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Abstract

Most existing dimensionality reduction and clustering packages for single-cell RNA-seq (scRNA-seq) data deal with

dropouts by heavy modeling and computational machinery. Here, we introduce CIDR (Clustering through Imputation

and Dimensionality Reduction), an ultrafast algorithm that uses a novel yet very simple implicit imputation approach

to alleviate the impact of dropouts in scRNA-seq data in a principled manner. Using a range of simulated and real

data, we show that CIDR improves the standard principal component analysis and outperforms the state-of-the-art

methods, namely t-SNE, ZIFA, and RaceID, in terms of clustering accuracy. CIDR typically completes within seconds

when processing a data set of hundreds of cells and minutes for a data set of thousands of cells. CIDR can be

downloaded at https://github.com/VCCRI/CIDR.
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Background
Single-cell RNA sequencing (scRNA-seq) enables

researchers to study heterogeneity between individual

cells and define cell types from a transcriptomic per-

spective. One prominent problem in scRNA-seq data

analysis is the prevalence of dropouts, caused by failures

in amplification during the reverse-transcription step in

the RNA-seq experiment. The prevalence of dropouts

manifests as an excess of zeros and near zero counts in

the data set, which has been shown to create difficulties

in scRNA-seq data analysis [1, 2].

Several packages have recently been developed for the

various aspects of scRNA-seq data analysis, including cell

cycle (cyclone [3] and scLVM [4]), normalization (scran
[5]), differential expression analysis (scde [2] and MAST
[6]), and temporal analysis (Monocle [7]), but few perform

preprocessing steps such as dimensionality reduction and

clustering, which are critical steps for studying cell-type

heterogeneity.
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The state-of-the-art dimensionality-reduction package

for scRNA-seq data is ZIFA [1]. It implements a mod-

ified probabilistic principal component analysis (PCA)

method that incorporates a zero inflatedmodel to account

for dropout events. ZIFA uses an iterative expectation-

maximization algorithm for inference, which makes it

computationally intensive for large scRNA-seq data sets.

Another package t-SNE [8] is popular among biolo-

gists, but it is not designed specifically for scRNA-seq

data and does not address the issue of dropouts. Other

recently developed tools, such as BackSPIN [9], pcaRe-
duce [10], SC3 [11], SNN-Cliq [12], RaceID [13], and

BISCUIT [14], were designed to deal with optimal cluster-

ing of single cells into meaningful groups or hierarchies.

Like ZIFA, these algorithms usually involve statistical

modeling, which requires estimates of parameters. These

algorithms often make use of iterative methods to achieve

local or global optimal solutions, and hence they can be

slow when processing large data sets of more than several

hundred single cells.

In many practical situations, researchers are interested

in fast and intuitive clustering results that they can easily

visualize. PCA is a common analytical approach for data

visualization for sample heterogeneity, and is often used

for dimensionality reduction prior to clustering. Many

versions of PCA, such as the implementation prcomp in
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R, are very fast and have routinely been used for analyzing

large gene expression data sets. Nonetheless, standard

PCA is not designed to take into account dropouts in

scRNA-seq data. In this work, we aim to develop a fast

PCA-like algorithm that takes dropouts into account.

Results

Motivation

We note that PCA is equivalent to performing a prin-

cipal coordinate analysis (PCoA) on an Euclidean dis-

tance matrix derived from the data set. We posit that as

long as we can reliably estimate the dissimilarity between

every pair of samples (i.e., single cells) in the presence of

dropouts, there is no need to estimate explicitly the values

of the dropouts.

Let us begin by examining the squared Euclidean dis-

tance between the expression profiles of two single cells,

Ci = (o1i, o2i, . . . , oni) and Cj = (o1j, o2j, . . . , onj), where

oki and okj represent the gene expression values of gene k

in cells Ci and Cj, respectively:
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(1)

For simplicity, we refer to all zeros in the gene expres-

sion data as dropout candidates. In general, our argument

remains valid even when a dropout candidate is allowed to

have near zero values. We note that the squared Euclidean

distance in Eq. 1 can be arranged as a sum of three sum-

of-squares terms. The first term is the sum of squared

differences of oki and okj if they are both non-zero values.

This term is not affected by dropouts. The second term

is the sum of squared differences of oki and okj if they are

both zeros, so this term is zero (or very small, if we include

near zero values as dropout candidates).

Therefore, we observe that the main impact of dropouts

comes from the third term, which deals with when one

value is zero and the other is not. A zero can either rep-

resent a lack of gene expression in the ground truth or a

dropout event in which a non-zero gene expression value

is observed as a zero. If we treat all observed zeros as a

lack of gene expression (therefore, treating the probabil-

ity of a zero being a dropout event as zero), which is the

case if we directly apply PCA to scRNA-seq data, this term

will tend to be inflated. Nonetheless, it has been observed

that the probability of a gene expression value being a

dropout is inversely correlated with the true expression

levels [1, 2]. This means a gene with low expression is

more likely to become a dropout than a gene with high

expression. Using this information, we hypothesize that

we can shrink this dropout-induced inflation by imputing

the expression value of a dropout candidate in the third

term in Eq. 1 with its expected value given the dropout

probability distribution. This is the motivation behind our

new method CIDR (Clustering through Imputation and

Dimensionality Reduction).

The CIDR algorithm

TheCIDR algorithm can be divided into the following five

steps: (1) Identification of dropout candidates, (2) estima-

tion of the relationship between dropout rate and gene

expression levels, (3) calculation of dissimilarity between

the imputed gene expression profiles for every pair of sin-

gle cells, (4) PCoA using the CIDR dissimilarity matrix,

and (5) clustering using the first few principal coordinates

(Additional file 1: Figure S1).

CIDR first performs a logarithmic transformation on

the tags per million (TPM) gene expression for each cell.

The distribution of the log-transformed expression val-

ues in a scRNA-seq data set is typically characterized by

a strong peak at zero, and one or more smaller non-zero

positive peaks representing the expression of expressed

genes [6, 15, 16].

For each cellCi,CIDR finds a sample-dependent thresh-

old Ti that separates the zero peak from the rest of

the expression distribution; Additional file 1: Figure S2a

shows the distribution of tags for a library in a simulated

data set. The red vertical line indicates the threshold Ti.

The entries for cell Ci with an expression of less than Ti

are dropout candidates, and the entries with an expres-

sion of at least Ti are referred to as expressed. We call Ti

the dropout candidate threshold. Note that dropout can-

didates include true dropouts as well as true low (or no)

expressions.

The next step of CIDR involves estimating the rela-

tionship between dropout probability and gene expression

levels. Let u be the unobserved true expression of a fea-

ture in a cell and let P(u) be the probability of it being

a dropout. Empirical evidence suggests that P(u) is a

decreasing function [1, 2]. CIDR uses non-linear least-

squares regression to fit a decreasing logistic function

to the data (empirical dropout rate versus average of

expressed entries) as an estimate for P(u), illustrated by

the tornado plot (Additional file 1: Figure S2b) for the sim-

ulated data set. By using the whole data set to estimate

P(u), which we denote as P̂(u), we make the reason-

able assumption that most dropout candidates in the data

set are actually dropouts, and this allows the sharing of

information between genes and cells.

P̂(u) is used for imputation in the calculation of the

CIDR dissimilarity matrix. The dropout candidates are
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Table 1 Runtime comparison between CIDR and four other algorithms

Data set Size CIDR CIDR (L) prcomp t-SNE RaceID ZIFA

Pancreatic islet 60 5.2 s 5.3 s 2.9 s 8.5 s 48.6 s 40.1min

Simulation 150 1.9 s 2.3 s 2.9 s 14.2 s 20.7 s 32.1min

Human brain 420 6.6 s 8.9 s 13.7 s 1.4min 1.5min 1.1 h

Mouse brain 1800 57.9 s 1.1min 3.2min 23.1min 2.5 ha 1.8 h

CIDR is the default CIDR algorithm implementation with step function simplification, while CIDR (L) is the implementation with the non-simplified logistic function. The

algorithms were run on a standard laptop: 2.8 GHz Intel Core i5 (I5-4308U), 8GB DDR3 RAM)
aRaceID failed to converge for the mouse brain data set

treated as missing values and we will now describeCIDR ’s
pairwise implicit imputation process. Consider a pair of

cells Ci and Cj, and their respective observed expres-

sions oki and okj for a feature Fk , and let Ti and Tj be

dropout candidate thresholds defined as above. Imputa-

tion is applied only to dropout candidates, hence when

oki ≥ Ti and okj ≥ Tj no imputation is required. Now con-

sider the case in which one of the two expressions is below

Ti, say oki < Ti and okj ≥ Tj. Then oki needs to be imputed

and the imputed value ôki is defined as the weighted mean

ôki = P̂
(

okj
)

okj +
(

1 − P̂(okj)
)

oki. (2)

To achieve a fast speed in the implementation of the

above step, we replace P̂(u) with a much simpler step

functionW (u), defined as

W (u) =

{

0, P̂(u) ≤ TW ,

1, P̂(u) > TW ,
(3)

where TW is by default 0.5. We refer toW (u) as the impu-

tation weighting function, as it gives us the weights in

the weighted mean in the imputation, and we refer to the

jump of W (u), i.e., P̂−1(TW ), as the imputation weight-

ing threshold (Additional file 1: Figure S2c). Therefore, the

implemented version of Eq. 2 is

õki = W
(

okj
)

okj +
(

1 − W
(

okj
))

oki, (4)

where õki is used as the imputed value of oki. Lastly, if oki <

Ti and okj < Tj, we set both õki and õkj to be zeros.

We have also implemented CIDR directly using P̂(u)

without the step function simplification. As shown in

Tables 1 and 3, the simplification step indeed speeds up

the algorithm, and Tables 2 and 3 show that the step does

not compromise clustering accuracy.

Then, the dissimilarity between Ci and Cj is calculated

using Eq. 1 with the imputed values. We call this imputa-

tion approach implicit, as the imputed value of a particular

observed expression of a cell changes each time it is paired

with a different cell.

Dimensionality reduction is achieved by performing

PCoA on the CIDR dissimilarity matrix. It is known

that clustering performed on the reduced dimensions

improves the results [17]. CIDR performs hierarchical

clustering on the first few principal coordinates, and

decides the number of clusters based on the Calinski–

Harabasz index [18].

Toy example

Figure 1 shows a toy example that illustrates the effect of

dropouts and how CIDR can improve clustering in the

presence of dropouts. The toy data set consists of eight

cells that form two clusters (the red cluster: c1–c4 and

the blue cluster: c5–c8; Fig. 1a). Dropouts affect mostly

genes with lower expression levels, and hence has a greater

impact on cells in the red cluster. Clustering quality can

be quantified by themean squared distance between every

pair of cells within a cluster (WC distance) and between

clusters (BC distance). The data set is said to have a strong

clustering structure if it has low WC distances and high

BC distances. In other words, a high ratio of BC/WC

distances is an indication of good clustering structure.

As illustrated in Fig. 1a and b, dropouts increase both

WC and BC distances. In this case, it also decreases the

BC/WC ratio. Using the CIDR dissimilarity matrix, we

were able to shrink greatly the mean WC distance, while

mostly maintaining themean BC distance. In other words,

CIDR can shrink the WC distances more than the BC

Table 2 Comparison of clustering accuracy (measured by adjusted rand index) between CIDR and four other algorithms

Data set Size CIDR CIDR (L) prcomp t-SNE RaceID ZIFA

Pancreatic islet 60 0.68 0.42 0.21 0.20 0.22 0.20

Simulation 150 0.92 0.90 0.48 0.02 0 0.00

Human brain 420 0.90 0.88 0.48 0.57 0.39 0.53

Mouse brain 1800 0.52 0.37 0.26 0.62 0.37a 0.32

CIDR is the default CIDR algorithm implementation with step function simplification, while CIDR (L) is the implementation with the non-simplified logistic function
aRaceID failed to converge for the mouse brain data set
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Table 3 Comparison of runtime and clustering accuracy (measured by adjusted rand index) between CIDR and four other algorithms

on a simulation data set with 10,000 cells

Simulation (10K) CIDR CIDR (L) prcomp t-SNE RaceID ZIFA

Time 44.5min 1.5 h 3.1 h 21.8 h >14 day 1.6 daya

Adjusted rand index 0.99 1.00 0.99 0.00 N/Ab 0.09

CIDR is the default CIDR algorithm implementation with step function simplification, while CIDR (L) is the implementation with the non-simplified logistic function. The

algorithms except ZIFA were run on an AWS ec2 r3.2xlarge instance
aZIFA ran out of memory on the AWS ec2 r3.2xlarge instance, and its runtime was recorded from a run on an AWS ec2 r3.8xlarge instance
bRaceID did not complete after 14 days

distances in a dropout-affected data set. As a result, CIDR
is able to preserve better the clustering relationship in the

original non-dropout data set (Fig. 1c).

As a comparison, we have also considered an alterna-

tive method in which dropout candidates were imputed

to the row mean (IRM) of the expressed entries. This is

a straightforward and commonly used approach for deal-

ing with data with missing values. When applying IRM to

our toy data set, we observe that both the BC andWC dis-

tances shrink very significantly (Additional file 1: Figure
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Fig. 1 A toy example to illustrate the effect of dropouts in scRNA-seq data on clustering and how CIDR can alleviate the effect of dropouts. a This

toy example consists of eight single cells divided into two clusters (the red cluster and the blue cluster). Dropout causes the within-cluster distances

among the single cells in the red cluster to increase dramatically, as well as increasing the between-cluster distances between single cells in the two

clusters. b CIDR reduces the dropout-induced within-cluster distances while largely maintaining the BC distances. c The hierarchical clustering

results using the original data set (no dropout), the dropout-affected data set, and the dropout-affected data set analyzed using CIDR. BC between

clusters, DO dropout, scRNA-seq single-cell RNA-seq,WC within clusters. d Using a step function W(x) to estimate the real dropout rate function P(x),

we can show that CIDR always shrinks the expected distance between any two points (x1 and x2), and that the expected shrinkage rate is higher for

those pairs of points that are closer together
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S3). In fact, in this case IRM shrinks the BC distances

muchmore than theWCdistances, and therefore it dilutes

the clustering signal.

This toy example illustrates that the power of CIDR
comes from its ability to shrink dropout-inducedWC dis-

tances while it largely maintain the BC distances. For a

theoretical justification, see “Methods.”

Simulation study

For an evaluation, we created a realistic simulated scRNA-

seq data set. We set the number of markers for each

cell type low to make it a difficult data set to analyze.

Additional file 1: Figure S2a shows the distribution of

tags for one randomly chosen library in this simulated

data set. The spike on the left is typical for scRNA-seq

data sets and the tags in this spike are dropout can-

didates. We compared CIDR with the standard PCA

implemented by the R function prcomp, two state-of-

the-art dimensionality-reduction algorithms (t-SNE and

ZIFA ), and the recently published scRNA-seq clustering

package RaceID. As RaceID does not perform dimension-

ality reduction, the first two dimensions output by t-SNE
were used in the two-dimensional visualization of RaceID.
Since prcomp, ZIFA, and t-SNE do not perform clus-

tering, for comparison, we applied the same hierarchical

clustering procedure used by CIDR. We use the adjusted

rand index [19] to measure the accuracy of clustering.

As shown in Fig. 2, the only algorithm that displays three

clearly recognizable clusters in the first two dimensions

is CIDR. The accuracy of CIDR in cluster membership

assignment is reflected by the adjusted rand index being

much higher than those of the other four algorithms com-

pared (Fig. 2f). CIDR outputs all the principal coordinates

as well as a plot showing the proportion of variation

explained by each of the principal coordinates (Additional

file 1: Figure S2d).

We perturbed the various parameters in the simulation

study to test the robustness of CIDR and examine how its

performance depends on these parameters. As expected,

the adjusted rand index decreases as the dropout level

or the number of cell types increases (Additional file 1:

Figure S4a, c). However, when the adjusted rand index is

low, the performance of CIDR can be improved to close

to 1 by increasing the number of cells (Additional file 1:

Figure S4b, d).

Scalability of CIDR

Given the ever increasing size of scRNA-seq data sets,

and hence the importance of the speed of scRNA-seq data

analysis software, we created a simulated data set of 10,000
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cells to test the scalability of CIDR and the other algo-

rithms. The results are shown in Table 3.CIDR completed

the analysis within 45 min, which is more than four times

faster than the second fastest algorithm prcomp (3.1 h),

and many more times faster than t-SNE (21.8 h), ZIFA
(1.6 days), or RaceID (which did not complete execution

within 14 days). In fact, CIDR is the only algorithm that

completed the analysis within an hour, while achieving a

very high clustering accuracy (adjusted rand index = 1).

Biological data sets

We applied CIDR and the four compared algorithms on

three very different biological data sets, for which the cell

types are reported in the original publications. In these

studies, cell types were determined through a multi-stage

process involving additional information such as cell-type

molecular signatures. For the evaluation and comparison,

we applied each of the compared algorithms only once in

an unsupervised manner to test how well each algorithm

can recover the cell-type assignments in the studies.

Human brain scRNA-seq data set

Figure 3 shows the comparison results for the human

brain scRNA-seq data set [20]. In this data set, there

are 420 cells in eight cell types after we exclude hybrid

cells. Determining the number of clusters is known to be

difficult in clustering; CIDR managed to identify seven

clusters in the brain data set, which is very close to eight,

the number of annotated cell types in this data set. CIDR
also identified the members of each cell type largely cor-

rectly, as reflected by an adjusted rand index close to 0.9,

which is a great improvement over the second best algo-

rithm (Fig. 3f). In the two-dimensional visualization by

CIDR (Fig. 3e), the first principal coordinate separates

neurons from other cells, while the second principal coor-

dinate separates adult and fetal neurons. Note that t-SNE
is non-deterministic and it outputs dramatically differ-

ent plots after repeated runs with the same input and the

same parameters but with a different seed to the random

number generator (Additional file 1: Figure S5).

CIDR allows the user to alter the number of princi-

pal coordinates used in clustering and the final number

of clusters, specified by the parameters nPC and nClus-

ter respectively. We altered these parameters and reran

CIDR on the human brain scRNA-seq data set to test the

robustness of CIDR (Additional file 1: Figure S6). When

these parameters are altered from the default values, the

clusters output by CIDR are still biologically relevant. For

instance, 4 is recommended by CIDR as the optimal nPC,

and in the resulting clustering, fetal quiescent neurons and

fetal replicating neurons are output as two different clus-

ters (Fig. 3e); while when nPC is lowered to 2, these two

types of cells are grouped as one cluster, i.e., fetal neurons

(Additional file 1: Figure S6a).

We will now use the CIDR neuron cluster in the human

brain scRNA-seq data set [20] as an example to illustrate

how to use CIDR to discover limitations in the annota-

tion. In Fig. 3e, the cluster that corresponds best with

the annotated neurons is denoted by crosses; there are

only six disagreements, marked by 1–6 in Fig. 3e, which

are denoted by crosses but not annotated as neurons. We

use cell-type markers from an independent study [21] to

investigate the cause of these disagreements. In Fig. 4,

these six samples are denoted by CIDR 1, CIDR 2, etc., and

as all six samples express neuron markers, CIDR ’s labels
for them are justified. The first five out of these six sam-

ples express both neuron markers and the markers of the

respective annotated cell types, suggesting that each of

these samples contains RNAs from multiple cells, or they

are potentially new cell types. The CIDR principal coor-

dinates plot (Fig. 3e) correctly places these five samples

between neurons and the respective annotated cell types.

The sixth sample expresses only neuron markers, suggest-

ing amistake in the annotation, andCIDR correctly places

this sample in themiddle of the neuron cluster.We carried

out the same analysis using prcomp and ZIFA, and both

methods can only identify CIDR 4 and CIDR 6, marked

by 1 and 2, respectively, in Figs. 3a and c. It is not pos-

sible to carry out this analysis using t-SNE or RaceID,
because they incorrectly group neurons and other cell

types in the same clusters. These errors are illustrated in

Figs. 3b, d, and 4, in which we can see that cells incorrectly

grouped with neurons by t-SNE and RaceID, denoted by

t-SNE 1, t-SNE 2, etc., have little expression in neuron

markers.

Human pancreatic islet scRNA-seq data set

The human pancreatic islet scRNA-seq data set [22] has a

smaller number of cells – 60 cells in six cell types – after

we exclude undefined cells and bulk RNA-seq samples.

CIDR is the only algorithm that displays clear and cor-

rect clusters in the first two dimensions (Fig. 5). Regarding

clustering accuracy, CIDR outperforms the second best

algorithm by more than threefold in terms of the adjusted

rand index (Fig. 5f).

Mouse brain scRNA-seq data set

In the mouse brain scRNA-seq data set [9], there are

1800 cells in seven cell types. Additional file 1: Figure S7

shows the results of the comparison using this data set.

In this case, t-SNE achieves the highest adjusted rand

index, and this is tightly followed by CIDR. Both t-SNE
and CIDR perform much better than the other methods

tested (Table 2 and Additional file 1: Figure S7), but CIDR
(1 minute) is significantly faster than t-SNE (23 min)

(Table 1). Also, we note that in the original publication

[9], cell-type labels were assigned based on a multi-step

procedure involving filtering and applying a modified
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Fig. 3 Performance evaluation with the human brain scRNA-seq data set. In this data set there are 420 cells in eight cell types after the exclusion of

hybrid cells. The different colors denote the cell types annotated by the study [20], while the different plotting symbols denote the clusters output

by each algorithm. a–e Clustering output for each of the five compared algorithms. f The adjusted rand index is used to measure the accuracy of

the clustering output for each of the compared algorithms. Samples labeled by numbers are disagreements between the annotation and the

clustering of the respective algorithm. PC principal coordinates

bi-clustering algorithm, and the clustering results were

visualized by t-SNE.

Discussion and conclusion
CIDR has ultrafast runtimes, which are vital given the

rapid growth in the size of scRNA-seq data sets. The

runtime comparisons between CIDR and the other four

algorithms over five data sets are shown in Tables 1 and 3.

On a standard laptop, it takes CIDR only seconds to pro-

cess a data set of hundreds of cells and minutes to process

a data set of thousands of cells.CIDR is faster than prcomp
and all the other compared algorithms; in particular, it

is more than 50-fold faster than ZIFA, which is another

dimensionality-reduction method that was specifically

designed to deal with dropout in scRNA-seq data analysis.

Data preprocessing steps such as dimensionality reduc-

tion and clustering are important in scRNA-seq data

analysis because detecting clusters can greatly benefit sub-

sequent analyses. For example, clusters can be used as

covariates in differential expression analysis [6], or co-

expression analysis can be conducted within each of the

clusters separately [23]. Certain normalization procedures

should be performed within each of the clusters [5].

Therefore, the vast improvement CIDR has over existing
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Fig. 4 Expression of cell-type markers. Four groups of cell-type

markers from an independent study [21]: neurons, astrocytes,

oligodendrocytes, and endothelial cells. The first 12 columns are

selected samples for which the annotation agrees with the CIDR

clustering. Columns 13–18 are samples that are not annotated as

neurons but clustered with neurons by CIDR, prcomp, or ZIFA.

Columns 19–24 are selected samples that are not annotated as

neurons but clustered with neurons by t-SNE or RaceID. TPM tags per

million

tools will be of interest to both users and developers of

scRNA-seq technology.

Methods

Dropout candidates

To determine the dropout candidate threshold that sep-

arates the first two modes in the distribution of tags

(logTPM) of a library, CIDR finds the minimum point

between the two modes in the density curve of the dis-

tribution. The R function density is used for kernel

density estimation, and the Epanechnikov kernel is used

as the smoothing kernel. For robustness, after calculat-

ing all the dropout candidate thresholds, the top and

bottom 10 percentiles of the thresholds are assigned the

90th percentile and the 10th percentile threshold values,

respectively. CIDR also gives the user the option of cal-

culating the dropout candidate thresholds for only some

of the libraries and in this option the median of the

calculated thresholds is taken as the dropout candidate

threshold for all the libraries.

In the kernel density estimation, CIDR uses the default

bandwidth selection method nrd0 of the R function

density with adjust = 1. We have varied the adjust

parameter and re-calculated the adjusted rand indices for

both the human brain [20] and human pancreatic [22]

scRNA-seq data sets, and Additional file 1: Figure S8

shows that CIDR is robust with respect to this band-

width adjustment. When the adjust parameter is varied

from 0.5 to 1.5, the adjusted rand indices for CIDR for

both the human brain and human pancreatic islet data

sets stay much higher than the next best methods; see

Figs. 3f and 5f.

Dimensionality reduction

PCoA is performed on the CIDR dissimilarity matrix

to achieve dimensionality reduction. Because the CIDR
dissimilarity matrix does not, in general, satisfy the

triangle inequality, the eigenvalues can possibly be nega-

tive. This does not matter as only the first few principal

coordinates are used in both visualization and clustering,

and their corresponding eigenvalues are positive. Nega-

tive eigenvalues are discarded in the calculation of the

proportion of variation explained by each of the principal

coordinates. Some clustering methods require the input

dissimilarity matrix to satisfy the triangle inequality. To

allow integration with thesemethods,CIDR gives the user

the option of a Cailliez correction [24], implemented by

the R package ade4. The corrected CIDR dissimilarity

matrix does not have any negative eigenvalues.

Determining the number of principal coordinates

CIDR implements an algorithm that is a variation of

the scree [25] method for automatically determining the

number of principal coordinates used in clustering. CIDR
outputs a plot that shows the proportion of variation

explained by each of the principal coordinates, and the

scree approach looks for the elbow in the curve beyond

which the curve flattens.

More specifically, CIDR assigns eigenvalues into groups

based on the differences in consecutive eigenvalues. A

new group is created each time a consecutive difference is

greater than a cutoff point determined as a fraction of the

largest difference. If the size of the current group exceeds

a predetermined threshold, the sum of sizes of all but

the current group is returned as the number of principal

coordinates used in clustering.

Users are encouraged to inspect the proportion of vari-

ation plot output by CIDR, and possibly alter the number

of principal coordinates used in clustering.

Clustering

Hierarchical clustering is performed using the R pack-

age NbClust. CIDR ’s default clustering method for

hierarchical clustering is ward.D2 [26], and the number
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Fig. 5 Performance evaluation on the human pancreatic islet scRNA-seq data set. In this data set, there are 60 cells in six cell types after the

exclusion of undefined cells and bulk RNA-seq samples. The different colors denote the cell types annotated by the study [22], while the different

plotting symbols denote the clusters output by each algorithm. a–e Clustering output for each of the five algorithms compared. f The adjusted

rand index is used to measure the accuracy of the clustering output for each of the compared algorithms. PC principal coordinates

of clusters is decided according to the Calinski–Harabasz

index [18]. The algorithm for cluster number decision is

again a variation of the scree algorithm [25]. More specif-

ically, the algorithm examines the second derivative of the

Calinski–Harabasz index versus the number of clusters

(Additional file 1: Figure S2e). Upon user request, CIDR
can output the Calinski–Harabasz index versus the num-

ber of clusters plot; if needed, the user can alter the default

number of clusters.

Simulation study

Simulated log tags are generated from a log-normal dis-

tribution. For each cell type, an expected library, i.e., the

true distribution of log tags, is first generated, and then

dropouts and noise are simulated. For each cell type, the

expected library includes a small number of differentially

expressed features (e.g., genes and transcripts) and mark-

ers. Bymarkers wemean features that are expressed in one

cell type and are zeros in all other cell types.

A probability function π(x), where x is an entry in

the expected library, is used to simulate dropouts. π(x)

specifies how likely an entry is to be a dropout, so

intuitively it should be a decreasing function. In our

simulation, we use a decreasing logistic function. The

parameters of the logistic function can be altered to

adjust the level of dropouts. After simulating dropouts,
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Poisson noise is added to generate the final distribution for

each library.

Biological data sets

Tag tables from three recent scRNA-seq studies (human

brain [20], human pancreatic islet [22], and mouse cere-

bral cortex [9]) were downloaded from the data repository

NCBI Gene Expression Omnibus (GSE67835, GSE73727,

and GSE60361). To ensure good quality, samples with a

library size less than 10,000 were excluded. The raw tag

tables were used as the inputs for CIDR. For the other

dimensionality-reduction and clustering algorithms, rows

with tag sums less than or equal to 10 were deleted. Log

tags, with base 2 and prior count 1, were used as the

inputs for ZIFA, as suggested by the ZIFA documentation.

Data sets transformed by logTPM were used as inputs for

prcomp and t-SNE.

Theoretical justification

Here we show that CIDR always shrinks the expected dis-

tance between two dropout-affected samples (i.e., single

cells), and has a higher expected shrinkage rate for WC

distances than for BC distances. This property ensures

that the CIDR dissimilarity matrix better preserves the

clustering structure in the data set.

For simplicity of discussion, let us assume that dropouts

are zeros. We will now explain why imputation by Eq. 2 in

the main text improves clustering.

Suppose that a particular feature F has true expression

levels x1, x2, and x3 for three cells C1, C2, and C3, respec-

tively. Let us assume x1 ≤ x2 ≤ x3. Let P be the true

dropout probability function, and P̂ be the empirically

estimated dropout probability function used in CIDR.
Both P and P̂ are monotonically decreasing functions, and

satisfy 0 ≤ P, P̂ ≤ 1.

The true dissimilarity between C1 and C2 contributed

by feature F is

Dtrue (C1,C2, F) = (x1 − x2)
2 .

In the presence of dropouts in the observed data, the

expected value of dissimilarity between C1 and C2 con-

tributed by feature F is

E (Ddata (C1,C2, F)) = (1 − P(x1)) (1 − P(x2)) (x1 − x2)
2

+ P(x2) (1 − P(x1)) x
2
1

+ P(x1) (1 − P(x2)) x
2
2.

(5)

The expected value of the CIDR dissimilarity between

C1 and C2 contributed by feature F is

E (DCIDR (C1,C2, F)) = (1 − P (x1)) (1 − P(x2)) (x1 − x2)
2

+ P(x2) (1 − P (x1))
(

1 − P̂(x1)
)2

x21

+ P(x1) (1 − P(x2))
(

1 − P̂(x2)
)2

x22.

(6)

Comparing Eqs. 5 and 6, it is clear that the only dif-

ference is the presence of the factor
(

1 − P̂(xi)
)2

in the

last two terms. Since 0 ≤ P̂(x) ≤ 1, we can deduce that
(

1 − P̂(xi)
)2

≤ 1, which means E
(

DCIDR(C1,C2, F)
)

≤

E
(

Ddata(C1,C2, F)
)

for the pair of cells C1 and C2. This

demonstrates that CIDR shrinks the expected distance

between two points in the presence of dropouts.

Furthermore, let us consider the expected rate of shrink-

age between C1 and C2 contributed by feature F :

Eshrinkage rate(C1,C2, F)

=
E (Ddata (C1,C2, F)) − E (DCIDR (C1,C2, F))

E (Ddata (C1,C2, F))

= 1 −
E (DCIDR (C1,C2, F))

E (Ddata (C1,C2, F))
.

(7)

Let us consider Eshrinkage rate(C1,C2, F) and Eshrinkage rate
(C1,C3, F). Since CIDR always shrinks the expected dis-

tance between two points, and that
(

1 − P̂(x3)
)2

≥
(

1 − P̂(x2)
)2
, our intuition is that Eshrinkage rate(C1,C3, F)

is likely smaller than or equal to Eshrinkage rate(C1,C2, F).

In other words, we hypothesize that the shrinkage rate

between two closer points is larger than or equal to the

shrinkage rate between two points that are further apart.

It is very complex to prove this property algebraically, so

we have conducted an extensive computational study on

the rate of shrinkage. Additional file 1: Figure S9 shows

that for a variety of monotonically decreasing P and P̂, and

for any fixed x1, the expected rate of shrinkage becomes

smaller when x2 becomes larger. In particular, Additional

file 1: Figure S9f shows the case when P̂ is a step func-

tion. We observe that in all tested cases, our hypothesis

holds. Therefore, we are satisfied that in practice CIDR
shrinks WC distances more than BC distances due to this

differential shrinkage rate property.

Additional file

Additional file 1: Supplementary Figures S1–S9. CIDR: Ultrafast and accurate

clustering through imputation for single-cell RNA-seq data (PDF 970 kb)

http://dx.doi.org/10.1186/s13059-017-1188-0
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18. Caliński T, Harabasz J. A dendrite method for cluster analysis. Commun

Stat. 1974;3(1):1–27.

19. Hubert L, Arabie P. Comparing partitions. J Classif. 1985;2(1):193–218.

20. Darmanis S, Sloan SA, Zhang Y, Enge M, Caneda C, Shuer LM, et al. A

survey of human brain transcriptome diversity at the single cell level. Proc

Natl Acad Sci. 2015;112(23):7285–90.

21. Cahoy JD, Emery B, Kaushal A, Foo LC, Zamanian JL, Christopherson KS,

et al. A transcriptome database for astrocytes, neurons, and

oligodendrocytes: a new resource for understanding brain development

and function. J Neurosci. 2008;28(1):264–78.

22. Li J, Klughammer J, Farlik M, Penz T, Spittler A, Barbieux C, et al.

Single-cell transcriptomes reveal characteristic features of human

pancreatic islet cell types. EMBO Rep. 2016;17(2):178–87.

23. Trapnell C. Defining cell types and states with single-cell genomics.

Genome Res. 2015;25(10):1491–8.

24. Cailliez F. The analytical solution of the additive constant problem.

Psychometrika. 1983;48(2):305–8.

25. Cattell RB. The scree test for the number of factors. Multivar Behav Res.

1966;1(2):245–76.

26. Murtagh F, Legendre P. Ward’s hierarchical agglomerative clustering

method: which algorithms implement Ward’s criterion? J Classif.

2014;31(3):274–95.

•  We accept pre-submission inquiries 

•  Our selector tool helps you to find the most relevant journal

•  We provide round the clock customer support 

•  Convenient online submission

•  Thorough peer review

•  Inclusion in PubMed and all major indexing services 

•  Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central 
and we will help you at every step:

https://github.com/VCCRI/CIDR
https://github.com/VCCRI/CIDR/releases/tag/0.1.5
https://github.com/VCCRI/CIDR-examples
https://github.com/VCCRI/CIDR-comparisons

	Abstract
	Keywords

	Background
	Results
	Motivation
	The CIDR algorithm
	Toy example
	Simulation study
	Scalability of CIDR

	Biological data sets
	Human brain scRNA-seq data set
	Human pancreatic islet scRNA-seq data set
	Mouse brain scRNA-seq data set


	Discussion and conclusion
	Methods
	Dropout candidates
	Dimensionality reduction
	Determining the number of principal coordinates
	Clustering
	Simulation study
	Biological data sets
	Theoretical justification

	Additional file
	Additional file 1

	Acknowledgments
	Funding
	Availability of data and materials
	Authors' contributions
	Competing interests
	Ethics approval and consent to participate
	Publisher's Note
	References

