
ORIGINAL RESEARCH
published: 30 May 2017

doi: 10.3389/fnins.2017.00309

Frontiers in Neuroscience | www.frontiersin.org 1 May 2017 | Volume 11 | Article 309

Edited by:

Huajin Tang,

Sichuan University, China

Reviewed by:

Gregory Kevin Cohen,

Western Sydney University, Australia

Teresa Serrano-Gotarredona,

Consejo Superior de Investigaciones

Científicas, Spain

*Correspondence:

Luping Shi

lpshi@tsinghua.edu.cn

Specialty section:

This article was submitted to

Neuromorphic Engineering,

a section of the journal

Frontiers in Neuroscience

Received: 22 November 2016

Accepted: 16 May 2017

Published: 30 May 2017

Citation:

Li H, Liu H, Ji X, Li G and Shi L (2017)

CIFAR10-DVS: An Event-Stream

Dataset for Object Classification.

Front. Neurosci. 11:309.

doi: 10.3389/fnins.2017.00309

CIFAR10-DVS: An Event-Stream
Dataset for Object Classification
Hongmin Li 1, Hanchao Liu 1, Xiangyang Ji 1, 2, Guoqi Li 1 and Luping Shi 1*

1Department of Precision Instrument, Center for Brain-Inspired Computing Research, Tsinghua University, Beijing, China,
2Department of Automation, Tsinghua University, Beijing, China

Neuromorphic vision research requires high-quality and appropriately challenging

event-stream datasets to support continuous improvement of algorithms and methods.

However, creating event-stream datasets is a time-consuming task, which needs to be

recorded using the neuromorphic cameras. Currently, there are limited event-stream

datasets available. In this work, by utilizing the popular computer vision dataset

CIFAR-10, we converted 10,000 frame-based images into 10,000 event streams using a

dynamic vision sensor (DVS), providing an event-stream dataset of intermediate difficulty

in 10 different classes, named as “CIFAR10-DVS.” The conversion of event-stream

dataset was implemented by a repeated closed-loop smooth (RCLS) movement of

frame-based images. Unlike the conversion of frame-based images by moving the

camera, the image movement is more realistic in respect of its practical applications.

The repeated closed-loop image movement generates rich local intensity changes in

continuous time which are quantized by each pixel of the DVS camera to generate

events. Furthermore, a performance benchmark in event-driven object classification

is provided based on state-of-the-art classification algorithms. This work provides a

large event-stream dataset and an initial benchmark for comparison, which may boost

algorithm developments in even-driven pattern recognition and object classification.

Keywords: neuromorphic vision, event-based vision, dynamic visions sensor (DVS), address event representation,

frame-free vision

INTRODUCTION

Neuromorphic vision based on neuromorphic cameras (Delbruck, 2008; Lichtsteiner et al.,
2008; Serrano-Gotarredona and Linares-Barranco, 2013; Yang et al., 2015) which converts visual
information to address-event-representation (AER; Boahen, 2000) event streams has garnered
increasing attention. For the pattern recognition and object classification, high-quality datasets
provide challenging benchmarks to support the continuous development and comparison of
sophisticated and robust algorithms and methods (Sotiris et al., 2006). In computer vision, a
number of well-established datasets i.e., CIFAR-10 (Krizhevsky, 2009), MNIST (Lecun et al., 1998),
and Caltech101 (Fei-Fei et al., 2007) are available for researchers. In addition, they can obtain the
frame-based images or create frame-based datasets on the internet or by using digital cameras.
Although many high-quality datasets have promoted the development of the computer vision
field (Tan et al., 2015), a very limited number of datasets are available for the researchers in
neuromorphic vision. Contrary to generating conventional computer vision datasets, it is very
difficult to develop a neuromorphic vision dataset by collecting data online. Thus, creating datasets
for neuromorphic vision researchers is an important yet challenging task. Generally, a high-quality
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event-stream classification dataset should provide a challenge
for the state-of-the-art event-based algorithms. It needs to be
difficult enough to prevent the current algorithms from achieving
near perfect accuracy even in the face of significant algorithmic
optimization. But, the challenge should not be too difficult to
allow any significant improvements to achieve a relatively good
accuracy.

Converting an existing frame-based dataset into an event-
stream version saves time without trying to find a number of
objects of different classes to record and label. Using popular
image datasets enables an easier comparison between the two
communities. Recently, two popular image datasets have been
converted into event-stream datasets. One is the MNIST dataset
which was converted into two neuromorphic vision datasets,
i.e., MNIST-DVS and N-MNIST (Orchard et al., 2015; Serrano-
Gotarredona and Linares-Barranco, 2015). In the MNIST-DVS
dataset, 10,000 digits were chosen from the standard 70,000-
picture dataset and displayed on an LCD monitor at three
different scales for about 2–3 s. In conversion of the N-MNIST
dataset, all the digits of MNIST were converted into the
event streams with an asynchronous time-based image sensor
(ATIS). There are few background noise events because all
the digits of MNIST are placed on a uniform background.
As is known, high accuracy rate has been achieved on the
two neuromorphic versions of MNIST dataset (Orchard et al.,
2015; Zhao et al., 2015). The other is the Caltech101 dataset
which contains 100 image classes with all converted (Orchard
et al., 2015). The natural images of Caltech101 are more
complicated than the digits of MNIST. Being more challenging,
100 different categories of the dataset make it more difficult
for the improvement and optimization of current event-driven
algorithms. However, although the event-stream versions of
the two image datasets have provided good benchmarks in
neuromorphic vision, a neuromorphic dataset of moderate
difficulty with less object classes than N-Caltech101 and more
complicated objects than digits is still lacking. CIFAR-10 is amore
complicated frame-based image dataset than MNIST while it has
fewer categories than the Caltech101. Current state-of-the-art
classification accuracy for frame-based algorithms on CIFAR-10
is 96.53% (Springenberg et al., 2015). In this paper, the CIFAR-10
is converted into a moderate-level neuromorphic vision dataset
in 10 classes.

There are two ways that are usually used in the conversion
of neuromorphic data. One way is to convert the frame-based
images into event streams by simulation (Masquelier and Thorpe,
2007; O’Connor et al., 2013). Simulation is not completely equal
to the realistic recording with an event-based camera. If an
image is captured with a frame-based camera, then the temporal
information is inherently lost. Besides, noise in the real world is
not presented in simulation. The second way is to generate the
event streams with a neuromorphic camera (Orchard et al., 2015;
Serrano-Gotarredona and Linares-Barranco, 2015). Garrick
Orchard (Orchard et al., 2015) employed the camera movement
of saccade by developing an actuated pan-tilt platform to move
an ATIS camera in front of a LCD monitor. Compared with the
camera movement, image movement (Serrano-Gotarredona and
Linares-Barranco, 2015) is easier to control. And in addition,

the image movement is closer to practical applications than the
pan-tilt method. For example, the neuromorphic cameras are
suitable for monitoring pedestrians or other moving objects.

In this paper, we created an event-steam dataset named
“CIFAR10-DVS” by converting an popular frame-based image
dataset “CIFAR-10” using a DVS camera (Lichtsteiner et al.,
2008). The camera has the spatial resolution of 128 × 128. In
the dataset name “CIFAR10-DVS,” “DVS” represents the DVS
camera as the same as MNIST-DVS. The CIFAR-10 dataset
consists of 60,000 32 × 32 color images in 10 classes, with 6,000
images per class. In the conversion, 1,000 images per class were
selected which is the same to MNIST-DVS. The converted event
streams of the CIFAR-10 images have more complicated spatio-
temporal structures than MNIST-DVS. The fewer categories
make the created CIFAR10-DVS simpler than N-Caltech101.
Therefore, the CIFAR10-DVS is a moderate-level event-stream
dataset providing space for continuous improvements of event-
driven algorithms. Image movement is employed to produce
the intensity changes within the visual field of the event-
based camera. When the change of local log intensity exceeds
a pre-defined threshold, an event is generated. Unlike the
camera movement method, the image movement is more
easily implemented by programing on computers and closer
to practical applications. In this work, a repeated closed-loop
smooth (RCLS) movement of image was used to produce the rich
oriented gradients of intensity captured by the neuromorphic
camera. This work provides a large event-stream dataset and
an initial benchmark for comparison, which may boost the
event-driven algorithm developments in object recognition of
neuromorphic vision.

The remainder of this paper is divided into four parts. Section
Materials and Methods presents the recording system consisting
of hardware system and software system. Section Data Properties
presents the statistical properties of the CIFAR10-DVS dataset.
In Section Performance Metric, the recognition accuracies of
the existing algorithms are presented before wrapping up with
conclusion in Section Conclusion.

MATERIALS AND METHODS

In this section, the principle and methodology of converting
the event-stream dataset is introduced. No complex hardware
modules are required in our recording method. In Section
Repeated Closed-Loop Smooth (RCLS) Movement, the RCLS
movement is presented which is the core of our approach. Section
Recording System introduces the hardware and softwaremodules
of the recording system. The proposed dataset can be accessed
online1.

Repeated Closed-Loop Smooth (RCLS)
Movement
In each DVS recording, the event cluster forms the shape of
the object. Generally, for a specified image, more events except
the surrounding noise events make the spatio-temporal shape of
the object clearer. To generate more events, more local intensity

1https://figshare.com/s/d03a91081824536f12a8
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changes should be captured by the event camera. In this work,
the RCLS image movement is used to convert the oriented
gradients of the image into the local relative intensity changes
in the view field of the DVS camera. Because of the response
time of the neuromorphic device, a smooth movement at an
appropriate speed is beneficial to generate more events. In fact,
the smooth movement is also associated with human vision
because we cannot sense the leaping objects very well due to the
limited speed of visual processing (Thorpe et al., 1996). The DVS
camera is specifically designed such that the pixel responses to the
temporal contrast of intensity and generates an event whenever
the contrast exceeds a threshold contrast. The repeated closed-
loop image movement in continuous time generates rich local
intensity changes and each pixel of the DVS camera continuously
quantizes the local relative intensity changes to generate events.
The event rate or event number during a time interval is
proportional to the temporal contrast which is defined as

TCON =
d(ln(I(x, y)))

dt
=

1

I(x, y)

dI(x, y)

dt
(1)

where I(x, y) demotes brightness at the (x, y) position of the view
field of the neuromorphic camera. Suppose that the view field
of the DVS camera is a 2D intensity field and the frame-based
image is located in the intensity field as shown in Figure 1A.
Each pixel value denotes the intensity of the corresponding
position in the intensity field. The image movement converts
the intensity gradients of the image to the intensity changes
over time in the intensity field. Each pixel independently and in
continuous time quantizes the relative intensity changes of the
corresponding point in the intensity field to generate events. The
intensity changes produced by the closed-loop movement are
shown in Figure 1B. The closed-loop movement consists of four
paths which mimic the saccade of the biological vision. Intensity
gradients of two directions are captured by the neuromorphic
camera synchronously. For each point in the intensity field, the
intensity change over time is represented as follows,

dI(x, y)

dt
=

dI(x, y)

dx
·
dx

dt
+

dI(x, y)

dy
·
dy

dt
= Ix · Vx + Iy · Vy (2)

FIGURE 1 | (A) Image movement along x axis and y axis simultaneously over

time in the 2D intensity field. The moving image generates the local intensity

changes in both x direction and y direction at the same time. (B) The RCLS

movement of an image. Four paths make up the closed-loop movement. Each

path is at the angle of 45◦.

where Ix, Iy represent the intensity gradients of the image with
respect to x and y spatial co-ordinates on the 2D intensity field
respectively. Vx and Vy are the velocities of the moving image in
the x and y directions. The Equation (2) describes how the image
movement results in the intensity change of the intensity field.

Combing Equations (1,2), the relationship between temporal
contrast and image movement can be described as

TCON =
1

I
(

x, y
)

(

Ix · Vx + Iy · Vy

)

= Ilnx Vx + Ilny Vy (3)

where Ilnx =
d(ln(I(x,y)))

dx
and Ilny =

d(ln(I(x,y)))
dy

denote the

derivatives of logarithmic intensity field on the pixel with respect
to x and y, respectively. Then images with edges of higher contrast
tend to result in more events in their event-stream recordings.
Because of the response time of the device, the movement should
not be too fast.

Recording System
A recording system which implements the RCLS movement
is developed. A LCD monitor is used to display the moving
images. The recording system contains both hardware system
and software system. The core of the hardware system is the DVS
camera which converts the moving objects into event streams.
The bias values of the used DVS camera are shown in Table 1.
The camera sits on a bracket which makes the middle of the
sensor a high of 250 mm to line up with the vertical center of the
monitor. A monitor is connected with a host PC. Different from
Orchard et al. (2015), our recording system need no motors and
control circuit. The recording system is placed in a dark location
to suppress any stray light of the environment.

The software system running on the host PC contains an
image display component and an AER recording component
of the DVS output, as shown in Figure 2. The image display
component is based on Python programming language. The
python version of CIFAR-10 dataset is downloaded and each
color image is constructed from the three RGB matrixes. The
image display component contains an image display program

TABLE 1 | Bias values of the used DVS camera.

Name of bias Value Brief description

Pr 13.5 p First stage (“Photoreceptor”)

cas 242.5 p First stage cascode

foll 229.0 p Source follower separating first and second stages

diff 135.4 n Second stage (“Differential”)

diffOn 2.2 u Threshold for On events

diffOff 592.7 p Threshold for Off events

injGnd 5.0 u Injected ground

req 714.6 n Pull down for passive load inverters in digital AER

pixel circuitry

Refr 26.9 p Refractory period

PuX 75.3 u Pull up on request from X arbiter

PuY 36.6 u Pull up on request from Y arbiter

reqPd 75.3 u Pull down on chip request
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and an image movement control program. The image display
program displays each image in a window. The display window
is the so-called intensity field. In the display window, each
image moves in order to generate the intensity changes. During
the initialization, the selected CIFAR-10 images are loaded and
constructed. The movement parameters are set and the display
window are created and located on an appropriate position of the
monitor so that the DVS camera can cover themaximum possible
view field on the display window. During the image change, a
new image is constructed from the dataset after 2,000 ms since
the image movement is over so that the next recording will not
be influenced by the last image movement. Besides, the current
recording is stored during this process. During the image resizing
process, an image is upsampled from original 32 × 32 to 512
× 512 using bicubic interpolation. The recordings will be very
fuzzy when low-resolution and tiny images are displayed on the
monitor. Through resizing, the edges and textures of the images
are magnified to better fit into the visual field of the DVS camera.
Each closed loop contains four moving paths. During the path
1, path 2, path 3, path 4 processes, the upscaled image moves
uniformly at a certain speed. During each image movement, the
closed loop is repeated several times (i.e., 6 times). After the path

4 of the final circle, display of the image is over and a message is
sent to the AER recording program. The direction of each path is
not strictly horizontal or vertical, but at an angle of 45◦, which
ensures that intensity gradients of two directions are captured
synchronously.

The AER recording component is based on jAER (Delbrück,
2006), an open source software interface between DVS camera
and host PC provided by Tobi Delbrück’s group. In our recording
program, an inter-process communication with the image
movement control program is implemented to synchronize the
displaying of images and recording of the event streams. When
a new image is display on the LCD monitor, the recording
program starts to capture the AER events. When the closed-loop
movement of an image is over, the process will store the event
stream automatically.

Table 2 shows the dynamics of the image movement. We
discretized each path in five segments using four internal points
in order to realize the smooth movement. At each point, there
will be an image shown for about 10 ms which is fast than the
screen refresh of 60Hz. Then on each path, themoving image will
be captured at one of the five points after screen refresh, which
adds some randomness to the recordings as well. Each recording

FIGURE 2 | (A) Hardware system of the event stream recording system. A DVS camera is placed viewing the LCD monitor. (B) Image movement control and display

part, (C) AER event stream recording part.

TABLE 2 | Parameters of image movement control component during the closed-loop movement.

State Start time Start (pixel) End (pixel) Speed (pixel/s)

(ms) X Y X Y X Y

Change and resize image 2,000 0 0 0 0 0 0

Path 1 50 0 0 10 −10 200 −200

Path 2 100 10 −10 20 0 200 200

Path 3 150 20 0 10 10 −200 200

Path 4 200 10 10 0 0 −200 −200
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takes about 3,200 ms to be captured (1,200 ms of the closed-loop
movement plus 2000 ms for transition between images).

The original CIFAR-10 consists of 60,000 color images in 10
classes, with 6,000 images per class. In our conversion, 10,000
images are randomly selected from the CIFAR-10 with 1,000
images per class which is the same with the MNIST-DVS. The
second reason of recording one-sixth of the original frame-based
image dataset is the huge size of the recordings in storage.

RESULTS

Data Properties
Hidden statistical properties have an important influence on
the performance of event-driven classification algorithms. All
the recordings of the CIFAR10-DVS were analyzed to explore
some of the basic statistical properties (i.e., the mean and
standard deviation of the ON and OFF events, the mean and
deviation of the x- and y- addresses, the mean and deviation of
the x and y range) as shown in Table 3. Other neuromorphic
vision datasets, i.e., MNIST-DVS2, N-MNIST & N-Caltech1013,

2http://www2.imse-cnm.csic.es/caviar/MNISTDVS.html
3www.garrickorchard.com/datasets

were also analyzed to check the same statistical properties for
comparison. Unlike other event-stream datasets, in CIFAR10-
DVS dataset, there are relatively more OFF events than ON
events. This may result from the fact that the CIFAR-10 images
have complex objects and backgrounds which more easily boost
OFF events. Besides, event-based sensors are almost impossible
to produce the same number of ON and OFF events. The
properties of the used DVS camera may be more sensitive to
the negative threshold events. Both the mean x-addresses and y-
addresses depend on the image size and the image content, which
is a good feature for classification. The ratio of number of ON
events to OFF events depends on the different objects, which can
subsequently be used as a feature for classification.

A spectral analysis on the timestamp sequence of a recording
is performed as shown in Figure 3A. A clear peak at 60Hz
introduced by the 60 Hz LCD screen refresh rate comes out of
the noise floor. In Serrano-Gotarredona and Linares-Barranco
(2015), a adjusting method is proposed to remove the refresh
noise. In this work, the adjusting method is used to remove
the refresh noise of our datasets. Figure 3B shows the spectrum
of the resulting re-timed sequence, where the 60Hz peak has
been removed. In addition, multiple low-frequent peaks also
disappeared, which is a part of the adjustment process.

TABLE 3 | Statistical properties of four neuromorphic vision datasets.

Dataset CIFAR10-DVS MNIST-DVS N-MNIST N-Caltech101

Statistic Mean σ Mean σ Mean σ Mean σ

ON events 86,551 29,182 36,522 934.04 2,084 574 56,936 28,039

OFF events 11,852 23,815 37,219 964.22 2,088 623 58,180 30,021

X mean 67.24 11.46 62.11 2.43 17.66 5.05 100.72 57.78

Y mean 63.84 6.08 64.28 2.78 18.10 6.38 81.23 46.15

X range 126.99 0.02 126.99 0.12 34.00 0.00 198.53 43.08

Y range 127 0 125.99 0.28 34.00 0.00 155.88 26.76

FIGURE 3 | A Fourier analysis showing the impact of LCD screen refresh rate. (A) Top shows the timestamp sequence spectrum of the recorded AER events with a

clear peak at 60 Hz. The mean inter-spike difference is 3.20 us and standard deviation is 5.24 us. Bottom shows the firing rate curve of the event stream. (B) Top

shows the spectrum of the same recording after readjusting the timestamps to remove the 60 Hz peak. Timestamps are generated randomly with the same mean

inter-spike time difference and standard deviation as in (A).
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Figure 4 shows the reconstructed frames of 12 randomly
selected example recordings per category. The reconstruction is
done in the time range of 100 ms. Due to the different properties
of edges and contrast of different images of CIFAR-10, some
recordings are clear in the reconstructed frames, while some are
a little blurry. Figure 5 shows the mean firing rate across time for
overall categories in CIFAR-10. It is observed that the mean firing
rate of each category is around a particular constant with slight
periodic perturbation. The standard deviation of the firing rate

is a large value. This phenomenon may result from the diversity
of the intensity gradients of the images of the original CIFAR-
10 dataset. In the conversion process, each image generates a
different number of events, which results in diversity of the firing
rates.

Performance Metric
Many event-driven classification algorithms have been proposed
to solve the classification task of the DVS recordings (Chen

FIGURE 4 | A 12 ×10 matrix of reconstructed frames of randomly selected recordings in CIFAR10-DVS. From left to right columns are AER recordings of 10

categories of airplane, automobile, bird, cat, deer, dog, frog, horse, ship, truck, respectively. In the reconstruction, events over a certain time range are integrated into

the corresponding pixel values.
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FIGURE 5 | The mean firing rate (solid line) and mean ± standard deviation firing rate (dotted line) for the CIFAR10-DVS categories.

et al., 2012; Zhao et al., 2015; Peng et al., 2016). Here the
classification results using two state-of-the-art algorithms are
briefly presented to provide an initial classification benchmark.
Similar to Orchard et al. (2015), these algorithms were used
without any modification as not to put the focus on the
tuning and optimization of the algorithms in this work. The
algorithms include a spike-based forward network (Zhao et al.,
2015), and support vector machine (SVM) classifier using bag of
events (BOE) feature (Peng et al., 2016). In addition, K-Nearest

Neighbor (KNN) classifier with eight statistical properties was
used to provide the initial results for comparison. The detailed
description of each algorithm can be found in the following
algorithm descriptions.

Classification by Statistics
The statistical properties of the event streams can be used as
features for classification. A KNN classifier with k = 10 was
used to predict the class of each recording. Ninety percent of
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the recordings were randomly selected as the training set, and
the rest were used as the testing set. Eight statistical properties,
i.e., Number of events (NoE), Number of ON events (NoONE),
Number of OFF events (NoOFFE), Ratio of positive events to
negative events (RoPN), Mean of X address (MNoXA), Mean of
Y address (MNoYA), Standard deviation of X address (SDoXA),
Standard deviation of Y address (SDoYA), were used as the
feature for classification. In addition, all the statistics were
combined into a feature vector and used for classification. Ten-
fold cross validations were carried out. The mean and standard
deviation of the 10 classification results for each statistical feature
were calculated for comparison.

Spiking Forward Neural Network (SFNN)
The event-driven neural network (Zhao et al., 2015) is a
two-step (feature extraction and classifier design) classification
method. Bio-inspired cortex-like features are extracted using
a convolution-based network of a hierarchy of two layers (S1
and C1). In S1 layer, the event-driven convolution with a
forgetting mechanism is introduced for continuously event-
driven processing. Neurons of S1 layer compete with local
neighbors through the MAX operation to strive for survival in
C1 layer. In C1 layer, the survived neurons represent some salient
bar features. Furthermore, a motion symbol detector module
consisting of a leaky integration neuron and a peak detection
unit is introduced to accumulate the events into a pattern. The
data flow of the feature extraction stage in the SFNN system can
be summarized as motion events → S1 maps → C1 maps. S1
and C1 maps are updated for each incoming spike. A network of
Gabor filters with each filter modeling a certain size of receptive
field is used to convolve the input events. In our paper, the
filter network has four scales (ranging from three to nine with
a step of two) and four orientations (0◦, 45◦, 90◦, 135◦). For the
classification of the extracted feature, a tempotron learning rule
is used. Tempotron uses the dynamic LIF neuron model which
generates a postsynaptic potential for each input spike, which has
a fast-rising and slow decaying shape. The number of inputs of
the tempotron network is equal to the number of C1 responses.
The membrane time constant in the tempotron was set to 0.02,
the learning rate was 0.1, and the number of tempotron neurons
for each class was 10.

Bag of Event (BOE)
The BOE (Peng et al., 2016) method is a statistical learning
algorithm. BOE is a statistical feature which is used as the
representation of each recording. BOE combines two measures
of information content. One measurement is the event frequency
which is the estimation of the probability that a certain event
is actually observed. The other is the speciality measure which
reflects the amount of information after observing a specific
event. BOE demonstrated a discriminative feature for the
combination of the two measurements. Based on the BOE
feature, a Support Vector Machine (SVM) classifier was used for
the classification of the AER recordings. SVM is a maximum
margin classifier by choosing the hyper-plane so that the distance
between the hyper-plane and the nearest data point on each side
is maximized. In addition, a random forest classifier (Breiman,

2001) was used to classify the BOE representation of the AER
recordings. In random forest, an ensemble of trees (5,000 trees in
this work) are grown and voted for the most popular class, which
results in significant improvements in classification accuracy.

Discussion
Table 4 shows that classification results using some statistical
features are very close to chance (10% for a 10-class problem).
In the statistical classification, feature representation is very
important. In general, discriminative features make good
predictors of class membership for the classes we are trying
to distinguish. For example, having wheels or not distinguishes
people from cars, but doesn’t distinguish cars from trains. Good
classification performance will be achieved when distribution of
the statistical feature in one class has little overlap with that
in another class. As all the used statistical features are of one
dimension, the feature distributions of different classes have
much overlap. Moreover, many recordings of different classes
may share the same feature values. For example, the mean values
of MNoXA for all classes distributes in a relatively larger range
than that of MNoYA feature, while the standard deviations of
MNoXA for all the classes are larger than that of MNoYA. As
such, classification performance using MNoXA is better than
using MNoYA. The combination of all the statistics achieved
better classification accuracy than the single statistical feature,
which demonstrates that it is a more discriminative feature.

As shown in Table 4, both SFNN and BOT methods achieve
better performance than using statistics of the recordings.
However, the classification accuracies using the two methods
are also relatively low. The reason is that the two classification
methods were designed originally for the easier datasets (i.e.,
MNIST-DVS). However, the samples of CIFAR10-DVS have
more complex objects than digits in MNIST-DVS. As is known,
the CIFAR-10 dataset provides a more challenging task than
the MNIST task in conventional computer vision. Furthermore,
we tried to improve the performance by using random forest
classifier on BOE features. When 5,000 trees in the random
forest were grown, the classification accuracy was increased to
29.45%. This dataset provides plenty of room for continuous
improvements of event-driven algorithms.

TABLE 4 | Classification accuracies for CIFAR10-DVS.

STATISTICS KNN (K=10) Mean accuracy ± std

Number of events 13.34 ± 0.75%

Number of ON events 12.12 ± 1.03%

Number of OFF events 13.26 ± 0.99%

Ratio of positive events to negative events 11.71 ± 1.02%

Mean of x address 15.01 ± 1.34%

Mean of y address 10.61 ± 0.64%

Standard deviation of x address 14.15 ± 1.03%

Standard deviation of y address 12.70 ± 0.82%

All 16.80 ± 1.10%

SFNN 22.10 ± 0.87%

BOE-SVM 24.21 ± 1.23%

BOE-Random Forest 29.67 ± 1.34%
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Finally, we evaluated the influence of the number of closed
loops on the recognition rate and processing time as shown in
Table 5. In this evaluation, 1,000 recordings with 100 recordings
per class were randomly selected from the CIFAR10-DVS dataset.
BOE and SVM based classification method is used in this
experiment. Six different numbers of closed loops (i.e., 1, 2, 3, 4,
5, 6) were evaluated with six experiments. In each experiment,
90% of the experimental recordings are used for training and
the rest are used as testing set. Each experiment was repeated
ten times with different training and testing data partitions. The
processing time is the sum of the time cost of feature extraction,
training time and testing time. The experiments were carried out
on a PC with an Intel(R) Core(TM) i5-3317U-1.7GHz CPU and
8-GB RAM. The final results contain the mean and standard
deviation, of the classification accuracies and the processing time.
The results show that as the number of closed loops increases,
the recognition rate increases while the computational time cost
increases as well.

CONCLUSION

In this paper, we provide a new neuromorphic vision dataset
named CIFAR10-DVS for event-based object classification. The
conversion of event-stream dataset is implemented using a
RCLS movement of the images. The image movement results
in the intensity changes in the visual field. The closed-loop
image movement in continuous time converts the rich intensity
gradients of the image into the intensity changes. The local
relative changes of intensity are quantized by the corresponding
pixels of the neuromorphic camera to generate event streams.
Image movement is easily implemented by programming on
computer and is close practical applications. For example, a fixed
event-based camera responds only to the moving objects, which
reduces the information redundancy. Our recording system can
be used to easily convert other large frame-based image datasets
with the total time of conversion scaling linearly with the number
of images in the dataset. The CIFAR10-DVS dataset will become
a data resource for a broad range of event-based or point-based
related researches. The possible applications are as follows.

A Benchmark of Event-Driven Object
Recognition
CIFAR10-DVS provides a more difficult dataset than event-
stream recordings of MNIST dataset and a relatively simpler

TABLE 5 | Recognition and processing time with increasing number of closed

loops.

Number of Recognition accuracy Processing time

closed loops (mean ± std) (mean ± std)

1 16.71 ± 3.87% 201.58 ± 0.51 s

2 18.64 ± 3.83% 424.09 ± 0.89 s

3 19.76 ± 3.15% 642.43 ± 1.24 s

4 20.80 ± 4.13% 865.87 ± 1.61 s

5 21.76 ± 3.22% 1052.9 ± 1.08 s

6 22.70 ± 3.32% 1545.2 ± 2.50 s

benchmark than N-Caltech101 with fewer categories. It will be
a new and challenging benchmark dataset for the event-driven
object recognition. The classification accuracies of the three
algorithms presented in Section Discussion provide an initial
benchmark to improve upon. The classification results on the
dataset leave much room for improvement.

Human Vision Model Research
Each recording of CIFAR10-DVS is captured by a silicon retina
which mimics the information coding mechanism of human
retina. The all-or-none property of the event is similar to the
spike in nervous system. In human vision, visual information
is converted by the biological retinas into spikes and processed
by the high-level visual cortex. The event-spike datasets may be
used as the visual sensing module in the human vision model.
For example, the question of how the biological neural network
read and process the spike-based information may be researched
using the event-spike data. Furthermore, based on neuromorphic
cameras, brain-inspired computation and cognition system can
be used to process the event-stream data. For example, brain-
inspired hardware system can be used to solve the classification
task of CIFAR10-DVS.

A Data Resource of Spatio-Temporal Point
Process
In statistics, a point process is a type of random process consisting
of a set of isolated points either in time or geographical space.
Each event in the event-stream data is like a point in the spatio-
temporal point pattern. Point process whose values are point
patterns is often used to model many kinds of data, such as spikes
of neurons in computational neuroscience (Brown et al., 2004),
positions of trees or plants in the forestry and plant ecology.
Each event-stream data is a 3-dimensional spatio-temporal event
patterns which can be modeled using point process theory.
CIFAR10-DVS provides a set of labeled spatio-temporal point
patterns. One interesting research direction is to use point
process theory to model the spatio-temporal event streams.
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