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Abstract—In this paper, we address class incremental learning
(IL) in remote sensing image analysis. Since remote sensing im-
ages are acquired continuously over time by Earth’s Observation
sensors, the land-cover/land-use classes on the ground are likely
to be found in a gradational manner. This process restricts the
deployment of stand-alone classification approaches, which are
trained for all the classes together in one iteration. Therefore,
for every new set of categories discovered, the entire network
consisting of old and new classes requires retraining. This
procedure is often impractical, considering vast volumes of data,
limited resources, and the complexity of learning models. In this
respect, we propose a ConvNet based framework (called CILEA-
NET, Curriculum-based Incremental LEArning Framework for
Remote Sensing Image Classification) to efficiently resolve the
difficulties associated with incremental learning paradigm. The
framework includes new classes in the already trained model to
avoid catastrophic forgetting for the old while ensuring improved
generalization for the newly added classes. To manage the IL’s
stability-plasticity dilemma, we introduce a novel curriculum
learning-based approach where the order of the new classes is
devised based on their similarity to the already trained classes.
We then perform the training in that given order. We notice that
the curriculum learning setup distinctly enhances the training
time for the new classes. Experimental results on several optical
datasets: PatternNet and NWPU-RESISC45, and a hyperspectral
dataset: Indian Pines, validate the robustness of our technique.

Index Terms—Incremental learning, curriculum, remote-
sensing, classification.

I. INTRODUCTION

S
IGNIFICANT research in remote sensing image analy-

sis has rendered the field with considerable momentum

resulting in the rapid development of innovative solutions to

many advanced problems. This drive is majorly attributable to

more enhanced satellites being deployed and remote sensing

imaging technologies being advanced to acquire abundant

data [1]. In the recent past, the deep convolutional neural

network has proven to achieve remarkable success in this

regard, facilitating the notion of data-driven feature represen-

tation learning.

The Earth observation sensors obtain images continuously

over time. The land cover/ land use classes are discovered only
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Fig. 1. Illustration comparing the traditional learning approach and the
proposed scheme of incremental learning. (a) depicts the traditional deep
learning scenario where the complete dataset is expected to be present while
training. (b) illustrates the proposed approach to learn incrementally by
integrating curriculum learning strategy with continual learning.

sequentially. Whereas in the general setting, the entire dataset,

including all the class information, is present during training.

Therefore, many remote sensing data are subjected to tempo-

ral, spatial, and spectral resolution limitations. Besides, taking

advantage of these rich data reservoirs for supervised learning

algorithms, the samples must be meticulously annotated. An-

notation becomes demanding for vast multi-temporal datasets.

The steady accumulation of such an enormous amount of

dynamic data necessitates a framework capable of continually

learning as and when the sequentially annotated data is made

available.

However, selecting model parameters for a deep learning

framework to dynamically varying incoming data streams is

particularly difficult. On the one hand, even though quick

updates will ensure adaptation to new data streams, it will

also rapidly forget old information. On the other hand, the

network’s reactivity drastically decreases if the updates are

made gradually for retaining the learned information [2]. This

phenomenon is well known in the literature as the stability-

plasticity dilemma [3], which is a significant constraint for

artificial learning systems. Therefore, continual learning of
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dynamic distributions of data will thus lead to catastrophic

forgetting [4], i.e., the dramatic decrease in the model’s

performance when training with data corresponding to new

classes added incrementally. At the outset, it may appear that

training the network from scratch every time new data is

encountered can potentially solve this problem. However, as

in remote sensing satellites where earth observation sensors

acquire new images from all around the globe every day,

storing and retraining over an enormous volume of data

becomes an unsustainable task. Thus new algorithms have to

be developed to mitigate forgetting while facilitating continual

learning by relying on previously acquired knowledge.

Early attempts in alleviating the effect of catastrophic

forgetting consisted of storing old data and replaying them

repeatedly in an interleaved fashion along with the new

samples [5]. However, this demanded a large amount of

specific data storage requirements. Adding more neurons as

suggested in [6] can also primarily alleviate the issue. But, the

growing model size would demand more resource allocation

and gradually will become infeasible. Enforcing the similarity

of previously learned tasks with the current task [7] using the

knowledge distillation technique is one of the first methods

suggested to alleviate the interference issue in deep networks.

Still, this approach is highly dependent on the nature of the

task, and the training time linearly increases with the number

of tasks. In [8], a proposal is presented to assign importance

value to individual neurons for a task and penalize changes

in neurons. While [9] recommends modifying the network’s

architectural properties dynamically in response to incoming

new data. Deep generative models-based approaches like the

one proposed in [10] utilizes replaying previously encoded

information by training the model by interleaved samples with

new information with pseudo data generation.

Despite the advancements made in incremental learning, the

methods mentioned above only qualify with minor clarifica-

tions. They can be very poor when scaled up to domains with

higher complexities. These could translate to high computa-

tional and memory resource requirements for remote sensing

image analysis to process, manage, and store the continuous

inflow of rich data. This perpetual flow of data from satellites

would also mean that annotating these extensive image data

collections would be tedious but unavoidable. It is practically

impossible to fathom the possibility of having all the class

information beforehand. Furthermore, unlike expected from

an efficient learning system to learn by connecting new in-

formation to related knowledge gained earlier, none of these

approaches employ similarity between the incoming data and

previously acquired knowledge to devise a better training

strategy.

Curriculum learning is a training strategy introduced in [11],

which aims at learning efficiently by presenting the data in

a more meaningful order in terms of constituent concepts

or complexity. Moreover, it is apparent from [12], [13] that

animals can learn much faster when a task is decomposed

into sub-tasks from easy to complex based on a particular

curriculum. This curriculum-based learning and replay-based

revision technique are typically used in a learning ecosystem

by humans, allowing us to learn tasks continually in an

efficient manner. The curriculum learning approach results in

faster training in the incremental setting as the model does

not spend time on challenging samples for which it is not

equipped at the moment. Instead, the model is trained with a

similarity-based curriculum that decides how the data is fed

into the learning system. It is observed that curriculum learning

makes the approach more generalized by guiding the training

towards a better optimum.

Inspired by this, we aspire to combine the efficient learning

strategy provided by the curriculum technique with the replay-

based incremental learning to counter forgetting, thus resulting

in an efficient incremental learning framework. We hypothe-

size that integrating curriculum learning techniques into the

continual learning framework will result in faster training

and better overall performance. Fig. 1 provides a concise

overview of the existing traditional classification approach and

the proposed framework. In this paper, we propose a new

curriculum-based incremental learning approach to classify

remote sensing images. The proposed work consists of the

following contributions:

• A novel incremental learning-based approach for remote

sensing image classification using a curriculum learning

technique (CILEA-NET).

• We present a pseudo-teacher-student-based approach for

incremental curriculum learning. It is shown that faster

convergence with more generalized learning is perceived

using a curriculum, which yields better results.

• We perform thorough experiments with both optical and

hyperspectral datasets to demonstrate how curriculum

learning improves the performance of an incremental

learning network for satellite image classification.

II. RELATED WORK

A. Incremental Learning

Early attempts in mitigating catastrophic forgetting involved

a continuous replay of previous knowledge interleaved with

the newly acquired set of data as proposed in [5]. In contrast,

in [14], [15] it was suggested to use SVM and RBF based

networks respectively for training a model in the incremen-

tal setting. In [16], a random forest-based approach was

introduced, which grows hierarchically when a new set of

data is encountered. Whereas in [17] and [18], they try to

control the extent of catastrophic forgetting by learning masks

corresponding to important neurons in each task. While hard

attention to the task (HAT) [19] learns masks for activations

rather than for parameters.

The approach used in [20] and [21] employ an elastic weight

consolidation (EWC) term, which denotes the importance

of neurons corresponding to the old tasks and imposes a

quadratic penalty on the difference between previous and up-

dated network. In [8], the importance of weight computation is

performed online by tracking the change in loss and updating

the parameters accordingly. While [22] and [7] aligns the

predictions based on the current tasks at hand.

In [23], it is recommended to use a small fraction of

data consisting of the most representative samples of the

previous classes and the new training data. In comparison,
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Fig. 2. The complete pipeline of the proposed CILEA-NET framework. In the stream s, the incoming novel classes are ordered into a curriculum. The
student network learns the features from a new stream of data based on the curriculum generated. We use the teacher network as a proxy for previously
learned information. The teacher Θs−1 transfers the knowledge gained until stream s− 1 to the student Θs. We employ the knowledge distillation technique
to transfer this information from the teacher network to the student. With the incremental addition of novel training data in every new stream, a new set of
classification layer nodes are integrated into the last layer, as shown in the figure. Note that Ds

train
denote the new stream of data, while D

s
mem denote the

fraction of data retained from previous streams.

in the work [10], the pseudo samples corresponding to the

old classes are generated by generative adversarial networks

(GANs). Knowledge distillation [24] based training is used

in [7] to transfer knowledge from the previous network to the

updated one.

While [25], [26] uses most representative samples from

the old tasks interleaved with new samples combined with

distillation-based learning to propagate information from the

previous model. In [27] they propose to use an intermediate

expert to train the model to adapt to the new task using

distillation and sample caching. The approach in [28] tries

to retrieve only the samples that are most conflicted. At

the same time, [29] proposes to improve performance by

greedily storing samples in memory and retraining on these

stored samples while testing. The work in [30] proposes an

expansion-based approach for task-free continual learning built

upon the Bayesian nonparametric.

Although there are few incremental learning methods in

remote sensing, the few existing techniques are mentioned

here. A recent work [31] requires an auxiliary network for

selecting the task in the absence of which the approach fails

drastically. Unlike this, our approach does not utilize any

added network for task selection. In [32] the authors have tried

to introduce a large-scale remote sensing scene classification

benchmark to help develop incremental learning algorithms

in the field of remote sensing image scene classification.

However, the NWPU-RESISC45 dataset used in this study is

much larger than the proposed benchmark dataset regarding

the total number of images, classes, and spatial resolution.

In [26], the authors use incremental learning to perform

semantic segmentation; however, the overall number of classes

considered for this purpose is small. In [33], the authors

explore an end-to-end incremental semantic segmentation for

global mapping of buildings from VHR satellite images. One

can note that both these works explore continual learning on

an entirely diverse task that differs from the one proposed in

this work.

B. Curriculum Learning

The concept of training neural networks with a curriculum

was introduced in [34]. The idea is to learn tasks from easy

to complex gradually. A well-chosen curriculum can act as

a continuation method [35], potentially pushing towards a

more general and optimal solution. In [11], it was confirmed

that training with a curriculum strategy could result in faster

training, and lead towards better regions in the parameter

space. Approaches like active learning are similar to the

curriculum learning paradigm but essentially differ from it due

to the dynamic sampling of training points based on the current

hypothesis of the model [36]. While active learning works at

the sample level, curriculum learning can happen at the sample

and class levels. Moreover, the idea of learning concepts

from easy to hard is unique to curriculum learning. Remote

sensing witnessed the use of curriculum learning through the

work [37], which proposed an interesting approach to improve

weakly supervised object detection performance in high spatial

resolution images.

Despite several in-depth studies on incremental learning

approaches in the literature, none of these works explores the

effectiveness of curriculum learning as a technique for faster

convergence and better generalization of the model in the

incremental learning perspective. In this regard, our approach

is generic as the proposed algorithm can be utilized across

any satellite image data to achieve improved performance in

continual learning.

III. PROBLEM STATEMENT

Consider an incoming stream s of data, in which the avail-

able classes are Ds
train =

⋃k

i=1{(X
j

(s−1)k+i
,Yj

(s−1)k+i
)}Nj=1

where k is the number of incremental classes per stream (step
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size) and N is the number of samples per class of the incoming

stream, ordered pair (X j

(s−1)k+i
,Yj

(s−1)k+i
) denotes the jth

sample and ground truth labels corresponding to the ith class

in the current data stream s. Let Ds
mem be the set denoting

the accumulated representative samples up to and including the

(s− 1)th stream of data. At the given stream s, our objective

is to learn a representation for the new stream of data Ds
train

with minimum interference to the knowledge acquired till the

previous stream.

IV. METHODOLOGY

A. Method overview and architecture

The CILEA-NET framework uses curriculum learning to

boost performance and decrease convergence time at every

incremental step. We utilize the data prepared based on the

curriculum generated for the incoming stream s to train the

network. Through the process, the classification layers should

adapt the parameters to the changes in the features learned due

to the unseen classes of data from the newly acquired stream.

While knowledge distillation ensures that the model retains

previously learned information without succumbing to catas-

trophic forgetting. The curriculum-based training facilitates the

network to learn by sequentially ordering the new classes in

Ds
train based on their similarity to the information learned

from Ds−1
train. We utilize a small fraction of Ds−1

train as memory

accumulated into Ds−1
mem to form Ds

mem for replay at stream

s, over which the distillation is performed. The subsequent

sections explain this learning process incrementally over a new

stream of data with lesser time and better accuracy utilizing

the proposed novel pseudo-teacher-student framework.

CILEA-NET utilizes a convolutional neural network-based

encoder, denoted by Θ as its architecture’s backbone. We

introduce an additional d-dimension fully connected layer as

the penultimate classification layer. We extract the features

corresponding to the image samples from this d-dimension

layer for curriculum generation. A new set of classification

layer nodes are also integrated into the last layer to accom-

modate the incremental addition of novel training data with

unseen classes in every new stream. Thus at the ith stream

with each stream of step size k, we have (i − 1) × k node

classification layer corresponding to previous classes and, one

k node classification layer corresponding to the incoming

unseen classes. We determine the dimension of this new set

of classification layer nodes based on the number of unseen

classes present in the incoming stream. As indicated before,

this work utilizes a pseudo-teacher-student-based incremental

learning algorithm. Both the teacher and student networks

follow the same architecture except for the increment in the

number of total classes handled by the student network.

As shown in Fig. 2, the pipeline initially starts with a

traditional deep convolutional network framework to learn

features corresponding to Ds
train the data of sth stream at

the given instant. A curriculum is generated for the new data

Ds
train by comparing it with the already learned representation

corresponding to Ds−1
train from the teacher network at the

stream s. This approach allows us to use any convenient

architecture with only minor modifications. CILEA-NET being

a curriculum-based method, the curriculum generation part

required is separately handled by extracting the features from

the teacher network in between the streams of data, followed

by the steps specified in Section IV-C.

B. CILEA-NET training algorithm

For the discussions henceforth, we will use the variable s to

denote the current stream of data, Ds
train will denote the new

stream of data while Ds
mem will denote the fraction of data

retained from the previous streams. It consists of a fraction of

image samples retained from each of the classes encountered

in the previous streams, i.e, Ds
mem =

⋃k(s−1)
l=1 {X j

lmem

}m.N
j=1

where l indexes the previously learned classes, and m is the

fraction of data retained. We assume that at a given stream s
and for incremental step size k,

⋂s.k

i=0{Yi} = φ. For ease of

representation, the sets of sample and ground truth belonging

to Ds
train and Ds

mem may also be denoted by dropping the

indices as {X s
train,Y

s
train} and {X s

mem,Ys
mem} respectively.

Cs will signify the curriculum generated for the new stream

of data Ds
train, and k will indicate the number of classes

incrementally added per stream.

In the initial training phase, the model needs to be trained

on the first incoming stream of data, i.e., s = 1. For this,

we consider D1
train =

⋃k

i=1{(X
j
i ,Y

j
i )}

N
j=1, i.e., the pair of

data samples and ground truth for the first k classes. We train

the model for this data using the traditional multi-class cross-

entropy loss function as in equation 1 to perform a k class

classification.

LC = −
1

N

N
∑

i=1

k
∑

j=1

pij log qij (1)

N denotes the total number of samples, and k denotes the

total number of classes in the stream s = 1. pij is the

ground truth and qij denotes the softmax output for the sample

corresponding to the ith sample of the jth class.

After the convergence of the model on the first stream

of data, a small fraction of the data D1
train is sampled by

performing random selection per class; pruning the remaining

samples. We store the retained samples as D2
mem for replay

during the training in subsequent data streams.

For training over streams s > 1, let us consider D =
Ds

train ∪ Ds
mem as denoting the set of data for the given

stream consisting of both the novel incoming stream and

also the retained samples from the previous streams, Y =
Ys
train ∪ Ys

mem be their respective target labels. We assume

that Ys
train ∩ Ys

mem = φ that is, the incoming stream of

data will contain no samples from any of the previously

seen classes. We generate a curriculum for the incoming data

stream based on the previous training phase’s knowledge in

the proposed work. We use the data prepared based on this

curriculum produced for the incoming stream s along with

the retained memory to train the network. The following

section discusses in detail the steps involved in the curriculum

generation component.

C. Curriculum generation

We introduce a training approach based on the curriculum

designed for the stream s where s > 1, depending on



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSTARS.2021.3084408, IEEE Journal

of Selected Topics in Applied Earth Observations and Remote Sensing

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX, AUGUST XXXX 5

the similarity of incoming classes to that of already learned

classes. For a given stream s of data, we rely on the features

extracted by the CNN and then utilise the feature from the

penultimate d-dimension fully connected layer corresponding

to the samples from both Xs and Xs−1. The per-class mean

vector µi for each of these are calculated as,

µs−1
p =

1

N

N
∑

j=1

fs−1(x
j
p) (2)

µs
q =

1

N

N
∑

j=1

fs(x
j
q) (3)

where p denotes the class index for the classes from previous

data stream while q denotes that for the current stream of

data that is p ∈ {1 . . . |{Ys−1
train}|} and q ∈ {1 . . . |{Ys

train}|}.

xj
i denotes the jth sample of the ith class and N denotes

the number of samples in the class. fs(x
j
i ) will denote the

extracted feature of the corresponding sample of stream s.

Now we utilise these per class mean values corresponding

to both current stream of data Ds
train and previous stream

of data Ds−1
train to generate a

∣

∣Ys−1
train

∣

∣ × |Ys
train| dimension

relation matrix R. Each element of the matrix R that is rpq will

represent the cosine distance between the class mean vectors

corresponding to the pth class of the previous stream and qth

class of the current data stream.

rpq =
µT
p µq

‖µp‖ ‖µq‖
(4)

The curriculum Cs corresponding to the current data stream,

Ds
train is generated from the relation matrix R which gives the

similarity measure between the classes of the previous stream

s− 1 and current stream s as,

Cs = argmax
p

R× eTq (5)

where, p ∈ {1, . . . ,
∣

∣Ys−1
train

∣

∣} and q ∈ {1, . . . , |Ys
train|}.

We select each column q (where eTq denotes the qth column of

the identity matrix) corresponding to the previous classes. The

maximum row index p gives the closest category in the new

stream. Therefore we get an array of indices corresponding to

the curriculum order for the new data stream. The curriculum

Cs thus obtained is then used to train the novel stream of

data together with the retained samples through the pseudo-

teacher-student approach. The following section discusses in

detail the training algorithm for streams s > 1.

D. Curriculum based incremental learning

After generating the curriculum Cs for the new data stream

s, we train the student network on the new set of data in the

order specified by the curriculum. Simultaneously we retain a

small fraction of samples from the previous streams as Ds
mem

for repetitive replay. We also use the knowledge distillation

technique as proposed by [24] to transfer the knowledge

gained until the (s − 1)th stream from the teacher network

to the student. Algorithm 1 describes the complete training

process for streams s > 1.

Algorithm 1: The training procedure for a stream of

data incrementally (s > 1) using the CILEA-NET

framework.

Input: D = {Ds
train,D

s
mem}

Output: Incrementally trained model Θs(θ)
1 Load the Teacher network Θs−1

2 fs = Θs−1(D
s
train)

3 fs−1= Θs−1(D
s−1
train) // Obtained before pruning

4 Generate Curriculum Cs // refer Section IV-C

5 while epoch < max epoch do

6 Sample B ⊂ D = {Ds
train,D

s
mem}

7 q = Θs(B)
8 LT (p, q) = LC(p, q) + LDist(p, q)
9 Update: θ = θ − α∇θLT

10 end

11 Sample m% of the samples from Ds
train to create

Ds+1
mem and prune the remaining

12 Finetune Θ using αft = 0.1× α on Ds+1
mem

Unlike the traditional teacher-student approach, which uses

a fixed teacher network to transfer information, we propose

a unique pseudo-teacher-student approach. For every stream,

s > 1, the student network from the previous stream serves as

the new teacher, distilling the prior knowledge to the current

student network while the network learns novel tasks.

We achieve knowledge transfer from the teacher to student

network employing the method proposed in [24] using,

pi =
exp zi/T

∑

j exp zj/T
(6)

pi is the soft probability obtained by performing distillation

over the logit zi by comparing it with the other logits. T
is called the temperature parameter. When T = 1, it acts

like a normal softmax where the class with the highest score

significantly influences the loss. When T > 1, the classes

with comparatively lower scores also influence the loss and

result in a more fine-grained representation. The value of T
is kept equal to 2 as empirically obtained in [24] for optimal

performance.

We utilize the incoming data arranged based on the curricu-

lum and the retained data samples from memory to train the

network. We train the network incrementally with the cost

function as a combination of classification and knowledge

distillation loss. We use the classical multi-class cross-entropy

loss as the classification loss and the Kullback-Liebler diver-

gence loss as the knowledge distillation loss function acting

as the regularizer over distilled information from the teacher

network to the student to ensure minimum forgetting. The

cross-distilled loss function LT is defined as:

LT = LC + LDist (7)

The distillation loss is applied to the old classes’ classification

layers, while the multi-class cross-entropy is employed upon

all classification layers.

LC is the multi-class cross-entropy loss applied to the

samples from both the new stream of data and also the previous
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data. This is the same as the loss function defined in the

equation 1.

While LDist is the knowledge distillation loss applied to

the samples from the previous data streams and is defined as:

LDist = −
1

N

N
∑

i=1

C
∑

j=1

pdistij log qdistij (8)

Here again, N is the number of samples, and C denotes the

total number of old classes. pdistij is the ground truth and qdistij

denotes the softmax output obtained both raised to the power
1
T

for the ith sample of the jth class. The learning phase is

then followed by the fine-tuning and memory update steps.

We obtain the image samples used for training at a specific

stream from an unbalanced mix of both the newly acquired

stream and the previously retained data. As the new stream’s

data dominate in number, the model tends to be biased towards

the features corresponding to these classes. In this approach,

we mitigate this undesirable effect of class imbalance by

fine-tuning the model on a balanced subset of samples from

each class with a small learning rate. After fine-tuning the

model over a balanced subset of the samples, we retain only a

fraction of the current stream’s data by performing random

selection and pruning the current stream’s samples. Ds
mem

denotes this memory and is used to remember the previously

learned information via knowledge distillation.

We evaluate the model’s performance over the data samples

from the classes encountered until the current stream, after

every training epoch. For instance, during the training phase

over the k novel classes of stream s along with the previous

(s−1)k classes from memory, the model performance is tested

over the complete set of classes 1, 2, . . . , sk. This test data can

be denoted as Ds
test =

⋃s.k

i=0{X
j
i }

T
j=1 where k indicates the

incremental step size and T is the total number of samples per

class used for inference. Also note that
⋂s.k

i=0{X
j
i }

T
j=1 = φ.

V. EXPERIMENTS

We present our results using three datasets: NWPU-

RESISC45, Indian Pines, and Patternnet. Kindly note that

the NWPU-RESISC45 dataset is used for ablation studies

discussed in this work. We first compare the accuracy of the

proposed approach with existing methods with incremental

learning on these datasets. Then, we compare the performance

of the curriculum-based learning approach to that of the non-

curriculum-based learning approach by examining the model

accuracy, the extent of forgetting, and the cumulative time of

convergence for the entire training process. This comparison

provides us with an insight into how curriculum learning helps

us attain better results and faster convergence time. Finally, we

show the effect of memory size on the incremental learning

framework by varying it from 5% to 30% in the steps of 5.

The following section will detail the datasets used and the

pre-processing steps taken into consideration. Section V-B

presents the implementation details and will address the hyper-

parameters used along with the evaluation metrics employed

in this paper. Section V-D talks about the existing works in

incremental learning and the protocols adopted in training

these frameworks for contrast. Finally, in section V-E, we

perform the ablation study to analyze the influence of specific

components on the model performance.

A. Datasets

We show our results on two challenging large-scale optical

remote sensing image datasets, namely NWPU-RESISC45,

PatternNet, and one hyperspectral image dataset, Indian Pines,

to establish the robustness of our proposed approach. We

chose the optical image datasets as they are two very complex

datasets with highly varying spatial resolutions and consist of a

significant amount of background clutter. Simultaneously, the

Indian Pines hyperspectral image dataset’s evaluation ensures

that the proposed model can also handle variations in the

spectral content and perform well on land cover classification.

For each of the following datasets, the training/testing data

was prepared by randomly forming a group of k classes

from the total number of classes in the dataset. Each group

corresponds to a specific stream of data. One of these groups

will form the base set for training at stream s = 1 while the

remaining streams will be fed incrementally for s > 1. This

section also covers the pre-processing steps followed and the

training-inference split for these datasets.

1) NWPU-RESISC45 [38]: This dataset is a publicly avail-

able benchmark for Remote Sensing Image Scene Classi-

fication (RESISC), created by Northwestern Polytechnical

University (NWPU). This dataset consists of 31,500 images,

covering 45 classes with 700 images in each category. We use

an 80:20 ratio training-testing split with 560 images per class

in training data and the remaining images for testing.

2) PatternNet [39]: PatternNet is a high-resolution remote

sensing image dataset collected via Google Earth imagery or

the Google Map API for remote sensing image retrieval. It

consists of 38 classes with 800 images per class of dimension

256×256. The dataset was split into 560 images per class for

training, retaining the remaining 240 images per class for the

testing. Two classes, namely, airplane and baseball field, were

omitted from the dataset to maintain a consistent number of

classes per stream throughout the process.

3) Indian Pines [40]: Gathered by AVIRIS sensor over the

Indian Pines test site in North-western Indiana, this dataset

consists of 145×145 pixels and 224 spectral reflectance bands

in the wavelength range of 0.4−2.5×10−6 meters. The Indian

Pines scene contains 16 classes with varying numbers of data

points in each class altogether. This dataset was made available

by reducing the number of bands to 200.

To fit our requirement for learning to classify images

incrementally using a curriculum and match the designed

network, we further choose to keep only the three most

representative channels out of 200 by performing principal-

component analysis over the reflectance bands. Followed by

this, we extract 11×11 patches from the image and label every

such patch with the ground truth label corresponding to its

central pixel. Also, to balance the number of such images, we

restrict the number of training patches to 500 samples per class

and the number of testing patches to 100 samples per class.

This derived data consists of 9600 image patches covering 16

classes with 600 image patches belonging to each class.
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B. Implementation Details

We use the pre-trained VGG-16 network as the backbone of

the pipeline. We follow [41] for initializing the dynamic fully

connected layers. We also use batch-norm [42] after every

convolutional layer to ensure a minimal co-variance shift in the

model. The kernel size we use for the network is three, along

with a stride of 1. Max-pooling layers utilize a 2 x 2 window

with a stride of 2. The activation function used is ReLU, which

is present following every convolution layer except for the

last one. For optimization, we use Adam optimizer with a

learning rate of 1× 10−6 and weight decay of 1× 10−4. We

resize each input image to 224× 224 pixels and maintain the

number of epochs for training as 40 per stream. The dimension

d for the extracted feature is 128, and accordingly, we add a

128 dimension fully connected layer to the architecture. The

number of samples retained is fixed to 30% of the samples per

class present in the training data. We use the Adam optimizer

for the fine-tuning phase for optimization with a learning rate

of 1× 10−7 and is fine-tuned for 30 epochs after training the

model over each stream of data starting from s = 2. A single

We used a 12 GB Nvidia GeForce GTX 1080 Ti graphics card

to run the experiments.

C. Performance evaluation metrics

1) Average accuracy: The average accuracy is calculated

as the mean of accuracy values at each incremental step. At

stream s it is defined as, As = 1
s−1

∑s

j=2 aj . The higher

the value of As better the performance. Note that we do

not consider the accuracy of the first stream of data while

computing the average accuracy as it does not represent

incremental learning.

2) Forgetting measure [43]: It is defined as the difference

between a task’s maximum accuracy in the past and the current

accuracy. This helps us estimate the forgetting happened in the

model. We can quantify it for a task j after training for the

task/stream s as, fs
j = maxl∈{1,...,s−1} al,j − as,j , ∀j < s.

The average forgetting at stream s is written as, Fs =
1

s−1

∑s−1
j=1 f

s
j .

3) Time: We also analyze and compare the performance

of our approach by considering the time factor involved in

training the model. This is calculated as the sum of time taken

for each incremental step to complete the training process.

D. Comparison with existing literature

We compare the performance of our approach with multiple

existing frameworks. First, we consider the Learning without

Forgetting (LwF) approach, as implemented in [7]. Here, they

make the CNN network classify previous classes similar to

the new classes using knowledge distillation as regularization.

Then we consider the Elastic Weight Consolidation based

approach proposed in [20]. This approach employs a quadratic

penalty over the difference between learned parameters for

the old and new classes. They utilized the Fisher information

metric to obtain the diagonal weighting over the parameters

for learned classes. We then compare ours with [25], which

utilizes a replay and fine-tuning-based approach to reduce

class imbalance and knowledge distillation for regularization.

TABLE I
COMPARISON OF ACCURACY (IN %) ON NWPU-RESISC45,

PATTERNNET, AND INDIAN PINES DATASET AS SHOWN, USING EXISTING

APPROACHES.

Dataset

Method NWPU Indian Pines PatternNet

LwF [7] 30.17 54.76 29.79
EwC [20] 20.50 25.04 30.39
E2E [25] 29.40 55.33 27.08
DR [27] 22.09 - -

iCaRL [23] 37.20 - 60.97
RS [31] 36.54 - 57.38

MIR [28] 27.95 - 53.82
GDUMB [29] 39.68 - 59.02
CN-DPM [30] 20.58 - 37.40

Proposed 49.42 93.20 62.31

w/o curriculum 39.31 81.98 53.04
w/o fine-tuning 38.40 - -

Similarly, we compare with [31], which is a replay-based

approach in remote sensing. We also compare with [23],

which uses the nearest mean classifier and a small fraction of

data from the previous tasks. Comparison is also performed

with [27], which proposes an intermediate expert to adapt

the target model to the new task and [28], which retrieves

the samples that are frequently conflicted. We also include

our comparison with [29], which greedily stores samples in

memory and trains a model from scratch and uses these

samples during testing. Finally, we compare with [30], which

increases the number of neural network experts under the

Bayesian non-parametric framework

We carried out experiments for comparing the results ob-

tained from the proposed approach with different algorithms:

1. LwF refers to the implementation as performed in [7], 2.

EWC refers to the work utilizing elastic weight consolidation

carried out in [20], 3. E2E refers to the end-to-end incremental

learning work proposed in [25]. 4. iCaRL refers to the work

proposed in [23], and 5. RS refers to the replay-based work

proposed in [31]. Please note, that DR, MIR, GDUMB, CN-

DPM are also used for comparison which refer to the works

proposed in [27], [28], [29], and [30] respectively. We bestow

on the extensive work presented in [44] and the code provided

here1 to replicate these results. We obtain the results for

EWC by using the code found here 2. E2E and LwF are

obtained using the code from this link 3 by suitably changing

the model parameters as detailed below. We now discuss the

implementation aspects of the algorithms mentioned above

and the results obtained from them to compare with our

approach, as shown in Table I on the NWPU-RESISC45,

PatternNet, and Indian Pines image datasets. We follow the

same architectural and training protocols used in our method.

The backbone model architecture is fixed as VGG-16 with

1https://github.com/RaptorMai/online-continual-learning
2https://github.com/xialeiliu/RotateNetworks
3https://github.com/kibok90/iccv2019-inc
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(a) Accuracy per stream for the NWPU-RESISC45 dataset with a step size
of 5.

(b) Average Forgetting per stream for NWPU-RESISC45 data with a step size
of 5.

Fig. 3. Results for accuracy and forgetting at each stream for the NWPU-RESISC45 dataset. The results are shown for both with and without curriculum
approach.

batch normalization and dropout for all the algorithms. We also

use identical hyperparameters to train the incremental learning

model using our algorithm with the exemplar sample memory

size fixed as 2000. We trained the model for 40 epochs using

Adam optimizer with a learning rate of 1× 10−6 and weight

decay of 1 × 10−4. This training phase was followed by a

balanced fine-tuning stage for 30 epochs, only if the algorithm

in consideration requires a fine-tuning stage. Table I displays

the results for a fixed step size of five classes, four classes, and

six classes per stream of data for NWPU-RESISC45, Indian

Pines, and PatternNet datasets, respectively.

From the results presented in Table I, it is apparent that our

approach outperforms the existing algorithms by a margin of

19% and about 31% for the NWPU-RESISC45 and PatternNet

datasets, respectively, and by 37% for the Indian Pines dataset.

E. Ablation study

In the proposed work, we explore the impact of adopting

curriculum learning to improve satellite image classification

using an incremental learning framework. We expect the

curriculum learning approach to improve the time taken to

converge to an optimum by facilitating the learning process

and reaching a better optimum. In the subsequent sections, we

examine the curriculum-based and curriculum-less approach,

where the latter is simply the CILEA-NET approach without

the curriculum component. Also, to provide more clarity,

we have tried to illustrate the curriculum generation for the

NWPU-RESISC45 dataset for a step size of 3 as can be seen

from the Fig. 4

1) Comparison of convergence time: We plot the time taken

per stream to converge for both the curriculum-based and

curriculum-less approaches to exhibit the improved conver-

gence time. The time taken is estimated for the 40 epochs

of training and incorporates the curriculum generation and

fine-tuning stages throughout for uniformity. From Fig. 5,

its evident that the CILEA-NET approach has the fastest

convergence time in comparison with other methods. Cumu-

latively for the whole process, CILEA-NET takes around only

44.30 hours in contrast to the highest time taken by DR [27]

of 182.09 hours and 105.96 hours when the curriculum is

removed from the CILEA-NET framework. Table III presents

the comparative results for both approaches with various in-

cremental step sizes for the NWPU-RESISC45 satellite image

dataset. Also, from Fig. 5 it is evident that the CILEA-NET

approach has the fastest convergence time in comparison with

other methods. This depicts how introducing the curriculum

learning technique helps in reducing the time taken to train

the model.

Stream 1 samples Stream 2 curriculum order

Fig. 4. Sample of the curriculum generated for the NWPU-RESISC45 dataset
with step size 3. The tsne plot along with corresponding image samples is
provided for reference.
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TABLE II
ABLATION RESULTS OF CILEA-NET IN THE PRESENCE AND ABSENCE OF CURRICULUM AND FINE-TUNING AS OBTAINED FOR THE NWPU-RESISC45

DATASET.

Joint* CILEA-NET w/o curriculum w/o fine-tuning w/o curriculum and fine-tuning

Stream
Accuracy (in %) Accuracy (in %) Forgetting (in %) Accuracy (in %) Forgetting (in %) Accuracy (in %) Accuracy (in %)

1 91.81 – 94.10 – 90.86 90.48
2 88.19 -3.05 90.41 1.43 69.84 62.92
3 64.67 14.08 59.02 26.01 51.05 49.05
4 46.48 19.56 42.30 29.27 41.35 36.34
5 82.54 43.49 14.96 34.35 27.50 37.16 29.59
6 39.80 15.88 27.28 24.89 32.05 25.53
7 33.91 14.46 22.77 22.91 28.76 22.32
8 33.12 13.33 21.02 21.43 25.06 19.30
9 29.35 14.68 17.38 21.87 21.2 16.43

* not a result obtained on incremental learning setting

2) Accuracy of the model: To investigate how introducing

a curriculum-based approach have an impact on achieving

a better optimal solution. We examine the average accuracy

obtained for both the curriculum-based and curriculum-less

learning approaches for various incremental step sizes, as

shown in Table III.

For the NWPU-RESISC45 dataset, we divided the 45

classes in three different ways, yielding incremental step sizes

of 3, 5, and 9 classes per stream. In all these cases, we can

observe from Table III that the curriculum-based approach

depicts better performance with a margin of approximately

10% as opposed to that of the curriculum-less method.

Likewise, we train on the Indian Pines dataset using three

different incremental step sizes of 2, 4, and 8 classes per

stream. For all these individual cases, we can observe from

Table IV that the approach integrated with curriculum learning

exhibits better performance in classification of the hyperspec-

tral image patches when confronted with that which does not

and depicts that the former facilitates faster convergence of

the algorithm.

Even though we see from Table II that the accuracy for the

joint training is better as expected. Please note that this is only

a result of training the network with all the classes together

in a traditional fashion. This procedure is seldom relevant in

practical scenarios.
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Fig. 5. Convergence time Vs stream plot for comparing multiple methods.
The result is shown for a step size of 5 on the NWPU dataset.

TABLE III
ACCURACY AND TOTAL TIME CONSUMED FOR DIFFERENT STEP SIZES FOR

THE NWPU-RESISC45 DATASET WITH AND WITHOUT A CURRICULUM.

Step size
Accuracy (in %) Time taken (in hrs)

with
curriculum

w/o
curriculum

with
curriculum

w/o
curriculum

3 48.39 34.86 68.15 133.42

5 49.42 39.32 44.30 105.96

9 49.62 39.57 19.53 101.50

TABLE IV
ACCURACY AND TOTAL TIME CONSUMED FOR DIFFERENT STEP SIZES FOR

THE INDIAN PINES DATASET WITH AND WITHOUT A CURRICULUM.

Step size
Accuracy (in %) Time taken (in hrs)

with
curriculum

w/o
curriculum

with
curriculum

w/o
curriculum

2 37.71 37.31 15.06 17.26

4 93.20 81.98 8.53 9.65

8 70.67 57.13 6.55 7.02

3) Extent of forgetting: We have adopted the forgetting

measure to analyze the proposed approach’s performance on

the NWPU-RESISC45 dataset, as shown in Fig. 3b. It is

apparent from both the average forgetting and the average

accuracy per stream for the given step size that the proposed

curriculum-based approach can mitigate forgetting more effi-

ciently. Table II depicts the per-stream average accuracy and

average forgetting values for the said dataset; we can observe

that for our approach, the forgetting is more limited by an

average margin of 8.93%.

4) Effect of memory size: Here we analyze the change

in performance of the model with the variation in per-class

memory. From Table V, it is evident that with the reduction

in the number of samples retained per class, the performance

deteriorates. This trend is consistent with the expected be-

haviour as the number of samples used for memorizing the

previous classes is reduced.

Nevertheless, the performance decline for the proposed

approach with change in the per-class memory remains within

4% for the NWPU dataset. It is within 8% for the Indian
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TABLE V
ACCURACY OF DIFFERENT PER CLASS MEMORY SIZES FOR

NWPU-RESISC45 AND INDIAN PINES DATASET FOR A STEP SIZE OF 9
CLASSES PER STREAM AND 4 CLASSES PER STREAM, RESPECTIVELY.

Per class memory (in %) NWPU-RESISC45 Indian Pines

5 28.57 67.06

10 39.01 90.85

15 40.94 91.91

20 50.21 86.92

25 46.74 94.38

30 49.62 93.20

Pines dataset during the first 5−10% reduction in the per-class

memory. Whereas, when the amount of decrease in samples

retained varies from 30 − 10% accounting to a 20% drop in

memory utilization, the accuracy declines by a margin of 11%

and 4% for the NWPU-RESISC45 and Indian Pines datasets,

respectively (we do not consider the intermediate outlier result

for 20% memory for this calculation).
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Accuracy vs Iteration (for step size=9)

Fig. 6. Performance of the proposed approach across 5 different iterations
with a random set of classes in each stream of every iteration.

5) The order of class acquisition: To verify the objectivity

of the model performance toward the order of acquisition of

the classes, we conduct experiments by training the model

using multiple arbitrary orderings of the classes, i.e., for

every such investigation, the set of classes present in a given

stream i will be unique. Fig. 6 presents the results obtained

for 5 separate experiments on the NWPU-RESISC45 dataset.

Therefore, we establish that the performance of the proposed

curriculum-based approach is consistent across any order of

class acquisition.

6) Fine tuning: From the result in Table II, the fine-tuning

phase integrated into the training framework plays a crucial

role in deciding the performance of the model. The absence

of fine-tuning will lead to degraded performance due to class

imbalance, accounting for a drop in performance by about 11%

resulting in an inferior overall accuracy of 38.30% as seen in

Table I.

(a) (b)

Fig. 7. A Tsne plot comparison between the decision boundaries learned
for (a) the CILEA-NET approach and (b) the approach with the curriculum
removed. The result was generated for an incremental step size of 3 for the
NWPU-RESISC45 dataset. Different colours represent different classes.

7) Comparison of decision boundaries: To understand how

the curriculum learning concept helps attain a better optimum

and learn a finer decision boundary, we visualize both the

curriculum-based and curriculum-less approaches using the

tsne plot, as seen in Fig. 7. We can observe that the curriculum-

based incremental learning approach guarantees better inter-

class separation than the largely overlapping decision bound-

aries, as seen in the curriculum-less approach. From this

observation, we may conclude that the curriculum learning

approach’s usage enforces the model to learn faster and

better by sequentially encountering samples from simple to

complicated and discover a better decision boundary.

VI. CONCLUSIONS

This paper presents CILEA-NET, a novel curriculum

learning-driven framework for class incremental learning for

remote sensing image classification. Incremental learning is

considered essential in remote sensing, given the continuous

acquisition of images with novel land-cover classes. In this

regard, we tackle two critical issues of the incremental learning

setup: (1) How to deal with the stability/plasticity trade-

off?, and (2) How to ensure quick learning for new classes?

To this end, within our proposed framework, we suitably

utilize concepts from knowledge distillation and curriculum

learning. Thorough experiments confirm the superiority of the

proposed model over several recent state-of-the-art approaches

for different types of remote sensing data. Thus, in a generic

sense, one can utilize the curriculum learning paradigm along

with any existing approaches in a deep learning framework

to boost the performance of the network. We are presently

interested in extending this model for few-shot incremental

learning, where we assume that only a few training samples

are available for the classes. Given the issues of annotating

remote sensing data, such a few-shot paradigm will help the

community.
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