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Rationale: Cigarette smoke (CS) is the primary cause of chronic
obstructive pulmonary disease (COPD), an effect that is, in part,
due to intense oxidant stress. Clearance of apoptotic cells (efferocy-
tosis) is a critical regulator of lung homeostasis, which is defective in
smokers and in patients with COPD, suggesting a role in disease
pathogenesis.
Objectives: We hypothesized that CS would impair efferocytosis
through oxidant-dependent activation of RhoA, a known inhibitor
of this process.
Methods: We investigated the effect of CS on efferocytosis in vivo and
ex vivo, using acute, subacute, and long-term mouse exposure
models.
Measurements and Main Results: Acute and subacute CS exposure
suppressed efferocytosis by alveolar macrophages in a dose-
dependent, reversible, and cell type–independent manner, whereas
more intense CS exposure had an irreversible effect. In contrast, CS
did not alter ingestion through the Fcg receptor. The inhibitory
effect of CS on apoptotic cell clearance depended on oxidants,
because the effect was blunted in oxidant-resistant ICR mice, and
was prevented by either genetic or pharmacologic antioxidant
strategies in vivo and ex vivo. CS inhibited efferocytosis through
oxidant-dependent activation of the RhoA–Rho kinase pathway
because (1) CS activated RhoA, (2) antioxidants prevented RhoA
activation by CS, and (3) inhibitors of the RhoA–Rho kinase pathway
reversed the suppressive effect of CS on apoptotic cell clearance
in vivo and ex vivo.
Conclusions: These findings advance the hypothesis that impaired
efferocytosis may contribute to the pathogenesis of COPD and
suggest the therapeutic potential of drugs targeting the RhoA–Rho
kinase pathway.
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Intense oxidant stress is responsible for many of the deleterious
effects of cigarette smoke (CS), the most important risk factor
for the development of chronic obstructive pulmonary disease
(COPD) (1). Each puff of a cigarette contains 1015 free radicals,

including O2
2 and NO, that combine to form peroxynitrite,

a potent mediator of lipid peroxidation (1). CS also acutely
suppresses production of antioxidant defenses, such as glutathi-
one, and may prevent adequate induction of antioxidants after
chronic exposure (2, 3). The importance of oxidant stress in
the pathogenesis of COPD is highlighted by (1) the known
susceptibility of oxidant-sensitive mouse strains to develop CS-
induced emphysema (4, 5), (2) the marked sensitivity of mice
deficient in Nrf2 (a master transcription factor for 50 antioxi-
dant and cytoprotective genes) to develop smoke-induced
emphysema (6, 7), (3) the protective effect of strategies aimed
at enhancing the antioxidant capacity in the murine lung (8), (4)
epidemiologic studies linking dietary antioxidant intake with
lung function (9, 10), and, although still controversial, the ability
of N-acetylcysteine to decrease the incidence of COPD exac-
erbations (11).

CS may also contribute to the pathogenesis of COPD by
interfering with the removal of apoptotic cells (termed effer-
ocytosis) (12). Efferocytosis is a highly conserved process that
plays an important role in the maintenance of lung homeostasis
by regulating the inflammatory response (13–16), antiprotease
activity (17), and several key growth factors (18, 19). Kirkham
and colleagues first suggested that CS might negatively impact
efferocytosis by showing that CS extract indirectly suppresses
macrophage efferocytosis through modification of extracellular
matrix proteins (20). In a series of human studies, Hodge and
colleagues found that efferocytosis is not only defective in
smokers, but is also defective in patients with COPD, thus
suggesting a direct pathogenic link (21–23).

Efferocytosis depends on the interaction of a variety of
apoptotic cell ligands, soluble bridging molecules, phagocytic
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Clearance of apoptotic cells is impaired in smokers and
patients with chronic obstructive pulmonary disease (COPD).
However, the mechanism by which cigarette smoke (CS)
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mediated activation of the RhoA–Rho kinase pathway,
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receptors, and intact signaling pathways (24). These receptors
ultimately regulate efferocytosis by altering the intracellular
balance of several Rho GTPases, including Rac-1 and RhoA
(25, 26). Rho GTPases are molecular switches that cycle
between inactive (GDP-bound) and active (GTP-bound) con-
figurations (27). Rac-1 is activated by the phosphatidylserine
receptor(s) and the lipoprotein-related receptor and positively
regulates efferocytosis by inducing formation of cell ruffles,
which are characteristic of both efferocytosis and macropino-
cytosis (28–32). In contrast, active RhoA negatively regulates
efferocytosis, through its downstream effector Rho kinase, by
inducing the formation of stress fibers, focal adhesions, and cell
spreading (25, 26).

Two important observations were made that led to the
current study. First, Chiba and colleagues showed that CS
increases RhoA activity, a negative regulator of efferocytosis,
in the bronchial smooth muscle in the rat lung (33); and second,
McPhillips and colleagues demonstrated that tumor necrosis
factor (TNF)-a inhibits efferocytosis in vitro through oxidant-
dependent activation of RhoA (34). Therefore, we hypothesized
that CS would impair efferocytosis through oxidant-dependent
activation of RhoA, and examined this possibility by both
in vivo and ex vivo approaches. Our results indicate that CS
impairs efferocytosis in a manner that can be reversible or
permanent, depending on the conditions, and that during acute
exposure CS inhibits efferocytosis through oxidant-dependent
activation of the RhoA–Rho kinase pathway. Some of the
results of these studies have been previously reported in the
form of an abstract (35).

METHODS

Materials

See the online supplement for details.

Experimental Animals

Mice were housed and studied under institutional animal care and use
committee–approved protocols at the animal facility of the National
Jewish Medical and Research Center and the Veterans Administration
Medical Center (Denver, CO). Experiments were performed on 8- to
12-week-old, age-matched, female C57BL/6J mice (Jackson Laborato-
ries, Bar Harbor, ME) and ICR mice (Taconic, Hudson, NY), 1-year-old,
age- and sex-matched FVB/N mice (36), and 4–month-old, age- and
sex-matched mice overexpressing the human gene for extracellular
superoxide dismutase (ecSOD OE) (37). TNF-a double receptor
knockout mice (B6;129S-Tnfrsf1atm1ImxTnfrsf1btm1Imx/J; stock # 003243)
and controls (B6129SF2/J; stock # 101045) were purchased from
Jackson Laboratories.

Cigarette Smoke Exposure

Mice were exposed to CS in a TE-10c smoking chamber (Teague
Enterprises, Woodland, CA) in the core facility at the National Jewish
Medical and Research Center (38). The CS was composed of 11%
mainstream smoke and 89% side-stream smoke and delivered at
a concentration ranging from 25 to 120 mg/m3 total particulate matter
(TPM), depending on the experiment, for 5 hours/day, 5 days/week. 3R4F
research cigarettes were purchased from the Kentucky Tobacco Research
and Development Center (University of Kentucky, Lexington, KY).

Primary Cell Isolation and Culture

Human neutrophils, murine thymocytes, and alveolar macrophages
were isolated as previously described (39–42). See the online supple-
ment for additional details.

Cell Lines and Culture

The human Jurkat leukemia T-cell line was obtained from the
American Type Culture Collection (Manassas, VA) and cultured in

RPMI 1640 (MediaTech Inc, Manassas, VA) with 10% heat-inactivated
fetal bovine serum (Gemini Bio Products, Sacramento, CA) and
supplemented with 2 mM L-glutamine, penicillin (100 U/ml), and
streptomycin (100 g/ml) (Sigma-Aldrich, St. Louis, MO) and incubated
at 378C in 5% CO2.

Induction of Apoptosis

Jurkat T cells, human neutrophils and murine thymocytes were in-
duced to undergo apoptosis by ultraviolet irradiation as previously
described (40, 43). See the online supplement for additional details.

IgG Opsonization

Jurkat T cells were opsonized by adding IgG anti-human CD45
antibody (BD Pharmingen, San Diego, CA), at 1 mg/L 3 106 cells, to
the medium and incubating at 48C for 30 minutes before the experi-
ment.

In Vitro Phagocytosis Assays

Phagocytosis was determined by visual inspection of samples and was
expressed as the phagocytic index, as described (44). A minimum of
300 alveolar macrophages was counted per condition in duplicate. In all
cases, during analysis, the reader was blinded to the sample identifica-
tion. See the online supplement for additional details.

In Vivo Phagocytosis Assays

Apoptotic thymocytes were instilled intratracheally as previously de-
scribed (40, 42, 45). See the online supplement for additional details.

RhoA Activity Assay

See the online supplement for detailed methods.

Statistics

For ex vivo experiments, means were analyzed using analysis of
variance (ANOVA) for multiple comparisons. When ANOVA in-
dicated significance, Dunnett’s method was used to compared groups
with an internal control. For all other experiments in which two
conditions were being compared, a Student t test assuming equal
variance was used. All data were analyzed with JMP (version 3)
statistical software for the Macintosh (SAS Institute Inc., Cary, NC)
and are presented as means 6 SEM. In vivo experiments were
analyzed by Wilcoxon rank sum test for matched pairs, or by the
Mann-Whitney test for unmatched pairs. When three or more groups
were analyzed, a Kruskal-Wallis test with Dunn’s test for post hoc
analysis was used. All animal data were analyzed with Prism 5 for Mac
OS X (GraphPad Software Inc, La Jolla, CA) and are presented with
box plots showing the median and ranges.

RESULTS

Cigarette Smoke Exposure Impairs Uptake of Apoptotic Cells

(Efferocytosis) in Vivo

Efferocytosis is defective in both smokers and patients with
COPD, suggesting that the inability to remove apoptotic cells
may contribute to the pathogenesis of COPD. To determine
whether CS also impairs efferocytosis in mice, we used our
in vivo model, which has been used previously to evaluate
apoptotic cell clearance by alveolar macrophages (40, 42, 45).
C57BL/6J mice were exposed to air or CS for 5 hours at either 25
or 100 mg/m3 total particulate matter (TPM). These doses were
chosen, because 25 mg/m3 TPM has been used to mimic second-
hand CS exposure in mice (46) and 100 mg/m3 TPM has been
used in mouse models of emphysema (6). Ten million apoptotic
thymocytes were then instilled intratracheally at time points
ranging from 0 to 5 days after smoke exposure. One hour after
instillation, whole lung lavage was performed and ingestions of
apoptotic cells by alveolar macrophages were scored, using
a phagocytic index. Two examples of apoptotic cells being
ingested by alveolar macrophages are shown in Figure 1A.
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Low-dose CS (25 mg/m3 TPM) decreased efferocytosis immedi-
ately (Day 0) after CS exposure (Figure 1B; eight mice per
group), but lost statistical significance at 1 day (P 5 0.09; four
mice per group). In contrast, moderate-dose CS (100 mg/m3

TPM) decreased efferocytosis at all time points out to 2 days
postexposure, but lost significance at 3 days or greater (Figure
1C; six to eight mice per group). Importantly, CS also decreased
the clearance of apoptotic neutrophils at 1 day postexposure,
indicating that the suppressive effect of CS was cell-type in-
dependent (see Figure E1 in the online supplement; eight mice
per group). Therefore, acute CS exposure impairs efferocytosis
in vivo in a reversible and cell type–independent manner.

We also tested the effect of CS on efferocytosis in vivo, using
both subacute (Figure 2A) and chronic models (Figure 2B).
In the subacute model, C57BL/6J mice were exposed to CS at
100 mg/m3 TPM at 5 hours/day for 5 days and were then assessed
for alveolar macrophage efferocytosis at 1 and 4 weeks post-
exposure. Efferocytosis was defective at 1 week but not at 4
weeks after CS exposure (Figure 2A; four to eight mice per
group), indicating that the suppressive effect of CS was still
reversible. We then examined efferocytosis in a chronic CS
exposure model that is normally used to study the development
of lung cancer (36). In these experiments, FVB/N mice were
exposed to air or CS at 100 mg/m3 TPM for the first week, and
then increased to 250 mg/m3 TPM for a total exposure period
of 22 weeks. Mice were then returned to conventional caging
for 20 weeks, before experimentation. Keith and colleagues

previously reported on the development of tumors in these mice
(36). Interestingly, alveolar macrophage efferocytosis continued
to be defective in these long-term CS-exposed mice despite the
fact that 5 months had lapsed since their last exposure (Figure
2B; four to six mice per group). Compared with air-exposed
mice, the lungs of CS-exposed mice contained abundant clusters
of pigmented macrophages and airway-associated inflammatory
infiltrates consistent with terminal bronchiolitis (Figure 2C).
Patches of pigmented macrophages containing at least 10 macro-
phages were significantly more common in the lungs of CS-
exposed mice, compared with air-exposed mice. (Figure 2D).
These results suggest that efferocytosis might become perma-
nently defective at some critical level of CS exposure that causes
lung disease reminiscent of the respiratory bronchiolitis that
develops in human COPD. Because FVB/N mice were used in
long-term experiments (Figures 2B and 2C) and C57BL/6J mice
were used in shorter term experiments (Figures 1 and 2A), we
cannot rule out the possibility that strain differences may have
contributed to these results.

CS Exposure Impairs Efferocytosis ex Vivo

Ex vivo experiments were also performed on alveolar macro-
phages to confirm the suppressive effect of CS on efferocytosis.
These were important experiments, because CS is known to
increase the numbers of alveolar macrophages, which could
falsely lower the alveolar macrophage phagocytic index by
affecting the ratio of alveolar macrophages to apoptotic cells.

Figure 1. Cigarette smoke (CS) specifically impairs efferocytosis in vivo. To determine the effect of CS on efferocytosis in vivo, C57BL/6J mice were

exposed to air or CS at either 25 mg/m3 total particulate matter (TPM) or 100 mg/m3 TPM for 5 hours and were then examined for their ability to

remove apoptotic cells, using our in vivo clearance assay (42). At time points ranging from 0 to 5 days after CS exposure, 10 million apoptotic murine
thymocytes were instilled intratracheally into anesthetized mice. Sixty minutes later, bronchoalveolar lavage was performed, cytospins were stained, and

alveolar macrophage ingestions of apoptotic cells were quantified by calculating a phagocytic index (PI). (A) Photomicrographs (original magnification,

340) show alveolar macrophages that have ingested instilled apoptotic thymocytes (arrows). (B) Low-dose CS (25 mg/m3 TPM) decreased efferocytosis
immediately postexposure (Day 0) and trended toward a decrease at 1 day postexposure, compared with air control. *Significantly different from Day 0

control (P 5 0.008); †different from Day 1 control (P 5 0.07). (C ) Moderate-dose CS (100 mg/m3 TPM) decreased efferocytosis at 0, 1, and

2 days postexposure. *Significantly different from Day 0 control (P 5 0.02), Day 1 control (P 5 0.03), and Day 2 control (P 5 0.03).
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Importantly, at 24 hours postexposure, CS did not significantly
increase total leukocytes or leukocyte subsets in the bronchoal-
veolar lavage fluid (Table 1). These studies were performed
with alveolar macrophages that had been exposed in vivo to air
or CS at 100 mg/m3 TPM for 5 hours. Whole lung lavage was
then performed and alveolar macrophages were cultured ex
vivo overnight before experimentation. The advantage of this
approach is that it controls for the number and ratio of alveolar
macrophages to apoptotic cells. We found that acute CS
exposure decreased alveolar macrophage efferocytosis ex vivo
(Figure 3A), even after 24 hours of culture without additional
exposure to CS, echoing our in vivo results (Figure 1).

Using this ex vivo model, experiments were then performed to
determine whether the suppressive effect of CS was specific for

efferocytosis or could be generalized to other forms of phagocy-
tosis. As in Figure 3A, alveolar macrophages were exposed to air
or CS for 5 hours in vivo, cultured ex vivo overnight, and were
then tested for their ability to ingest viable cells, apoptotic cells,
or IgG-coated viable cells that are ingested through the Fcg

receptor (41). CS inhibited efferocytosis ex vivo, but had no effect
on ingestion of viable or IgG-opsonized cells (Figure 3B).
Therefore, CS suppresses efferocytosis in vivo and ex vivo, but
has no effect on uptake through the Fcg receptor.

CS Suppresses Efferocytosis through an Oxidant

Stress–dependent Mechanism

Mouse strains vary in their sensitivity to oxidant stress and
correspondingly vary in their propensity to develop emphysema
when exposed to CS (4–7, 47, 48). We hypothesized that CS
would have a diminished capacity to suppress efferocytosis in
ICR mice, which are relatively resistant to oxidant stress and
the development of CS-induced emphysema (4, 48), compared
with the oxidant-sensitive C57BL/6J mice already tested in
Figure 1 (5, 47, 48). ICR mice were exposed to air or CS at
100 mg/m3 TPM for 5 hours and then tested for their ability to
clear apoptotic cells in vivo at 0, 1, and 2 days postexposure
(Figure 4A; seven or eight mice per group). Consistent with our
hypothesis, CS nonsignificantly inhibited efferocytosis in ICR
mice immediately postexposure (P 5 0.07), whereas it impaired
efferocytosis in the oxidant-sensitive C57BL/6 mice at all of
these time points (Figure 1C).

We tested this hypothesis further using both pharmacologic
and genetic overexpression strategies. C57BL/6J mice were

Figure 2. Subacute and long-term cigarette smoke (CS) impairs efferocytosis in vivo. (A) C57BL/6J mice were exposed to air or CS at 100 mg/m3

total particulate matter (TPM) for 5 days at 5 hours/day in a subacute exposure model, and were then examined for their ability to ingest apoptotic

cells in vivo. Subacute CS exposure decreased efferocytosis at 1 week, but not at 4 weeks postexposure. *Significantly different from Week 1 air
control (P 5 0.02). (B) In a long-term CS exposure model, FVB/N mice were exposed to air or CS at 100 mg/m3 TPM for the first week, and then

increased to 250 mg/m3 TPM for a total exposure period of 22 weeks. Mice were then returned to conventional caging for 20 weeks before being

examined for their ability to clear apoptotic human neutrophils. *Significantly different from control (P 5 0.02; Mann-Whitney test). (C ) Collections
of pigmented macrophages (arrows) were diffusely present within the lungs of FVB/N mice exposed to CS (left: original magnification, 310; right:

original magnification, 320). (D) Patches of macrophages containing 10 or more macrophages were significantly more common in the lungs of CS-

exposed mice, compared with air-exposed mice. *Significantly different from control (P 5 02).

TABLE 1. CELLULAR COMPOSITION OF BAL 24 HOURS
AFTER EXPOSURE TO CIGARETTE SMOKE AT 100 mg/m2

TPM FOR 5 HOURS

Cellular Subsets Exposure Status Mean 6 SD

Leukocutes/mouse (n54) Non-smoked 4.5 3 105 6 2.4 3 105

Smoked 6.5 3 105 6 2.7 3 105

Neutrophils/mouse (n54) Non-smoked 3.0 3 103 6 2.4 3 103

Smoked 5.8 3 103 6 2.3 3 103

Macrophages/mouse (n54) Non-smoked 4.4 3 105 6 2.3 3 105

Smoked 6.4 3 105 6 2.7 3 105

Lymphocytes/mouse (n54) Non-smoked 3.4 3 103 6 2.2 3 103

Smoked 5.6 3 103 6 2.7 3 103

All comparisons of non-smoked vs. smoked were nonsignificant; Wilcoxon Test
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treated with the superoxide dismutase mimetic and peroxyni-
trite scavenger, manganese(III) 5,10,15,20-tetrakis(4-benzoic
acid)porphyrin (MnTBAP), administered intraperitoneally at
5 mg/kg three times; once before and after CS exposure and then
again the next morning before experimentation (49). Consistent
with our hypothesis, CS suppressed efferocytosis in vivo at 1 day
postexposure, but this effect was prevented by treatment with
MnTBAP (Figure 4B; three or four mice per group). For genetic
studies we used extracellular superoxide dismutase (ecSOD)
overexpressor mice. In these mice ecSOD activity is approxi-
mately threefold higher and oxidant-dependent lung injury is
attenuated after challenge with hyperoxia, hemorrhage, LPS, and
bleomycin (37, 50–53). CS again impaired efferocytosis at 1 day
postexposure, but this effect was not seen in ecSOD over-
expressor mice (Figure 4C; seven or eight mice per group).

The role of oxidant stress was examined with the ex vivo
system described previously (Figure 3A and B), in which alveolar
macrophages were exposed to air or CS in vivo for 5 hours and
then removed and cultured ex vivo overnight before experimen-
tation. Before each experiment, alveolar macrophages were

pretreated ex vivo with N-acetylcysteine (NAC) overnight, or
with MnTBAP for 4 hours before experimentation. At all
concentrations tested, both N-acetylcysteine (Figure 4D) and
MnTBAP (Figure 4E) prevented CS from inhibiting efferocyto-
sis. These data indicate that, in vivo and ex vivo, CS impairs
efferocytosis through an oxidant-dependent mechanism.

CS Impairs Efferocytosis through Oxidant Stress–dependent

Activation of the RhoA–Rho Kinase Pathway

On the basis of previous studies (33, 34), we hypothesized that
CS suppresses efferocytosis through oxidant-dependent activa-
tion of RhoA, a Rho GTPase that potently inhibits efferocytosis
by activating its downstream effector, Rho kinase. To answer
this question, we first measured RhoA activity in alveolar
macrophages taken from C57BL/6J mice immediately and
1 day after exposure to CS for 5 hours, compared with untreated
control mice. CS exposure increased RhoA activity 1 day
postexposure, but had no significant effect immediately after
exposure (Figure 5A). To determine whether CS-activated
RhoA occurred through an oxidant-dependent mechanism,
RhoA activity was measured in alveolar macrophages taken
from C57BL/6J mice treated with and without MnTBAP (as
described in Figure 4F). CS again increased RhoA activity, but
not in the presence of MnTBAP (Figure 5B), confirming a role
for oxidative stress in the activation of RhoA.

Finally, experiments were performed to determine whether
increased RhoA activity was directly responsible for CS-impaired
efferocytosis in alveolar macrophages. As in previous experi-
ments, alveolar macrophages were isolated from the lungs of
CS-exposed C57BL/6J mice, cultured overnight, and then pre-
treated with C3 transferase for 2 hours to inhibit RhoA, or with
Y-27632 for 4 hours to inhibit the downstream effector Rho
kinase. Both C3 transferase (Figure 5C) and Y-27632 (Figure
5D) prevented CS from inhibiting efferocytosis. Likewise, pre-
treatment of C57BL/6J mice with Y-27632 also prevented CS-
impaired efferocytosis in vivo 24 hours after CS exposure
(Figure 5E; four mice per group), but not immediately post-
exposure when RhoA activity is low (see Figure E2 in the online
supplement). Taken together, these results demonstrate that
acute exposure to CS impairs efferocytosis through oxidant-
dependent activation of the RhoA–Rho kinase pathway. In
contrast, at earlier time points CS may exert its suppressive
effects through a RhoA-independent pathway.

CS Impairs Efferocytosis through a

TNF-a–dependent Mechanism

In vitro, McPhillips and colleagues determined that TNF-a
acted upstream to produce oxidants, activation of RhoA–Rho
kinase, and impaired efferocytosis (34). Because the oxidant
burden of CS is massive, we originally hypothesized that it alone
would be enough to activate the RhoA–Rho kinase pathway
and to suppress efferocytosis, and that CS-induced TNF-a
would not contribute to the pathway. But to address this issue,
we exposed wild-type and TNF-a receptor double knockouts
(mice deficient in TNF receptors 1 and 2) to air or CS, and then
tested their ability to clear apoptotic cells in vivo. Unexpect-
edly, these experiments showed that the suppressive effect of
CS depended on intact TNF-a signaling 24 hours postexposure,
but not immediately postexposure (Figure 6; five or six animals
per group).

DISCUSSION

Factors that dictate whether a person who is exposed to CS will
eventually develop COPD are far from understood. A great deal

Figure 3. Cigarette smoke (CS) selectively suppresses efferocytosis

ex vivo. (A) To determine whether CS suppressed efferocytosis ex vivo,

C57BL/6J mice were exposed to air or moderate-dose CS (100 mg/m3

total particulate matter [TPM]) for 5 hours. Whole lung lavage was then

performed and alveolar macrophages were cultured ex vivo overnight.

Alveolar macrophages were then examined for their ability to ingest
apoptotic Jurkat T cells during a 60-minute coculture experiment.

*Significantly different from Day 0 air control (P 5 0.002). PI 5 phago-

cytic index. (B) To examine whether the suppressive effect of CS was

specific for efferocytosis, C57BL/6J mice were exposed to CS and
processed as in (A), and were then tested for their ability to ingest

various targets. CS specifically decreased ingestion of apoptotic Jurkat T

cells ex vivo, but had no significant effect on ingestion of viable or IgG-

opsonized Jurkat T cells. *Significantly different from air control (P 5

0.003).
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of evidence suggests that CS unleashes imbalances in oxidative
stress and protease activity (1, 54). But clearly, these imbalances
are not sufficient to produce COPD in the majority of people;
and, in most instances aside from a1-antitrypsin deficiency, our
knowledge has not translated into an ability to predict who will
develop disease with time or who will have the most precipitous
decline in lung function. Alternative hypotheses for COPD, such
as the autoimmune hypothesis (55–58) or the cell death hypoth-
esis (59, 60), have expanded our view of how COPD might
develop, and importantly, in ways that fully complement or
intersect with traditional views. The possibility that cell death
plays an important role in the development of COPD is of
increasing interest, because apoptotic cells are plentiful in the
lungs of patients with COPD (41, 59, 61, 62) and in animal
models of emphysema (60, 63–65). However, because apoptotic
cells are normally removed as rapidly as they are produced (66),

increased numbers of apoptotic cells in the lungs and sputum of
patients with COPD suggest both that cell death may be in-
creased (60, 67) and that removal of these cells by phagocytosis
(efferocytosis) or egression may be decreased (23, 41, 68). Our
data advance these concepts, because they show that CS directly
results in impaired efferocytosis after acute, subacute, and long-
term exposure; and they suggest that at some critical level of
oxidant exposure coupled with oxidant sensitivity that this effect
may become prolonged, or even permanent.

Using pharmacologic and genetic approaches in vivo and
ex vivo, our data indicate that CS acutely impairs efferocytosis
through an oxidant-dependent mechanism. Superoxide is one of
the first free radicals produced from the reduction of oxygen to
water. SODs convert superoxide to hydrogen peroxide in one of
the most rapid reactions in nature, which is further neutralized
to water by catalase or glutathione. Superoxide can also be

Figure 4. Cigarette smoke (CS) sup-

presses efferocytosis in vivo and ex vivo

through an oxidant-dependent mecha-
nism. To determine the effect of CS on

efferocytosis in vivo, oxidant-resistant ICR

mice were exposed to air or CS at

100 mg/m3 total particulate matter
(TPM) for 5 hours, and were then exam-

ined for their ability to remove apoptotic

cells at time points ranging from 0 to 2
days postexposure (as in Figure 1C).

(A) Moderate-dose CS (100 mg/m3

TPM) trended toward a decrease in effer-

ocytosis only immediately postexposure
(Day 0), but had no effect at 1 and 2

days postexposure. *Nonsignificantly dif-

ferent from Day 0 control (P 5 0.07). The

role of oxidant stress was explored fur-
ther in (B) mice treated with a superoxide

dismutase (SOD) mimetic, mangane-

se(III) 5,10,15,20-tetrakis(4-benzoic
acid)porphyrin (MnTBAP), and in (C )

extracellular SOD–overexpressing

(ecSOD OE) mice. (B) MnTBAP (5 mg/

kg) or vehicle control was administered
intraperitoneally to C57BL/6J mice three

times: (1) immediately before and (2)

after exposure to air or CS at 100 mg/m3

TPM for 5 hours, and (3) again the next
morning before experimentation. CS did

not inhibit efferocytosis in mice pre-

treated with MnTBAP, as it was in mice

that received vehicle control. *Signifi-
cantly different from vehicle control

(P < 0.05). (C ) ecSOD OE mice were

exposed to air or CS at 100 mg/m3 TPM
for 5 hours, and were then examined for

their ability to remove apoptotic cells at

1 day postexposure. CS inhibited effer-

ocytosis in wild-type mice, but not in
ecSOD OE mice. *Significantly different

from vehicle control (P < 0.05). To de-

termine whether CS suppresses efferocy-

tosis ex vivo through an oxidant-dependent mechanism. C57BL/6J mice were exposed to air or moderate-dose CS (100 mg/m3 TPM) for 5 hours.
Whole lung lavage was then performed and alveolar macrophages were cultured ex vivo overnight in the presence of (D ) increasing concentrations

of N-acetylcysteine (NAC) or phosphate-buffered saline (PBS) control, or (E ) with increasing concentrations of MnTBAP (or PBS control) for 4 hours

before experimentation. Alveolar macrophages were then examined for their ability to ingest apoptotic Jurkat T cells during a 60-minute coculture

experiment. In both experiments, CS suppressed efferocytosis, but not in the presence of (D ) NAC or (E ) MnTBAP at all concentrations tested. (D )
*Nonsignificantly different from phosphate buffered saline (PBS) control (P 5 0.08). (E ) *Significantly different from PBS control (P < 0.05).

PI 5 phagocytic index.
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converted to hydrogen peroxide or the hydroxyl radical through
a number of pathways (69). Superoxide may combine with nitric
oxide to produce the hydroxyl radical, nitrogen dioxide, nitro-
gen trioxide, and peroxynitrite, which are known to directly
damage cells through their effects on proteins, lipids, and DNA.
The importance of superoxide in the pathogenesis of emphy-
sema is highlighted by the fact that overexpression of CuZn-
SOD (SOD1), the most prevalent SOD in the lung, protects
mice from the development of emphysema in both the CS and
elastase models (8). In our studies, the acute suppression of
efferocytosis by CS was completely abrogated by the potent
SOD mimetic MnTBAP, or by overexpression of ecSOD
(SOD3), the second most prevalent SOD in the lung, indicating
the importance of superoxide. In studies by McPhillips and
colleagues (34), TNF-a inhibited efferocytosis in murine and

human macrophages through an NADPH oxidase–independent
pathway that depended on cytosolic phospholipase A2–
mediated release of arachidonic acid and subsequent produc-
tion of superoxide. The fact that exogenous hydrogen peroxide
alone was capable of inhibiting efferocytosis suggests that
degradation of superoxide to hydrogen peroxide would be
sufficient to inhibit efferocytosis, but does not preclude the
involvement of other free radicals in their system. Therefore,
superoxide plays an important role both in the regulation of
efferocytosis and in the pathogenesis of emphysema.

Our data suggest a link between oxidative stress and
activation of the RhoA–Rho kinase pathway, but they do not
definitively determine the relative importance of CS-associated
oxidative versus oxidative stress downstream of TNF-a. In-
creasingly, local and systemic activation of the RhoA–Rho

Figure 5. Cigarette smoke

(CS) activates RhoA via an

oxidant-dependent mecha-
nism. We examined the hy-

pothesis that CS suppresses

efferocytosis through oxi-

dant-dependent activation
of RhoA, by (A) investigat-

ing the effect of CS on RhoA

activation, and then by (B)
determining whether RhoA

activation could be pre-

vented by the superoxide

dismutase (SOD) mimetic
manganese(III) 5,10,15,20-

tetrakis(4-benzoic acid)por-

phyrin (MnTBAP). Alveolar

macrophages were col-
lected 0 and 24 hours after

exposure to air or CS (100

mg/m3 total particulate

matter [TPM] for 5 h) and
then assayed for RhoA ac-

tivity. (A) CS increased

RhoA activity at 24 hours,
but had no effect immedi-

ately postexposure. *Signif-

icantly different from air

control (P 5 0.01). (B)
C57BL/J mice were pre-

treated with MnTBAP and

exposed to CS as described

in Fig. 4B, after which alve-
olar macrophages were col-

lected by bronchoalveolar

lavage 24 hours postexpo-
sure and assayed for RhoA

activity. CS activated RhoA

in the absence, but not the

presence, of MnTBAP. *Sig-
nificantly different from air

control (P < 0.02). To de-

termine whether acute ex-

posure to CS impairs efferocytosis through activation of the RhoA–Rho kinase pathway, we first used the ex vivo system described in Fig. 3. Alveolar
macrophages taken from air- or CS-exposed C57BL/6 mice were tested for their ability to ingest apoptotic cells in the presence or absence of (C) C3

transferase (a direct RhoA blocker) or (D) Y-27632 (a Rho kinase inhibitor). CS decreased alveolar macrophage efferocytosis, but not in the presence of

(C ) C3 transferase or (D) Y-27632. *Significantly different from air control (P < 0.05). (E ) To determine the role of the RhoA–Rho kinase pathway in the

ability of CS to impair efferocytosis in vivo, C57BL/6J mice were exposed to CS at 100 mg/m3 TPM for 5 hours, and then assessed for their ability to
clear instilled apoptotic cells the next day, after pretreatment with phosphate-buffered saline or the Rho kinase inhibitor Y-27632. At both doses used,

Y-27632 prevented the suppressive effect of CS on efferocytosis, confirming that acute CS impairs efferocytosis through a RhoA–Rho kinase-dependent

mechanism. *Significantly different from air control (P < 0.05). PBS 5 phosphate-buffered saline; PI 5 phagocytic index.

Richens, Linderman, Horstmann, et al.: Smoke Impairs Apoptotic Cell Clearance 1017



kinase pathway is recognized as a downstream consequence of
CS exposure. For instance, CS exposure in vivo increases RhoA
activity in rat bronchial smooth muscle cells (33), and in vitro,
CS increases RhoA activity in Calu-3 bronchial epithelial cells,
resulting in increased permeability (70). The effect of CS on the
RhoA–Rho kinase pathway also appears to be systemic, because
CS exposure activates Rho kinase in the forearm vasculature of
human subjects, leading to a higher degree of vasoreactivity (71).
More broadly, reactive oxidant species activate the RhoA–Rho
kinase pathway in several settings, both in an NADPH oxidase–
dependent and –independent manner (34, 69, 72–74); but the
converse has also been observed, that reactive oxygen species
may down-regulate RhoA activity (75). So reactive oxygen
species may retain the ability to activate or deactivate Rho
GTPases, depending on the context. This dichotomy may in part
be explained by the presence of a novel redox-sensitive regula-
tory motif [GXXXXGK(S/T)C] in 50% of all Rho GTPases that
contain cysteine, including RhoA, Rac-1, and cdc42 (69). This
motif facilitates dissociation of GDP in the presence of super-
oxide, hydrogen peroxide/Cu21, and nitrogen dioxide, which
would be expected to inactivate these Rho GTPases. However, it
could also result in Rho GTPase activation, because, in the
presence of a free radical scavenger, like ascorbate, these Rho
GTPases may then associate with GTP.

On the other hand, McPhillips and colleague demonstrated
in vitro that TNF-a suppresses efferocytosis through cytosolic
phospholipase A2–mediated production of oxidants (34). Be-

cause our data show that CS-impaired efferocytosis also
depends on intact TNF-a signaling, we cannot rule out the
possibility that oxidants may act at two points in the pathway;
early when associated with CS and later at a point downstream
of TNF-a. The role of TNF-a in this pathway is certainly
relevant because of its potential importance in the development
of COPD (76–81).

Activation of RhoA certainly may not be the only mechanism
by which CS impairs efferocytosis. For example, we found that
CS inhibited efferocytosis immediately after exposure, but that
this was not associated with activation of RhoA. The mecha-
nism(s) for this acute effect of CS is not known, but it may
involve the ability of CS to inhibit the activation of the Rac-1
guanine nucleotide exchange factor, Vav-1 (82). This could also
have important consequences for RhoA activation, because of
the ability of Rac-1 and RhoA to reciprocally regulate each other
(27). CS also decreased efferocytosis at later time points. In
addition to a role for oxidative stress, this may be due to the
ability of CS to increase protease–antiprotease imbalance or to
decrease lung collectins such as surfactant protein A, surfactant
protein D, or mannose-binding lectin (22, 83, 84), which all play
important roles in the regulation of apoptotic cell clearance (41,
42, 85). In humans, Hodge and colleagues have demonstrated
that smoking decreases a number of receptors involved with
efferocytosis, including CD31, CD91, and CD44 (21), all of
which could have contributed to impaired efferocytosis, espe-
cially at later time points. Finally, Kirkham and colleagues
showed that CS decreases efferocytosis through posttransla-
tional modification of extracellular matrix proteins, indicating
that indirect effects of CS could be just as crucial (20).

We found that the effect of CS on efferocytosis was variable
depending on the mouse strain, and that the most intense
exposure regimen caused an irreversible defect in efferocytosis.
Oxidant-sensitive C57BL/6J mice took longer to recover their
ability to clear apoptotic cells after CS exposure, compared with
the oxidant-resistant ICR mice. Similarly, C57BL/6J mice are
also more susceptible to develop emphysema in response to CS,
compared with ICR mice. Perhaps this increase in sensitivity to
oxidative stress in C57BL6J mice is due to a polymorphism
present in the promoter of Nrf2 (86), a master transcription
factor for antioxidant and detoxification genes with a known
role in the development of emphysema (6, 7). Of greatest
interest, efferocytosis continued to be defective in FVB/N mice
20 weeks after the most intense CS exposure, suggesting that
efferocytosis becomes permanently impaired at some critical
level of exposure (perhaps mixed with strain). Because these
experiments were performed with FVB/N mice and not C57BL/
6J mice, we do not know the relative contribution of mouse
strain and smoke exposure to these findings. Nonetheless, these
data demonstrate that efferocytosis becomes irreversibly im-
paired at a point when permanent structural damage, consistent
with COPD, would have been expected to occur.

Important questions left unanswered concern whether im-
paired efferocytosis is simply a marker of CS exposure, an
important factor in the pathogenesis of COPD, or whether the
presence or absence of reversibility indicates a transition from
injured to diseased lung. Moreover, if failed efferocytosis
contributes to COPD pathogenesis, is there a role for drugs
known to enhance efferocytosis, such as peroxisome proliferator–
activated receptor g agonists (87, 88), macrolide antibiotics
(22, 89, 90), and corticosteroids (91)? Because CS impairs
efferocytosis, at least in part, by activating the RhoA–Rho
kinase pathway, is there a therapeutic role for Rho kinase
inhibitors or for statins, which both block the RhoA–Rho
kinase pathway and increase efferocytosis (40, 92)? Epidemio-
logic studies showing that statins decrease the incidence of

Figure 6. Acute cigarette smoke (CS) exposure impairs efferocytosis

in vivo through a tumor necrosis factor (TNF)-a–dependent mecha-

nism. To determine whether CS suppressed efferocytosis in vivo

through a TNF-a–dependent mechanism, wild-type and TNF-a re-
ceptor double knockouts (mice deficient in TNF receptors 1 and 2;

TNFa RI/RII KO) were exposed to air or CS, and then tested their ability

to clear apoptotic cells (A) immediately or (B) 24 hours after exposure.

*Significantly different from air control (P < 0.05).
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COPD exacerbations (93, 94) and prevent the development of
emphysema in CS-exposed rats (95) suggest that the RhoA–
Rho kinase may ultimately be a therapeutic target worth
pursuing.
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