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Oral microbiome dysbiosis is associated with oral disease and potentially with systemic diseases;
however, the determinants of these microbial imbalances are largely unknown. In a study of 1204 US
adults, we assessed the relationship of cigarette smoking with the oral microbiome. 16S rRNA gene
sequencing was performed on DNA from oral wash samples, sequences were clustered into
operational taxonomic units (OTUs) using QIIME and metagenomic content was inferred using
PICRUSt. Overall oral microbiome composition differed between current and non-current (former and
never) smokers (Po0.001). Current smokers had lower relative abundance of the phylum
Proteobacteria (4.6%) compared with never smokers (11.7%) (false discovery rate q= 5.2 × 10−7),
with no difference between former and never smokers; the depletion of Proteobacteria in current
smokers was also observed at class, genus and OTU levels. Taxa not belonging to Proteobacteria
were also associated with smoking: the genera Capnocytophaga, Peptostreptococcus and
Leptotrichia were depleted, while Atopobium and Streptococcus were enriched, in current compared
with never smokers. Functional analysis from inferred metagenomes showed that bacterial genera
depleted by smoking were related to carbohydrate and energy metabolism, and to xenobiotic
metabolism. Our findings demonstrate that smoking alters the oral microbiome, potentially leading to
shifts in functional pathways with implications for smoking-related diseases.
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Introduction

The human oral cavity is inhabited by over 600
bacterial species, known collectively as the oral
microbiome (Dewhirst et al., 2010); these bacteria are
involved in a wide variety of functions, and many
are important in maintaining oral health (Belda-Ferre
et al., 2012). Oral dysbiosis leads locally to period-
ontitis, dental caries and potentially to head and

neck cancer (Wade, 2013; He et al., 2015). There is
also increasing evidence of a role for oral dysbiosis
in systemic diseases of the lung (Beck et al., 2012),
digestive tract (Ahn et al., 2012) and cardio-
vascular system (Koren et al., 2011), yet factors that
influence the oral microbiome are poorly under-
stood. Cigarette smoke is a source of numerous
toxicants (WHO, 2012) that come into direct contact
with oral bacteria; these toxicants can perturb the
microbial ecology of the mouth via antibiotic effects,
oxygen deprivation or other potential mechanisms
(Macgregor, 1989). Loss of beneficial oral species due
to smoking can lead to pathogen colonization and
ultimately to disease; this contention is strongly
supported by the well-established role of smoking
in the onset and progression of periodontitis
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(Nociti et al., 2015). Previous studies have shown
alterations in the abundance of selected oral bacteria
in smokers compared with non-smokers (Colman
et al., 1976; Ertel et al., 1991; Charlson et al., 2010;
Kumar et al., 2011; Hugoson et al., 2012; Morris
et al., 2013; Belstrom et al., 2014; Mason et al., 2015);
however, results across these studies are largely
inconsistent, possibly due to small sample sizes in
some, use of different sampling sites in the mouth
and use of different laboratory methodologies, some
of which impose limitations on bacterial profiling.

To improve our understanding of the influence
of smoking on the oral microbiome, we conducted
a comprehensive assessment of oral microbiome
community composition and individual taxon abun-
dance, by bacterial 16S rRNA gene sequencing, in
1204 individuals from two large US national cohorts.
Strengths of our study include the availability of
detailed data from both cohorts on individual
smoking history and potential demographic con-
founding factors. In addition, the large sample size
available from each cohort provided us with excel-
lent statistical power for discovery in combined
analyses, as well as the opportunity to indepen-
dently replicate results in each cohort.

Subjects and methods

Study population
Participants were drawn from the National Cancer
Institute (NCI) Prostate, Lung, Colorectal, and Ovarian
(PLCO) Cancer Screening Trial cohort (Hayes et al.,
2000) and the American Cancer Society (ACS) Cancer
Prevention Study II (CPS-II) Nutrition cohort (Calle
et al., 2002), which are described in detail in the
above-cited references.

Briefly, the PLCO Cancer Screening Trial is
a multicenter trial designed to determine the effects
of screening on cancer-related mortality and second-
ary end points among 55- to 74-year-old subjects
(Hayes et al., 2000). In PLCO, 154 901 participants
were recruited between 1993 and 2001 at 10 centers
across the United States and were randomized
to either the screening arm (n=77 445) or the control
arm (n=77 456) of the trial. Oral wash samples were
collected in the control arm only.

The ACS CPS-II Nutrition cohort (n=184 194) is
a prospective study of cancer incidence initiated
in 1992. It is a subset of the larger CPS-II cohort
(n=1.2 million participants) recruited by ACS
volunteers in 1982 and followed for mortality. At
enrollment in the larger cohort in 1982, and in the
subcohort in 1992/1993, participants completed self-
administered questionnaires that included informa-
tion on demographics, family characteristics, perso-
nal and family history of cancer and other diseases,
reproductive history, as well as various behavioral,
environmental, occupational and dietary exposures.
Beginning in 1997, follow-up questionnaires were
sent to cohort members every 2 years to update

exposure information and ascertain newly diagnosed
cancers. Oral wash samples were collected by mail
from 70 004 CPS-II Nutrition cohort participants.

All subjects included in the present analyses
were originally selected from the CPS-II and PLCO
cohorts as cases or controls for collaborative nested
case–control studies of the oral microbiome in
relation to two smoking-related cancers, head and
neck cancer and pancreatic cancer. Cases were
participants who developed one of these two types
of smoking-related cancers at any point after
collection of the oral wash samples (time from
sample collection to diagnosis ranged up to 12
years). Age- and sex-matched controls were
selected by incidence density sampling among
cohort members who provided an oral wash sample
and had no cancer prior to selection.

Because the oral microbiome assays took place at
different times for the pancreas study and the head
and neck study, four separate data sets were
assembled for this analysis, PLCO-a (n=261 PLCO
participants in the head and neck study), PLCO-b
(n=400 PLCO participants in the pancreas study
study), CPS-II-a (n=203 CPS-II participants in the
head and neck study), and CPS-II-b (n=340 CPS-II
participants in the pancreas study). All participants
provided informed consent and all protocols were
approved by the New York University School of
Medicine Institutional Review Board.

Smoking and other covariate assessment
Comprehensive demographic and lifestyle informa-
tion was collected by baseline and follow-up ques-
tionnaires in the PLCO and CPS-II Nutrition cohorts.
Detailed information on cigarette smoking, including
smoking status (never, former, current), smoking dose
and smoking duration, was ascertained at baseline and
follow-up via questionnaires in both cohorts. These
smoking data have been used in previous publications
(Hocking et al., 2010; Gaudet et al., 2013).

Oral sample collection
Oral wash samples were collected between 1993 and
2001 from control arm participants in the NCI PLCO
cohort (Hayes et al., 2000) and between January 2001
and December 2002 in the ACS CPS-II Nutrition
cohort (Calle et al., 2002). Participants in both
cohorts were asked to swish vigorously with 10ml
Scope mouthwash (P&G) and were directed to
expectorate into a specimen tube. Samples were
shipped to each cohort’s biorepository, pelleted and
stored at − 80 °C until use.

Oral microbiome assay
In 2013, we extracted bacterial genomic DNA from
oral samples aliquoted from the respective biorespo-
sitories using the Mo Bio PowerSoil DNA Isolation
Kit (Mo Bio Laboratories, Carlsbad, CA, USA) with
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bead-beating method in the Mo Bio Powerlyzer
instrument (Mo Bio Laboratories). As reported pre-
viously (Wu et al., 2014), 16S rRNA gene amplicons
covering variable regions V3 to V4 were generated
using primers (347F-5′GGAGGCAGCAGTRRGGAA
T-3′ and 803R-5′-CTACCRGGGTATCTAATCC-3′)
(Nossa et al., 2010) incorporating barcode sequences
as well as Roche 454 FLX Titanium adapters (454
Life Sciences, Branford, CT, USA), and pooled
amplicons libraries were sequenced with the 454
Roche FLX Titanium pyrosequencing system follow-
ing the manufacturer’s specifications. Laboratory
personnel were blinded to smoking status. Multi-
plexed and barcoded sequences were deconvoluted.
Poor-quality sequences were excluded using the
default parameters of the QIIME script split_li-
braries.py (minimum average quality score = 25,
minimum/maximum sequence length= 200/1000
base pairs, no ambiguous base calls and no mis-
matches allowed in the primer sequence) (Caporaso
et al., 2010). From the 1204 oral wash samples, we
obtained 14 553 620 quality-filtered 16S rRNA gene
sequence reads. Sequences were clustered into de
novo operational taxonomic units (OTUs) at 97%
identity, and representative sequences for each OTU
were assigned taxonomy based on fully-sequenced
microbial genomes (IMG/GG Greengenes), using the
QIIME pick_de_novo_otus.py script (Caporaso et al.,
2010). Chimeric sequences (identified using Chimer-
aSlayer; Haas et al., 2011), sequences that failed
alignment, and singleton OTUs were removed. The
final total data set retained 12 212 734 sequences
(mean± s.d.: 10 144± 2845 sequences per sample),
with similar sequencing depths in the individual
four data sets (Supplementary Table S1), and con-
tained 43 435 OTUs.

Quality control
Blinded quality control specimens were used in each
data set, respectively, across all sequencing batches.
The number of quality control subjects and replicates
of each sample are shown in Supplementary Table
S2. Quality control samples had good reliability:
across the four data sets, coefficient of variability
ranged from 0.45% to 8.28% for the Shannon Index,
and 6.29% to 26% for various phylum relative
abundances.

Statistical analysis
The relationship between smoking status and overall
oral microbiome composition was assessed by
analysis of weighted and unweighted UniFrac dis-
tances (Lozupone et al., 2011), computed using the
QIIME pipeline (Caporaso et al., 2010). Principal
coordinate analysis plots were generated using the
first two principal coordinates and labeled according
to smoking status. Permutational MANOVA
('Adonis' function, vegan package, R) (McArdle and
Anderson, 2001) of the weighted UniFrac distance
was used to test differences in overall oral

microbiome composition across the categories of
smoking status, adjusting for age, sex and data set.

The OTU table of raw counts was normalized to
an OTU table of relative abundances, and taxa of
the same type were agglomerated at the phylum,
class, order, family and genus levels. Our analysis
included taxa from the five major phyla of the
oral microbiome (Firmicutes, Bacteroidetes, Proteo-
bacteria, Actinobacteria and Fusobacteria), and we
additionally filtered out taxa present in less than
10% of participants, leaving 13 classes, 20 orders,
40 families and 69 genera in this analysis. Relative
abundances of bacterial taxa were compared
across the categories of smoking status using the
nonparametric Kruskal–Wallis test. We further
used polytomous logistic regression for the pair-
wise comparisons of former vs never smokers and
current vs never smokers, adjusting for age and sex.
We calculated nominal P-values for each individual
data set (PLCO-a, PLCO-b, CPS-II-a and CPS-II-b)
and report meta-analysis P-values based on Z-score
methods (Evangelou and Ioannidis, 2013). Ken-
dall's Tau rank coefficient was used to test the
association of smoking-related variables (number of
cigarettes per day and number of years since
quitting) with relative abundances of selected taxa.

In order to investigate whether any of the
differentially relative abundant taxa were identified
due only to autocorrelation with other taxa, we
conducted a parallel analysis using the DESeq
function in the DESeq2 R package (Love et al.,
2014; McMurdie and Holmes, 2014); this function
models raw counts using a negative binomial
distribution, taking into account sample library size
and the dispersion for each taxon. Using this model
we compared current smokers to never smokers, and
former smokers to never smokers, adjusting for sex,
age and data set, at the phylum through genus levels
and at the OTU level.

Bacterial metagenome content was predicted
from 16S rRNA gene-based microbial compositions,
and functional inferences were made from the
Kyoto Encyclopedia of Gene and Genomes (KEGG)
catalog, using the PICRUSt algorithm (Kanehisa
et al., 2012). A total of 6,909 inferred genes were
categorized into 275 KEGG functional pathways;
pathways present in o10% of participants were
removed, leaving 252 KEGG pathways for analysis.
The 'DESeq' function in DESeq2 was used to test
for differentially abundant KEGG pathways by
smoking status, adjusting for sex, age and data set.
Spearman's rank correlation was used to examine
associations between pathways significantly asso-
ciated with smoking status and genera significantly
associated with smoking status.

All statistical tests were two-sided, and a P-value
of less than 0.05 (or false discovery rate (FDR)
adjusted q less than 0.05) was considered statisti-
cally significant. All analyses were carried out
using SAS 9.3 (SAS institute, Cary, NC, USA) and
R 3.2.0.
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Results

Oral biospecimens, smoking history and other
demographic information were collected at baseline
for both the CPS-II and PLCO cohorts. Of the 1204
individuals included in the present analyses, 43.3%
(n=521) were never smokers, 47.4% (n=571) were
former smokers and 9.3% (n=112) were current
smokers. Among the former smokers, 17% had quit
within 10 years of sample collection, 47% 10–30
years prior to sample collection and 30% over 30
years prior to sample collection (6% were missing
this information). Current and former smokers
tended to be younger and more often male, com-
pared with never smokers (Table 1). All subjects
included in the present analyses were originally
selected from the CPS-II and PLCO cohorts as cases
and controls for nested case–control studies of the
oral microbiome in relation to two smoking-related
diseases, head and neck cancer and pancreatic
cancer. Therefore, approximately half (49.3%) of
the 1204 subjects were individuals who went on to
develop one of these cancers at some point after
providing an oral sample (ranging from 1 to 12 years
after oral sample collection); future cancer status was
not a confounder of the observed smoking status—
microbiome relationships. Additionally, results were
highly similar between cases and controls (data not
shown).

To determine whether overall microbiome compo-
sition differed according to never, former and current
smoking status, we conducted principal coordinate
analysis based on UniFrac phylogenetic distances.
We found a significant difference in composition
between current, former and never smokers (P=0.001,
permutational MANOVA based on weighted UniFrac;
Figure 1a), after controlling for age, sex and data set.
Former and never smokers overlapped on the princi-
pal coordinate analysis plot (Figure 1a); when
combining former and never smokers, we observed a
significant difference in oral microbiome composition
between current and non-current (former + never)
smokers (P=0.001; Figure 1b). To further support
these findings, comparison of within- and between-
group distances for all smoking categories indicated
that current smokers tended to be more heterogeneous
than former or never smokers (Figure 1c), and
that never and former smokers are more alike than
current smokers (P=0.001 and P=0.003, respectively;
Figure 1d). Results were similar with the unweighted
Unifrac distances (data not shown).

We next examined the relative abundance of
individual taxa according to smoking status using the
Kruskal–Wallis test, and found that relative abundance
of the phylum Proteobacteria differed significantly by
smoking status (meta-analysis for the four data sets,
P=2.29×10−9, FDR adjusted q=1.15×10−8; Table 2),
with a clear depletion of Proteobacteria among current
smokers (data set-weighted median: 11.7% in never
smokers, 4.6% in current smokers). After adjustment
for age and sex in polytomous logistic regression, the

lower relative abundance of phylum Proteobacteria
among current smokers compared with never smokers
was statistically significant (q=5.24×10−7), while
there was no difference between former and never
smokers (q=0.60). As cross-validation, we assessed
these relationships in the four data sets separately
and found highly consistent results (Table 2). Aside
from Proteobacteria, we observed that relative abun-
dance of the phylum Actinobacteria was elevated
in current smokers compared with never smokers after
adjustment for age and sex (q=0.04) (Table 2), while
relative abundance of the other major phyla did not
differ significantly by smoking status (Supplementary
Table S3).

Lower-level analysis within Proteobacteria revealed
that relative abundances of the major classes,
Betaproteobacteria and Gammaproteobacteria, were
significantly lower in current smokers (Table 2;
q=5.05 ×10− 15 and q=3.62× 10−5, respectively), as
were several genera, includingNeisseria,Haemophilus
and Aggregatibacter (Supplementary Table S4).
Several taxa not belonging to Proteobacteria, including
the class Flavobacteriia (q=0.0003; Table 2) and
genus Capnocytophaga, were also significantly
lower in smokers, as were several genera not altered
in class-level analysis, including Corynebacterium
(Actinobacteria), Porphyromonas and Prevotella (Bac-
teroidetes), Leptotrichia (Fusobacteria), and Peptostrep-
tococcus, Abiotrophia and Selenomonas (Firmicutes)
(Supplementary Table S4). Gram-positive class Corio-
bacteriia tended to be enriched in current smokers
(Table 2). Lower-level analysis indicated that the genus
Atopobium, belonging to Coriobacteriia, as well as the
genera Bifidobacterium (Actinobacteria), Lactobacillus
and Streptococcus (Bacilli), were increased in current
smokers (Supplementary Table S4).

The majority of the findings in our relative abun-
dance analysis were confirmed in a parallel analysis
of raw abundance using DESeq2 (Supplementary
Table S5), with some exceptions. Notably, the genus
Lactobacillus was not identified as differentially
abundant in the DESeq analysis, while the Firmicutes
phylum was found to be significantly more abundant
in current compared with never smokers. At the OTU
level, 249 OTUs were identified as differentially
abundant between current and never smokers at the
qo0.05 cutoff (Supplementary Table S6; Figure 2).
These included 42 OTUs within Actinobacteria (gen-
erally enriched in current smokers), 95 OTUs from
Bacilli (mostly from the Streptococcus genus, generally
enriched in current smokers), 32 OTUs from Clostridia
(generally depleted in current smokers), 25 OTUs from
Proteobacteria (generally depleted in current smokers)
and 27 unclassified OTUs. In contrast, only 17 OTUs
were identified as differentially abundant between
former and never smokers.

We further examined whether class-level bacterial
relative abundances differed according to number
of cigarettes smoked per day and years since
smoking cessation. We observed inverse associations
of the relative abundances of Betaproteobacteria,
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Gammaproteobacteria and Flavobacteriia with
greater number of cigarettes smoked per day in
an analysis including current and never smokers
(Figure 3a; q=1.13 × 10−17, q=4.64× 10− 7 and

q=1.29 ×10− 6, respectively), and positive associa-
tions of the relative abundance of Betaproteobacteria,
Gammaproteobacteria, and Flavobacteriia with
greater number of years since quitting smoking in

Table 1 Selected demographic characteristics of study populations from four data sets

Never smokers Former smokers Current smokers P-value

CPS-II-a (n=203) n=77 n=103 n=23
Age, mean (s.d.) 70.53 (6.15) 70.71 (6.23) 68.82 (6.91) 0.34a

Sex, n (%) 0.02b

Male 47 (61.04) 82 (79.61) 16 (69.57)
Female 30 (38.96) 21 (20.39) 7 (30.43)

Race, n (%) NA
White 77 (100) 103 (100) 23 (100)
Non-White 0 0 0

BMI (kg m−2), n (%) 0.57c

Under weight (o18.5) 1 (1.30) 1 (0.97) 0
Normal weight (18.5–25) 29 (37.66) 38 (36.89) 7 (30.43)
Overweight (25–30) 33 (42.86) 37 (35.92) 6 (26.09)
Obese weight (430) 10 (12.99) 21 (20.39) 3 (13.04)
Missing 4 (5.19) 6 (5.83) 7 (30.43)

CPS-II-b (n=340) n=150 n=177 n=13
Age, mean (s.d.) 74.80 (5.81) 72.97 (5.34) 70.77 (6.66) 1.40E−4a

Sex, n (%) 1.00E−4b

Male 60 (40.00) 112 (63.28) 8 (61.54)
Female 90 (60.00) 65 (36.72) 5 (38.46)

Race, n (%) 0.42c

White 142 (94.67) 171 (96.61) 12 (92.31)
Non-White 8 (5.33) 6 (3.39) 1 (7.69)

BMI (kg m−2), n (%) 0.02c

Under weight (o18.5) 5 (3.33) 1 (0.56) 1 (7.69)
Normal weight (18.5–25) 60 (40.00) 64 (36.16) 8 (61.54)
Overweight (25–30) 57 (38.00) 81 (45.76) 1 (7.69)
Obese weight (430) 26 (17.33) 27 (15.25) 3 (23.08)
Missing 2 (1.33) 4 (2.26) 0

PLCO-a (n=261) n=100 n=126 n=35
Age, mean (s.d.) 63.45 (5.29) 63.71 (5.10) 60.77 (4.66) 0.01a

Sex, n (%) 2.00E−4b

Male 63 (63.00) 107 (84.92) 30 (85.7)
Female 37 (37.00) 19 (15.08) 5 (14.3)

Race, n (%) 0.51c

White 96 (96.00) 119 (94.44) 32 (91.4)
Non-White 4 (4.00) 5 (5.56) 3 (8.5)

BMI (kg m−2), n (%) 0.33c

Under weight (o18.5) 1 (1.00) 0 0
Normal weight (18.5–25) 36 (36.00) 36 (28.57) 17 (48.57)
Over weight (25–30) 45 (45.00) 58 (46.03) 14 (40.00)
Obese weight (430) 18 (18.00) 27 (21.43) 4 (11.43)
Missing 0 4 (3.97) 0

PLCO-b (n=400) n=194 n=165 n=41
Age, mean (s.d.) 64.25 (5.24) 63.98 (5.32) 61.02 (4.7) 2.00E−3a

Sex, n (%) 2.00E−3b

Male 102 (47.42) 109 (66.06) 32 (78.05)
Female 92 (52.58) 56 (33.94) 9 (21.95)

Race, n (%) 0.04b

White 179 (92.27) 153 (92.73) 33 (80.49)
Non-White 15 (7.73) 12 (7.27) 8 (19.51)

BMI (kg m−2), n (%) 0.29c

Under weight (o18.5) 1 (0.52) 2 (1.21) 0
Normal weight (18.5–25) 68 (35.05) 41 (24.85) 16 (39.02)
Over weight (25–30) 77 (39.69) 69 (41.82) 15 (36.59)
Obese weight (430) 45 (23.2) 50 (30.30) 9 (21.95)
Missing 3 (1.55) 3 (1.82) 1 (2.44)

aP-values are based on ANOVA test.
bP-values are based on Chi-square test.
cP-values are based on Fisher's exact test.
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an analysis including former and current smokers
(Figure 3b; q=1.96 × 10–10, q=8.13 ×10−4 and
q=8.13 ×10− 4, respectively). However, these asso-
ciations did not remain significant when the cigar-
ettes per day analysis was restricted to current
smokers only, and when the years-since-quitting
analysis was restricted to former smokers only,
indicating that the observed associations were
primarily determined by strong differences between
current and never smokers, and current and former
smokers, respectively.

We also explored microbiota function based on
inferred metagenomes using the PICRUSt algorithm
(Langille et al., 2013). Of 252 KEGG pathways tested,
83 non-human-gene pathways differed in abundance
between current and never smokers at qo0.05,
adjusting for sex, age and data set (Supplementary
Table S7); these included pathways relating to environ-
mental information processing, carbohydrate and
energy metabolism, glycan biosynthesis and metabo-
lism, and xenobiotic biodegradation. Interestingly, path-
ways related to aerobic metabolism (tricarboxylic
acid (TCA) cycle and oxidative phosphorylation)
were depleted in current smokers, whereas oxygen-
independent pathways (glycolysis, fructose, galactose
and sucrose metabolism, and photosynthesis) were

enriched in current smokers. Additionally, abundances
of xenobiotic biodegradation pathways were signifi-
cantly altered in current smokers, including some
enriched (polycyclic aromatic hydrocarbon degradation,
xylene degradation and drug metabolism) and some
depleted (styrene, toluene, nitrotoluene, chlorocyclo-
hexane and chlorobenzene degradation) pathways in
current compared with never smokers. Bacterial genera
altered in current smokers were related to many of these
pathways (Figure 4). For example, genera depleted in
current smokers were positively associated with styrene
and toluene degradation, the TCA cycle and oxidative
phosphorylation, and negatively associated with glyco-
lysis and other carbohydrate metabolism pathways.

Discussion

In this large meta-analysis of four data sets, we
observed that the oral microbiome of current
smokers differed substantially from that of never
and former smokers. Specifically, at the phylum
level we observed a significant depletion of Proteo-
bacteria, and enrichment of Firmicutes and Actino-
bacteria, in current compared with never smokers.
These strong differences at the phylum level resulted
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Figure 1 Overall oral microbiome composition according to smoking status (current, former and never) in 1204 individuals. The
principal coordinate analysis was conducted based on the weighted UniFrac distance. Sixty-eight percent confidence ellipses were drawn
using the panel.ellipse function (Lattice, R), and centroids represent the coordinate mean of the first and second axes. (a) Adjusting for data
set, age and sex, there was a significant difference in composition according to smoking status (P=0.001). (b) When combining former and
never smokers, there was a significant difference in composition between current and non-current smokers (P=0.001). Comparison of
within (c) and between (d) group distances for all smoking categories indicated that never and former smokers are more alike than are the
current smokers.
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from phylum-wide differences in OTU abundance
between current and never smokers. Analysis of
inferred metagenomes indicated that smoking may
alter oral microbial ecology through influencing oral
oxygen availability, while simultaneously having
consequences for microbial degradation of xenobio-
tics. Finally, we observed that the overall oral
microbiome composition of former smokers did not
differ from that of never smokers; this is a promising
indication that smoking-related changes to the oral
microbiome are not permanent. As has been
observed with other smoking-related health changes,
smoking cessation clearly remains the best practice
to restore a healthy phenotype (Godtfredsen and
Prescott, 2011).

Given the many toxicants found in cigarette smoke
(Rodgman and Perfetti, 2013), it is not surprising that
smoking drastically alters the microbial ecology of
the mouth. Indeed, several other studies have also

observed effects of smoking on oral bacteria. Early
in vitro studies using culture-based methods noted
that cigarette smoke has a strong inhibitory effect on
the growth of Neisseria species (Bardell, 1981; Ertel
et al., 1991), while Streptococcus species were
less inhibited by cigarette smoke (Bardell, 1981).
Additionally, early studies in humans identified
decreased Neisseria species on mucosal surfaces of
smokers (Colman et al., 1976), and an increased
proportion of Gram-positive to Gram-negative bac-
teria on developing plaques of smokers (Bastiaan and
Waite, 1978). Recently, studies with comprehensive
oral bacterial profiling in humans have found
increased Streptococcus sobrinus and Eubacterium
brachy in the saliva of smokers (Belstrom et al.,
2014), decreased Neisseria, Porphyromonas and
Gemella in oral wash samples from smokers
(Morris et al., 2013), enrichment of Megasphaera,
Streptococcus and Veillonella, and depletion of

Table 2 Median relative abundances of selected taxa according to smoking status in four data sets

Taxa CPS-II-a
(n=203)

CPS-II-b
(n=340)

PLCO-a
(n=261)

PLCO-b
(n=400)

Meta P-valuea

(q-valueb)
Meta P-valuec (q-valued)

Current vs
Never

Former vs
Never

Proteobacteria (phylum)
Never 13.18 13.42 10.43 7.4
Former 10.97 12.55 7.59 7.21
Current 7.15 2.63 3.62 4.28
P-valuee 0.02 0.003 9.29E−06 0.007 2.29E−09 (1.15E−08) 1.05E−07 (5.24E−07) 0.27 (0.60)

Betaproteobacteria (class); Proteobacteria (phylum)
Never 3.15 2.35 2.8 1.86
Former 2.15 2.22 2.05 2.28
Current 0.13 0.24 0.28 0.65
P-valuee 2.18E−05 5.07E−05 2.27E−08 0.0007 3.88E−16 (5.05E−15) 1.02E−07 (1.02E−06) 0.17 (0.92)

Gammaproteobacteria (class); Proteobacteria (phylum)
Never 8.93 8.52 5.23 4.01
Former 7.02 8.5 3.89 3.96
Current 6.34 1.87 2.47 2.38
P-valuee 0.17 0.03 0.001 0.02 5.57E−06 (3.62E−05) 5.73E−05 (0.0003) 0.52 (0.92)

Flavobacteriia (class); Bacteroidetes (phylum)
Never 0.46 0.38 0.24 0.29
Former 0.49 0.39 0.21 0.31
Current 0.10 0.15 0.08 0.17
P-valuee 0.01 0.04 0.001 0.33 6.11E− 05 (0.0003) 0.003 (0.009) 0.31 (0.92)

Actinobacteria (phylum)
Never 10.59 10.10 15.18 11.62
Former 11.16 9.30 13.81 11.53
Current 13.65 13.88 17.46 11.55
P-valuee 0.35 0.62 0.36 0.71 0.47 (0.59) 0.02 (0.04) 0.87 (0.87)

Coriobacteriia (class); Actinobacteria (phylum)
Never 0.36 0.28 0.28 0.33
Former 0.51 0.33 0.22 0.29
Current 0.40 0.46 0.51 0.42
P-valuee 0.41 0.26 0.02 0.10 0.004 (0.01) 0.01 (0.02) 0.67 (0.92)

aMeta-analysis P-values from Kruskal–Wallis tests within each of the four data sets, calculated using Z-score methods.
bFalse discovery rate adjusted q-values were calculated based on the meta-analysis P-values from Kruskal–Wallis tests.
cMeta-analysis P-values from polytomous logistic regression models within each of the four data sets, calculated using Z-score methods.
Age (continuous value) and sex (male, female) were controlled for in the polytomous regression models.
dFalse discovery rate adjusted q-values were calculated based on the meta-analysis P-values from polytomous logistic regression models.
eP-values are based on nonparametric Kruskal–Wallis test of current, former and never smokers.
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Capnocytophaga, Fusobacterium and Neisseria, in
the oropharynx of smokers (Charlson et al., 2010),
and alterations in 172 subgingival plaque OTUs in
smokers (Mason et al., 2015). Because of the various
sample types used to study the oral microbiome, and
the known variation in microbial communities in
different parts of the oral cavity (Segata et al., 2012),
comparison across studies is difficult. In the current
study we have employed Scope mouthwash samples
to study the microbiome, which are likely most
comparable with studies using saliva or other types
of mouthwash samples, and less comparable with
plaque samples (Segata et al., 2012). Nevertheless, in
similarity with some of the above-mentioned studies,
we observed decreases in Neisseria, Porphyromonas
and Capnocytophaga and increases in Veillonella
and Streptococcus, in current compared with never
smokers. To our knowledge, this is the first study to
report phylum- and class-wide associations of
bacterial taxa with smoking status; our more robust
findings may relate to the large sample size, which
provided the power to detect these associations.

There are several potential mechanisms by
which smoking may alter microbial ecology, includ-
ing increasing the acidity of saliva (Parvinen, 1984;

Kanwar et al., 2013), depleting oxygen (Kenney et al.,
1975), antibiotic effects (Macgregor, 1989), influencing
bacterial adherence to mucosal surfaces (Brook, 2011)
and impairing host immunity (Sopori, 2002). Our
analysis of inferred metagenomes revealed decreased
abundance of aerobic metabolism pathways, includ-
ing the TCA cycle and oxidative phosphorylation, and
increased abundance of glycolysis and other oxygen-
independent carbohydrate metabolism pathways, in
current smokers compared with never smokers. This
finding suggests that cigarette smoke creates an
environment favoring strict or facultative anaerobes
over strict aerobes. At the genus and OTU level, we
observed increased abundance of Streptococcus in
current smokers; members of the Streptococcus genus
are facultative or obligate anaerobes (Patterson, 1996)
and generally acid tolerant, which may explain their
success in the smoking environment. Additionally, we
observed smoking-related increases in the anaerobic
Veillonella genus and Actinobacteria OTUs from
anaerobic Actinomyces spp., Rothia mucilaginosa,
Bifidobacterium longum and Atopobium spp. Con-
versely, aerobes such as Neisseria subflava and
Corynebacterium were depleted in smokers. Consis-
tent with the oxygen deprivation hypothesis, Mason
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Figure 2 Cladogram representation of oral microbiome OTUs associated with smoking status. A red branch indicates a taxon or OTU
enriched in current smokers and a green branch indicates a taxon or OTU depleted in current smokers, as detected in the DESeq2 analysis.
The bars represent log2 fold changes of counts in current compared with never smokers; red bars indicate positive fold change and green bars
indicate negative fold change. A total of 1158 OTUs are included in the cladogram, representing OTUs with at least two sequences in at least
30 subjects in the five major phyla; only OTUs with qo0.05 are colored. Cladogram was created using EvolView (Zhang et al., 2012).
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et al. observed higher abundance of anaerobes and
lower abundance of aerobes in subgingival plaque
samples of smokers compared with non-smokers
(Mason et al., 2015). Interestingly, we observed
depletion of certain anaerobic OTUs in smokers as
well, including Leptotrichia spp., Veillonella parvula
and Peptostreptococcus sp. It is possible that these
bacteria were depleted due to specific antibiotic
toxicants in cigarette smoke, or depleted indirectly
due to competition for colonization with smoking-
enriched bacteria or co-aggregation with smoking-
depleted bacteria. Because this is an observational
study, we cannot determine which of the altered taxa
are directly affected by cigarette smoke or indirectly
affected through microbe–microbe interactions.

Aside from creating an anaerobic, acidic and/or
selectively toxic environment, smoking is also known
to have prominent effects on human immunity
(Sopori, 2002), which can in turn influence the host's
ability to stave off colonization by pathogens. The
chemotactic mobility and phagocytic function of oral
polymorphonuclear leukocytes is diminished in smo-
kers (Noble and Penny, 1975; Kenney et al., 1977;
Archana et al., 2015); as these cells are crucial to the
host defense against pathogens, smoking inherently
promotes a more pathogen-friendly oral ecosystem,
thus increasing risk for oral disease (e.g. periodontitis).
Several of our findings are consistent with progression

towards a diseased state: Neisseria and Eikenella are
depleted in oral mucosa from periodontitis patients
(Mager et al., 2003), and Streptococcus species are
more abundant in periodontal disease-progressing
oral sites than healthy oral sites (Yost et al., 2015).
However, most of the taxa typically implicated as
periodontal pathogens were not affected by smoking
in the current study, despite smoking being a strong
risk factor for periodontitis. Our use of oral
mouthwash samples rather than subgingival samples
may account in part for this discrepancy.

The depletion of certain xenobiotic biodegradation
pathways in current smokers suggests important
functional losses with potential health conse-
quences. The oral bacteria are first to come into
contact with cigarette smoke as it enters the human
body, and may play an important role in degrading
the accompanying toxic compounds. We observed
that functional pathways relating to toluene, nitro-
toluene, styrene, chlorocyclohexane and chloroben-
zene degradation were depleted in current smokers,
as was cytochrome P450 xenobiotic metabolism.
Conversely, polycyclic aromatic hydrocarbon and
xylene degradation were enriched in current smo-
kers. These chemicals are components of cigarette
smoke (Rodgman and Perfetti, 2013), and thus
alterations in the ability of the oral community
to degrade these substances may have toxic
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consequences for the host. It is surprising that some
of the xenobiotic degradation pathways are depleted
in smokers, given the need for bacterial upregulation
of these pathways to detoxify cigarette smoke. This
result is also in contrast with a metagenomic study
which observed increased cytochrome P450 xeno-
biotic metabolism in smokers (Boyle et al., 2010).
A simple explanation for our finding is that these
pathways are carried out in bacteria that were
depleted in smokers. Alternatively, the toxic com-
pounds themselves may saturate the enzymes
responsible for their degradation, thus killing the
bacteria possessing these enzymes. Although the
long-term effects of smoking-related oral dysbiosis
remain unclear at this time, oral bacteria are known
to play an important role in both oral and systemic
diseases (Wade, 2013; Olsen, 2015). It is therefore not
unreasonable to imagine that changes in the oral
bacterial community due to smoking may have
detrimental health effects.

We additionally observed that oral bacteria abun-
dances were generally similar between former and
never smokers, implying that specific bacteria
depleted by smoking may be restored following
smoking cessation. Interestingly, a small number of
OTUs were identified as differentially abundant
between former and never smokers, including a
few that were altered in the same direction as in

current smokers. This finding may indicate some
minor lingering effects of smoking. We did not
observe an association between years since smoking
cessation and bacterial class relative abundances in
analyses restricted to former smokers. The absence of
a clear trend with years since quitting among former
smokers may be due to restoration of the oral
microbiome occurring relatively quickly following
smoking cessation, for example, during the first year
or two immediately after quitting. We had insuffi-
cient data on the precise timing of smoking cessation
to examine potential trends in oral microbiome
composition during the period within a few years
of quitting. Moreover, the effect of smoking cessation
on the oral microbiome would be better studied with
longitudinally collected oral wash samples, which
would allow for within-person comparison of the
oral microbiome pre- and post-smoking cessation.
A few studies have examined the effect of smoking
cessation on subgingival plaque bacteria longitudin-
ally (Fullmer et al., 2009; Delima et al., 2010);
however, these studies were limited by the extent
of bacterial profiling. A longitudinal investigation of
smoking cessation involving more extensive bacter-
ial profiling of the oral microbiome (i.e. 16S rRNA
gene sequencing) will be important to determine
which taxa recolonize the oral environment after
smoking cessation.

Figure 4 Bacterial taxa associated with smoking status are related to several gene functional pathways. Bacterial gene functions were
predicted from 16S rRNA gene-based microbial compositions using the PICRUSt algorithm to make inferences from KEGG annotated
databases. Genus and KEGG pathway counts were normalized for DESeq2 size factors and adjusted for data set using the
'removeBatchEffect' function (limma). Spearman's correlation coefficients were estimated for each pairwise comparison of genus counts
and KEGG pathway counts, adjusting for age and sex. Only KEGG pathways relating to carbohydrate, energy, xenobiotic and glycan
metabolism and selected genera of interest are included in the heatmap; full lists of genera and KEGG pathways associated with smoking
can be found in Supplementary Tables S4, S5 and S7.
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In summary, in this large study of the human oral
microbiome, we observed that smoking is related to
overall oral microbiome community composition,
and to the abundance of many taxa. Smoking may
promote an anaerobic oral environment and a
bacterial community with reduced xenobiotic degra-
dation capabilities. Strengths of this study include
the large sample size, the ability to check replication
of findings in four data sets and the control of
potential confounders. This study was limited by
lack of metagenomic data to determine the actual
gene content of bacteria altered by smoking and lack
of longitudinal samples pre- and post-smoking
cessation. Additionally, due to the elderly age of
our study participants, our findings may not be
generalizable to younger populations, particularly
since the oral microbiome changes with age
(Xu et al., 2015). Future studies should investigate
the impact of smoking on the metagenomic content
of the oral microbiome, and whether smoking-related
oral bacterial and/or metagenomic changes mediate
the health effects of smoking.
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