
CIF 3: Model-based Engineering
of Supervisory Controllers

D.A. van Beek, W.J. Fokkink, D. Hendriks, A. Hofkamp, J. Markovski,
J.M. van de Mortel-Fronczak, and M.A. Reniers

Manufacturing Networks Group
Eindhoven University of Technology, Eindhoven, The Netherlands

Abstract. The engineering of supervisory controllers for large and com-
plex cyber-physical systems requires dedicated engineering support. The
Compositional Interchange Format language and toolset have been devel-
oped for this purpose. We highlight a model-based engineering framework
for the engineering of supervisory controllers and explain how the CIF
language and accompanying tools can be used for typical activities in that
framework such as modeling, supervisory control synthesis, simulation-
based validation, verification, and visualization, real-time testing, and
code generation. We mention a number of case studies for which this
approach was used in the recent past. We discuss future developments
on the level of language and tools as well as research results that may be
integrated in the longer term.

1 Introduction

A supervisory controller coordinates the behavior of a (cyber-physical) system
from discrete-event observations of its state. Based on such observations the
supervisory controller decides on the activities that the uncontrolled system can
safely perform or on the activities that (are more likely to) lead to acceptable
system behavior. Engineering of supervisory controllers is a challenging task
in practice, amongst others because of the high complexity of the uncontrolled
system.

In model-based engineering, models are used in the design process, instead of
directly implementing a solution. The Compositional Interchange Format (CIF)
is an automata-based modeling language that supports the entire model-based
engineering development process of supervisory controllers, including modeling,
supervisory controller synthesis (deriving a controller from its requirements),
simulation-based validation, verification, and visualization, real-time testing, and
code generation. CIF 3 is a substantially enhanced new version of CIF, after CIF
1 [BRRS08] and CIF 2 [NBR12]. It has been improved based on feedback from
industry, as well as new theoretical advances. The various versions of CIF have
been developed in European projects HYCON, HYCON2, Multiform, and C4C.
CIF is actively being developed by the Manufacturing Networks Group1 of the

1 Until recently the group was named Systems Engineering Group.



Mechanical Engineering department, at the Eindhoven University of Technology
(TU/e) [BHSR13]. The CIF tooling (see cif.se.wtb.tue.nl) is available under
the MIT open source license (see opensource.org/licenses/MIT).

In Section 2, we introduce a simplified version of the framework for model-
based engineering of supervisory controllers. In Section 3, we outline the role
CIF and its related tools play in this framework. The most prominent features
of CIF and its tools are highlighted there. In Section 4, we briefly discuss some
industrial cases where the framework and tooling have been applied. Finally, in
Section 5, we present a number of enhancements that are being considered for
future addition to the CIF language and its tool set.

2 Model-based Engineering of Supervisory Controllers

Fig. 1 depicts an overview of model-based engineering of supervisory controllers.
Our starting point is a model (uncontrolled hybrid plant) of the uncontrolled
system. The goal is to obtain a supervisory controller either by supervisory
controller synthesis or by design. A hybrid observer forms an interface be-
tween the plant model and its supervisory controller. The first purpose of the

Hybrid

observer

controller

Supervisory

hybrid plant

Uncontrolled

Observer-based
supervisor

sensor
events

actuator
events

variables
sensor

variables
actuator

D
is

cr
et

e
T

im
ed

/h
y
b

ri
d

Fig. 1. Overview of model-based
engineering of supervisory con-
trollers.

observer is to interface the variable-based con-
tinuous world of the plant to the event-based
world of the discrete-event controller. Its sec-
ond purpose is the generation of additional
events, from the state observed at the hybrid
plant. They can be interpreted as virtual sen-
sors by the controller, abstracting away timed
behavior. Examples are a timeout, or an event
that signals that a certain combination of val-
ues of physical quantities has occurred.

Fig. 2 depicts the workflow of the sim-
plified framework for model-based engineer-
ing of supervisory controllers. First, the mod-
eler manually designs an uncontrolled hybrid
plant model, and a hybrid observer model.
Next, from these two models, an abstrac-
tion of the uncontrolled system (uncontrolled
discrete-event plant) is manually created.

From the uncontrolled discrete-event plant and discrete-event control require-
ments, a discrete-event supervisory controller is synthesized (generated). This
controller is safe by construction. To also ensure that all relevant behavior is
present, additional liveness verification can be performed on the supervisory
controller and the uncontrolled discrete-event plant. For timed verification, the
uncontrolled hybrid plant and hybrid observer can be used instead of the un-
controlled discrete-event plant. The automated synthesis and verification enable
the designer to perform rapid iterative corrections and improvements of the
plant model and the control requirements. The supervisory controller is com-

2



Uncontrolled
discrete-event

plant

Uncontrolled

hybrid plant

Hybrid

observer

synthesis

Controller

requirements

Control

controller

Supervisory

Verification

Image

Observer-
based

supervisor

Code

generation

visualization

Simulation/

Fig. 2. Workflow for model-based engineering of supervisory controllers.

bined with the hybrid observer, resulting in the actual controller (observer-based
supervisor). This model is used for model-based validation, by means of real-
time interactive simulation and visualization, based on a user-supplied image
of the system. This brings a higher confidence that the models fulfill expected
properties. The mentioned simulation-based visualization can also be used for
validating the other models, such as the discrete-event and hybrid plant models.

As a final step, actual real-time control code is generated, for the implemen-
tation of the controller.

3 The Role of the CIF Language and Tools

The CIF language (see [BHSR13]) is based on networks of hybrid automata
with invariants, and non-linear and/or discontinuous differential algebraic equa-
tions. The abilitiy of CIF to model large-scale systems is due to the orthogonal
combination of parametrized process definition and instantiation (reuse, hier-
archy), grouping of arbitrary components in sub-scopes, and an import mecha-
nism. Components (automata) in a CIF model can interact in several different
ways: multi-party synchronization via shared events, allowing communication
via shared data; monitor automata to provide the functionality of nonblocking
input events as defined in input-output automata [LSV01]; shared variables (lo-
cal write, global read). Furthermore, CIF supports urgent events (events that
must happen as soon as they are enabled by all synchronizing automata), a rich
set of data types and expressions (e.g. lists, sets, dictionaries, tuples), functions,
stochastic distributions, conditional updates, and multi-assignments.

CIF is well suited to model plants and supervisors in the application do-
main of cyber-physical systems (the blocks uncontrolled hybrid plant, uncon-
trolled discrete-event plant, hybrid observer, and control requirements in Fig. 2)
as collections of automata using both discrete events and continuous-time behav-
ior (see the cases mentioned in Section 4) in the same style as hybrid automata
[ACH+95,Hen00,AGH+00,LSV01]. Developing a CIF model for the uncontrolled

3



hybrid plant is an iterative process of developing a model and using simulation
and visualization to increase confidence in the model.

The main difference between CIF and the other currently available hybrid
automata-based languages and toolsets, is that CIF covers the complete inte-
grated tool chain for the development of supervisory controllers for complex
cyber-physical systems. For the specification of CIF models for plants, require-
ments, observers, etc, an Eclipse-based (eclipse.org) textual editor is available,
which features syntax highlighting, and continuous background syntax and type
checking.

An important feature of the CIF toolset is the simulator. It can be employed
to validate each of the CIF models mentioned before in isolation. Additionally
it may be used to validate the controller when put in the context of the un-
controlled hybrid plant (as indicated in Fig. 2). Based on a CIF model, the
simulator generates code for high-performance visual simulation. The simulator
allows interactive exploration of the behavior of the controlled system, by using
the interactive visualization-based simulation mentioned in the previous section.
This requires user-supplied SVG vector images (w3.org/TR/SVG11). The simula-
tor is highly configurable and versatile, allowing for automatic testing of various
use cases, and the production of various forms of output.

To support event-based supervisory controller synthesis, CIF features plant
and requirement automata, marker predicates [CL07], as well as controllable
and uncontrollable events. Furthermore, the tools include efficient implementa-
tions of the traditional event-based supervisory controller synthesis algorithms
as presented in [WR87,CL07].

For verification, a transformation of CIF models to Uppaal [NRS+11] is avail-
able. Compositionality has been a central concern when designing CIF, because
a compositional semantics facilitates property-preserving model transformations
and compositional verification techniques. Currently, over twenty transforma-
tions for various purposes are available ([BHSR13]), some via CIF 2.

Interoperability with other languages and tools is achieved by means of model
transformations, external functions, and co-simulation via the Matlab/Simulink
S-function interface [The05]. Programmable Logic Controller (PLC) code gener-
ation conforming to the IEC 61131-3 standard [JT10] is also available, allowing
for implementation of CIF controllers in actual systems.

4 Applications

CIF has been used in an industrial context for a number of years now. We
mention some of the more prominent applications.

– Development of a coordinator for maintenance procedures for a high-tech
Océ printer [MJB+10]

– Improving evolvability of a patient communication control system using
state-based supervisory control synthesis [TBR12]

– Application of supervisory control theory to theme park vehicles [FMSR12]
– Supervisory control of MRI subsystems [Geu12]

4



– Design of a supervisory controller for a Philips MRI-scanner [Dij13]
– Design and real-time implementation of a supervisory controller for baggage

handling [Kam13]

Although these projects showed different parts of the suggested model-based
engineering framework, together they demonstrate all mentioned activities.

Currently, a project on control and performance analysis of wafer flow in
wafer handlers is carried out at ASML, and a project on design and implemen-
tation of a certified controller with multiple control levels for a baggage handling
system is carried out for Vanderlande Industries. Also in these projects supervi-
sory controller synthesis and verification are considered.

5 Future Developments

CIF is constantly being improved and extended. A planned extension of CIF is
the addition of point-to-point communication by means of channels. Our experi-
ence with industrial cases has shown that these are well suited to model physical
movements of objects. The channels will be fully integrated into the language.
For instance, supervisors will be able to prohibit channel communications.

For verification, we intend to support a larger class of CIF models for the
transformation to Uppaal. We will develop model transformations to other model
checking tools as experimented with in [MR12a]. For performance analysis we are
considering model transformations to MRMC and/or PRISM [MR12b,MER13].

The Manufacturing Networks Group also works on extensions of supervisory
control theory, such as the domain of plant models to which synthesis may be
applied, and the expressivity of the logic for requirements. See [HFR13] for a
first publication of this line of research. As soon as such extensions reach an
acceptable level of maturity, they are incorporated in the CIF tooling.

Acknowledgments The research leading to these results has received funding from
the EU FP7 Programme under grant agreements no. FP7-ICT-223844 (C4C), no.
FP7-ICT-224249 (MULTIFORM), and the Network of Excellence HYCON (IST-
2002-2.3.2.5). The research leading to these results has received funding from the
European Union Seventh Framework Programme [FP7/2007-2013] under grant
agreement no. 257462 HYCON2 Network of excellence.

References

[ACH+95] R. Alur, C. Courcoubetis, N. Halbwachs, T. A. Henzinger, P.-H. Ho,
X. Nicollin, A. Olivero, J. Sifakis, and S. Yovine. The algorithmic anal-
ysis of hybrid systems. Theoretical Computer Science, 138(1):3–34, 1995.

[AGH+00] R. Alur, R. Grosu, Y. Hur, V. Kumar, and I. Lee. Modular specification of
hybrid systems in CHARON. In HSCC’00, pages 6–19. Springer, 2000.

[BHSR13] D. A. van Beek, D. Hendriks, L. Swartjes, and M. A. Reniers. Report on
the extensions of the CIF and transformation algorithms. Technical Report
HYCON Deliverable D6.2.4, HYCON2, 2013.

5



[BRRS08] D. A. van Beek, M. A. Reniers, J. E. Rooda, and R. R. H. Schiffelers.
Concrete syntax and semantics of the Compositional Interchange Format
for hybrid systems. In IFAC World Congress 2008, pages 7979–7986. IFAC,
2008.

[CL07] C. G. Cassandras and S. Lafortune. Introduction to Discrete Event Systems.
Springer, 2nd edition, 2007.

[Dij13] D. van Dijk. Supervisory control of a Philips MRI-scanner. Master’s thesis,
Eindhoven University of Technology, 2013.

[FMSR12] S. T. J. Forschelen, J. M. van de Mortel-Fronczak, R. Su, and J. E. Rooda.
Application of supervisory control theory to theme park vehicles. Discrete
Event Dynamic Systems, 22(4):511–540, 2012.

[Geu12] J. W. P. Geurts. Supervisory control of MRI subsystems. Master’s thesis,
Eindhoven University of Technology, 2012.

[Hen00] T. A. Henzinger. The theory of hybrid automata. In Verification of Digital
and Hybrid Systems, volume 170 of NATO ASI Series F: Computer and
Systems Science, pages 265–292. Springer, 2000.

[HFR13] A. van Hulst, W. J. Fokkink, and M. A. Reniers. Maximal synthesis for
Hennessy-Milner Logic. In ACSD’13, pages 1–10. IEEE, 2013.

[JT10] K. H. John and M. Tiegelkamp. IEC 61131-3: Programming Industrial
Automation Systems. Springer, 2nd edition, 2010.

[Kam13] R. H. J. Kamphuis. Design and real-time implementation of a supervisory
controller for baggage handling at Veghel Airport. Master’s thesis, Eind-
hoven University of Technology, 2013.

[LSV01] N. Lynch, R. Segala, and F. Vaandrager. Hybrid I/O automata revisited.
In HSCC’01, pages 403–417. Springer, 2001.

[MER13] J. Markovski, E. S. Estens Musa, and M. A. Reniers. Extending a synthesis-
centric model-based systems engineering framework with stochastic model
checking. ENTCS, 296:163–181, 2013.

[MJB+10] J. Markovski, K. G. M. Jacobs, D. A. van Beek, L. J. A. M. Somers, and
J. E. Rooda. Coordination of resources using generalized state-based re-
quirements. In WODES’10, pages 300–305. IFAC, 2010.

[MR12a] J. Markovski and M. A. Reniers. An integrated state- and event-based
framework for verifying liveness in supervised systems. In ICARCV’12,
pages 246–251. IEEE, 2012.

[MR12b] J. Markovski and M. A. Reniers. Verifying performance of supervised plants.
In ACSD’12, pages 52–61. IEEE, 2012.

[NBR12] D. E. Nadales Agut, D. A. van Beek, and J. E. Rooda. Syntax and semantics
of the compositional interchange format for hybrid systems. Journal of Logic
and Algebraic Programming, 82(1):1–52, 2012.

[NRS+11] D. E. Nadales Agut, M. A. Reniers, R. R. H Schiffelers, K. Y. Jørgensen,
and D. A. van Beek. A semantic-preserving transformation from the Com-
positional Interchange Format to UPPAAL. In IFAC World Congress 2011,
pages 12496–12502. IFAC, 2011.

[TBR12] R. J. M. Theunissen, D. A. van Beek, and J. E. Rooda. Improving evolvabil-
ity of a patient communication control system using state-based supervisory
control synthesis. Advanced Engineering Informatics, 26(3):502–515, 2012.

[The05] The MathWorks, Inc. Writing S-functions, version 6.
http://www.mathworks.com, 2005.

[WR87] W. M. Wonham and P. J. Ramadge. On the supremal controllable sub-
language of a given language. SIAM Journal on Control and Optimization,
25(3):637–659, 1987.

6


