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Abstract

While advances in genome sequencing technology make population-scale genomics a possibility, current approaches

for analysis of these data rely upon parallelization strategies that have limited scalability, complex implementation and

lack reproducibility. Churchill, a balanced regional parallelization strategy, overcomes these challenges, fully automating

the multiple steps required to go from raw sequencing reads to variant discovery. Through implementation of

novel deterministic parallelization techniques, Churchill allows computationally efficient analysis of a high-depth

whole genome sample in less than two hours. The method is highly scalable, enabling full analysis of the 1000

Genomes raw sequence dataset in a week using cloud resources. http://churchill.nchri.org/.

Background

Next generation sequencing (NGS) has revolutionized

genetic research, enabling dramatic increases in the dis-

covery of new functional variants in syndromic and

common diseases [1]. NGS has been widely adopted by

the research community [2] and is rapidly being imple-

mented clinically, driven by recognition of its diagnostic

utility and enhancements in quality and speed of data

acquisition [3]. However, with the ever-increasing rate at

which NGS data are generated, it has become critically

important to optimize the data processing and analysis

workflow in order to bridge the gap between big data

and scientific discovery. In the case of deep whole hu-

man genome comparative sequencing (resequencing),

the analytical process to go from sequencing instrument

raw output to variant discovery requires multiple compu-

tational steps (Figure S1 in Additional file 1). This analysis

process can take days to complete, and the resulting

bioinformatics overhead represents a significant limitation

as sequencing costs decline and the rate at which sequence

data are generated continues to grow exponentially.

Current best practice for resequencing requires that a

sample be sequenced to a depth of at least 30× coverage,

approximately 1 billion short reads, giving a total of 100

gigabases of raw FASTQ output [4]. Primary analysis

typically describes the process by which instrument-

specific sequencing measures are converted into FASTQ

files containing the short read sequence data and

sequencing run quality control metrics are generated.

Secondary analysis encompasses alignment of these se-

quence reads to the human reference genome and detec-

tion of differences between the patient sample and the

reference. This process of variant detection and genotyp-

ing enables us to accurately use the sequence data to

identify single nucleotide polymorphisms (SNPs) and

small insertions and deletions (indels). The most com-

monly utilized secondary analysis approach incorporates

five sequential steps: (1) initial read alignment; (2) re-

moval of duplicate reads (deduplication); (3) local re-

alignment around known indels; (4) recalibration of the

base quality scores; and (5) variant discovery and geno-

typing [5]. The final output of this process, a variant call
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format (VCF) file, is then ready for tertiary analysis,

where clinically relevant variants are identified.

Of the phases of human genome sequencing data ana-

lysis, secondary analysis is by far the most computation-

ally intensive. This is due to the size of the files that

must be manipulated, the complexity of determining op-

timal alignments for millions of reads to the human ref-

erence genome, and subsequently utilizing the alignment

for variant calling and genotyping. Numerous software

tools have been developed to perform the secondary

analysis steps, each with differing strengths and weak-

nesses. Of the many aligners available [6], the Burrows-

Wheeler transform based alignment algorithm (BWA) is

most commonly utilized due to its accuracy, speed and

ability to output Sequence Alignment/Map (SAM) for-

mat [7]. Picard and SAMtools are typically utilized for

the post-alignment processing steps and produce SAM

binary (BAM) format files [8]. Several statistical methods

have been developed for variant calling and genotyping

in NGS studies [9], with the Genome Analysis Toolkit

(GATK) amongst the most popular [5].

The majority of NGS studies combine BWA, Picard,

SAMtools and GATK to identify and genotype variants

[1]. However, these tools were largely developed inde-

pendently, contain a myriad of configuration options

and lack integration, making it difficult for even an expe-

rienced bioinformatician to implement them appropri-

ately. Furthermore, for a typical human genome, the

sequential data analysis process (Figure S1 in Additional

file 1) can take days to complete without the capability

of distributing the workload across multiple compute

nodes. With the release of new sequencing technology

enabling population-scale genome sequencing of thou-

sands of raw whole genome sequences monthly, current

analysis approaches will simply be unable to keep up.

These challenges create the need for a pipeline that sim-

plifies and optimizes utilization of these bioinformatics

tools and dramatically reduces the time taken to go from

raw reads to variant calls.

Results

Churchill fully automates the analytical process required

to take raw sequence data through the complex and

computationally intensive process of alignment, post-

alignment processing and genotyping, ultimately produ-

cing a variant list ready for clinical interpretation and

tertiary analysis (Figure S2 in Additional file 1). Each of

these steps was optimized to significantly reduce analysis

time, without downsampling and without making any

sacrifices to data integrity or quality (see Materials and

methods). At the heart of Churchill’s parallelization

strategy is the development of a novel deterministic al-

gorithm that enables division of the workflow across

many genomic regions with fixed boundaries (subregions)

(Figure S3 in Additional file 1). This division of work, if

naively implemented, would have major drawbacks: read

pairs spanning subregional boundaries would be per-

manently separated, leading to incomplete deduplica-

tion and variants on boundary edges would be lost. To

overcome this challenge, Churchill utilizes both an

artificial chromosome, where interchromosomal or

boundary-spanning read pairs are processed, and over-

lapping subregional boundaries, which together maintain

data integrity and enable significant performance im-

provements (Figures S4 and S5 in Additional file 1).

Performance comparisons of parallelization strategies

The parallelization approach adopted by Churchill over-

comes the limitation of parallelization by chromosome,

enabling a load balanced and independent execution of

the local realignment, deduplication, recalibration and

genotyping steps (Figure 1). The timing of each of these

steps decreases in a near-linear manner as Churchill

efficiently distributes the workload across increasing

compute resources. Using a typical human genome data

set, sequenced to a depth of 30×, the performance of

Churchill’s balanced parallelization was compared with

two alternative BWA/GATK based pipelines: GATK-

Queue utilizing scatter-gather parallelization [5] and

HugeSeq utilizing chromosomal parallelization [10]. The

parallelization approach adopted by Churchill enabled

highly efficient utilization of system resources (92%),

while HugeSeq and GATK-Queue utilize 46% and 30%,

respectively (Figure 1A). As a result, using a single 48-

core server (DellW R815), Churchill is twice as fast as

HugeSeq, four times faster than GATK-Queue, and 10

times faster than a naïve serial implementation with in-

built multithreading enabled (Figure 1B). Furthermore,

Churchill scales highly efficiently across cores within a

single server (Figure 1C).

The capability of Churchill to scale beyond a single

compute node was then evaluated (Figure 2). Figure 2A

shows the scalability of each pipeline across a server

cluster with fold speedup plotted as a function of the

number of cores used. It is evident that Churchill’s scal-

ability closely matches that predicted by Amdahl’s law

[11], achieving a speedup in excess of 13-fold between 8

and 192 cores. In contrast, both HugeSeq and GATK-

Queue showed modest improvements between 8 and 24

cores (2-fold), reaching a maximal 3-fold plateau at 48

cores. Churchill enabled resequencing analysis to be

completed in three hours using an in-house cluster with

192 cores (Figure 2B). Simply performing alignment and

genotyping (without deduplication, realignment, or recali-

bration) required twice the number of cores to achieve a

similar analysis time using CrossBow [12]. Utilization of

Churchill on both the Ohio Supercomputer Center’s

Glenn Cluster (768 cores over 96 nodes) and on Amazon
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Web Services (AWS) Elastic Compute Cloud (EC2) (768

cores over 24 CR1 instances) enabled analysis completion

in less than 1 hour 50 minutes.

The output of Churchill was validated using the recently

released National Institute of Standards and Technology

(NIST) benchmark SNP and indel genotype calls gener-

ated by the Genome in a Bottle (GIAB) Consortium [13].

FASTQ files from the 1000 Genomes CEU female

NA12878 were analyzed using Churchill, GATK-Queue

and HugeSeq, all using the GATK UnifiedGenotyper algo-

rithm for variant calling and genotyping, and resulting

VCF files were compared (Figure 3). While there is a

high degree of concordance between the three pipelines,

Churchill produced the highest percentage of validated
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Figure 1 Churchill optimizes load balancing, resulting in improved resource utilization and faster run times. Three different strategies for

parallelization of whole genome sequencing secondary data analysis were compared: balanced (utilized by Churchill), chromosomal (utilized by

HugeSeq) and scatter-gather (utilized by GATK-Queue). The resource utilization, timing and scalability of the three pipelines were assessed using

sequence data for a single human genome sequence dataset (30× coverage). (A) CPU utilization was monitored throughout the analysis process

and demonstrated that Churchill improved resource utilization (92%) when compared with HugeSeq (46%) and GATK-Queue (30%). (B) Analysis

timing metrics generated with 8 to 48 cores demonstrated that Churchill (green) is twice as fast as HugeSeq (red), four times faster than

GATK-Queue (blue), and 10 times faster than a naïve serial implementation (yellow) with in-built multithreading enabled. (C) Churchill scales much

better than the alternatives; the speed differential between Churchill and alternatives increases as more cores in a given compute node are used.
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variant calls, for both SNPs (99.9%) and indels (93.3%),

and had the highest overall sensitivity (99.7%) and ac-

curacy (99.9988%). GATK-Queue had slightly higher

specificity than Churchill, and the lowest false discovery

rate (0.39%), but failed to identify approximately 20,000

validated variants found by Churchill. Of the three

pipelines Churchill had the highest diagnostic effect-

iveness (99.66%), followed by GATK-Queue (98.96%)

and HugeSeq (98.65%), as assessed by the Youden

Index [14].

Resource utilization and performance in the cloud

The capability of Churchill to perform whole genome

variant discovery and genotyping via local re-assembly of

haplotypes was assessed using AWS cloud compute re-

sources and the GATK HaplotypeCaller algorithm for

variant discovery and genotyping [15]. For comparison

purposes, the performance of Churchill on AWS was

compared with bcbio-nextgen, a python toolkit that

provides a distributed multi-architecture pipeline that

automates variant calling [16]. Both pipelines were setup

to utilize BWA-MEM [17] for alignment and GATK

HaplotypeCaller for variant detection and genotyping to

analyze raw sequence data for a human whole genome

sequence dataset (30× coverage). CPU utilization on a

single r3.8xlarge AWS EC2 instance (32 cores) was mon-

itored throughout the analysis run. The results demon-

strated that Churchill had significantly greater resource

utilization (94%) than bcbio-nextgen (57%), enabling the

entire analysis to be completed in under 12 hours with a

single instance (Figure 4A). The initial phase of bcbio-

nextgen execution uses a shell pipeline of BWA-MEM,

samblaster [18], samtools and sambamba to perform

alignment, mark duplicates, convert SAM to BAM, and

sort the resulting BAM data. However, during this phase

of processing, less than 50% CPU utilization was ob-

served (Figure 4A).

Churchill enables all steps of the analysis process to be

efficiently scaled across multiple AWS instances, result-

ing in significantly reduced run times (Figure 4B). With

16 AWS EC2 instances the entire analysis could be com-

pleted in 104 minutes, with the variant calling and geno-

typing with GATK HaplotypeCaller stage taking only

24 minutes. In contrast, using the default options of the

bcbio-nextgen workflow, alignment and deduplication is

parallelized by using the built-in multi-threading cap-

abilities of BWA and sambamba, and as such it is lim-

ited in scalability to the number of cores available on a

single machine. Next, the bcbio-nextgen software uses

sambamba to index the single BAM resulting from the

previous phase. Again this processing is limited to a sin-

gle process that cannot scale beyond a single machine.

Analysis of the 1000 Genomes Project on the cloud

In order to demonstrate Churchill’s utility for population-

scale genomic analysis, 1,088 low-coverage whole-genome

samples from ‘phase 1’ of the 1000 Genomes Project

(1KG) were analyzed, including calling variants with

GATK’s UnifiedGenotyper on all samples simultan-

eously to generate a multi-sample final VCF. The entire
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Figure 2 Churchill scales efficiently, enabling complete

secondary analysis to be achieved in less than two hours. The

capability of Churchill, GATK-Queue and HugeSeq to scale analysis

beyond a single compute node was evaluated. (A) Fold speedup as

a function of the number of cores used was assessed across a cluster

of four DellW R815 servers with Churchill (green), GATK-Queue (blue),

HugeSeq (red) and serial analysis (yellow). For comparison, the linear

speedup (grey) and that predicted by Amdahl’s law (purple) assuming

a one-hour sequential time are also included [11]. Churchill’s scalability

closely matches that predicted by Amdahl’s law, achieving in excess of

a 13-fold speedup between 8 and 192 cores. In contrast, both

HugeSeq and GATK-Queue showed modest improvements in speed

between 8 and 24 cores (2-fold), with a maximal 3-fold speedup being

achieved with 48 cores, and no additional increase in speed beyond 48

cores. (B) Timing results for different steps of the Churchill

pipeline were assessed with increasing numbers of cores.

Complete human genome analysis was achieved in three hours

using an in-house cluster with 192 cores and in 100 minutes at

the Ohio Supercomputer Center (Glenn Cluster utilizing 700 cores).

Results were confirmed using both the Pittsburgh Supercomputing

Center and Amazon Web Services EC2.
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analysis was completed in less than 7 days using 400

AWS EC2 instances (cc2.8xlarge spot instances) and the

total analysis cost was approximately $12,000, inclusive

of data storage and processing. Churchill identified 41.2

million variants versus 1KG’s 39.7 million (Figure 5).

The two call sets had 34.4 million variant sites in com-

mon, of which 34.3 million had the same minor allele

with highly similar frequencies (Pearson’s correlation

coefficient of 0.9978, P-value <2.2e-16; Figure 5C). The

results were validated against previously identified

Figure 3 The performance of Churchill does not come at the sacrifice of data quality. The final VCF output of Churchill (green), GATK-Queue

(blue) and HugeSeq (red) was compared and evaluated against the National Institute of Standards and Technology (NIST) benchmark SNP and indel

genotype calls generated by the Genome in a Bottle Consortium (GIAB) [13]. The Venn diagram shows a high degree of concordance

between the three pipelines. Churchill identified the highest number of validated variants from the approximately 2.9 million calls in the

GIAB dataset, for both SNPs (99.9%) and indels (93.5%), and had the highest overall sensitivity (99.7%) and accuracy (99.9988%). The Youden

index (or J statistic), a function of sensitivity (true positive rate) and specificity (true negative rate), is a commonly used measure of overall

diagnostic effectiveness [14].
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Figure 4 Churchill enables rapid secondary analysis and variant calling with GATK HaplotypeCaller using cloud computing resources.

Analysis of raw sequence data for a single human genome sequence dataset (30× coverage) was compared using Churchill and bcbio-nextgen,

with both pipelines utilizing BWA-MEM for alignment and GATK HaplotypeCaller for variant detection and genotyping. (A) CPU utilization on a

single r3.8xlarge AWS EC2 instance (32 cores) was monitored throughout the analysis process and demonstrated that Churchill improved resource

utilization (94%) when compared with bcbio-nextgen (57%), enabling the entire analysis to be completed in under 12 hours with a single

instance. (B) Unlike bcbio-nextgen, Churchill enables all steps of the analysis process to be efficiently scaled across multiple compute nodes,

resulting in significantly reduced run times. With 16 AWS EC2 instances the entire analysis could be completed in 104 minutes, with the variant

calling and genotyping with GATK HaplotypeCaller stage taking only 24 minutes of the total run time.
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variants (dbSNP build 138, excluding those from the

1KG submission). SNP validation rates were similar,

52.8% (Churchill) and 52.4% (1KG). However, due to

improvements in indel calling since the original 1KG

analysis, Churchill called three-fold more indels with a

higher rate of validation (19.5% versus 12.5%). Of the

indels unique to Churchill, a seven-fold higher rate of

validation was observed compared with those unique

to 1KG. Of the GIAB consortium’s validated indel data-

set [13], 81.5% were observed in the Churchill analysis in

contrast to 43.9% with the 1KG analysis. Churchill called

approximately 71% of the 99,895 novel validated indels in

the GIAB NA12878 dataset (those not found in the 1KG

analysis) with alternative allele frequencies as high as

100% (mean 40.2%).

Discussion

The Churchill parallelization strategy optimizes utilization

of available compute resources and scales in a near lin-

ear fashion, enabling population-scale genome analysis

to be performed cost-effectively using cloud resources.

Churchill brings together the most commonly utilized

tools in a single pipeline using currently accepted

best practices for discovery of genetic variation, fully

automating alignment, deduplication, local realign-

ment, base quality score recalibration, variant calling

and genotyping. By carefully exploring interdepend-

encies among different subtasks, Churchill achieves

high levels of parallelism and completes reproducible

data analysis in a fraction of the time, without sacri-

ficing data quality or integrity.

Churchill demonstrates deterministic analysis behavior

A parallel program is deterministic if, for a given input,

every execution of the program produces identical exter-

nally visible output [19]. Therefore, for a parallel pipeline

performing whole genome resequencing analysis, these

criteria for determinism would be met if, given a set of

raw sequence data as input, every execution of the pro-

gram produces identical variant calls and genotypes as

the final output. Not only are the results of Churchill

analysis reproducible when executed with the same

number of subregions, but Churchill analysis is deter-

ministic; regardless of the scale of parallelization the

final result is identical, making Churchill an optimal so-

lution for clinical applications. Other parallelization

strategies fail to achieve this level of reproducibility or

make sacrifices in data quality for speed. Strikingly,
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Figure 5 Churchill enables population-scale whole human genome sequence analysis. Churchill was used to analyze 1,088 of the low-coverage

whole-genome samples that were included in ‘phase 1’ of the 1000 Genomes Project (1KG). Raw sequence data for the entire population were used

to generate a single multi-sample VCF in 7 days using 400 AWS EC2 instances (cc2.8xlarge spot instances). The resulting Churchill filtered VCF (green)

was then compared to the 1KG Consortium’s VCF (red), with Churchill calling 41.2 million variants and the 1KG VCF file containing 39.7 million. The

two VCF file sets had a total of 34.4 million variant sites in common. (A) There were 33.2 million SNPs called in common, with validation rates against

known SNPs being highly similar: 52.8% (Churchill) and 52.4% (1KG). (B) Churchill called three-fold more indels, of which 19.5% were known compared

with 12.5% in the 1KG indel set. The indels unique to Churchill have a seven-fold higher rate of validation with known variants than those

unique to 1KG. (C) Minor allele frequencies were compared for the 34.3 million variants with the same minor allele and a density binned scatter

plot was produced (scaled from low (light blue) to high (purple) density frequencies). The results from Churchill and the original 1KG analysis

demonstrated highly concordant minor allele frequencies (R2 = 0.9978, P-value <2.2e-16).
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non-determinism can be introduced at virtually every

step in the analysis if configuration parameters are not

carefully selected. For example, the developers of GATK

recognize that results are non-deterministic when using

built-in multithreading options and recommend disab-

ling multithreading if absolute determinism is required

at the expense of significantly increased run time. More-

over, GATK’s default use of downsampling can also

result in differing output. Parallelism in Churchill does

not utilize GATK multithreading, nor does it perform

downsampling by default. Churchill provides the repeat-

ability of results necessitated in clinical sequencing

applications, and the deterministic behavior removes

the potential for inconsistencies in repeat analysis or in

larger studies where analysis is performed at multiple

locations.

Churchill eliminates interdependencies among analysis

steps while maintaining a best-practice implementation

In order to efficiently distribute the analysis workflow,

we developed a strategy to equally divide the genome

into multiple subregions and to process each of those

segments independently, creating an ‘embarrassingly

parallel’ computation (Figures S2 and S4 in Additional

file 1). Nearly all inter-process dependencies in the work-

flow have been removed, including elimination of two

major merge points in the workflow: before deduplication

and before assembly of the covariates table for base quality

score recalibration.

Deduplication requires the entire set of reads in sorted

order so that any number of read pairs that have identi-

cal mappings can be reduced to a single pair [5]. In

parallelization of this deduplication process by subre-

gions, mapping information of these read pairs must be

kept together. Most read pair distances will be normally

distributed around a given insert size that falls within

the boundaries of a given subregion. Inherently there

will be outliers that could represent sequencing artifacts

or improper mappings, but in many cases read pairs

with large insert sizes and those with mates mapped to

different chromosomes provide important information

about possible interchromosomal rearrangement (trans-

locations). For example, the Catalogue Of Somatic Mu-

tations In Cancer (COSMIC v70, August 2014) contains

over 10,000 gene fusions known to be associated with

benign and malignant tumors, many of which have been

shown to play key roles in cancer initiation [20]. The

clinical relevance of interchromosomal reads is further

highlighted by the fact that gene fusions can be linked to

clinical outcomes; for example, the presence of the BCR-

ABL1 fusion is a powerful prognostic indicator in both

pediatric [21] and adult leukemias [22]. As such, interchro-

mosomal reads are properly handled during Churchill’s

parallel processing. The addition of an artificial chromosome

strictly for reads spanning subregions (including inter-

chromosomal reads) allows for parallelized deduplication

without the need for a costly merge step. In contrast,

HugeSeq chromosomal parallelization breaks correspond-

ence between read pairs that are not mapped to the same

chromosome, preventing appropriate deduplication and

reducing data quality. The authors of HugeSeq recognized

this limitation in their approach, stating that parallelization

of the interchromosomal read detection process was not

possible [10]. One limitation of Churchill is that is does

not currently automate the process of structural variant

calling. While both the HugeSeq and bcbio-nextgen pipe-

lines do, they do so with limited levels of parallelism

(bcbio-nextgen is capable of parallelizing some steps in

the structural variant calling process by chromosome).

The Churchill parallelization algorithm does create an

additional single BAM file containing all interchromo-

somal read pairs and those spanning subregions, allowing

a user to concentrate computational resources on only

those read pairs likely to identify a structural variant.

Utilization of the subregion approach for the

parallelization of structural variant calling is an active area

of future development for the Churchill pipeline.

The second point at which different segments are co-

dependent occurs during base quality score recalibra-

tion. Best practices suggest that a true measure of base

qualities requires examination of covariates across the

entire sample to provide empirically accurate base qual-

ity scores for each base in every read, and correct for

multiple error covariates [15]. Churchill accomplishes

this by generating covariate tables for each subregion

and merging them into a single recalibration table for

the entire sample. Recalibration is then applied in

parallel to each subregion, producing identical results to

recalibration applied to a single merged BAM of the

entire genome. Furthermore, by avoiding downsampling

at this stage, and taking into account qualities of every

base for a given sample, identical results will be pro-

duced every time recalibration is performed. By contrast,

HugeSeq applies the GATK count covariates function by

chromosome, resulting in incomplete information about

the quality score distribution, thereby reducing the

effectiveness of the recalibration process.

Churchill enables highly scalable parallelization and

improves computational efficiency

In addition to faster performance, Churchill creates more

independent processes and eliminates costly single-

threaded merge steps, leading to optimized resource

utilization and efficient load balancing (Figure 1A).

Moreover, given the memory intensive nature of NGS

analysis, the memory load can be efficiently spread

amongst multiple machines. Churchill’s unique ability

to analyze multiple chromosomal subregions in parallel
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enables it to efficiently scale with many hundreds of par-

allel processes, with scalability only limited by the need

for a few synchronization points and the inherently ser-

ial steps (for example, deduplication cannot start until

all FASTQ file pairs have been aligned), while alternative

pipelines failed to scale efficiently beyond 24 parallel pro-

cesses (Figure 2A). As a result of these improvements in

scalability and efficiency, Churchill enables completion of

an entire whole genome analysis, from raw sequence reads

to a recalibrated VCF file, in less than two hours with

either UnifiedGenotyper (Figure 2B) or HaplotypeCaller

(Figure 4B).

Through utilization of alternative strategies for

parallelization, GATK-Queue and HugeSeq achieve a

moderate degree of parallelism and speedup [5,10].

GATK-Queue processes raw reads from multiple un-

aligned BAM files in parallel; realignment, base quality

score recalibration, and genotyping are performed on

multiple sub-chromosomal ‘intervals’ to achieve a high

degree of parallelism. However, deduplication is car-

ried out on a single merged BAM file and its workflow

requires merging of all BAM files after realignment

and after recalibration. These three lengthy single-threaded

processes counteract the savings achieved through the

sub-chromosomal interval parallelism, and average CPU

utilization is less than 30% throughout the run (Figure 1A).

The HugeSeq pipeline performs faster than GATK-Queue

by performing parallelization at the chromosome level,

thereby circumventing the BAM merging processes.

However, this approach results in suboptimal results

due to inappropriate deduplication of interchromo-

somal reads and a failure to consider all base qualities

simultaneously during recalibration. Additionally,

parallelization by chromosome limits scalability and suf-

fers from poor load balancing due to the fact that

human chromosomes vary greatly in size (Figure S3 in

Additional file 1).

Improved performance was observed with the bcbio-

nextgen pipeline, but elements of the parallelization

strategy implemented by this software have similar limi-

tations as GATKQ. The alignment, deduplication and

BAM indexing steps are parallelized by using the built-

in multi-threading capabilities of BWA and sambamba,

producing a single merged BAM file, and as such limits

parallelization of these steps to a single machine. This

merge requirement of the bcbio-nextgen pipeline is

avoided by Churchill via independent processing of reads

spanning subregions in an artificial chromosome. The

streaming deduplication approach utilized by sambamba

does avoid Picard Tools’ deduplication requirement to

read alignment results from disk and may result in a

modest improvement in Churchill’s performance by

reducing input/output (I/O). However, Churchill’s highly

efficient parallelized deduplication strategy enables that

stage of the analysis process to be completed in as little

as 10 minutes. bcbio-nextgen parallelizes variant calling

by partitioning the genome into regions that can be

processed simultaneously. These regions are bounded by

spans of the genome that contain no callable reads in

any of the samples that are being processed. Although

this approach is superior to parallelizing by chromosome

and enables parallelization across multiple machines, it

is still subject to processing regions of differing sizes,

which performs and scales less well than Churchill,

which utilizes regions of equal size, thereby achieving

optimal load balancing and highly efficient resource

utilization (Figure 4A).

The Churchill pipeline is currently reliant upon a shared

file-system for storage of the input data, intermediate files

produced during processing, and the final output files.

This file-system is a possible performance bottleneck dur-

ing processing depending on the infrastructure supporting

it and the amount of other computational resources avail-

able. Streaming shell pipelines, distributed file-systems,

and distributed processing frameworks offer the oppor-

tunity to further enhance Churchill’s efficiency, and are

a priority for future work. These approaches to reducing

disk I/O and network traffic will greatly benefit from a

parallelization strategy like that offered by Churchill,

since they would otherwise be limited to the computa-

tional resources available on a single computer. Chur-

chill effectively distributes the CPU burden of NGS data

processing by leveraging the CPU/memory resources

available on individual computers within a cluster, and

in a similar way could also allow for the distribution of

I/O by leveraging the local I/O resources available on

individual computers.

Balanced parallelization with Churchill dramatically

speeds up whole genome variant discovery and

genotyping via local re-assembly of haplotypes

Haplotype-based variant detection methods, such as

FreeBayes [23] and HaplotypeCaller [15], in which vari-

ant discovery and genotyping are performed by local

re-assembly of haplotypes, may reduce false positive calls

due to errors in short read alignment, but are consider-

ably more computationally expensive than methods

which operate on a single position at a time. In collabor-

ation with IntelW, the Broad Institute recently developed

a set of hardware-based optimizations for the PairHMM

algorithm in HaplotypeCaller enabling them to reduce

the time to analyze a single genome from three days to

one day (a three-fold speedup). Utilization of Churchill’s

balanced parallelization approach, in combination with

AWS EC2 instances equipped with Intel XeonW processors

that can utilize the HaplotypeCaller routines optimized for

IntelW Advanced Vector Extensions, enabled whole

genome variant calling and genotyping in 24 minutes
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(a 60-fold speedup; Figure 4B). This resulted in a similar

run time performance as UnifiedGenotyper (Figure 2) and

enabled complete genome analysis in 1 hour 44 minutes

using on-demand Cloud resources, without any sacrifice

in data quality (Figure 4). While HaplotypeCaller is a

more sophisticated algorithm than UnifiedGenotyper, it

has been reported that the HaplotypeCaller indels have

an increased false discovery rate [24] and significantly

lower validation rates for both SNP and indel calls than

UnifiedGenotyper [25]. As such, Churchill currently

provides users with options for variant discovery and

genotyping with UnifiedGenotype, HaplotypeCaller or

FreeBayes.

Churchill enables rapid clinical genomic analysis

Routine adoption of NGS clinically has been impeded

by the complexity of the bioinformatics and the lack of

a data analysis solution that is simple, fast and accurate

[26]. Churchill eliminates the genomic analysis bottle-

neck for a clinical laboratory, transforming a complex

workflow to a single command while observing cur-

rently accepted best practices for discovery of genetic

variation. The entire secondary analysis workflow (from

FASTQ to VCF) for a single sample can be completed

in less than an hour for an exome or targeted panel and

under 2 hours for a whole genome. The speed at which

Churchill is able to complete NGS analysis will have a

major impact in the clinic where fast turnaround can be

essential for diagnosis of genetic disease. For instance,

rapid diagnosis is critical for newborns with suspected

monogenic diseases, where diagnosis is confounded by

ambiguous symptoms and progression is rapid, fre-

quently leading to morbidity and mortality [27]. Valid-

ation of Churchill’s performance using the GIAB

Consortium reference sample [13] demonstrated that

Churchill had the highest overall sensitivity (99.7%) and

accuracy (99.9988%) of the pipelines assessed (Figure 3).

In addition to speed and genotyping accuracy, Church-

ill’s deterministic performance sets a NGS analysis

standard of 100% reproducibility without sacrificing

data quality.

Churchill enables population-scale genomic analysis in

the cloud

Churchill not only optimizes the workflow for clinical

analysis of single whole genome or targeted capture

samples, but also for much larger research data sets. To

demonstrate this, Churchill was used to analyze the 1KG

raw dataset of 1,088 individuals [28] using the cloud

(AWS EC2). Churchill was able to efficiently parallelize

the entire analysis process, from FASTQ raw input data

through multi-sample variant calling, generating popula-

tion allele frequencies in under a week (Figure 5). A

smaller scale simultaneous analysis of 61 human

genomes was recently performed in 2 days with a Cray

XE6 supercomputer, averaging 50 minutes per genome

[29]. Through utilization of universally available on-

demand cloud resources, Churchill completed analysis

five times faster, averaging 9 minutes per genome, using

one-third of the compute resources of the Cray super-

computer. Additionally, this undertaking demonstrates

the feasibility of generating population allele frequencies

specific to a given unified analysis approach, resulting in

the discovery of approximately 3,000,000 novel indels.

When utilizing Churchill, identification of rare patho-

genic variation will be aided by supplementing 1KG con-

sortium allele frequencies with Churchill-specific allele

frequencies generated in this current analysis.

Conclusions
Current approaches for data analysis of whole human

genome sequencing data can take weeks to complete,

resulting in bioinformatics overheads that exceed se-

quencing costs and represent a significant limitation.

Churchill is a computational approach that overcomes

these challenges, fully automating the analytical process

required to take raw sequencing data through the com-

plex and computationally intensive processes of align-

ment, post-alignment processing, local realignment,

recalibration and variant discovery. A major contribution

of this work has been the extensive study of strategies

for parallelization of this workflow and implementation

of a deterministic parallelization strategy that enables a

load-balanced division of the entire analysis workflow.

As a result, Churchill enables computationally efficient

whole genome sequencing data analysis in less than

2 hours. In addition to rapid analysis of a single sample,

Churchill optimizes utilization of available compute

resources and scales in a near linear fashion, allowing

population-scale genome analysis to be performed cost-

effectively using cloud resources. As we look to the

future, cloud computing will become indispensable for

genomics [30-33]. Population-scale genomic studies are

being made a possibility by declining sequencing costs

and advances in sequencing technologies. Churchill

eliminates the sequence analysis computational bottle-

neck and through use of cloud computing resources will

make it possible to keep pace with the magnitude of

genomic data that these new sequencers will create.

Materials and methods

Churchill parallelized workflow

Each of the required data processing steps was carefully

examined (Figure S1 in Additional file 1) and optimal

approaches for parallelized processing were determined.

Alignment of individual reads to a reference genome is

considered to be an embarrassingly parallel process as

the 1 billion raw reads that are generated in sequencing
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a human genome can in theory be mapped to the refer-

ence genome independently of one another; the only

constraint for paired-end reads is that both reads in a

pair should be correctly oriented within proper distance.

The remaining steps in the analysis workflow are not

embarrassingly parallel by nature and, as such, required the

development of novel approaches to achieve parallelization.

One approach to enable a modest level of parallelization

of the subsequent steps is to divide the analysis by individ-

ual chromosomes (22 autosomes (chromosomes 1 to 22)

and two sex chromosomes (chromosomes X and Y)).

However, doing so results in a significant load imbalance

as the size of these chromosomes varies significantly, with

chromosome 1 being approximately 5 times larger than

chromosome 21 (Figure S3A in Additional file 1). In

addition, limiting parallelization at chromosomal level

restricts the use of processors to a total of 24, such that

utilization of more than 24 CPU cores cannot improve

performance.

To overcome this limitation of parallelization by chromo-

some, Churchill utilizes an approach that evenly subdivides

the whole human genome into multiple regions with fixed

boundaries (subregions), enabling a load balanced and

independent execution of the local realignment, dedupli-

cation, recalibration and genotyping steps (Figure S3B in

Additional file 1). However, there are four issues that arise

with this strategy:

1. Dependencies. There are several points at which the

results of processes run on individual segments of

the genome are not independent. First, duplicate

read removal requires the entire set of reads in

sorted order so that any number of read pairs that

have identical mappings can be reduced to a single

pair. If one were to separate the data, read pairs

must be kept together. A second point at which

different segments depend on each other is during

base quality score recalibration. Best practices

suggest that a true baseline of base qualities requires

examination of covariates across the entire sample.

2. Parallelization. Assuming these dependencies have

been addressed, the issue then becomes how to

parallelize these independent processes. One

drawback of the computational techniques in

genome resequencing and variant calling is the large

memory requirements. Therefore, there may not be

enough memory available to process as many

segments as cores are available on the server. Also,

load balancing is a concern.

3. Determinism. Ideally, introduction of a

parallelization strategy should not produce

different results depending on how the

parallelization was implemented. If determinism

is not maintained, then different results could

occur based on the available resources at the

time of analysis, creating an unacceptable

situation for clinical applications where

reproducibility and determinism are essential.

4. Interchromosomal reads. Most read pair distances

will be normally distributed around a given insert

size, which can vary between sequencing runs.

Inherently, there will be outliers. These outliers

could be either sequencing artifacts or improper

mappings. In many cases, however, reads pairs with

large insert sizes and those with each read of the

pair on different chromosomes could indicate a

structural variant and it is vitally important they are

not disregarded. Shortcuts taken on the above

described dependencies could result in lost

information regarding interchromosomal reads.

In theory, the extremely large size of the human

genome (approximately 3 billion base pairs) enables

achievement of near-embarrassingly parallel execution of

these steps. For example, dividing the genome into

3,000,000 base pair chromosomal subregions would en-

able execution of these steps in 1,000 parallel processes.

The number of subregions created by Churchill can be

specified by the user, although increasing this variable to

twice the number of cores available for processing leads

to improved load balancing. In order to ensure proper

processing of regional boundaries, at both ends of each

region, we include a 3 kilobase overlap of the adjacent

region. This overlap acts as a ‘buffer zone’ to ensure ap-

propriate detection of variants near or spanning region

boundaries, as is possible in the case of indels. The

resulting region and overlap boundary information is

saved in the GATK intervals file format.

However, the post-alignment steps of the analysis

process (local realignment, duplicate read removal, base

quality score recalibration, genotyping and variant qual-

ity score recalibration) could not simply be performed

on these subregions without significant refinement of

each step to achieve high levels of parallelization without

sacrificing data integrity and quality. The five steps of

the Churchill workflow and the optimization that was

performed are detailed below.

Step 1: parallelized alignment to a reference sequence

For the initial alignment step, BWA is utilized to per-

form reference genome alignment with the reads con-

tained in paired FASTQ files. The speed of the process

can be increased through utilization of inbuilt multi-

threading capabilities of the alignment algorithm by

executing the aligner in multithreading mode (for ex-

ample, using the bwa aln -t option to specify the num-

ber of threads). However, implementation of alignment

within the Churchill pipeline utilizes an approach

Kelly et al. Genome Biology  (2015) 16:6 Page 10 of 14



whereby the total raw input sequencing data (typically

400 to 800 million paired reads) is split into multiple

smaller FASTQ files and aligned using multiple single-

threaded parallel instances of the alignment algorithm.

The number of paired-end FASTQ files generated dur-

ing the sequencing run is controlled by the –fastq-cluster-

count parameter of Illumina’s BCL-conversion process

(CASAVA 1.8.2), which specifies the maximum num-

ber of reads per output FASTQ file. The default value

of 4,000,000 works well with Churchill. However,

decreasing the number of reads per FASTQ to

1,000,000 results in increased alignment speed due to

better load balancing.

Step 2: parallelized generation and deduplication of

subregional BAMs

At the heart of the Churchill pipeline is the novel algo-

rithm we developed to convert the raw BAM files

produced during alignment into subregions, enabling the

parallel implementation of all of the subsequent analysis

steps (Figure S4 in Additional file 1). This approach

consists of 5 sequential steps:

1. Split raw BAM by region. The genome is split into

M chromosomal subregions, where the value of M

is defined by the desired level of parallelization.

Utilization of the Churchill parallelized alignment

approach generates N raw BAM files (derived from

alignment of N pairs of input FASTQ files to the

entire genome). These BAM files are split according

to the coordinates of the subregions, yielding M ×N

split BAM files. Read pairs in which mates map to

different subregions (including both

interchromosomal and intrachromosomal reads) are

temporarily transferred to separate split BAM files,

one for each of the N input BAM files, identified as

chrI.bam (‘I’ is short for inter/intrachromosomal

mapping).

2. Merge split BAMs by subregion. For each of the

genomic subregions, the N split BAM files

corresponding to a given subregion are merged into

M subregional BAM files, each containing all of the

read pairs mapped within the boundaries of that

subregion.

3. Merge split chrI BAMs. The N chrI BAM files are

merged into a single genome-wide interchromosomal

BAM file.

4. Parallelized deduplication. Duplicate reads are

identified and removed from region and

interchromosomal BAM files. Reads containing

amplification errors may be represented in artificially

high numbers and, as such, failure to remove these

reads from the data set would have a significant

negative effect on the final result by introducing

variants that reflect these errors rather than true

biological polymorphisms. The deduplication

process identifies read pairs with identical external

coordinates and subsequently reduces the data set to

include only one copy of the duplicate sequence

with highest mapping quality. Picard Tools

MarkDuplicates is the tool most commonly utilized

to identify duplicate reads both within and between

chromosomes. Current best practices require that

the deduplication process be performed using a

single BAM file, containing all of the reads from the

sequencing run. This is the approach utilized by the

GATK-Queue analysis pipeline. However, in addition

to this prolonged serial deduplication, the process of

merging the BAM files into a single file cannot be

parallelized. These processes result in lengthy

single-threaded computations that substantially

increase analysis run time. The Churchill algorithm

overcomes this significant limitation by keeping

interchromosomal reads together initially and

deduplicating them. This step happens before the

individual reads in the pair are merged by coordinates

into the appropriate subregional BAMs. This

innovative approach ensures proper deduplication

of these interchromosomal reads and enables safe

parallelization of the remainder of the deduplication

process across both chromosomes and chromosomal

subregions. In this way it is possible to achieve high

levels of parallelization of the duplicate marking and

removal process without compromising data integrity.

The Churchill deduplicated BAM is indistinguishable

from the results obtained from the lengthy process of

post-alignment processing of a single merged

genome-wide BAM file.

5. Merge chrI reads with subregional BAMs. The

deduplicated interchromosomal paired reads are

split according to subregion, and the individual reads

are merged back into the appropriate subregion

BAM according to the read coordinates. The

resulting alignment files contain both appropriately

deduplicated interchromosomal and regular reads.

In addition, a copy of this chrI.bam file is kept as it

may aid in detection and analysis of structural

variants.

The final output of this step is multiple BAM files, one

for every genomic subregion, which include appropri-

ately mapped and deduplicated reads, thereby enabling

parallelization of the subsequent steps.

Step 3: parallelized local realignment around indels

In the second post-alignment processing step, local read

realignment is performed to correct for potential align-

ment errors around indels. Mapping of reads around the
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edges of indels often results in misaligned bases creating

false positive SNP calls. Local realignment uses these

mismatching bases to determine if a site should be rea-

ligned, and applies a computationally intensive Smith-

Waterman algorithm to determine the most consistent

placement of the reads with respect to the indel and re-

move misalignment artifacts [34]. The major advantage

of Churchill in parallelizing local realignment is that all

reads from a given sample are used to perform the local

realignment, ensuring the greatest possible accuracy and

improving novel indel detection. Moreover, applying

sample-level local realignment across Churchill’s subre-

gions results in significant improvements in speed.

Step 4: parallelization of base quality score recalibration

Each base of each read has an associated quality score,

corresponding to the probability of a sequencing error.

The reported quality scores are known to be inaccurate

and as such must be recalibrated prior to genotyping,

where they are used in the Bayesian genotype likelihood

model employed by GATK’s UnifiedGenotyper [5]. After

recalibration, the recalibrated quality scores in the out-

put BAM will more closely correspond to the probability

of a sequencing error. Moreover, the recalibration tool

corrects for variation in quality with respect to machine

cycle and sequence context, thus producing both more

accurate and widely dispersed quality scores. Churchill

uses GATK’s base quality score recalibration (BQSR) al-

gorithm, which analyzes covariation among several fea-

tures of a base, including the reported quality score, the

position within the read and the preceding and current

nucleotide (sequencing chemistry effect). These covari-

ates are then applied through a piecewise tabular correc-

tion to recalibrate the quality scores of all reads in a

given BAM file. However, according to the Broad’s best

practices, BQSR requires a pool of all covariates from

across the genome for proper calculation. Therefore, to

ensure integrity of the recalibration process, Churchill

merges the covariate results for each subregion so that

each parallel recalibration instance has input data from

the entire genome rather than just its region. The benefit

of this approach is that it enables Churchill to use the

entire dataset for recalibration purposes, improving ac-

curacy and avoiding downsampling, which will lead to

non-determinism.

Step 5: parallelization of variant calling

In the penultimate step of the Churchill analysis process,

variant calls can be generated with GATK Unified

Genotyper [5], GATK HaplotypeCaller [15] or Freebayes

[23] using the analysis ready reads generated during

recalibration. Churchill is capable of implementing these

algorithms on both single sample data and multi-sample

data, where variant information from all samples in a

given experiment is utilized to improve genotyping ac-

curacy. Due to the overlapping buffer zones at the ends

of each region, it is possible that a variant occurring in

one of these zones may be called twice: once in the re-

gion to which it belongs and once in the overlap zone of

the adjacent region (Figure S5 in Additional file 1). This

is corrected by assigning the variant to the appropriate

subregion and removing its buffer-zone duplicate from

the final merged raw variants file. This determination

is made based solely on the location of the variant call

and its position relative to the fixed subregion bound-

aries. The raw genotype calls from each subregion are

concatenated into genome-wide VCF files for both

SNPs and indels ready for down-stream analysis and

interpretation.

Churchill implementation

A schematic representation of the entire Churchill

process is shown in Figure S2 in Additional file 1. Com-

pared with alternative analysis pipelines, implementation

of Churchill is simpler, faster, and more widely applicable

to various shared memory/distributed high performance

computing (HPC) clusters. Churchill only requires a

small number of pre-installed components. Python

(with PySam), BWA, Samtools, Picard Tools, and GATK

are the only required software not included in Churchill.

Setup and execution are performed with a single com-

mand. Churchill is implemented as a mixture of Bash

and Python scripts, linking and preparing for parallelization

the inputs and outputs of BWA, Picard, SAMTools, and

GATK. A single configuration file defines the paths to

raw data, installed software, required database files, and

delivery directories. Churchill is initialized and executed

using a single python script, ‘churchill.py’, and a Cython-

compiled C library. Churchill begins by creating the

scripts required to run the entire pipeline and then pro-

ceeds to execute (or submit to the job scheduler) the

scripts in the desired parallelization method (shared

memory, GNU make, Sun Grid Engine (SGE), or Portable

Batch System (PBS)) specified by the user in an argument

to ‘churchill.py’. To ensure that Churchill would be of

utility to the widest number of researchers, the pipeline

was developed such that it could be executed with three

of the most commonly utilized environments for dis-

tributed computing: shared memory machine or server

with explicit task creation, shared memory machine or

server with task creation by GNU Make, and HPC clus-

ters and cloud implementations that support distributed

Make, such as PBS and SGE (Table S1 in Additional file 1).

As such, Churchill is compatible with a wide range of Linux

systems, including high-performance workstations, small

single servers, moderate in-house clusters with shared or

non-shared memory servers, large HPC systems housed at
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supercomputing centers (including the Ohio Supercomput-

ing Center and the Pittsburgh Supercomputing Center)

and in the cloud. The software is available for download

at [35].

Data availability

Sequence data were generated in the Biomedical Gen-

omics Core, The Research Institute at The Nationwide

Children’s Hospital. Initial development and testing of

Churchill was conducted using Illumina HiSeq 2000

100 bp paired-end whole genome sequencing data sets

with 30× average coverage. Informed consent was ob-

tained from study subjects or parents of subjects less

than 18 years of age (assent was obtained from subjects

9 to 17 years of age) under protocols approved by the

Institutional Review Board (IRB) at Nationwide Children’s

Hospital (protocol number IRB11-00215). Analysis timing

metrics and validation were performed using NA12878

sequence data deposited in the Sequence Read Archive

(accession ERP001229) down-sampled to 30× coverage

as described below. The phase 1 1KG data are available

through the consortiums FTP sites (see [36] for details).

The NIST benchmark SNP and indel genotype calls

generated by the GIAB Consortium can be downloaded

from [37]. All experiments have been conducted

according to the principles expressed in the Declaration of

Helsinki.

Validation

Validation was performed using FASTQ files from the

Sequence Read Archive study ERP001229 for whole hu-

man genome sequencing of the 1KG CEU female

NA12878 (Illumina HiSeq 2000 paired-end 100 bp reads,

split into 431 pairs of FASTQ files, each containing

2,000,000 reads). The VCF files produced from these

data by Churchill, GATK-Queue and HugeSeq were

compared with NIST benchmark SNP and indel geno-

type calls generated by the GIAB Consortium [13]. First,

VCFs were filtered to remove low quality variant calls as

indicated by a ‘LowQual’ flag generated by the given

pipeline. Second, the VCF was filtered to the GIAB call-

able regions using the vcflib [38] tool vcfintersect with

the BED file provided by GIAB. Third, complex variants

were decomposed into a canonical SNP and indel repre-

sentation using the vcflib tool vcfallelicprimitives.

Finally, VCF files were converted to tables and compared

with the GIAB validation dataset (version 2.18) using

custom scripts in R.

Profiling and benchmarking

In addition to measuring the running time, we recorded

the CPU utilization profile using the collectl utility [39],

a comprehensive tool to measure the performance of a

linux system. CPU, memory, disk, and network usage

were measured at 10 s intervals. The output was then

parsed and plotted using scripts customized for this

purpose.

Analysis with the bcbio-nextgen pipeline

The bcbio-nextgen run was performed using version 0.7.9

of the software that was installed using the provided

installer script (bcbio_nextgen_install.py). After installation,

the GATK software was upgraded using the provided up-

grade script (bcbio_nextgen.py upgrade) to version 3.2-2 so

that GATK’s HaplotypeCaller could be used. The run was

performed on a single r3.8xlarge AWS EC2 instance. The

run requested 32 cores to be used (-n 32) since 32 cores

were available on the r3.8xlarge instance. This resulted in

BWA-MEM being assigned 16 cores (-t 16) and sambamba

being assigned 16 cores (-t 16).

Churchill processing of 1000 Genomes Project data

To process each sample, the input FASTQ files for the

sample were first copied from the 1000genomes S3

bucket to local storage on an EC2 instance. These input

files were then processed by the Churchill pipeline to

produce a set of realigned and recalibrated BAM files,

one for each Churchill region. Finally GATK’s Unified-

Genotyper was run over the realigned and recalibrated

BAM files from each sample to produce a single multi-

sample VCF. A hard filtering strategy was employed

similar to that used by the 1KG group’s original analysis

of these data [28]. The single multi-sample VCF was fil-

tered to remove indels with an unfiltered depth over all

samples (DP) <2,566, DP >16,320, inbreeding coefficient

< -0.8, quality by depth (QD) <1.5, or strand bias esti-

mated using Fisher’s Exact Test (FS) >200. SNPs were

removed with DP <2,566, DP > 16,320, QD <1.5, root

mean square of the mapping quality of reads across all

samples (MQ) <30, FS >80, or consistency of the site

with strictly two segregating haplotypes (Haplotype-

Score) >13. The VCF file is available to download at

[35].

Additional file

Additional file 1: This file contains five supplementary figures

further detailing the Churchill balanced parallelization method and

one supplementary table comparing parallelization environments

and methods.
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