.17

However, I deny that Turing analyzes what it is to compute a numerical func-
tion. Number-theoretic computability essentially involves extra-syntactic entities:
the numbers. As I argued in Section 3, constraints (a) – (e) ignore the semantic re-
lation between numbers and the syntactic items that represent them. No account
based solely upon constraints (a) – (e) disbars deviant semantic relations. So no such
account decrees that the recursive functions exhaust the computable functions. So
no such account satisfies the first desideratum for any conceptual analysis: exten-
sional adequacy. The concept number-theoretic function computable in accord with
constraints (a) – (e) is not extensionally equivalent to computable number-theoretic
function.

Given Church’s thesis, we can remedy this defect. For instance, we might adopt
either of the following characterizations:

computable in accord with constraints (a) – (e) relative to d1,
computable in accord with constraints (a) – (e) relative to d2,

or, more generally, any characterization of the form,

computable in accord with constraint (a) – (e) relative to d ,

where d is some specific intuitively computable semantics. By conditional (∗) from
Section 4, each of these infinitely many characterizations is extensionally adequate.

But which should we choose as our conceptual analysis? I see little basis for
choosing one characterization over the others. Any computable semantics might
subserve some mathematician’s computational activity. Speaking purely historically,
humans have employed a wide variety of numerical notations: Roman numerals,
Arabic decimals, and so on. The Babylonians even used a base 60 notation. Why
regard one of these notations, rather than another, as constitutively tied to the concept
number-theoretic computability?

My point here is not simply this: we possess infinitely many extensionally ad-
equate characterizations, each of which seems as good a candidate for conceptual
analysis as any other; thus, none can provide a conceptual analysis. That is one
important point, but it is not, I think, the most fundamental point.

The most fundamental point is that none of these infinitely many putative analy-
ses attains a sufficiently general description of numerical computation. Our essential
concept of number-theoretic computability amounts to this: a number-theoretic func-
tion is computable just in case there exists a mechanical procedure for computing it.
Thus, if we want to analyze the concept computable number-theoretic function, we
must analyze the concept mechanical procedure for computing a number-theoretic
function. We must isolate the salient features shared by all possible number-theoretic
computations. Only then do we achieve synonymy with the target concept number-
theoretic computability. None of our putative analyses attains anything like the requi-
site generality. Each proposed analysis captures only a limited class of computations,
namely, those computations that occur relative to some fixed semantics.

Note that an utterly harmless analogue to this phenomenon arises when we define
the mathematical locution “recursive number-theoretic function.” Here, too, we face
a choice of infinitely many computable semantic relations to mention in our char-
acterization. Following standard mathematic practice, I chose d1–d3 when I defined
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“recursive” in Section 2. In the context of defining new mathematical locutions,
such a choice is perfectly legitimate. One can define one’s terminology however one
likes. But an arbitrary choice along these lines becomes fatal if we seek to analyze a
preexisting concept like numerical computability. In that case, we must attain a suf-
ficiently general description of what all numerical computations have in common.
We undercut this goal if we center our putative analysis around a particular notation,
since not all computations proceed relative to that notation.18

Compare string-theoretic computability. Constraints (a) – (e), or constraints much
like them, quite plausibly govern any possible human mechanical procedure for ma-
nipulating syntactic items. They therefore quite plausibly provide the basis for an-
alyzing the concept computable string-theoretic function. To analyze the concept
computable number-theoretic function, we must attain an analogous level of gener-
ality regarding the semantic relation between symbols and numbers. Just as Turing
adduces general constraints upon the manipulation of syntactic strings, we must ad-
duce general constraints upon any acceptable notation for the natural numbers.

My criticisms echo an enigmatic passage from Post’s posthumously published
[15]: “Finite operations illuminated as generated by three principles (1) Symbolic
‘manipulation’ (2) Symbolization (3) Iteration” (p. 426).19 Turing focuses exclu-
sively upon factors (1) and (3): symbolic manipulation and iteration. He offers a
general theory of iterated human symbol manipulation. He provides no correspond-
ingly general theory of Post’s second factor: symbolization. In Post’s words, Turing
does not supplement his treatment of iterated symbol manipulation with “an equally
persuasive analysis . . . [of] all humanly possible modes of symbolization” (p. 344).
Only once we provide such an analysis can we claim to have captured the concept
number-theoretic computability.

To furnish the requisite analysis, we might invoke the Computability Constraint.
In other words, we might offer the following characterization of number-theoretic
computability: computable in accord with (a) – (e) relative to some computable se-
mantics. This characterization is extensionally adequate. Moreover, unlike our ear-
lier efforts, it reflects general constraints upon any possible number-theoretic com-
putation. The problem is that it also seems blatantly circular, because it presupposes
the intuitive notion of computability. Admittedly, it presupposes the concept com-
putable function from symbols to numbers, not the slightly different concept com-
putable function from numbers to number. Such a minor discrepancy hardly dispels
the circularity. By adopting the proposed account, we replace mechanical procedure
for computing one number from another with mechanical procedure for computing
a number from a symbol. We leave unanalyzed what it is to calculate a number from
an input. We thereby abandon all pretensions toward reductive analysis.

We face a dilemma. If we characterize number-theoretic computability by in-
voking some fixed computable semantics, our account does not analyze mechanical
procedure for computing a number-theoretic function and hence does not achieve
synonymy with the target concept. Yet when we fix this problem by invoking the
notion computable semantics, we inject a blatant circularity into our account. How
can we isolate an extensionally adequate characterization that is both noncircular and
synonymous with the original concept? Lacking a satisfactory answer to this ques-
tion, we must conclude that syntactic accounts like Turing’s fail to analyze numerical
computation in more primitive terms. Undoubtedly, Turing’s discussion profoundly
illuminates computability. But illuminating a concept is not the same as analyzing it.
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My argument draws an invidious distinction between string-theoretic and number-
theoretic computability. But it might seem that the distinction is spurious. Don’t my
worries about number-theoretic computation arise just as readily at the level of string-
theoretic computation? To characterize a given physical activity as computing a
string-theoretic function, we must “encode” the strings as physical states. And won’t
the problem of deviant encodings arise here as well, forcing us to invoke intuitively
computable correlations between physical states and strings? No. The reason is that
strings are fundamentally different entities than numbers.

In the terminology introduced by Parsons [12], syntactic entities are quasi-
concrete. They are abstract, in that they are not located in space or time, but they
bear intrinsic relations to privileged concrete embodiments. For example, a string of
n strokes, viewed as a type, is an abstract entity, but its tokens are concrete physical
inscriptions. The relation between the string and its tokens is constitutive of the
string’s identity. In contrast, numbers are pure abstract entities. They do not bear
intrinsic relations to concrete embodiments. In particular, they do not bear intrinsic
relations to either syntactic-tokens or syntactic-types. The basic insight here goes
back to Frege [4], who observed that “one could imagine the introduction some day
of quite new numerals, just as, for example, the Arabic numerals superseded the
Roman. Nobody is seriously going to suppose that in this way we should get quite
new numbers, quite new arithmetical objects, with properties still to be investigated.”
Frege concluded from this observation that “we must distinguish between numerals
and their Bedeutungen” (p. 132). Frege’s observation actually supports a somewhat
more general conclusion: the individuation of the numbers is not tied to particular
symbolic representations. If it were, then a change in symbolic representations
would entail a change in the numbers, which it does not.20

This asymmetry between strings and numbers explains why my argument applies
to numerical computability but not to string-theoretic computability. A canonical
correlation between string-types and concrete inscriptions is built into the identity
of the string-types. For instance, the type “string of n strokes” is canonically asso-
ciated with concrete inscriptions featuring n adjacent strokes, because it is partially
individuated by the fact that such inscriptions are its tokens. We need not worry
about disbarring deviant encodings of strings as physical states, for the individuation
of the strings enshrines a single privileged encoding. No canonical correlation be-
tween numbers and syntactic-types or syntactic-tokens is built into the individuation
of numbers. This naturally raises the question of which correlations are admissible
for computation. We have seen no way to answer this question without engendering
circularity.

Perhaps a noncircular analysis of numerical computability exists. But I want
to advertise my inability to locate one. In this vein, I will survey various obvious
but unsuccessful maneuvers through which one might attempt to eliminate the
circularity.

The most obvious maneuver would be to adopt the following analysis:

computable in accord with constraints (a) – (e) relative to every semantics.

However, as Shapiro [18] proves, the only functions that satisfy this condition are
those differing from constant functions or the identity function on at most a finite
number of arguments. Thus, the proposed maneuver is clearly inadequate.
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Another obvious maneuver would be to “go metalinguistic.” We can introduce
symbols that denote other symbols; the expression “n”, denoting a string of n strokes,
is an example. We can then formulate string-theoretic mechanical procedures that
compute symbols from metalinguistic symbols, thereby calculating what number a
given symbol denotes. Thus, we might analyze computable semantics by adduc-
ing (a) – (e) as constraints upon transforming a metalinguistic symbol into a non-
metalinguistic symbol.

Unfortunately, this metalinguistic maneuver achieves no advance whatsoever. A
metalinguistic computational procedure computes a numerical output from a syn-
tactic input only relative to a semantics that correlates metalinguistic symbols with
symbols and non-metalinguistic symbols with numbers. Lacking such a correlation,
the computational procedure counts as mere manipulation of syntax, not as computa-
tion of a number-valued function. But now our worries about deviant correlations re-
materialize, this time in connection with both metalinguistic and non-metalinguistic
symbols.

A third obvious maneuver would be to invoke the isomorphism between the
Dedekind structure of the notation system and the Dedekind structure of the natural
numbers. To take a specific example, consider again the stroke language. We can
view this language as an ω-sequence, with adjunction by an additional stroke serving
as the successor operation. Then there exists a unique isomorphism between the
stroke language and the natural numbers. Surely we can select that isomorphism as
providing the “canonical” interpretation of the stroke language.

This maneuver fails. The problem is that the stroke language instantiates infin-
itely many different ω-sequences. Given semantics d for the stroke language, define
the string-theoretic function S(t) = d−1(d(t) + 1). We can again view the stroke
language as an ω-sequence, with S rather than adjunction serving as the successor
operation. This new ω-sequence is once again isomorphic to the natural numbers.
Thus, the mere appeal to Dedekind structure achieves nothing. It does not favor one
semantics over another.

A fourth maneuver would be to treat d1–d3 as privileged over all other seman-
tic relations, on the grounds that they assign the “correct meaning” to the syntactic
operation of adjunction. Unlike most other semantic relations, d1–d3 interpret ad-
junction as corresponding to the successor operation on the natural numbers. This
interpretation may appear somehow “canonical.”

A basic difficulty with the proposed maneuver is that it does not generalize beyond
the simple stroke language and thus cannot provide a general criterion of “acceptable
notation.” A subtler but equally serious difficulty is that the proposal does not seem
correct even for Turing machine syntax. Contrary to the proposal, I do not think that
adjunction possesses a “canonical” meaning. Inherently speaking, adjunction pos-
sesses no semantic interpretation whatsoever. It is a meaningless syntactic operation.
For instance, binary notation seems no less valid than d1–d3 as an interpretation of
Turing machine syntax. Since adjunction does not possess a canonical meaning, the
difficulties that beset dX cannot involve any failure to preserve adjunction’s canonical
meaning.

Although the maneuvers just canvassed do not seem very promising, other re-
sponses require more extended treatment. I now discuss four such responses.
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5.1 The Translation Constraint Given that the computable functions are closed
under composition and inverses, semantics d for some numerical language is intu-
itively computable just in case it satisfies the following condition:

The Translation Constraint: The translation between d and d1 is intuitively
computable. More precisely, the string-theoretic
function d−1

1 d is intuitively computable.

So we might offer the following characterization of number-theoretic computability:
computable in accord with constraints (a) – (e) relative to some semantics d
that satisfies the Translation Constraint.

This proposal replaces the Computability Constraint with an extensionally equivalent
but intensionally distinct demarcation of the acceptable semantic relations. Since the
Translation Constraint mentions only string-theoretic computability, we can expli-
cate it through Turing’s constraints (a) – (e), thereby eliminating any hint of circular-
ity.

While the new proposal improves upon our earlier efforts, I believe that it falls
short of conceptual analysis. Briefly, although the Translation Constraint provides
an extensionally adequate demarcation of the acceptable notations, we determine
its extensionally adequacy only by determining that it is extensionally equivalent to
the Computability Constraint. What we really want is that our notations be intu-
itively computable. Effective intertranslatability with monadic notation is a superfi-
cial correlate of this more fundamental desideratum. Hence, it is the Computability
Constraint, rather than the Translation Constraint, that constitutively attaches to our
original concept of number-theoretic computability. Notations are not acceptable
because they are intertranslatable with d1; they are intertranslatable with d1 because
they are acceptable.

Clearly, the sheer fact that certain notations are mechanically intertranslatable
with some other notation supplies no reason to deem them suitable for numerical
computation. For instance, it would be absurd to define an “acceptable notation”
as a notation mechanically intertranslatable with dX . The Translation Constraint
strikes us as adequate only because we recognize that d1 possesses some inherently
desirable property, a property which is not shared by dX but which is preserved under
computable translation. That desirable property, I submit, is intuitive computability.

To replace the Computability Constraint with the Translation Constraint is to mis-
takenly prioritize translation over interpretation. The fundamental desideratum upon
any notation for numerical computation is that we can mechanically determine what
number a given symbol denotes. Mechanically determining what number a symbol
denotes is not the same as mechanically translating that symbol into monadic nota-
tion. Indeed, upon encountering a long string of strokes, we would surely determine
its reference under d1 by translating it into a more readily intelligible symbolism,
like Arabic decimal notation. Thus, the mere fact that one can mechanically trans-
late some symbol into monadic notation is quite tangential. It seems relevant only
because one can also mechanically interpret monadic notation, thereby mechanically
interpreting the original symbol. This crucial transition from symbols to numbers
goes unmentioned by the Translation Constraint. By shifting attention from the se-
mantic relation between symbols and numbers to the syntactic relation between sym-
bols and other symbols, the Translation Constraint obscures the essential features of
numerical computation.
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But what is it to interpret a numeral? More generally, how do we achieve reference
to the natural numbers? Many philosophers claim that such reference is mediated by
a canonical notation, such as d1, Arabic notation, or some other favored candidate.
An extreme view along these lines holds that the natural numbers just are elements
in a canonical notation. More sophisticated views, explored by philosophers such as
Kripke, Martin-Löf, and Parsons, avoid the nominalism while retaining the empha-
sis upon symbolic mediation.21 A particularly attractive version of this view would
regard the relevant symbols as numerals in the language of thought.22 Don’t such
views suggest that the Translation Constraint, or something like it, constitutively at-
taches to our concept of number-theoretic computability? For don’t they suggest that
interpreting any notation requires, perhaps in a subtle or circuitous way, translation
into some canonical notation?

Let us grant that some fixed canonical notation, perhaps in the language of
thought, mediates our thinking about the natural numbers. Still, it is hard to deny
that other thinkers might refer to the natural numbers through a different canonical
notation. We must therefore ask what all possible canonical notations have in com-
mon. For instance, why couldn’t dX serve as the basis for some mathematician’s
canonical notation? In addressing such questions, the notion of an intuitively com-
putable semantics will once more prove indispensable. We need it to explain why
certain notations, but not others, could serve as the canonical basis for our thought
about the natural numbers.23

Characterizations based upon the Translation Constraint replace an explanatorily
fundamental concept (computable function from symbols and numbers) with an ex-
planatorily derivative concept (computable intertranslatability with some privileged
notation). The former concept is explanatorily more fundamental because it helps
explain why certain notations rather than others are suitable for numerical computa-
tion. I conclude that characterizations based upon the Translation Constraint fail to
attain synonymy with the concept number-theoretic computability. Such characteri-
zations emphasize a superficial symptom shared by all acceptable notations, not the
more fundamental trait that explains why they are acceptable.

5.2 Shapiro on the computability of the successor function It is not difficult to
show that semantics d for some numerical language is computable just in case it
satisfies the following condition:

The Successor Constraint: The successor function is intuitively computable rel-
ative to d . More precisely, there exists an intu-
itively computable string-theoretic function φ such that
d(φ(s)) = d(s) + 1.

A natural proposal is that we replace the Computability Constraint with the Suc-
cessor Constraint. We can then explicate the Successor Constraint through Turing’s
constraints (a) – (e), thereby evading circularity.

This proposal receives powerful support from the crucial role the natural num-
bers play in counting. Typically, we measure cardinalities by enumerating elements
of some numerical notation in ascending order. This procedure only works if the
successor operation is computable relative to the notation. Thus, the Successor Con-
straint, unlike the Translation Constraint, reflects an inherently desirable property of
notations.
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It would be churlish to deny that the Successor Constraint carries us much
closer than our earlier efforts toward something resembling a satisfying concep-
tual analysis. Note, however, that the Successor Constraint is not extensionally
equivalent to the Computability Constraint if we momentarily allow noninjective
semantic relations. Given a nonrecursive infinite set Y = {y0, y1, y2, . . . } with
y0 = 0, consider the following repetitious enumeration of the natural numbers:
y0, y1, y0 + 1, y2, y1 + 1, y0 + 2, y3, y2 + 1, y1 + 2, y0 + 3, and so on. Let c be
the semantics that maps n to the nth element of this enumeration. Then c is not
computable, since otherwise the characteristic function of Y would be computable.
Yet the successor operation is intuitively computable relative to c.

In case there was any doubt, this example demonstrates that the Successor and
Computability Constraints are intensionally distinct, since they diverge extension-
ally over noninjective notations. The example also suggests that the Computability
Constraint, rather than the Successor Constraint, supplies the correct criterion for an
“acceptable notation.” Semantics c conforms to the Successor Constraint, yet it is
useless for computation, since there is no uniform mechanical procedure for inter-
preting numerals relative to c. Thus, a notation’s suitability for performing computa-
tions stems from conformity not to the Successor Constraint but to the Computability
Constraint, which entails the Successor Constraint but which is entailed by it only
in the special case of injective semantic correlations. Even for that special case, the
Computability Constraint, not the Successor Constraint, is explanatorily fundamen-
tal.24

In this connection, Shapiro [18] offers a revealing discussion. Shapiro, who
works only with injective notations, initially contemplates something much like
Computability Constraint: “The [computor] should be able to read the notation. If
he is given a token for a numeral, he should (in principle) be able to determine what
number it denotes” (p. 18). Shapiro observes that this informal constraint entails the
Successor Constraint. He adopts the Successor Constraint as his official definition
of an “acceptable notation.” Essentially, then, Shapiro motivates his definition by
noting that it follows from something resembling the Computability Constraint. I
contend that Shapiro’s initial, informal characterization is preferable to his final,
official definition. The former, rather than the latter, captures what renders a given
notation suitable for numerical computation.

Why does Shapiro favor the Successor Constraint over the Computability Con-
straint? He criticizes talk about “determining what number a numeral denotes” as
“vague and perhaps obscure,” observing that it “seems to involve the possibility of
de re knowledge of particular natural numbers independent of notation” (p. 18). This
complaint suggests that Shapiro finds congenial the view, discussed in Section 5.1,
that some canonical notation mediates our thought about the natural numbers. As
we saw, however, that view is quite consistent with the Computability Constraint.
Moreover, even if we accept such a view, it is difficult to see why the Computabil-
ity Constraint should seem any more obscure than the intuitive concept computable
number-theoretic function.

Notably, Shapiro seems to regard even this concept rather suspiciously. He writes
that “strictly speaking, computability applies only to string-theoretic functions and
not to number-theoretic functions” (p. 14). Ultimately, he does introduce a notion of
numerical computability: a number-theoretic function f is “computable” just in case
some computable string-theoretic function computes f relative to some acceptable
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notation, in Shapiro’s sense of “acceptable.” He then proves a result that he calls
“Church’s thesis”: a number-theoretic function f is “computable” just in case it is
recursive (p. 20). The proof is easy, once we assume that all semantic correlations are
injective, for in that case the Successor Constraint entails the Translation Constraint.

But does Shapiro really prove Church’s thesis? It seems to me that he does not
even formulate it, let alone prove it. Church’s thesis concerns the pretheoretic con-
cept computable number-theoretic function. Shapiro does not employ this prethe-
oretic concept. Instead, he employs a syntactic proxy: computable relative to a
notation that satisfies the Successor Constraint. What Shapiro calls “Church’s The-
sis” entails Church’s thesis, as it is normally understood, only when combined with
the further claim that every intuitively computable number-theoretic function is com-
putable relative to a notation that satisfies the Successor Constraint. Shapiro does not
attempt to establish this further claim.

We may summarize this section as follows. If you think we possess an intuitive
concept of computing a number from an input, then you should reject a putative
analysis of that concept based upon the Successor Constraint. If you do not think we
possess an intuitive concept of computing a number from an input, or if you deny
that our formal theorizing answers to any such intuitive concept, then you are of
course perfectly entitled to follow Shapiro in adopting a formal ersatz based upon
the Successor Constraint. In that case, you should not claim that the formal ersatz
analyzes any pretheoretic concept. Nor should you claim that your position vin-
dicates Church’s thesis, since that thesis, as it is typically understood, concerns a
pretheoretic concept.

5.3 The purely syntactic conception of computation The conclusion of the pre-
vious section naturally leads us to inquire whether we truly possess a pretheoretic
concept of numerical computability, or at least any such concept worth preserving.
We can develop a concept of numerical computation within our formal theorizing.
But, one might urge, we should not ask whether the formal concept corresponds, ei-
ther extensionally or intensionally, to some intuitive notion. The only intuitive notion
of computability to which our theorizing answers is string-theoretic computability.
We should therefore reformulate Church’s thesis so that it concerns string-theoretic,
rather than numerical, computability. Let us call this approach the purely syntactic
conception of computation.25

The most obvious obstacle facing the purely syntactic conception is that current
mathematical practice just does seem to enshrine a notion of numerical computabil-
ity. Virtually every textbook on recursion theory takes as its subject matter the com-
putability of number-theoretic functions. As a representative sample, see Boolos
and Jeffrey [1], Rogers [17], and Soare [23]. Nor can we dismiss this emphasis upon
number-theoretical computability as reflecting an unfortunate conflation between nu-
merical and string-theoretic computability. For most of these same textbooks take
great pains to distinguish numbers from symbols, in the context of emphasizing use-
mention distinctions. There is little doubt that virtually all contemporary logicians
take themselves to possess a bona fide concept computable number-theoretic func-
tion, which they take to be coextensive with the concept recursive function.

These observations demonstrate that the purely syntactic conception is revisionist
regarding current mathematical practice and pedagogy. Its revisionism might seem
relatively plausible if we also adopted a sufficiently extreme nominalist, fictionalist,
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or formalist conception of arithmetic, since presumably such a conception would al-
ready bar us from taking ordinary mathematical discourse at face value. However,
if one is not antecedently committed to more thoroughgoing revisionism regarding
arithmetic, then revisionism regarding numerical computability should seem quite
unpalatable. Once we accept at face value ordinary mathematical talk about the ex-
istence of numerical functions distinct from string-theoretic functions, why should
we not also accept at face value ordinary mathematical talk about our ability to com-
pute the values of those functions? Typically, we would not hesitate to say that the
multiplication algorithm taught in elementary school is a mechanical procedure for
computing the product of two numbers, or that the Euclidean algorithm is a mechan-
ical procedure for computing the greatest common divisor of two numbers. Once
we accept that there exist a multiplication function and a greatest common divisor
function about which we can think and reason, it seems bizarre not to say that we
can, by employing the appropriate algorithms, compute the values those functions
assume on given inputs. Yet to say so is to deploy an intuitive notion of numerical
computability.

Another obstacle faces the purely syntactic conception. When faced with a def-
inition of “numerical computability” as “computable relative to some notation,” we
naturally find it repugnant, since it allows deviant semantic relations like dX . A good
philosophical account must explain this intuitive verdict. The most natural explana-
tion is that the intuitive verdict reflects our grasp of an intuitive, pretheoretic notion
of numerical computability. The proposed definition seems “too broad,” in that it
classifies various functions as computable even though, by Church’s thesis, they are
not intuitively computable. Clearly, this explanation invokes the intuitive notion
of numerical computability. Moreover, it is difficult to see how the purely syntac-
tic conception of computation can provide a similarly satisfactory explanation. If
that conception were correct, then a formal definition of “numerical computability”
based upon the Computability, Translation, or Successor Constraints would appar-
ently deserve no greater approbation than the definition “computable relative to some
notation.” For the formal definitions would answer to no pretheoretic concept against
which we could measure them for extensional adequacy.

Despite these obstacles, the purely syntactic conception exerts a powerful appeal.
I now want to examine three arguments one might offer in its favor.

One argument runs as follows: humans and computers directly manipulate sym-
bols, not numbers; thus, what humans and computers really compute are string-
theoretic functions, not number-theoretic functions. Shapiro seems to endorse some-
thing like this argument: “mechanical devices engaged in computation and humans
following algorithms do not encounter numbers themselves, but rather physical ob-
jects such as ink marks on paper. . . . Furthermore, mathematical automata, such as
Turing machines . . . have only appropriately constituted strings for inputs and out-
puts. It follows that, strictly speaking, computability applies only to string-theoretic
functions and not to number-theoretic functions” ([18], p. 18).

The argument is fallacious. Its premise (humans and computers directly manip-
ulate symbols, not numbers) does not support its conclusion (strictly speaking, hu-
mans and computers compute only string-theoretic functions). At best, the premise
establishes that our computations of number-theoretic functions are mediated by our
computations of string-theoretic functions. It does not follow that all we really or
strictly speaking compute are string-theoretic functions. To conclude this would be
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analogous to the inference sometimes drawn by the British empiricists that, since
our ideas mediate our perception of the external world, all we really perceive are
our ideas. To modernize the analogy, consider Fodor’s version of the representa-
tional theory of mind, according to which propositional attitudes are relations to
propositionally contentful items in the language of thought. As Fodor himself would
emphasize, it simply does not follow from this view that what we really think about
are items in the language of thought. All that follows is that the language of thought
mediates our thinking about extra-mental items. The point persists when the extra-
mental items are numbers or number-theoretic functions. More generally, as I con-
ceded in Section 5.1, some canonical notation, either mental or nonmental, may well
mediate our thought about the numbers. If so, the mediating notation is not an ob-
stacle that prevents us from computing numerical functions. On the contrary, it is
precisely what enables us to compute those functions. Mediated computation is still
computation.

Another argument for the purely syntactic conception observes that an appro-
priately chosen system of notation, viewed as an ω-sequence, is isomorphic to the
natural numbers. One can therefore develop recursion theory over notations rather
than numbers. Machtey and Young [10] do so, and the resulting theory is, in all
mathematical essentials, equivalent to recursion theory as standardly developed over
the natural numbers. What is lost, one might demand, by retreating in this way from
numerical to syntactic computability?

The basic problem with this argument is that it provides no reason to doubt that
we possess an intuitive notion of numerical computability. It merely insists that, for
most or perhaps all mathematical purposes, we can settle for a syntactic surrogate.
Yet, if we possess an intuitive concept of numerical computability, surely we should
try to clarify its extension and intension. We should elucidate what it is to com-
pute a number-theoretic function, and we should specify which such functions are
computable. One can dismiss these questions as uninteresting. But a brusque dis-
missal provides no reason for thinking the questions ill-formed or misguided, so it
will hardly persuade the many philosophers and logicians who find them intrinsically
interesting.

A final argument for the purely syntactic conception cites the historical motiva-
tions underlying research on computability in the 1930s. Much of that research was
prompted mainly by syntactic concerns. For instance, one might argue that Turing’s
interest in computability stemmed most fundamentally from the decision problem
for first-order logic, while Gödel sought primarily to delimit the class of formal sys-
tems. Thus, the argument goes, Church’s thesis was introduced to address compu-
tations defined over symbols, not over numbers. Even if there is a legitimate notion
of numerical computation, we need not concern ourselves with trying to explicate it.
We can settle for syntactic computability, the only notion relevant to those problems
that sparked our initial interest in Church’s thesis.26

Even if this historical analysis correctly describes the motivations of Turing and
Gödel, it strikes me as rather slanted. Kleene’s historical retrospective [9] offers a
very different interpretation, highlighting the following question as central: “What
number-theoretic functions . . . are computable?” (p. 21). It also seems clear that
Post, who placed great emphasis upon the representational relation between sym-
bols and what they symbolize, would have rejected the purely syntactic conception
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of computation. More importantly, though, observations about the historical motiva-
tions of various logicians, no matter how eminent and brilliant, cannot support the
purely syntactic conception. Historical observations cannot show that we lack a le-
gitimate pretheoretic concept of numerical computation or that this concept merits no
mathematical or philosophical clarification. Whether or not Turing and Gödel were
exclusively concerned with syntactic computability, we are not constrained to exam-
ine only those topics that interested Turing and Gödel. Even if Turing did not intend
to explicate numerical computability, we can ask whether his work yields a satisfac-
tory explication. Most contemporary recursion theory textbooks do in fact ask this
question, usually formulated in extensional rather than intensional terms. As I have
urged, the question becomes almost inescapable if we reject radically revisionary
versions of nominalism, fictionalism, and formalism.

On balance, then, the purely syntactic of computation strikes me as rather
unattractive. I do claim to have refuted it. But I would urge that, unless we have al-
ready adopted a more thoroughgoing revisionary conception of the natural numbers,
its costs far outweigh its benefits.

Once we reject the purely syntactic conception, we must choose among the fol-
lowing three positions: Turing’s account captures neither the extension nor the in-
tension of the intuitive concept computable number-theoretic function; or Turing’s
account captures the intuitive concept’s extension and its intension; or Turing’s ac-
count captures the intuitive concept’s extension but not its intension. Virtually no
one espouses the first position. Gandy and Sieg espouse the second. I espouse the
third.

5.4 Who cares about conceptual analysis? My argument lacks any significance
for research within recursion theory and computer science. A typical application
of Church’s thesis within these fields runs as follows: one shows that a function is
not recursive; by Church’s thesis, one concludes that the function is not computable.
This argument requires only the truth of Church’s thesis. It does not presuppose any
conceptual-analytic claims. Since I endorse Church’s thesis, my discussion gener-
ates no implications for the mathematical study of computability. Accordingly, one
might question what interest attaches to my position. Given that Turing’s account is
extensionally adequate, and given that it provides a foundation for the mathematical
study of computation, what more could we reasonably require? Why not simply rel-
ish it as an instance of Quinean regimentation or Carnapian rational reconstruction?
Who cares if Turing’s account fails to provide a genuine conceptual analysis? Any-
way, doesn’t the “paradox of analysis” show that virtually all putative analyses fall
similarly short?

I have formulated my principal thesis in terms of conceptual analysis, because
many other commentators frame the issue in these terms. But we can restate my
position without invoking notions like synonymy, conceptual analysis, and so on.

Turing centers his discussion around the following question: “What are the pos-
sible processes which can be carried out in computing a number?” ([25], p. 135).
A conceptual analysis of number-theoretic computability must answer this question.
But Turing’s question is intrinsically interesting. Even if we abandon any aspira-
tions toward conceptual analysis, we should still attempt to characterize all numer-
ical computational processes. We should try to isolate what, in general, is involved
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in computing a number from an input. As Sieg puts it, “Turing asked in the histor-
ical context in which he found himself the pertinent question, namely, what are the
possible processes a human being can carry out (when computing a number or, equiv-
alently, determining algorithmically the value of a number-theoretic function)? The
general problematic required an analysis of the idealized capacities of calculators”
([20], p. 395). I agree. My point is that, if we restrict ourselves to constraints upon
mechanical manipulation of syntax, then we fail to provide an adequate account of
those “idealized capacities,” and we thereby fail to answer Turing’s question. Indeed,
as I argued in Section 3, a treatment that focuses solely upon constraints governing
mechanical manipulation of syntax is not even extensionally adequate, since it does
not disbar deviant semantic relations like dX .

We can restore extensional adequacy by stipulating a particular computable se-
mantics, such as d1. But we thereby abandon any pretense of offering a general char-
acterization of “the idealized capacities of calculators.” There are infinitely many
notations in which calculators can compute number-theoretic functions, and a char-
acterization based upon a single privileged notation will not encompass computations
conducted relative to alternative notations.

According to Sieg, a primary “lesson we owe to Turing” is that a characteriza-
tion of numerical computability should emphasize symbols: “to investigate calcu-
lations is to analyze symbolic processes carried out by calculators” ([20], p. 290).
Maybe so. Intuitively speaking, though, what all symbolic numerical computations
have in common is the mechanical manipulation of symbols that are themselves me-
chanically interpretable. Turing may provide a general theory of mechanical symbol
manipulation, but he says virtually nothing about mechanical symbol interpretation.
Only when we provide an account of the latter will we possess a general theory of
what all possible computational symbolic processes have in common.

In his posthumously published diary, Post pursues a general theory of all possible
computations: “a complete analysis . . . of all the possible ways in which the human
mind could set up finite processes” ([15], p. 408). He urges that such an account
requires “psychological analysis of the mental processes involved in combinatory
mathematical processes” (p. 418). Much of what Post says in the diary is extremely
gnomic. However, his emphasis on the mind and mental processes strikes me as a
salutary corrective to the excessive focus upon syntactic manipulation that character-
izes not only Turing’s exposition but most other modern discussions of computation.
The syntactic approach has proved enormously fruitful. Without it, recursion theory
and computer science would not exist, at least in anything resembling their current
form. Unfortunately, its amazing success has encouraged the conclusion that we can
give an entirely syntactic account of computation. This conclusion strikes me as fun-
damentally mistaken. A general theory of numerical computability must eventually
breach the circle of syntactic notions, addressing with suitable generality the cogni-
tive and representational relations we bear to numbers. Any account that shirks this
obligation leaves behind an unexplained residue of computational mental activity.

Notes

1. Shapiro’s example crucially assumes that semantic relations are injective. If we abandon
this constraint, then every number-theoretic function f is computable relative to some
uniform semantics, as illustrated by the following technique. Consider a repetitious
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enumeration of the natural numbers: 0, 1, f (0), 2, f (1), f ( f (0)), 3, f (2), f ( f (1)),
f ( f ( f (0))), and so on. Let c be the (noninjective) semantics that carries n to the nth
element in this enumeration. Then f is Turing-computable relative to c.

2. As noted by Soare [24], we should distinguish between what Soare calls “Church’s the-
sis” and what he calls “Turing’s thesis” (p. 296). The former, which follows Church’s
original published formulation, employs the equation calculus. The latter employs the
concept of Turing-computability. The two theses are extensionally equivalent. But they
are intensionally distinct, since they employ different concepts. In Soare’s terminology,
I am discussing “Turing’s thesis,” not “Church’s thesis.” However, what I say would
apply to either thesis.

3. For discussion of some difficulties surrounding the right-to-left direction, see Par-
sons [14]. Parsons ultimately endorses this direction.

4. I have relabeled the five constraints. As Sieg notes, we may eliminate the determinacy
constraint (a), since deterministic machines can simulate nondeterministic machines.

5. Turing assumes that the paper is divided one-dimensionally into squares. He claims that
this assumption induces no loss of generality, even though people normally calculate
on two-dimensional paper. Sieg and Byrnes [22] attempt to vindicate Turing’s claim,
providing a general treatment that includes two-dimensional computations. Presumably,
one could imagine even more general treatments.

6. For discussion of this point, and related issues, see Copeland [2].

7. Post raises a related worry in [15], p. 344. For defense of Turing on this point, see the
various papers cited in the References written or cowritten by Sieg ([19], [20], [21],
[22]).

8. Sieg clarifies many of the obscurities in Turing’s argument. See especially Sieg and
Byrnes [22].

9. Turing [25] concerns computable real numbers, not computable functions from the nat-
ural numbers to the natural numbers. Thus, Turing does not interpret strings of strokes
as denoting natural numbers. This aspect of Turing’s discussion reinforces my point,
which is that Turing provides no general criterion for an “acceptable” mapping from Tur-
ing machine syntax to the natural numbers. Turing’s focus on computable real numbers
also highlights a more general theme: d1–d3 do not constitute “default” or “canonical”
interpretations for Turing machine syntax.

10. I am grateful to an anonymous referee who suggested this objection.

11. For ease of exposition, I have somewhat altered the quotation. What Boolos and Jeffrey
actually say is that they will define Turing-computability as computability within various
constraints, only one of which concerns monadic notation. The alteration does not affect
my argument in this paragraph.

12. The literature contains various arguments for Church’s thesis besides Turing’s argument
based upon constraints (a) – (e). For present purposes, I merely note that, like many other
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commentators, I generally find these arguments much less convincing than the argument
based upon constraints (a) – (e).

13. I am grateful to an anonymous referee for pressing this point.

14. I am greatly indebted in this paragraph to Yiannis Moschovakis, who pointed out the
streamlined argument in the main text. Previously, I was employing a much more com-
plicated argument. Needless to say, any remaining errors are my own.

15. See especially Sieg and Byrnes [22], p. 61. And see Sieg [20], pp. 397–8, which asserts
that the extensional equivalence between “calculability of number-theoretic functions”
and “calculability by computor satisfying boundedness and locality conditions” is “given
by conceptual analysis.”

16. Quine famously challenges the legitimacy of notions like “synonymy.” Accordingly, he
rejects the idea “that analysis must consist somehow in the uncovering of hidden mean-
ings” ([16], p. 259). Quine would dismiss our third constraint upon conceptual analyses
as hopelessly unclear. I am somewhat sympathetic to this Quinean criticism. However,
Quine’s position does not undermine my discussion. My point here is this: if we de-
mand that a good conceptual analysis “capture the meaning” of the original concept,
then, whatever exactly that means, Turing’s discussion does not plausibly provide a sat-
isfactory conceptual analysis of number-theoretic computability.

17. We can define the notion of formal system by invoking mechanical manipulation of syn-
tax. Thus, Turing’s work yields a conceptual analysis of formal system. As Gödel puts
it, “due to A. M. Turing’s work a precise and unquestionably adequate definition of the
general notion of formal system can now be given” ([7], p. 195).

18. I am grateful to an anonymous referee for comments that prompted the addition of this
paragraph.

19. Perhaps one should not read too much into this passage. Post’s diary is notable for its
highly fragmentary and elusive character, sometimes bordering on the mystical. How-
ever, it seems undeniable that Post was preoccupied by what we would now call the
semantic relation between symbols and numbers, as in the following passage: “Notion
of meaning bothers me. Put it as subconscious perception of things associated with
symbols” (p. 428).

20. Although this is in some ways a rather crude argument for the thesis that numbers are
pure abstract entities, I think that it has considerable force. Parsons provides far more
subtle and sophisticated arguments for the thesis in [12] and in his unpublished man-
uscript Mathematical Thought and its Objects. In the unpublished Whitehead lectures
“Logicism, Wittgenstein, and de re Beliefs about the Numbers,” Kripke flirts with the
view that the numbers are individuated by their relations to syntactic-types, and he some-
times seems to accept the radical consequence that a change in notation entails a change
in the numbers.

21. Kripke explores these topics in his unpublished Whitehead Lectures. See also Martin-
Löf [11] and Parsons [13].
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22. For general discussion of the language of thought, see Fodor [3]. As far as I know, no
one has developed the view, specifically with respect to mathematics, in very great detail.

23. In his unpublished Whitehead lectures, Kripke suggests that computability is not a
sufficient condition for being an adequate canonical notation. He urges that an ad-
equate canonical notation must satisfy some stricter constraint. Kripke mentions
finite-automata-decidability. Other ideas would include primitive recursiveness or
polynomial-time computability. Might such a proposal help alleviate the circularity
engendered by the Computability Constraint? I doubt it. I suspect that any plausible
strengthening of the Computability Constraint would still invoke the intuitive notion of
computability. After all, if we demand that some notation be computable in a certain
manner, or within certain limits, then we do not dispense with the intuitive concept of
computability; we merely employ it in conjunction with certain additional restrictions.
(Compare: when analyzing “X knows that p,” it would be circular to include the clause
“X believes that p based upon propositions that he knows through some especially
reliable mechanism.”) Still, I must admit that this seems like a somewhat promising line
of response to my argument and that an adequate assessment would require much more
extensive discussion.

24. What if we supplement the Successor Constraint with the demand that coreference be-
tween numerals be mechanically decidable? This supplemented criterion is extension-
ally equivalent to the Computability Constraint. But is it a plausible candidate for con-
ceptual analysis? I think we appreciate its extensional adequacy only by noting that it
entails the Computability Constraint. We observe that, if a notation satisfies the Suc-
cessor Constraint, and if coreference between numerals is decidable, then there exists
a mechanical procedure for interpreting the notation; we conclude that the notation is
suitable for computation.

25. I am grateful to an anonymous referee for suggesting this objection.

26. I am grateful to an anonymous referee for pressing this point.
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