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Abstract 

Background 

Cigarette smoking accounts for approximately one in five deaths in the United States. Previous 

genomic studies have primarily focused on gene level differential expression to identify related 

molecular signatures and pathways, but the genome-wide effects of smoking on alternative isoform 

regulation and posttranscriptional modulation have not yet been described.  

Results 

We conducted RNA sequencing (RNA-seq) in whole-blood samples of 454 current and 767 

former smokers in COPDGene Study. We assessed the association of current smoking with differential 

expression of genes and isoforms and differential usage of isoforms and exons. At 10% FDR, we 

detected 3,167 differentially expressed genes, 2,014 differentially expressed isoforms, 945 

differentially used isoforms and 160 differentially used exons. Genes containing differentially used 

isoforms were enriched in biological pathways involving GTPase activity and innate immunity. The 

majority of these genes were not differentially expressed, thus not identifiable from conventional 

differential gene expression analysis. Isoform switch analysis revealed for the first time widespread 

3’ UTR lengthening associated with cigarette smoking, where current smokers were found to have 

higher expression and usage of isoforms with markedly longer 3’ UTRs. The lengthening of 3’ UTRs 

appears to be mediated through alternative usage of distal polyadenylation sites, and these extended 

3’ UTR regions are significantly enriched with functional sequence elements including adenylate-

uridylate (AU)-rich elements, microRNA and RNA-protein binding sites. Expression quantitative trait 

locus analyses on differentially used 3’ UTRs identified 79 known GWAS variants associated with 

multiple smoking-related human diseases and traits. 

Conclusions 

Smoking elicits widespread transcriptional and posttranscriptional alterations with disease 

implications. It induces alternative polyadenylation (APA) events resulting in a switch towards the 
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usage of isoforms with strikingly longer 3’ UTRs in genes related to multiple biological pathways 

including GTPase activity and innate immunity. The extended 3’ UTR regions are enriched with 

functional sequence elements facilitating post-transcriptional regulation of protein expression and 

mRNA stability. These findings warrant further studies on APA events as potential biomarkers and 

novel therapeutic targets for smoking-related diseases. 
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Introduction 1 

 Cigarette smoking is a major risk factor for a wide range of diseases including cancers, 2 

cardiovascular and respiratory diseases. Approximately one in five deaths in the United States is 3 

attributable to smoking1–5. Globally, smoking-related annual mortality is projected to rise from 3 4 

million in 1995 to 10 million by 2030, with 70% of these deaths occurring in developing countries2. 5 

The associated socioeconomic burden is enormous, with the proportion of health care expenditure 6 

in the US attributable to smoking estimated to range between 6% and 18% across different states6.  7 

Smoking cessation has been shown to reverse many smoking-related adverse health effects 8 

and substantially reduce mortality2,7.  At the molecular level, the majority of smoking-deregulated 9 

genes revert to normal expression levels following smoking cessation, while a smaller subset of genes 10 

remain persistently altered in former smokers8,9. While these genomic studies shed light on smoking-11 

related transcriptional modulations at the gene level, few studies have investigated the effect of 12 

smoking on alternative isoform regulation. Most multi-exon human genes are expressed in multiple 13 

transcript isoforms, and alternative expression of these isoforms are modulated through multiple 14 

mechanisms including alternative splicing, alternative promoter usage and alternative 15 

polyadenylation. With regulatory impacts on mRNA and protein localization, stability and functional 16 

interactions, alternative isoform regulation plays an important role in tissue and cell type specificity 17 

and disease susceptibility10–13. 18 

In a previous RNA-seq analysis of 515 current and former smokers, we identified instances of 19 

differential exon usage predominantly localized to the first or last exons of the involved transcripts, 20 

indicating smoking-related alterations in transcription initiation or termination14. In the current study, 21 

we characterized alternative isoform regulation and associated biological pathways in response to 22 

cigarette smoking in a larger RNA-seq sample of 1,221 current and former smokers in the COPDGene 23 

Study. We quantified transcriptomic alterations at the gene, isoform and exon level, and analyzed the 24 
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consequences of alternative isoform usage (i.e. isoform switching15). We discovered a widespread 25 

switch in current smokers toward increased usage of isoforms with markedly longer 3’ UTRs. This was 26 

mediated through alternative usage of distal polyadenylation sites and resulted in the acquisition of 27 

additional binding sites for microRNAs (miRNAs) and other functional elements. 28 

 29 

Methods 30 

Study subjects 31 

This study includes 454 current smokers and 767 former smokers from COPDGene Study16. 32 

Self-identified non-Hispanic whites and African Americans between the ages of 45 and 80 years with 33 

a minimum of 10 pack-years lifetime smoking history were enrolled at 21 centers across the United 34 

States. COPDGene conducted two study visits approximately five years apart, and additional 35 

longitudinal follow-up of this cohort is ongoing. At the second study visit, complete blood count (CBC) 36 

data and PaxGene RNA tubes were collected. Smoking history was ascertained by self-report. 37 

Participants defined as current smokers answered yes to the question “Do you smoke cigarettes now 38 

(as of one month ago?)”, and for a subset of subjects smoking status was confirmed by serum cotinine 39 

measurement. Institutional review board approval and written informed consent was obtained for all 40 

subjects. 41 

Cotinine measurement 42 

Cotinine measurements were obtained from plasma samples of subjects in two COPDGene 43 

clinical centers (National Jewish Health and University of Iowa). Plasma was collected using an 8.5 mL 44 

p100 tube (Becton Dickinson), and global metabolite data was generated using the Metabolon Global 45 

Metabolomics Platform (Durham, NC, USA). The data were normalized to remove batch effects17. 46 

RNA extraction, sequencing and expression quantification   47 
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Total RNA was extracted from peripheral blood samples, and paired end reads were generated 48 

from Illumina sequencers and aligned to the GRCh38 genome (Supplementary Text 1). GTF annotation 49 

was downloaded from Biomart Ensembl database (Ensembl Genes release 94, GRCh38.p12 assembly) 50 

on October 21, 2018. Exons from the GTF were broken into disjoint parts (exonic parts) sharing a 51 

common set of transcripts18. Sequencing read counts on genes and exonic parts were generated from 52 

featureCounts in Rsubread19 (v1.32.2). Isoform expression estimates were obtained using Salmon20 53 

(v0.12.0) and tximport21 (v1.10.0).  54 

Filtering, normalization, differential expression and usage analysis 55 

Low expressed genomic features were filtered before applying TMM22 normalization from 56 

edgeR23 (v3.24.3) (Supplementary Text 1). To test for differential expression of genomic features 57 

between current and former smokers, we employed the linear modeling approach implemented in 58 

limma24,25 (v3.38.3), where the mean-variance relationship is accounted for by applying observation-59 

specific weights estimated from voom26. We adjusted for covariates including age, race, gender, total 60 

pack-years of exposure, forced expiratory volume in one second (FEV1), complete blood cell count 61 

proportions and library prep batch. To test differential usage of isoforms and exonic parts, we used 62 

diffSplice from limma. False discovery rate (FDR) was controled with Benjamini-Hochberg 63 

procedure27. A significance cutoff of 10% FDR was used. To better visualize the differential usage 64 

result, we developed a procedure to derive a variance stabilizing transformation (VST) on counts 65 

based on the mean-variance relationship in voom (Supplementary Text 2). 66 

Gene set enrichment analysis 67 

Gene ontology28,29 (GO) biological function enrichment of gene sets derived from differential 68 

expression and usage analysis were assessed via Fisher exact test statistic with weight01 algorithm 69 

available in topGO (v2.33.1) that accounts for dependency in GO topology30. P-value < 0.05 was 70 

considered significant. 71 

Isoform switch analysis 72 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 12, 2021. ; https://doi.org/10.1101/2021.06.09.21258495doi: medRxiv preprint 

https://doi.org/10.1101/2021.06.09.21258495
http://creativecommons.org/licenses/by-nc-nd/4.0/


Isoforms identified from differential usage analysis were further examined for their splicing 73 

patterns relative to a synthetic pre-RNA in their parent genes using IsoformSwitchAnalyzeR 74 

(v1.12.0)31. Eight categories of splicing events were characterized, including exon skipping (ES), 75 

multiple exon skipping (MES), mutually exclusive exons (MEE), intron retention (IR), alternative 5’ 76 

splice site (A5), alternative 3’ splice site (A3), alternative transcription start site (ATSS) and alternative 77 

transcription termination site (ATTS). By pairwise comparison between down-used and up-used 78 

isoforms, we examined eight aspects of isoform switch consequences – namely, changes in overall 79 

isoform length, 3’ UTR length, 5’ UTR length, number of exons, intron retention, sensitivity to 80 

nonsense-mediated mRNA decay (NMD), location of transcription start site (Tss) and transcription 81 

termination site (Tts). The net effects of these splicing events and switch consequences were 82 

aggregated at the gene level and tested for statistical significance using a binomial test.  83 

Sequence and motif analysis 84 

Genomic annotations of polyadenylation cleavage sites (PASs), AU-rich elements (AREs), 85 

miRNAs and RNA-binding proteins (RBPs) binding sites were collected from multiple sources 86 

(Supplementary Text 1). Flanking sequences of PASs were searched for polyadenylation [poly(A)] 87 

signal motifs of AATAAA and TTTTTTTTT. Frequencies of these annotated sequence elements and 88 

identified poly(A) signal motifs were computed, smoothed and visualized at each position of a given 89 

set of equal-length sequences extracted based on some criterion (e.g. sequences up to 60 nucleotides 90 

[nts] upstream of PASs in 3’ UTR exonic parts that were up-used in smokers). 91 

Statistical, network and eQTL analysis 92 

Demographic differences between current and former smokers were assessed via Student’s t-93 

test and Pearson’s Chi-squared test for continuous and categorical variables, respectively. Isoform 94 

and exonic part length comparisons were performed using the Wilcoxon signed rank test. Enrichment 95 

tests of sequence elements in 3’ UTRs were performed using Fisher’s exact test. To account for 96 

difference in 3’ UTR lengths, we repeated the enrichment analysis limiting to the last 100 nts at 3’ end 97 
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of the UTRs. To identify individual miRNA and RBPs whose binding sites were enriched at a higher 98 

density in 3’ UTRs, we conducted a binomial test with the hypothesized probability of success equal 99 

to the ratio of the sum of the lengths of the 3’ UTRs of interest over the total length of 3’ UTRs. The 100 

identified individual miRNAs, RBPs and their target genes were visualized as a directed regulatory 101 

network using the Fruchterman-Reingold layout32, and network communities were detected using a 102 

multi-level modularity optimization algorithm implemented in igraph R package (v1.2.5).  103 

Expression quantitative trait locus (eQTL) analyses were performed to test for association 104 

between single nucleotide polymorphisms (SNPs) within 1MB cis window and the expression values 105 

of genes and exonic parts in 796 NHW subjects in COPDGene. SNPs with minor allele frequency > 5% 106 

were tested. Expression values were regressed on additively coded SNP genotypes using linear 107 

regression implemented in MatrixQTL33. The models were also adjusted for age, gender, principal 108 

components of genetic ancestry, and 35 PEER factors obtained from the expression data34. The 109 

identified QTLs at 5% FDR cutoff were cross-referenced against the NHGRI-EBI GWAS catalog accessed 110 

on May 07, 2021 using makeCurrentGwascat from gwascat (v2.13.5), and visualized with 111 

LocusZoom35. 112 

Data availability 113 

The gene, isoform and exon count data used for this analysis are available in GEO36,37 114 

(accession number GSE171730). A Shiny app to explore and visualize the data and result is available 115 

at http://cdnm-castaldi.org/smoking_deu_2021/. 116 

 117 

Results 118 

Differential gene expression 119 

The demographics and clinical characteristics of the study subjects (454 current smokers and 120 

767 former smokers) are summarized in Supplementary Table ST1. In a subset of subjects, serum 121 
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cotinine levels confirmed the general accuracy of subjects’ self-reported smoking behavior in the 122 

COPDGene Study (Supplementary Fig. SF1). To evaluate gene expression changes in peripheral blood 123 

in response to active cigarette smoking, we obtained gene level RNA-seq counts, and performed 124 

differential gene expression (DGE) analysis comparing current versus former smokers while adjusting 125 

for other demographic and clinical covariates. Out of 22,020 genes evaluated, we identified 1,542 up-126 

regulated and 1,625 down-regulated genes at 10% FDR (Supplementary Fig. SF2, Supplementary 127 

Table ST2). The top ten DGE genes are listed in Table 1. We then performed GO enrichment analyses 128 

on DGE genes and found 335 over-represented biological processes with various aspects of 129 

inflammation and platelet activation topping the list (Supplementary Table ST3). 130 

Differential expression and usage of isoforms 131 

We next generated Salmon estimates of isoform expression and assessed differential isoform 132 

expression (DIE) between current and former smokers. Out of 85,437 isoforms tested, 1,026 up-133 

regulated and 988 down-regulated isoforms were identified at 10% FDR (Supplementary Table ST4, 134 

Supplementary Fig. SF3). These isoforms map to 1,547 genes, 77% (1190/1547) of which were also 135 

differentially expressed in DGE analysis. The vast majority (1347/1547 = 87%) of these genes had 136 

multiple expressed isoforms, and for 64% (860/1347) of these genes the dominant isoform (i.e. most 137 

highly expressed isoform) was differentially expressed. GO enrichment analysis identified 290 over-138 

represented biological processes (Supplementary Table ST5), 37% of which were also identified in the 139 

DGE enrichment analysis. 140 

Unlike DIE, differential isoform usage (DIU) analysis detects changes in the fractional 141 

composition of isoforms originating from the same parent gene (i.e. isoform switch15). We identified 142 

389 up-used and 556 down-used isoforms (Supplementary Table ST6), corresponding to 804 genes of 143 

which 31% (250/804) were also differentially expressed in the DGE analysis (Supplementary Fig. SF4). 144 

Interestingly, DIU occurred largely in non-dominant isoforms (646/804=80%). GO enrichment analysis 145 

of genes containing DIU isoforms identified 100 over-represented biological processes 146 
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(Supplementary Table ST7), 12% of which overlapped with the DGE enrichment results. The most 147 

enriched biological processes include GTPase activity, Wnt-signaling, and regulation of innate 148 

immunity. The top ten DIU isoforms and enriched GO terms are shown in Tables 2 and 3, respectively.  149 

Alternative splicing events and consequences 150 

Isoform switches identified from the DIU analysis can be further analyzed to characterize 151 

specific splicing events and potential consequences31. An example isoform switch in Sestrin 3 (SESN3) 152 

is shown in Fig. 1a. The down-used and up-used isoforms in SESN3 have distinct splicing patterns that 153 

could result in multiple potential consequences at the RNA and protein level. 154 

By comparing splicing patterns between isoforms, we identified six categories of alternative 155 

splicing events prevalent in smoking-associated DIU isoforms, three of which (alternative 156 

transcription start site, alternative termination site, and intron retention) seem to be slightly more 157 

prevalent in the up-used isoforms (Supplementary Text 1). We next assessed the consequences of 158 

switching from down-used to up-used isoforms on eight isoform characteristics including UTR length, 159 

position of transcription start and termination site, intron retention, and sensitivity to NMD. We 160 

found isoform switching resulted in higher usage of isoforms that had longer overall length, longer 3’ 161 

UTRs, and fewer exons (p < 0.05 for all, Fig. 1b-c). In the example of SESN3, the up-used isoform has 162 

a longer isoform length due primarily to marked elongation of the 3’ UTR (7,742 nucleotides [nts] vs 163 

107 nts in the down-used isoform). 164 

Smoking-associated increased usage of isoforms with extremely long 3’ UTRs 165 

To further examine the significant isoform switch consequences related to length, we 166 

compared the length distribution of up-used, down-used, and non-DIU isoforms in genes identified 167 

through DIU analysis. We observed that isoforms up-used in current smokers were notably longer 168 

(median isoform lengths 2997 nts, 2323 nts, and 1221 nts for up-used, down-used, and non-DIU 169 

isoforms, respectively). The smoking-related transcript elongation occurred primarily in the coding 170 
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region sequence (CDS) and 3’ UTRs but not in 5’ UTRs (Fig. 2). We also noted a strong correlation 171 

between CDS length and 3’ UTR length in all analyzed isoforms (Spearman rho = 0.78). 172 

Since these isoform-level analyses depend on the reliability of isoform expression estimation, 173 

we also performed differential exon usage (DEU) analysis on exonic part read counts directly 174 

supported by alignments. Exonic parts were derived from transcriptome annotations as described in18 175 

and illustrated in Fig. 3a. We identified 126 up-used and 34 down-used exonic parts contained within 176 

128 genes (Supplementary Table ST8). Forty-five percent (57/128) of these genes were also 177 

differentially expressed, 74% (42/57) of which were down-regulated.  178 

Analysis on DEU exonic parts lengths confirmed the switch toward isoforms with extremely 179 

long 3’ UTRs (Fig. 3b). Differentially used 3’ UTRs (DEU 3’ UTRs) accounted for 40% (64/160) of all 180 

identified DEU exonic parts, nearly all (56/64) of which were up-used in current smokers. Of the genes 181 

containing a DEU 3’ UTR, about half (26/54) were differentially expressed with the large majority 182 

(19/26) showing decreased expression in current smokers. GO enrichment analysis of genes with up-183 

used DEU 3’ UTRs identified over-representation of transcriptional regulation (e.g. polyadenylation 184 

and miRNA binding), Wnt-signaling and NF-kB signaling (Supplementary Table ST9). In summary, 185 

smoking results in marked 3’ UTR elongation that tends to be associated with a reduction in overall 186 

expression for the affected genes. 187 

Elongation of 3’ UTRs is not an artifact of transcript length bias 188 

Transcript length bias in RNA-seq data analysis can arise when statistical power to detect 189 

differential expression is greater for longer isoforms, due to the fact that read counts are proportional 190 

to not only expression levels but also transcript lengths38. To determine whether the observed 191 

smoking-associated 3’ UTR elongation is driven by length bias, we compared our analysis on data 192 

where smoking status was randomly permuted. The results of this permutation analysis demonstrate 193 

that the magnitude of length-related effects observed in the non-permuted analysis far exceeds the 194 

effects seen with permutation, and that the directional preference of positive log-fold-changes for 195 
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longer 3’ UTR isoforms in current smokers is absent in the permuted data (Fig. 4). These results 196 

indicate that the observed smoking-associated 3’ UTR elongation is not driven by transcript length 197 

bias. 198 

Alternative polyadenylation mediates 3’ UTR elongation 199 

We next sought to determine whether smoking-associated 3’ UTR lengthening occurs in a 200 

controlled manner through transcriptional termination mechanisms involving alternative 201 

polyadenylation (APA). To test the hypothesis on alternative polyadenylation site (PAS) usage, we 202 

assessed whether annotated PAS are enriched within up-used 3’ UTRs. The majority of up-used 3’ 203 

UTRs (50/56) contained at least one annotated PAS, representing a thirtyfold enrichment over all 204 

other tested 3’ UTRs within the same genes (OR = 30.1, P-value < 0.001), and a twentyfold enrichment 205 

over 3’ UTRs across all genes. These enrichment scores remain highly significant when each 3’ UTR is 206 

trimmed to the last 100 nts at its 3’ end (Table 4, poly(A) sites). In contrast, PAS were identified in 207 

only 25% of down-used 3’ UTRs. We also observed at least one PAS in close proximity to the distal 208 

boundary of up-used 3’ UTRs (median distance of 7 nts), consistent with the hypothesis that the 3’ 209 

UTR extension is mediated through alternative usage of PAS.  210 

To ascertain whether there were any differences in strength of PAS in up-used 3’ UTRs relative 211 

to PAS in other 3’ UTRs in the same genes, we examined the frequency of the canonical poly(A) motif 212 

(AATAAA) as a surrogate for overall PAS strength. We focused on externally verified PAS within the 213 

last 100 nts of a 3’ UTR exonic part, and we counted instances in which AATAAA motifs were located 214 

within 60 nts upstream of a PAS. We found PASs in up-used 3’ UTRs had a higher frequency of AATAAA 215 

motifs than PAS in non-DEU 3’ UTRs from the same genes (44.7% versus 29.8%). The presence of 216 

AATAAA motifs was also correlated to exonic part differential usage P-values (Spearman rho = 0.19) 217 

and log-fold-changes (Spearman rho = 0.26). A similar pattern was observed for another strong 218 

poly(A) motif TTTTTTTTT (Fig. 5 a-c).  219 
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To determine the localization of our DEU 3’ UTRs, we classified all exonic parts in genes 220 

containing DEU 3’ UTRs as distal (located at the gene end) and proximal (located at an upstream 3’ 221 

UTR). Fifty-two percent (29/56) of DEU 3’ UTRs were distal, and the frequency of the canonical poly(A) 222 

motif in these genes was highest in distal PASs (52.3%), compared to 35.9% for proximal PASs. 223 

Similarly, we found the highest frequency of poly(A) motif TTTTTTTTT at distal PASs. The positional 224 

frequencies of these motifs are shown in Fig. 5 d-e. This analysis highlights the predominant 225 

localization of DEU 3’ UTRs at gene ends with strong distal poly(A) signals. 226 

Enrichment of functional regulatory elements in smoking-elongated 3’ UTRs  227 

3’ UTRs often harbor functional binding sites that regulate mRNA stability and localization, 228 

and previous work has shown that some transcripts with longer 3’ UTRs harbor repressive elements 229 

in extended 3’ UTR regions39. These functional sites often reside in adenylate-uridylate (AU)-rich 230 

elements that serve as regulatory hotspots characterized by joint binding of regulatory factors such 231 

as RBPs and miRNAs40.  232 

Using the core pentamer motif of AREs (AUUUA), we found that AREs are significantly enriched 233 

in up-used 3’ UTRs relative to non-smoking associated 3’ UTRs (OR = 35.9, P-value < 0.001). When 234 

considering the density of AREs per unit length of 3’ UTR, ARE sites also occur at significantly higher 235 

frequency in up-used 3’ UTRs. We also observed enrichment of Targetscan predicted miRNA binding 236 

sites (OR = 7.8, P-value < 0.001) within up-used 3’ UTRs (Table 4). The chance of co-occurrence of 237 

these functional elements (including PAS) in up-used 3’ UTRs is significantly higher (Supplementary 238 

Table ST10). Positional frequency analysis clearly demonstrates an enriched distribution of PASs, 239 

AREs, and miRNA binding sites over the elongated 3’ UTRs, especially at the distal end (Fig. 6). 240 

Extending the global enrichment analysis to individual regulatory factors, we identified five 241 

miRNAs and three RBPs whose binding sites were enriched in up-used 3’ UTRs. To explore putative 242 

coordination between these miRNAs and RBPs, a regulatory network of these entities and their target 243 

genes were constructed. Using a community detection algorithm, we identified five communities 244 
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(modularity score 0.32) of dense connections, including four connected communities and one isolated 245 

RBP community (MATR3). Interestingly, AGO2, a member of the largest community, is a target for 246 

both the top 2 miRNA candidates and the top 2 RBP candidates, suggesting that these miRNAs and 247 

RBPs may act in a coordinated manner in post-transcriptional regulation of AGO2 and other target 248 

genes (Fig. 7). AGO2 protein is essential to miRNA and siRNA-mediated post-transcriptional gene-249 

silencing, and the most distal 3’ UTR of AGO2 is up-used in response to smoking (q-value = 7.78e-8). 250 

Alternative polyadenylation is implicated in smoking-related human diseases and traits 251 

To relate smoking-induced alternative polyadenylation with human diseases and traits, we 252 

first performed eQTL analysis to identify genetic variants within a 1MB cis window associated with 253 

the expression level of smoking-related DEU 3’ UTRs. We found 2,840 significant QTLs at 5% FDR for 254 

29 DEU 3’ UTRs in 25 genes. The majority (2582/2840 = 90.9%) of these QTLs were specifically 255 

associated with the expression level of 3’ UTR rather than the gene expression level. We then cross-256 

referenced these QTLs against the NHGRI-EBI GWAS catalog41,42 and identified 79 GWAS variants that 257 

were significantly associated with expression levels of DEU 3’ UTRs in 11 genes. The most significant 258 

QTLs were associated with the up-used 3’ UTR in ERAP1 (Supplementary Table ST11), an endoplasmic 259 

reticulum–expressed aminopeptidase that trims peptides for presentation by MHC class I 260 

molecules43. The minor allele of the lead QTL variant for ERAP1, rs7063, disrupts a canonical poly(A) 261 

motif AATAAA for the proximal poly(A) site, leading to increased usage of the distal poly(A) site and 262 

an isoform switch from the shorter isoform ENST00000443439 to the longer isoform 263 

ENST00000296754 with extended 3’ UTR (Fig. 8a-c). Although rs7063 is not cataloged in the NHGRI-264 

EBI GWAS database, it has linkage disequilibrium (LD) to various degrees with nearby QTLs and GWAS 265 

variants including those associated with protein expression levels, alcohol dependence, ankylosing 266 

spondylitis and psoriasis (Fig. 8d). These results implicate alternative polyadenylation in 267 

posttranscriptional protein level modulation and smoking-related diseases and traits44–46. 268 
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Discussion 269 

 Cigarette smoking increases susceptibility to many diseases including chronic obstructive 270 

pulmonary disease, cardiovascular disease, and multiple cancers. While the epidemiologic association 271 

of smoking to these disease risks is well-established, the underlying molecular basis is not fully 272 

understood, and the effects of smoking on alternative isoform regulation and posttranscriptional 273 

modulation have not been previously described. In a large cohort of current and former smokers, we 274 

used whole-blood RNA-seq to characterize the alternative splicing mechanisms and likely functional 275 

consequences of smoking-associated isoform switching. We demonstrated that smoking results in 276 

marked 3’ UTR elongation via alternative polyadenylation of genes enriched for specific biological 277 

pathways with disease implications. This 3’ UTR lengthening leads to the acquisition of post-278 

transcriptional regulatory sites and is often associated with decreased overall expression of the 279 

affected genes. 280 

The effect of smoking on gene expression in blood has been well-described14,47–50. The largest 281 

meta-analysis of smoking and blood transcriptome included 10,233 subjects, identifying 1,270 282 

differentially expressed genes50. Our top associated genes were consistent with these previous 283 

studies. The only previous large-scale study related to alternative splicing in smoking was published 284 

on an earlier, smaller set of RNA-seq data from COPDGene14. This study identified 9 instances of DEU 285 

events but did not pursue analysis on isoform expression changes and switches, and the statistical 286 

power of that study was insufficient to systematically characterize alternative isoform regulation and 287 

posttranscriptional modulation in smoking. Expanding to twice as many subjects in the current study 288 

enabled us to identify hundreds of genes and biological pathways affected by smoking-associated 289 

isoform switching and APA events.  290 

APA is a major RNA-processing mechanism that generates distinct 3ʹ termini on mRNAs and 291 

other RNA polymerase II transcripts, and contributes to human diseases including cancer, 292 
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immunological and neurological diseases51. APA plays an important role in the cellular response to 293 

oxidative stress, heat shock and starvation52. Various kinds of environmental stress have been shown 294 

to increase utilization of distal polyadenylation sites53 and lead to transcriptional readthrough beyond 295 

annotated gene ends54. These observations suggest that APA may be a common posttranscriptional 296 

mechanism employed by mammalian cells when rapid modulations of RNA and protein levels are 297 

required in response to cellular stress. Smoking could be one of a larger class of exposures that elicits 298 

this posttranscriptional stress response, and additional studies of RNA-protein binding, RNA stability 299 

and trafficking are needed to elucidate its full spectrum of posttranscriptional modulations. 300 

While previous genome-wide association studies (GWAS) have identified numerous genetic 301 

variants associated with smoking and smoking-related phenotypes55–60, functional interpretation of 302 

these variants remains challenging. Genetic variants could directly alter poly(A) motifs and RBP 303 

binding sites to modulate APA events, and several studies have been undertaken in recent years to 304 

systematically map novel apaQTLs and their disease etiologies61–64. Our preliminary 3’ UTR eQTL 305 

analysis in the current study suggests APA as a potential molecular phenotype to link genetic variants 306 

to smoking-related human diseases and traits. Further systematic apaQTL studies are needed to 307 

identify APA-related genetic-environment interactions conferring disease susceptibility. 308 

 The strengths of this study are the large sample size of RNA-seq data and the genome-wide 309 

assessment of alternative isoform regulation and posttranscriptional modulation in smoking. Our CBC 310 

quantifications do not capture variability of immune cell subpopulations, limiting our ability to localize 311 

these effects to specific cell types. Some of our results may reflect underlying changes in unmeasured 312 

cell type subpopulations. In future studies, the use of single cell data (scRNA-seq) or cell type 313 

deconvolution methods may provide additional insights. scRNA-seq may offer unique advantage in 314 

studying APA as the most popular scRNA-seq protocols specifically sequence the 3ʹ end of 315 

transcripts65.  316 
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 In conclusion, our findings from 1,221 current and former smokers demonstrate widespread 317 

effects of smoking on alternative isoform regulation, highlighting specifically posttranscriptional 318 

mechanisms of APA and 3’ UTR lengthening. In the future, when longitudinal follow-up data are 319 

available for these subjects, we may be able to relate these posttranscriptional events to prospective 320 

health outcomes, and develop APA biomarkers and therapeutic targets for smoking-related 321 

diseases66.  322 

 323 
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Ensembl gene ID HUGO gene 

name 

Chromosome Strand Log fold 

change 

Average 

expression 

Adjusted 

P-value 

ENSG00000154165 GPR15 3 + 1.36 4.43 3.61E-97 

ENSG00000253230 LINC00599 8 - 1.65 -2.67 1.38E-68 

ENSG00000173114 LRRN3 7 + 1.17 4.19 3.36E-55 

ENSG00000167680 SEMA6B 19 - 1.35 -1.16 1.01E-47 

ENSG00000111961 SASH1 6 + 0.73 3.03 6.66E-45 

ENSG00000063438 AHRR 5 + 1.20 -0.26 3.54E-42 

ENSG00000077063 CTTNBP2 7 - 1.30 -0.70 1.59E-41 

ENSG00000153823 PID1 2 - 0.51 4.03 1.10E-39 

ENSG00000124334 IL9R X + 0.90 -0.40 1.48E-32 

ENSG00000080822 CLDND1 3 - 0.24 6.41 2.84E-26 

Table 1. Top 10 differentially expressed genes in current smokers versus former smokers. 

 

 

 

 

 

 

 

 

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 12, 2021. ; https://doi.org/10.1101/2021.06.09.21258495doi: medRxiv preprint 

https://doi.org/10.1101/2021.06.09.21258495
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Ensembl transcript 

ID 

HUGO gene 

name 

Log fold 

change 

Average log 

expression 

Adjusted P-

value 

ENST00000586582 SEMA6B 1.54 -1.41 3.04E-21 

ENST00000589889 SEMA6B -1.54 0.03 3.04E-21 

ENST00000233156 TFPI -0.87 0.76 3.55E-14 

ENST00000244174 IL9R 0.97 -1.81 1.78E-10 

ENST00000540368 ATP6V0A2 -0.77 -0.19 2.66E-10 

ENST00000517625 SKP1 -0.43 4.11 5.83E-10 

ENST00000278499 SESN3 -0.61 4.19 9.34E-10 

ENST00000477931 GNAS -0.56 4.13 3.76E-09 

ENST00000362091 FBH1 -0.44 3.94 3.76E-09 

ENST00000333007 TNFAIP2 -0.87 0.48 3.80E-09 

Table 2. Top 10 differentially used Isoforms in current smokers versus former smokers. 
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GO ID GO term Total number 

of genes in 

category 

Number of smoking-

associated genes in 

category 

P-value 

GO:0043547 positive regulation of GTPase 

activity 

308 45 1.00E-05 

GO:0046822 regulation of nucleocytoplasmic 

transport 

97 12 3.10E-04 

GO:0006607 NLS-bearing protein import into 

nucleus 

24 7 9.50E-04 

GO:0010172 embryonic body morphogenesis 9 5 1.27E-03 

GO:0008053 mitochondrial fusion 19 7 1.30E-03 

GO:0045088 regulation of innate immune 

response 

300 21 1.30E-03 

GO:0034497 protein localization to 

phagophore assembly site 

13 5 1.31E-03 

GO:0006610 ribosomal protein import into 

nucleus 

8 4 1.31E-03 

GO:0075522 IRES-dependent viral 

translational initiation 

10 4 3.51E-03 

GO:0016055 Wnt signaling pathway 289 34 3.68E-03 

Table 3. Top 10 gene ontology biological processes enriched in genes with differentially used 

isoforms in current smokers versus former smokers. 
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Functional 

elements 
Count method 

Up-

used 3' 

UTR 

non-DEU 3' UTR 

within genes across genes 

yes no yes  no OR P-value yes  no OR P-value 

poly(A) 

sites 

full length 50 6 117 425 30.08 < 2.2e-16 23380 57386 20.45 < 2.2e-16 

last 100 bp 36 20 113 429 6.81 5.14E-11 20930 59836 5.15 1.88E-09 

last 100 bp density 47 0 151 0 3.01 2.13E-09 26213 0 2.59 1.26E-08 

ARE 

full length 51 5 76 466 61.92 < 2.2e-16 17854 62912 35.94 < 2.2e-16 

last 100 bp 24 32 58 484 6.23 1.13E-08 11731 69035 4.41 2.88E-07 

last 100 bp density 35 0 70 0 4.84 1.12E-11 14262 0 3.54 4.67E-10 

miRNA 

binding 

sites 

full length 36 20 88 454 9.23 7.09E-14 15172 65594 7.78 1.03E-13 

last 100 bp 13 43 83 459 1.67 1.28E-01 10769 69997 1.97 4.57E-02 

last 100 bp density 33 0 164 0 1.95 1.27E-03 20823 0 2.29 2.78E-05 

Table 4. Summary of functional element enrichment in 3’ UTRs. Counts of each of the three types of 

functional elements in a given set of 3’ UTR exonic parts, as well as odds ratios and P-values of 

enrichment tests, are shown. The “full length” count method means counting the number of 3’ UTR 

exonic parts that harbor at least one functional element. The “last 100 bp” means counting similarly 

to “full length” except trimming all 3’ UTRs to include only the most distal 100 bp. The “last 100 bp 

density” counts the total number of functional elements in the last 100 bp of a given set of 3’ UTRs. 

The “within genes” and “across genes” denotes comparisons done entirely within genes containing 

up-used 3’ UTRs and comparisons done in all tested genes, respectively. 
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Figure 1. Smoking-associated isoform switches and consequences. An example of the identified 

isoform switches in the DIU analysis is shown in panel a, where only isoforms accounting for more 

than 5% of the gene expression are displayed. The statistical significance of DGE, DIE and DIU analysis 

is marked on the bar plots (*: q-value < 0.1, ***: q-value < 0.01, ns: nonsignificant). In panel b, pairwise 

comparisons between up-used and down-used isoforms for all tested genes are performed to assess 

specific consequences of isoform switches (e.g. 3’ UTR length is longer or shorter in up-used versus 

down-used isoforms from the same gene), and the fraction of DIU isoforms involved in a given type 

of switch consequence is shown. Panel c summarizes the net effects of these switch consequences at 

the gene level aggregated over all pairwise comparisons between up-used and down-used isoforms. 

Each gene will have a binary designation of its net switch consequence, and the fraction of genes with 

a particular designation and its confidence interval are shown. A binomial test is performed to assess 

isoform switch in SESN3
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the statistical significance of the gene fractions with respect to a null hypothesis of 0.5. The dot size 

is proportional to the number of genes whose DIU isoforms have a given type of switch consequences, 

and statistical significance of the binomial test is indicated by red colored dots. NMD: nonsense-

mediated mRNA decay, identified from a premature termination codon >50nt upstream of the last 

exon-exon junction. Tss: transcription start site. Tts: transcription termination site. 
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Figure 2. 3’ UTR lengthening with up-used DIU isoforms. Isoforms were classified into three DIU 

categories (non-differentially used, down-used, up-used) according to their differential usage test 

statistics. Isoforms within each gene were grouped by category to compute average isoform length, 

5’ UTR length, 3’ UTR length, and CDS length. These average lengths were compared across DIU 

categories using the Wilcoxon signed rank test, and the significant P-values are denoted in the violin 

plots. Significant differences in CDS and 3’ UTR length were observed, especially in up-used DIU 

isoforms. 
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Figure 3. 3’ UTR lengthening of up-used DEU exonic parts. Non-overlapping exonic parts were 

derived from collapsed Ensembl gene models, as illustrated in panel a. Exonic parts that overlap 

annotated 5’ and 3’ UTRs are colored in green and cyan, respectively. In panel b, exonic parts were 

classified into three DEU categories (non-differentially used, down-used, up-used) according to their 

differential usage test statistics. Exonic parts within each gene were grouped by category to compute 

the average 5’ UTR and 3’ UTR exonic parts length. These average lengths were compared between 

the three DEU categories using the Wilcoxon signed rank test, and the significant P-values are denoted 

in the violin plots. A significant increase in 3’ UTR exonic part length was observed in up-used DEUs. 
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Figure 4. Directional preference in smoking-induced transcriptional regulation in observed versus 

permuted data. Left-hand panels demonstrate that a trend towards positive log fold changes (i.e. 

higher expression and usage in smokers) with longer features is present in the observed data but not 

the permuted data. Right-hand panels show the increasing percentage of features detected as up-

regulated or up-used in smokers as the features become longer. Features were sorted by length, and 

statistics (average log fold changes and feature lengths) were computed from a sliding window of size 

300 and step size 15 nts. A LOWESS curve was fit to these statistics and shown with 95% confidence 

interval in the left-hand panels for the three types of analysis (DIE, DIU and DEU) in both the observed 

and permuted data. In the right-hand panels, the percentage of features stratified by status of 

differential expression and usage were shown on the y axis. 
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Figure 5. Positional frequency of poly(A) motifs upstream of polyadenylation sites (PASs). Genomic 

sequences upstream of PASs are extracted, and the frequencies of poly(A) motifs at each base 

position are computed and smoothed in the visualization. In panels a-b, PASs are categorized 

according to the DEU analysis of the 3’ UTRs harboring these sites. In panels d-e, PASs are categorized 

as distal and proximal depending on their location relative to the annotated end of the gene. In panels 

a-b and d-e, the dashed lines mark the position of experimentally determined PAS cleavage sites in 3’ 

UTR exonic parts from genes containing up-used 3’ UTRs. In panel c, each row represents the last 100 

nucleotides of a 3’ UTR exonic part, ordered by DEU P-values.  
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Figure 6. Positional frequency of functional elements in 3’ UTRs. Genomic sequences up to 4 kb 

upstream of the 3’ UTR exonic part ends are extracted, and the frequencies of functional elements 

(PAS, ARE, miRNA) at each base position are computed and smoothed in the visualization. The exonic 

parts analyzed here include all 3’ UTRs from genes containing up-used 3’ UTRs.  

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 12, 2021. ; https://doi.org/10.1101/2021.06.09.21258495doi: medRxiv preprint 

https://doi.org/10.1101/2021.06.09.21258495
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Figure 7. Regulatory network of micro-RNAs (miRNAs), RNA-binding proteins (RBPs) and their 

target genes with up-used 3’ UTRs. Candidate regulatory factors (5 miRNAs and 3 RBPs) were 

identified from enrichment tests of binding sites from TargetScan and e-CLIP experiments in up-used 

3’ UTRs. Five network communities are designated by the node coloring and shaded polygons. p-

values from the binomial enrichment tests are shown. Node size is proportional to the -log10 

transformed binomial p-values. Node shape: sphere = miRNA; circle = RBP; square = target gene. Edge 

width is proportional to the number of binding sites. Edge color designates the within (black) or 

between (gray) community links. 
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Figure 8. Genetic effects on alternative polyadenylation in ERAP1. Panel a shows sequentially in each 

row the differential usage log fold changes for the exonic parts, the coverage of RNA binding protein 

(RBP), miRNA, AU-rich elements (ARE), and alternative polyadenylation (APA) cleavage sites, and the 

Ensembl gene model for ERAP1. The exonic parts differential usage pattern is further illustrated in 

panel b using variance stabilized transformed (VST) counts adjusted for covariates. Panel c highlights 

the genetic variant directly disrupting the canonical poly(A) motif at the proximal poly(A) site. A 

LocusZoom plot is displayed in panel d, showing the eQTL FDR for the association of SNPs with the 

up-used 3’ UTR of ERAP1. The SNPs are colored according to linkage disequilibrium with the lead eQTL 

variant rs7063, and are annotated based on the effects on APA motifs and annotations in NHGRI-EBI 

GWAS catalog (n and y in the top legend means lacking and having effect/association, respectively). 
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