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Abstract: Church’s and Turing’s theses dogmatically assert that an informal notion of effective 
calculability is adequately captured by a particular mathematical concept of computabilty.  I 
present an analysis of calculability that is embedded in a rich historical and philosophical 
context, leads to precise concepts, but dispenses with theses.  

To investigate effective calculability is to analyze symbolic processes that can in 
principle be carried out by calculators. This is a philosophical lesson we owe to Turing. Drawing 
on that lesson and recasting work of Gandy, I formulate boundedness and locality conditions for 
two types of calculators, namely, human computing agents and mechanical computing devices 
(discrete machines).  The distinctive feature of the latter is that they can carry out parallel 
computations. 

The analysis leads to axioms for discrete dynamical systems (representing human and 
machine computations) and allows the reduction of models of these axioms to Turing machines. 
Cellular automata and a variety of artificial neural nets can be shown to satisfy the axioms for 
machine computations.* 
 

 

0. Background 

The subtitle of this essay promises axioms for computability. Such axioms 

emerge from a conceptual analysis that begins with a straightforward 

observation: whatever we consider to be computable must be associated with 

computations that are carried out by some device or other. Consequently, we 

have to pay close attention to the nature of the device at hand, when thinking 

through the characteristic features that determine (the extension of) its notion of 

computability.  My analysis builds on work by Turing and Gandy concerning 

computations that are carried out by human calculators and discrete machines, 

respectively.   

I sharpen the informal concepts of computation for these two devices, 

specify rigorously their characteristic features, and formulate a representation 

theorem for the resulting systems of axioms.  A broad methodological point can 

be immediately inferred: theses in the standard Church-Turing form are not 

needed to connect rigorously defined notions of computability with informally 

grasped concepts.  It is however crucial to gain a proper understanding of the 

canonized connection between these notions, because the significance of logical 

results like Gödel’s incompleteness theorems depends on it, as does the centrality 

of related issues in the philosophy of mind.  

Part 1 articulates three principal Church canons supporting the thesis.  For 

the canonical argument from confluence I distinguish between support that 
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derives from examining the effective calculability of number theoretic functions 

and support that is obtained through analyzing mechanical operations on 

symbolic configurations.  The analysis of such operations, when carried out by a 

human computer, leads to Turing’s claims in 1936.  The arguments for these 

claims exploit boundedness and locality conditions that are presented in Part 2.  

Against this background I introduce in Part 3 axioms for Turing computors and 

Gandy machines, list models, and formulate a representation theorem.  That 

completes the conceptual analysis. I will conclude with remarks on Gödel, 

Turing, and philosophical errors. 

 

1. Church canons1 

In a sense, we have to untangle the relation between the concept of 

computability and the concept of computability, understanding the first concept 

as informally grasped and the second as rigorously defined.  If one takes Gödel’s 

notion of general recursiveness as the rigorously defined concept and effective 

calculability as the informally grasped one, then Church’s Thesis expresses the 

relation between this and that concept of computability for number-theoretic 

functions: they are co-extensional.  To provide a proper perspective for the 

broader investigation, I will examine the early history of computability hinted at 

in these remarks. 

1.1 The thesis.  Gödel introduced general recursiveness for number theoretic 

functions in his 1934 Princeton Lectures via his equational calculus; he viewed it 

as a heuristic principle that the informal concept of finite computation can be 

captured by suitably general recursions.   Refining and generalizing a notion of 

finitistically calculable functions due to Herbrand, Gödel defined a number 

theoretic function to be general recursive just in case it satisfies certain recursion 

equations and its values can be determined from the equations by simple steps, 

namely, replacement of variables by numerals and substitution of complex 

                                                
1According to the fifth edition of the Shorter OED, canon does not cover just ecclesiastical laws and decrees, 
but has also the meaning of “a general law, rule, or edict; a fundamental principle” since the late middle 
ages, and that of “a standard of judgement; a criterion” since the early 17th century. 
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closed terms by their numerical values.  When he gave this definition in 1934 

Gödel was not convinced, however, that the underlying precise concept of 

recursion was the most general one, and he expressed his doubts in conversation 

with Church.  Nevertheless, Church formulated the thesis a year later for the 

first time in print.  Here is the classical statement found in the abstract for 

Church’s talk to the American Mathematical Society in December 1935:  

… Gödel has proposed … a definition of the term recursive function, in a very general sense.  In 
this paper a definition of recursive function of positive integers which is essentially Gödel's is 
adopted.  And it is maintained that the notion of an effectively calculable function of positive 
integers should be identified with that of a recursive function, since other plausible definitions 
of effective calculability turn out to yield notions that are either equivalent to or weaker than 
recursiveness. 

Between Church’s conversations with Gödel in 1934 and the formulation 

of the above abstract in 1935 some crucial developments had taken place in 

Princeton.  Kleene and Rosser had done significant quasi-empirical work, 

convincing themselves and Church that all known effective procedures are λ-

definable.  Kleene had discovered his normal-form theorem and established the 

equivalence of Gödel’s general recursiveness with µ-recursiveness.  Finally, 

Church and Kleene had proved the equivalence of λ-definability and general 

recursiveness.  All these developments are alluded to in Church’s abstract, and 

they are interpreted as supporting the thesis, which was then, and is still now, 

principally defended on two grounds.  First there is the quasi-empirical reason: 

all known calculable functions are general recursive.  This point, though 

important, is clearly not decisive and will be taken up in the broader context of 

section 2.3.  Second, there is the argument from confluence: a variety of 

mathematical computability notions all turn out to be equivalent. This second 

important point is however only convincing, if the “confluent” notions are of a 

quite different character and if there are independent reasons for believing that 

they capture the informal concept.  Both Church and Gödel tried to give such 

independent reasons in 1936.  Let me sketch their considerations. 

1.2 Semi-circles. Church and Gödel took the evaluation of a function in some form 

of the equational calculus as the starting point for explicating the effective 

calculability of number theoretic functions.  Church generalized broadly: an 
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evaluation is done in a logical calculus through a step-by-step process, and the 

steps must be elementary.  Functions whose values can be computed in this way 

are, Church argued, general recursive.  Gödel made a penetrating observation 

without giving an argument: the rules of the equational calculus are part of any 

adequate formal system of arithmetic, and the class of calculable functions is not 

enlarged beyond the general recursive ones, if the formal system is 

strengthened.  This absoluteness of the notion was pointed out in a Postscriptum 

to 1936 for transfinite extensions of type theory and in the Princeton Bicentennial 

lecture ten years later for extensions of formal set theory. Gödel formulated the 

significance of his observation in the lecture as follows: 

 Tarski has stressed … the great importance of the concept of general recursiveness (or Turing 
computability).  It seems to me that this importance is largely due to the fact that with this 
concept one has for the first time succeeded in giving an absolute definition of an interesting 
epistemological notion, i.e., one not depending on the formalism chosen. (Gödel 1946, p. 150) 

But what is the argument for Church’s claim, and what could it be for Gödel’s? If 

one uses the strategic considerations underlying the proof of Kleene’s normal-

form theorem, it is in both cases easily established that the functions calculable in 

the broader frameworks are general recursive, as long as the steps in the logical 

systems are elementary, formal, … well, general recursive. Church turned the 

elementary steps explicitly into general recursive ones, whereas Gödel could not 

but exploit the formal character of the theories at hand through their recursive 

presentation.  

Taken as principled arguments for the thesis, Gödel’s and Church’s 

considerations rely on a hidden and semi-circular condition for steps. Hilbert and 

Bernays moved this step-condition into the foreground when investigating 

calculations in deductive formalisms and reckonable functions (regelrecht 

auswertbare Funktionen).  They imposed explicitly recursiveness conditions on 

deductive formalisms and showed that formalisms satisfying these conditions 

have as their calculable functions exactly the general recursive ones.  In this way 

they provided mathematical underpinnings for Gödel’s absoluteness claim and 

for Church’s argument, but only relative to the recursiveness conditions: the 
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crucial one requires the proof predicate of deductive formalisms, and thus the 

steps in formal calculations, to be primitive recursive!2   

The work of Gödel, Church, Kleene and Hilbert & Bernays had intimate 

historical connections and is still of deep interest. It explicated calculability of 

functions by exactly one core notion, namely, calculability of their values in logical 

calculi via (a finite number of) elementary steps.  But no one gave convincing and 

non-circular reasons for the proposed rigorous restrictions on the steps that are 

permitted in calculations.  The question is, whether this stumbling block for a 

deeper analysis can be overcome.  The answer lies in a motivated, general 

formulation of constraints on steps.  

1.3 Symbolic processes.  Church reviewed in 1937 the two classical papers by 

Turing and Post, which had been published in 1936. When comparing Turing 

computability, general recursiveness, and λ-definability he claimed “the first [of 

these notions] has the advantage of making the identification with effectiveness 

in the ordinary (not explicitly defined) sense evident immediately…” After all, 

Church reasoned, “To define effectiveness as computability by an arbitrary 

machine, subject to restrictions of finiteness, would seem to be an adequate 

representation of the ordinary notion, …” The finiteness restrictions require that 

machines occupy only a finite space and that their working parts have finite size.  

Turing machines are obtained from such finite machines by further “convenient 

restrictions,” but “these are of such a nature as obviously to cause no loss of 

generality”.  Church then observed, completely reversing Turing’s sequence of 

analytic steps, “a human calculator, provided with pencil and paper and explicit 

instructions, can be regarded as a kind of Turing machine”.  He was obviously 

captured by the machine image and saw in it the reason for the deep interest of 

Turing’s computability notion.  In sum, we have arrived at three Church canons in 

support of the thesis, namely, (i) the confluence of notions, (ii) the step-by-

recursive-step argument, and (iii) the immediate evidence of the adequacy of 

Turing’s notion.  

                                                
2 These investigations are carried out in the second supplement of their Grundlagen der Mathematik, volume 
II.  
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In his reviews Church failed to recognize two crucial aspects of a dramatic 

shift in perspective.  One aspect underlies the work of both Turing and Post, 

whereas the other is distinctively Turing’s.  The first aspect becomes visible when 

Turing and Post, instead of considering schemes for computing the values of 

number theoretic functions, look at identical symbolic processes that serve as 

building blocks for calculations.  In order to specify such processes Post uses a 

human worker who operates in a symbol space and carries out, over a two-letter 

alphabet, exactly the kind of operations a Turing machine can perform.  Post 

expects that his formulation will turn out to be equivalent to the Gödel-Church 

development. Given Turing’s proof of the equivalence of his computability 

notion with λ-definability, Post’s formulation is indeed equivalent. 

Post asserts that “Church’s identification of effective calculability with 

recursiveness” should be viewed as a “working hypothesis” in need of 

“continual verification”.  In sharp contrast, Turing attempts to give an analytic 

argument for the claim that these simple processes are sufficient to capture all 

human mechanical calculations. Turing exploits for his reductive argument broad 

constraints that are grounded in limitations of relevant capacities of the human 

computing agent.  This is the second aspect of the novel perspective that made for 

genuine progress, and it is unique to Turing’s work. 

 

2. Computors 

It is ironic that Post when proposing his worker model at no place used the fact 

that a human worker does the computing, whereas Turing who seems to 

emphasize machine computations examined explicitly human computations. Call 

a human computing agent who proceeds mechanically a computor; such a 

computor operates on finite configurations of symbols and, for Turing, 

deterministically so.  The computer hovering about in Turing’s paper is such a 

computor; computers in our contemporary sense are always called machines. 

Wittgenstein appropriately observed about Turing’s machines that these machines 
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are humans who calculate.3  But how do we step from the calculations of 

computors to Turing machine computations? 

2.1 Preliminary step.  When Turing explores the extent of the computable 

numbers (or, equivalently, of the effectively calculable functions), he starts out 

by considering two-dimensional calculations “in a child’s arithmetic book”.  Such 

calculations are first reduced to computations of string machines, and the latter 

are then shown to be equivalent to computations of a letter machine.  Letter 

machines are ordinary Turing machines operating on one letter at a time, 

whereas string machines operate on finite sequences of letters. In the course of 

his reductive argument Turing formulates and uses broadly motivated 

constraints. The argument concludes as follows: “We may now construct a 

machine to do the work of the computer [computor in our terminology]. … The 

machines just described [string machines] do not differ very essentially from 

computing machines as defined in § 2 [letter machines], and corresponding to 

any machine of this type a computing machine can be constructed to compute 

the same sequence, that is to say the sequence computed by the computer.” 

(Turing 1936, pp. 137-8) 

For the presentation of Turing’s argument it is best to consider the 

description of Turing machines as Post production systems.  This is most 

appropriate for a number of reasons.  Post introduced this description in 1947 to 

establish that the word-problem of certain Thue-systems is unsolvable.  Turing 

adopted it in 1950 when extending Post’s results, but also in 1954 when writing a 

wonderfully informative and informal essay on solvable and unsolvable 

problems. In addition, this description reflects directly the move in Turing’s 1936 

to eliminate states of mind for computors4 in favor of “more physical 

counterparts”.  Finally and most importantly, it makes perfectly clear that Turing 

                                                
3 It is exactly right for Turing to look at human computations given the intellectual context that reaches back 
to at least Leibniz: the Entscheidungsproblem in the title of his 1936 paper asked for a procedure that can be 
carried out by humans; the restrictive formal conditions on axiomatic theories were imposed in 
mathematical logic to ensure intersubjectivity for humans, on a minimal cognitive basis. 
4 Turing attributes states of mind only to human computers; machines have corresponding “m-
configurations”. 
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is dealing with general symbolic processes, whereas the restricted machine 

model that results from his analysis almost obscures that fact.  

2.2 Boundedness and locality.  The constraints Turing imposes on symbolic 

processes derive from his central goal of isolating the most basic steps of 

computations, that is, steps that need not be further subdivided. This objective 

leads to the normative demand that the configurations, which are directly 

operated on, must be immediately recognizable by the computor.  This demand and 

the evident limitation of the computor’s sensory apparatus motivate most 

convincingly two central restrictive conditions:  

(B) (Boundedness) A computor can immediately recognize only a bounded 

number of configurations. 

(L) (Locality) A computor can change only immediately recognizable 

configurations.5 

 Calculability of
number-theoretic

functions

Calculability by
computor satisfy-
ing boundedness
and locality

conditions

 Computability by

string machine

Computability by
letter machine

 Turing’s Thesis Equivalence proof

1 2

 

Diagram 1 

                                                
5 The boundedness and locality conditions are violated in Gödel’s equational calculus: the replacement 
operations naturally involve terms of arbitrary complexity. I.e., the shift from arithmetic calculations to 
symbolic processes is absolutely crucial. 



 10 

Turing’s considerations leading from operations of a computor on a two-

dimensional piece of paper to operations of a letter machine on a linear tape are 

represented schematically in diagram 1:  Step 1 indicates Turing’s analysis, 

whereas 2 refers to Turing’s central thesis asserting that the calculations of a 

computor can be carried out by a string machine.  

This remarkable progress has been achieved by bringing in, crucially and 

correctly, the computing agent who carries out the mechanical processes. Yet 

Turing finds the argument mathematically unsatisfactory as it involves an appeal 

to intuition in support of the central thesis, i.e., the ability of “making 

spontaneous judgments, which are not the result of conscious trains of 

reasoning”. (Turing 1939, pp. 208-9)  What more can be done? 

2.3 Generalizations.  At least two kinds of inductive support can be given for the 

quasi-empirical claim that all known effective procedures are general recursive 

or Turing computable.  Turing provided in his paper one kind, by showing that 

large classes of numbers are indeed machine computable; Post suggested 

providing in his 1936 a second kind, by reducing ever-wider formulations of 

combinatory processes (as production systems) to his worker model.6  This 

inductive support can be strengthened further through considering more 

general symbolic configurations with associated complex substitution 

operations.7 In the spirit of this approach we can ask with Post, when have we 

gathered sufficient support to view the thesis as a natural law? 

Gödel and Church faced in their analysis of effective calculability the 

stumbling block of having to define the elementary character of steps, rigorously 

and without semi-circles.  Turing and Post faced at this point, it seems, a problem 

akin to that of induction.  However, their fundamental difficulties are really the 

same and can be pinpointed more relevantly and quite clearly, as they are 

related to the looseness of the above restrictive conditions and the 

corresponding vagueness of the central thesis. These difficulties would be 

                                                
6 Post of course did provide such reductions in his 1943 whose origins go back to investigations in the very 
early 1920s; see note 18 of Post’s paper. 
7 In Sieg and Byrnes 1996 that is done for K-graphs and K-graph machines; this is a generalization of the 
work on algorithms by Kolmogorov and Uspensky. 
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addressed by answering the questions, What are symbolic configurations? What 

changes can mechanical operations effect? – Even without giving rigorous 

answers, some well-motivated ideas can be formulated for computors: (i) they 

operate deterministically on finite configurations; (ii) they recognize only a 

bounded number of different kinds of patterns (in these configurations); (iii) they 

operate locally on exactly one of the patterns8; (iv) they assemble the next 

configuration from the original one and the result of the local operation.  

Exploiting these ideas I will attack the problem with a familiar tool, the axiomatic 

method.   

However, before formulating the axioms for Turing computors, I discuss 

yet another sense of “generalization” that is relevant here. Gandy proposed in 

his 1980 a characterization of machines or, more precisely, discrete mechanical 

devices.  The latter clause was to exclude analogue machines from consideration.  

The novel aspect of Gandy’s proposal was the fact that it incorporated 

parallelism in perfect generality. Gandy used, as Turing did, a central thesis: any 

discrete mechanical device satisfying some informal restrictive conditions can be 

represented as a particular kind of dynamical system.  Instead, I characterize a 

Gandy machine axiomatically based on the following idea: the machine has to 

recognize all the patterns (from a bounded set) in a given finite configuration, act 

on them locally in parallel, and assemble the results of these local computations 

into the next configuration. As in the case of Turing computers, the 

configurations are finite, but unbounded; the generalization is simply this: there 

is no fixed bound on the number of patterns that such configurations may 

contain. To help the imagination a bit, the reader should think of the Post-

presentation of a Turing machine and the Game of Life as typical examples of a 

Turing computor and Gandy machine, respectively.  

 

 

                                                
8 Every finite configuration contains exactly one of the patterns. 
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3. Axiomatics9 

The axioms are formulated for discrete dynamical systems and capture the 

above general ideas precisely; they should be viewed as determining classes of 

“algebraic structures” of which particular models of computation are 

instantiations. In the first subsection the general mathematical set-up for the 

axioms is discussed, whereas the specific principles for Turing computors and 

Gandy machines are formulated in the second subsection.  The axioms for Turing 

computors are motivated by the restrictive conditions for human computing.  

The axioms for Gandy machines are to capture the characteristic features of finite 

machines (performing parallel computations).  The restrictive conditions are 

motivated by purely physical considerations: the uncertainty principle of 

quantum mechanics justifies a lower bound on the size of distinguishable 

“atomic” components, and the theory of special relativity yields an upper bound 

on signal propagation.  Together, these conditions justify boundedness and 

locality conditions for machines in the very way sensory limitations do for 

computors.  

3.1 Patterns & local operations. We consider pairs <D,F> where D is a class of 

states and F an operation from D to D transforming a given state into the next 

one.  States are finite objects and are represented by non-empty hereditarily 

finite sets over an infinite set of atoms.   Such sets reflect states of computing 

devices just as other mathematical structures represent states of nature.  

Obviously, any ∈-isomorphic set can replace a given one in this reflective role, 

and so we consider structural classes D, i.e., classes of states that are closed under 

∈-isomorphisms.  What invariance properties should the state transforming 

operations F have, i.e., how should the F-images of ∈-isomorphic states be 

related?  These and other structural issues will be addressed now.  

For the general set-up we notice that any ∈–isomorphism between states 

is an extension of some permutation π on atoms.  Letting π(x) stand for the result 

                                                
9 I hope the overall structure of the considerations will be clear from this informal presentation; for 
mathematical details Gandy 1980 and Sieg 2002B should be consulted. 
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of applying the ∈-isomorphism determined by a permutation π to the state x, 

the requirement on F fixes the dependence of values on just structural features of 

a set, not the nature of its atoms: F(π(x)) is ∈-isomorphic to π(F(x)), and this 

isomorphism must be the identity on the atoms occurring in π(x); we say that 

F(π(x)) and π(F(x)) are ∈-isomorphic over π(x) and write F(π(x))  ≅π(x) π(F(x)).  Note 

that we do not require F(π(x)) = π(F(x));  that would be far too restrictive as new 

atoms may expand the state x, and it should not matter which new atoms are 

chosen.  The requirement F(π(x)) ≅ π(F(x)), on the other hand, would be too 

loose, as we want to guarantee the physical persistence of atomic components.   

Now we turn to patterns and local operations. If x is a given state, regions 

of the next state are determined locally from particular parts for x on which the 

computor can operate.10  Boundedness requires that there are only finitely many 

different kinds of such parts, i.e., each part lies in one of a finite number of 

isomorphism types that are also called stereotypes.   A maximal part y for x of a 

certain stereotype is a causal neighborhood for x, briefly y∈Cn(x); we call the 

elements of Cn(x) also patterns.  Finally, the local change is effected by a 

structural operation G that works on unique causal neighborhoods. The values 

of G are in general not exactly what we need in order to assemble the next state, 

because the configurations may have to be expanded and that expansion 

involves the addition and coordination of new atoms.  To address that issue we 

introduce determined regions Dr(z,x) of a state z; they are ∈-isomorphic to G(y) 

for some causal neighborhood y for x (and must satisfy a technical  condition on 

the “newness” of atoms). 

3.2 Axioms & a theorem.  Recalling the boundedness and locality conditions for 

computors, we define M = <S; T, G> to be a Turing Computor on S, where S is a 

structural class, T a finite set of stereotypes, and G a structural operation on ∪T, 

if and only if, for every x∈S there is a z∈S, such that 

                                                
10 A connected subtree y of the ∈-tree for x is called part for x, briefly y<*x, if y≠x and y has the same root as 
x and its leaves are also leaves of x. 
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(LC.0) (∃!y) y∈Cn(x), 

(LC.1) (∃!v ∈ Dr(z,x)) v≅xG(cn(x)), 

(GA.1)  z = (x\Cn(x)) ∪ Dr(z,x). 

 (∃!y) is the existential quantifier expressing uniqueness; in (LC.1), cn(x) denotes 

the unique causal neighborhood guaranteed by (LC.0). (As in the case of Gandy 

Machines below, LC abbreviates local causation, whereas GA stands for global 

assembly.) – The state z is determined uniquely up to ∈–isomorphism over x.  A 

computation by M is a finite sequence of transition steps involving G that is 

halted when the operation on state z yields z as the next state.  A function F is 

(Turing) computable if and only if there is a Turing computor M from whose 

computation results one can determine – under a suitable encoding and decoding 

– the values of F for any of its arguments.  A Turing machine is easily seen to be 

a Turing computor.  

Generalizing these considerations to graph machines, for example, one 

notices quickly complications.  When several new atoms are being introduced in 

the image of some causal neighborhood as well as in the next state, the new 

atoms have to be structurally coordinated.  That can be achieved by a second 

local operation and a second set of stereotypes. Causal neighborhoods of type 1 

are parts of larger neighborhoods of type 2 and the overlapping determined 

regions of type 1 must be parts of determined regions of type 2, so that they fit 

together appropriately. (Determined regions “overlap”, if the intersection of 

their sets of new atoms is non-empty.)  

For machines that carry out parallel computations, we thus need in 

addition to the finitely many stereotypes and the structural operation working 

on them a second set of stereotypes together with a second structural operation, 

which allow the machine to assemble the determined regions.  This is reflected 

by separating the principles for Gandy machines into two kinds (as we did for 

Turing computors), those of Local Causation (LC) and those of Global Assembly 

(GA):  M = <S; T1, G1, T2, G2> is a Gandy machine on S, where S is a structural 
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class, Ti a finite set of stereotypes, Gi a structural operation on ∪Ti, if and only if, 

for every x∈S there is a z∈S, such that 

(LC.1):(∀y∈Cn1(x)) (∃!v∈Dr1(z,x)) v≅xG1(y); 

(LC.2):(∀y∈Cn2(x)) (∃v∈Dr2(z,x)) v≅xG2(y); 

(GA.1):  (∀C) [C ⊆  Dr1(z,x)) & ∩{Sup(v)∩A(z,x)| v∈C} ≠ ∅ →  

(∃w∈Dr2(z,x)) (∀v∈C)  v<*w ]; 

(GA.2):  z = ∪Dr1(z,x). 

A(z,x) consists of the new atoms that have been introduced into z, i.e., A(z,x) = 

Sup(z)\Sup(x).  Thus, the condition ∩{Sup(v)∩A(z,x)| v∈C} ≠ ∅ in (GA.1) 

expresses that the determined regions v in C have common new atoms, i.e., they 

overlap.  The restrictions for Gandy machines, as those for Turing computors, 

amount to boundedness and locality conditions.  They are justified directly by 

two physical limitations, namely, a lower bound on the size of atoms and an 

upper bound on the speed of signal propagation.  With these remarks I actually 

completed the foundational work and can describe now some important 

mathematical facts for Gandy machines.  

The central facts are these: (i) the state z following x is determined 

uniquely up to ∈–isomorphism over x, and (ii) Turing machines can effect such 

transitions. The proof of the first fact contains the combinatorial heart of matters 

and uses crucially the first global assembly condition.  The proof of the second 

fact is rather direct.  Only finitely many finite objects are involved in the 

transition, and all the axiomatic conditions are decidable.  Thus, a search will 

allow us to find z.  This can be understood as a Representation Theorem: any 

particular Gandy machine is computationally equivalent to a two-letter Turing 

machine, as Turing machines are also Gandy machines.  Indeed, there is a rich 

variety of additional models, as the game of life, other cellular automata, and 

many artificial neural nets are Gandy machines. (Cf. DiPisapia 2000.) 

 

4. Adequacy & philosophical errors 
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So what? What have we gained?  In very broad terms, taken from Hilbert, we 

have gained eine Tieferlegung der Fundamente (a deepening of the foundations) 

via the axiomatic method.  In a conversation with Church in early 1934, Gödel 

found Church’s proposal to identify effective calculability with λ-definability 

“thoroughly unsatisfactory”.  As a counter-proposal he suggested “to state a set 

of axioms which would embody the generally accepted properties of this notion 

[i.e., effective calculability], and to do something on that basis”.  Perhaps, the 

remarks in the 1964 Postscriptum to the Princeton Lectures of 1934 echo those 

earlier considerations. “Turing’s work gives,” according to Gödel, “an analysis of 

the concept of ‘mechanical procedure’ … . This concept is shown to be equivalent 

with that of a ‘Turing machine’.”  Gödel did neither elucidate these remarks, nor 

did he articulate, what the generally accepted properties of effective calculability 

might be or what might be done on the basis of an appropriate set of axioms.   

The work on which I reported substantiates Gödel’s remarks in the 

following sense: it formulates axioms for the concept “mechanical procedure” 

and it shows that this axiomatically characterized concept is computationally 

equivalent to that of a Turing machine.   Indeed, it does so for two such concepts, 

namely when the computing agents are computors, respectively discrete 

machines.  These considerations use only “generally accepted properties” of the 

informal concepts and avoid any appeal to theses, whether central or not.  As to 

the correctness of the underlying analyses, an appeal to some understanding can 

no more be avoided in this case than in any other case of an axiomatically 

characterized (class of) mathematical structure(s) intended to mirror broad 

aspects of physical or intellectual reality. The general point is this: we don’t have 

to face anything mysterious surrounding the concept of calculability; rather, we 

have to face the ordinary issues for the adequacy of mathematical concepts, and 

these are of course non-trivial!11 From a slightly different and complementary 

perspective, the function of the axiom systems for computing devices can be 

seen as being similar to that of the axiom systems for the classical algebraic 

                                                
11 Other examples of such analyses are provided by Dedekind’s work on continuous domains (the reals) 
and simply infinite systems (natural numbers).  
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structures like groups, rings or fields, namely, to abstract the essential aspects 

from a wide variety of instances and point to deep structural analogies; they 

explain here, by way of the representation theorem, the computational 

equivalence of their models.  

In the central case under discussion, Turing computability, its adequacy is 

still fraught with controversy and often misunderstanding. The controversy 

begins with the very question, what the intended informal concept is.  For 

example, Gödel spotted in 1972 a “philosophical error” in Turing's work, 

assuming that Turing’s argument in the 1936 paper was to show that “mental 

procedures cannot go beyond mechanical procedures”.  He considered the 

argument as inconclusive.  Indeed, Turing does not give a conclusive argument 

for Gödel’s claim, but it has to be added that he did not intend to argue for it.  

Even in his work of the late 1940’s and early 1950’s that deals explicitly with 

mental processes, Turing does not argue, “mental procedures cannot go beyond 

mechanical procedures”.  

Mechanical processes are, in this later work, still made precise as Turing 

machine computations; machines that might exhibit intelligence have in contrast 

a more complex structure than Turing machines.  Conceptual idealization and 

empirical adequacy are being sought for quite different purposes, and Turing is 

trying to capture clearly what Gödel found missing in the would-be analysis of a 

broad concept of humanly effective calculability, namely, “… that mind, in its 

use, is not static, but constantly developing”.  The real difference between 

Turing’s and Gödel’s views, it seems, is Gödel’s belief that it is “a prejudice of our 

time” that “[t]here is no mind separate from matter”.   This is reported by Wang.  

Gödel expected, also according to Wang, that this prejudice “will be disproved 

scientifically (perhaps by the fact that there aren’t enough nerve cells to perform 

the observable operations of the mind)”.  Clearly, Turing did not share these 

expectations. 

There are many fascinating issues concerning physical and mental 

processes that may or may not have adequate computational models.  They are 

empirical, conceptual, mathematical … well, indeed, richly interdisciplinary.  
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Steps towards their clarification or resolution will be most illuminating.  Why, let 

me ask, are we interested so deeply in computations? – One answer might be, 

we want to determine states from other states, be they mathematical, physical or 

mental; and we want to do that effectively and in a sharply intersubjective way 

that makes use of adequate symbolic representations. 
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