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Summary 

Cilengitide, a cyclicized RGD-containing pentapeptide, potently blocks αvβ3 and αvβ5 integrin 

activation. Integrins are upregulated in many malignancies and mediate a wide variety of tumor-stroma 

interactions. Cilengitide and other integrin-targeting therapeutics have preclinical activity against many 

cancer subtypes including glioblastoma (GBM), the most common and deadliest central nervous system 

(CNS) tumor. Cilengitide is active against orthotopic GBM xenografts and can augment radiotherapy and 

chemotherapy in these models. In phase I and II GBM trials, cilengitide and the combination of 

cilengitide with standard temozolomide (TMZ) and radiation demonstrate consistent anti-tumor activity 

and a favorable safety profile. Cilengitide is currently under evaluation in a pivotal, randomized phase III 

study (CENTRIC) for newly diagnosed GBM. In addition, randomized, controlled phase II studies with 

cilengitide are ongoing for non-small cell lung cancer and squamous cell carcinoma of the head and neck. 

Cilengitide is the first integrin-inhibitor in clinical phase III development for oncology. 

 

Introduction 

The annual incidence of GBM in the United States is approximately 3.15 cases per 100,000 [1]. 

Extrapolation of this rate to the current global population (6.8 billion) projects that more than 210,000 

GBM patients will be diagnosed worldwide each year. Despite aggressive, multimodality therapy, 

outcome for GBM patients remains dismal.  Specifically, the current standard of care, including 

maximum safe resection followed by radiation and temozolomide chemotherapy (XRT/TMZ), is 

associated with a median overall survival (OS) of 14.6 months and a 5-year survival rate of only 10% [2, 

3]. Recurrence remains nearly inevitable and salvage therapies have historically achieved limited benefit 

[4-6]. However, in May, 2009, the USA Food and Drug Administration  granted accelerated approval to 

bevacizumab, a humanized monoclonal antibody targeting vascular endothelial growth factor (VEGF), for 

recurrent GBM based on durable radiographic responses [7, 8].  Of note, bevacizumab achieved  an OS  

of 8-10 months in these studies, which is similar to the results of single agent cilengitide in the recurrent 
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setting [9]. Nonetheless, more effective therapies for newly diagnosed as well as recurrent GBM patients 

remain desperately needed. 

 

Integrins, a 24 member family of heterodimeric transmembrane receptors composed of paired alpha 

and beta subunits, regulate cell-to-cell and cell-stroma interactions. Based on their respective alpha and 

beta chain pairings, integrins bind specifically to key components of the extracellular matrix, including 

vitronectin, fibronectin, laminin, fibroblast growth factor, matrix-metalloproteinase (MMP)-2, 

thrombospondin, osteopontin, collagen, fibrin and fibrinogen. Integrin binding can be redundant in that 

more than one integrin can bind to the same ligand, as well as promiscuous, in that most integrins can 

bind multiple ligands. Although integrins lack intrinsic kinase activity, ligand binding activates integrins 

to form focal adhesion complexes in the cell membrane, composed of clusters of integrins with signaling 

and adapter proteins [10]. These complexes recruit focal adhesion kinase which autophosphorylates and 

then activates downstream intracellular signaling pathways including the NF-κB [11, 12], PI3/Akt[13], 

SRC[14] and ras/MAPK kinase [15, 16] cascades.  

 

Integrins, especially alpha v integrins, are attractive therapeutic targets for malignant glioma [17] and 

other malignancies because they regulate a diverse array of critical tumor behaviors including cell 

signaling, survival proliferation, invasion and angiogenesis[18]. Integrins play a particularly important 

role in tumor cell invasion and migration [19-22]. Activated integrins in focal adhesion complexes 

regulate remodeling of the intracellular actin cytoskeleton which directs cytoplasmic flow, while ligand 

binding by the extracellular component of integrins provides traction to direct cell movement [10]. The 

activation of integrins by ligand binding also generates critical intermediaries in several aspects of the 

host tumor response including angiogenesis, pericyte recruitment with stabilization of tumor vasculature, 

as well as the infiltration and activation of myeloid cells, bone marrow derived precursors, fibroblasts and 

platelets into the tumor microenvironment [18, 23-26]. Integrins have also recently been implicated in 

several aspects of tumor stem cell biology. Specifically, integrin expression characterizes some stem cell 
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populations [27, 28], and integrins can regulate the maintenance of stem cell subpopulations [29] as well 

as the expression of some stem cell markers [30]. In particular, the α6 integrin is an important regulator of 

GBM stem cells[31]. Another recently identified aspect of GBM biology involving integrins is the 

regulation of HIF-1α and tumor hypoxia, a critical regulator of tumor therapeutic response [32]. Based on 

the numerous and diverse repertoire of integrin activities in cancer biology, agents that can selectively 

block integrin activity offer multiple mechanisms of potential anti-tumor activity. Furthermore, integrin 

targeting may also potentially enhance the actions of many types of cancer therapeutics including 

radiation therapy, cytotoxic chemotherapy, cell signaling inhibitors, immunotherapeutics, vascular 

targeting agents and anti-angiogenics.  

 

Cilengitide potently and selectively blocks activation of the αvβ3 and αvβ5 integrins, which are 

upregulated in several cancers including GBM [33-35]. Preclinical studies demonstrate that cilengitide 

monotherapy has anti-tumor activity in xenograft tumor models and cilengitide can augment the activity 

of radiation and chemotherapy, including TMZ [36-40]. Cilengitide monotherapy and the combination of 

cilengitide with standard temozolomide (TMZ) and radiation have demonstrated consistent anti-tumor 

activity as well as a highly favorable safety profile across a spectrum of phase I and II clinical trials for 

both recurrent and newly diagnosed GBM patients [9, 41-44]. Cilengitide is currently being evaluated in a 

multi-national, randomized, pivotal phase III study (CENTRIC) for newly diagnosed GBM patients with 

methylation of the methylguanine-methyltransferase (MGMT) gene promoter. 

 

Overview of the market 

Effective therapy for patients with GBM, the most common, primary malignant CNS tumor among adults, 

remains a major challenge in oncology. Standard treatment for newly diagnosed patients includes 

maximum safe resection when feasible followed by daily involved field external beam radiotherapy to 

approximately 60 Gy with concomitant TMZ chemotherapy, and then 6 months of adjuvant TMZ. In a 

pivotal randomized trial, this therapeutic approach led to a median OS of 14.6 months and a 5-year 
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survival rate of 10% [2, 3]. Some of the DNA damage induced by TMZ is repaired by MGMT, a 

ubiquitous DNA repair protein [45]. Approximately 40% of tumors from newly diagnosed GBM patients 

demonstrate methylation of the MGMT gene promoter, leading to relative silencing of gene expression 

and protein production [46].  Retrospective analysis of MGMT methylation status demonstrated that 

patients whose tumor have an unmethylated MGMT promoter derive minimal benefit from the addition of 

TMZ to radiotherapy [47]. Prospective evaluation of the impact of MGMT methylation is pending 

analysis of a recently completed phase III study for newly diagnosed GBM patients (RTOG 0525/EORTC 

26052 Intergroup Study). At recurrence, treatment options are limited and offer modest benefit and no 

treatment has demonstrated significantly improved overall survival in a randomized controlled trial.  

Recent meta-analyses of salvage regimens demonstrate rates of overall radiographic response and 

progression-free survival at six months of only 5-10% [4, 5]. Therefore there remains a critical need to 

identify novel agents with anti-tumor activity for both newly diagnosed and recurrent GBM patients. 

 

Several factors likely undermine the efficacy of therapeutic agents directly targeting GBM tumors, 

including molecular genetic heterogeneity across and within tumors, complex and redundant activation of 

intracellular signaling pathways regulating proliferation, invasion, angiogenesis and survival, genetic 

instability leading to high rates of de novo and acquired resistance mechanisms, and restricted delivery of 

pharmacologic agents into the CNS and tumor microenvironment due to the blood-brain-barrier and high 

interstitial fluid pressures within the tumor mass [48]. In contrast, targeting factors in the tumor 

microenvironment may prove less susceptible to these limitations. Targeting vascular endothelial growth 

factor (VEGF) and integrins are prototypic examples of factors that play key roles in the tumor 

microenvironment and are the focus of much recent clinical investigation. 

 

GBM are highly vascularized tumors and VEGF is a leading regulator of GBM angiogenesis [49-54]. 

VEGF-directed therapies exert a marked anti-tumor effect in orthotopic, GBM xenograft models [55, 56]. 

Initial clinical studies confirmed that the humanized anti-VEGF monoclonal antibody bevacizumab could 
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be safely administered to brain tumor patients and was associated with encouraging rates of clinical and 

radiographic improvement in recurrent GBM patients [57, 58]. Two follow-up studies that incorporated 

stringent, independent radiographic review confirmed these findings and were the basis of accelerated 

approval of bevacizumab by the US Food and Drug Administration (FDA) for recurrent GBM in 2009. 

These studies included a single-arm phase II trial of bevacizumab monotherapy for heavily pre-treated, 

recurrent GBM patients [8] and a multi-center, phase II study that randomized GBM patients at first or 

second recurrence to either bevacizumab monotherapy or bevacizumab plus irinotecan [7]. The rates of 

radiographic response and progression-free survival at six months (PFS-6) in these studies were 

approximately 28-35% and 29-43%, respectively. Of note, the European Medicinal Agency voted to deny 

approval based on these data primarily due to the lack of a non-bevacizumab control arm[59]. However, 

randomized, controlled clinical trials with bevacizumab are planned to be initiated by the EORTC in 2011 

for patients with recurrent GBM and recurrent grade II-III gliomas, respectively. 

 

Angiogenesis has also been targeted in GBM using a variety of VEGF receptor (VEGFR2) tyrosine 

kinase inhibitors (TKIs), most of which also inhibit other relevant receptor TKIs including PDGFR, FGF, 

c-met and c-KIT. Cedarinib, a TKI targeting VEGFR2, c-KIT and PDGFR, demonstrated evidence of 

anti-tumor benefit in a multi-center phase II study when administered as a single agent [60]. However, a 

pivotal, randomized phase III study of cediranib alone or in combination with lomustine (CCNU), 

recently reported that single agent cediranib  or cediranib with lomustine (CCNU) failed to prolong PFS 

compared to CCNU alone [61]. Pazopanib and sunitinib, two additional multi-targeted VEGFR TKIs, 

were recently demonstrated to have limited single agent activity among recurrent malignant glioma 

patients[62] [63]. Evaluation of VEGF/VEGFR inhibitors is also underway for newly diagnosed GBM 

patients including two, randomized, multi-national, placebo-controlled, phase III studies randomizing 

patients to either standard XRT/TMZ plus placebo or XRT/TMZ plus bevacizumab.  
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Several additional agents are also being evaluated in ongoing clinical trials for newly diagnosed GBM 

patients. A phase III study evaluating CDX-110, a peptide vaccine targeting the epidermal growth factor 

receptor vIII mutant (EGFRvIII) was initiated based on supportive preclinical data [64, 65], as well as 

encouraging overall survival achieved in a single-arm study of newly diagnosed GBM patients [66]. 

However the study discontinued prematurely due to a high rate of drop out among patients who 

randomized to standard therapy without the vaccine. A follow-up phase III study that includes a blinded 

placebo control group is under consideration. This study will only include patients with tumors that 

express EGFRvIII, which typically includes 30-40% of the GBM population [67, 68]. Finally, a phase III 

study was recently initiated to evaluate the use of an electromagnetic field generating device (Novocure) 

based on modest anti-tumor benefit observed among heavily pre-treated recurrent GBM patients [69]. 

 

Integrins, and especially integrins αvβ3 and αvβ5, are widely expressed by many varied cell types in 

the tumor microenvironment including endothelial cells, pericytes, infiltrating myeloid cells, monocytes, 

bone marrow derived precursor cells and fibroblasts [18]. In addition, many tumors directly express 

integrins. For example, GBMs frequently express αvβ3 and αvβ5 integrins [33, 35, 70, 71]. Furthermore, 

multiple integrin ligands are abundantly expressed in the GBM microenvironment [72-74]. Integrin 

activation via ligand binding is associated with several critical aspects of tumor biology, including growth 

factor signaling, proliferation, survival, invasion, angiogenesis, and the host tumor response [18]. Thus, 

blocking integrins may lead to multifaceted mechanisms of anti-tumor activity.  

 

There are four classes of integrin targeting therapeutics currently in clinical evaluation including 

monoclonal antibodies, peptidomimetic and non-peptidomimetic molecules as well as miscellaneous 

(Table 1). Monoclonal antibodies (MAbs) directed against the extracellular domain can effectively block 

the ligand binding site of integrins. Several integrin-targeting MAbs are in advanced clinical evaluation 

including the following: etaracizumab (MEDI-522; Abegrin; MedImmune), a MAb that specifically 

targets αvβ3; intetumumab (CNTO 95; Centocor, Inc. Malvern, PA), a humanized MAb targeting the αv 
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extracellular domain; DI-17E6 (EMDSerono, MerckKGaA, Darmstadt, Germany), a de-immunonized 

Mab that targets the αv extracellular domain; and volocixumab (M200; PDL BioPharma, Incline Village, 

NV, USA and Biogen Idec, Weston, MA, USA), a chimeric MAb that targets α5β1, an integrin 

particularly associated with tumor angiogenesis [75]. Of note, phase I studies in advanced solid tumor 

patients with each of these MAbs confirmed their overall safety and lack of “class-associated” toxicities; 

in fact, a maximal tolerated dose (MTD) could not be identified in any of these dose-escalation trials. In 

addition, evidence of anti-tumor activity was observed despite the dose escalation study design [76-78]. 

Only one phase II study has been reported with these agents to date, [79] but several phaseI/II studies are 

ongoing in many solid tumor types including melanoma as well as colorectal, prostate, pancreatic and 

ovarian cancers. 

 

A second class of integrin inhibiting therapeutics is the small peptidomimetic molecules that include 

short peptide sequences to specifically block ligand/integrin binding sites. Several examples of this class 

compete for the arginine-glycine-aspartic acid (RGD) peptide sequence that regulates binding of ligands 

such as vimentin and fibronectin to specific integrins including the αv-containing integrins and α5β1. Of 

note, cyclization of the RGD binding inhibitors enhances stabilization by 10-100 fold compared to the 

open ring peptides [80]. Several of these inhibitors are in early clinical development. Of note, 18F-labeled 

glycosylated Arg-Gly-Asp peptide ([18F]Galacto-RGD) positron emission tomography (PET) has been 

demonstrated to be feasible in recurrent GBM patients and tracer uptake correlated with 

immunohistochemical αvβ3 integrin expression of corresponding tumor samples [81]. 

 

Non-peptidomimetics represent the third class of integrin inhibitors, many of which are orally 

bioavailable due to lack of peptide bonds. Several of these agents are in preclinical and early clinical 

evaluation. In addition, a few miscellaneous agents that can suppress integrin activity are in clinical 

development. 
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Introduction to the compound 

Cilengitide, (EMD 121974), a cyclized RGD-containing pentapeptide that selectively and potently blocks 

activation of the αvβ3 and αvβ5 integrins [82], is manufactured by Merck KGaA, Darmstadt, Germany. 

  

Chemistry 

Cilengitide is the inner salt of the cyclized pentapeptide c-[Arg-Gly-Asp-DPhe-(NMeVal)].  Its chemical 

formula is C27H40N8O7 (Figure 1). Cilengitide has a molecular weight of 588.7 atomic mass units. 

Cilengitide is formulated as a sterile aqueous solution provided in glass vials for intravenous 

administration. 

 

Pharmacokinetics and metabolism 

The primary pathway for cilengitide excretion is renal. Using 
14

C-labeled cilengitide in Cynomolgus 

monkeys, approximately 90% of the injected radioactivity was detected in the urine as unchanged drug in 

less than 72 hours. 

 

Results from a number of clinical trials reveal consistent pharmacokinetic measures [42, 44, 83-85]. 

Maximal plasma concentrations are in general reached within one hour post-dose (i.e. at the end of 

infusion) and the elimination half-life is approximately 3-5 hours. In phase I studies, no changes in 

clearance, Vss and t1/2 were observed across dose levels; Cmax and AUC0-∞ values increased 

proportionally over the entire range of tested doses, indicating that cilengitide exhibited linear 

pharmacokinetics. Mean volumes of distribution ranged from 33 to 56 L, and the mean clearance ranged 

from 5.72 to 9.62 L/hour. PK parameters after repeated dosing were similar to those after the first dose, 

indicating a lack of accumulation. There are no obvious differences in cilengitide pharmacokinetic 

parameters when administered per body surface area compared to flat dosing [42, 43]. No 

pharmacokinetic interaction was observed when cilengitide was co-administered with either TMZ [43] or 

CYP3A-enzyme inducing anti-epileptics [42]. 
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Evaluation of 30 GBM tumor samples resected after prior treatment with cilengitide (doses 

administered  preoperatively 8, 4 and 1 day before surgery, revealed that cilengitide reached the tumor 

tissue of GBM patients. There was a trend to higher exposure with higher dose; specifically cilengitide 

concentrations of 400 ng/gram of tumor were noted for patients treated at the 500 mg dose level and 1190 

ng/gram for patients who received 2000 mg doses [86]. At the same time points, cilengitide was no longer 

detectable in the plasma in most patients, however, for patients with detectable plasma concentrations, the 

calculated tissue to plasma ratios were 1.83 for the 500 mg dose and 4.17 for the 2000 mg dose. The intra-

tumor cilengitide concentrations measured 24 hours after last administration of the 2000 mg dose were in 

the concentration range for tumor inhibition predicted by pre-clinical models. 

  

Data from individual adult GBM patients treated with 500 mg and 2000 mg cilengitide doses revealed 

CSF concentrations of approximately 1/100 of that achieved in plasma. Again, patients treated at the 2000 

mg dose level had CSF levels in the range for tumor inhibition predicted by pre-clinical models. 

Maximum cilengitide CSF levels were obtained approximately 2 hours after those in the plasma, and the 

CSF profiles indicated a prolonged half-life of cilengitide in the CSF compared to plasma [9].  

 

Pharmacodynamics and preclinical studies 

Cilengitide binds with 1:1 stoichiometry to αvβ3 with a KD of 28nM (Cilengitide, Investigator’s 

Brochure, Version 11.0). Cilengitide blocks binding of vitronectin to isolated αvβ3 and αvβ5 with an IC50 

of 4 and 79 nM, respectively [87, 88]. Cilengitide inhibits vitronectin/integrin binding with an IC50 of 0.4  

µm in cell adhesion assays using M21 and UCLA-P3 human melanoma cell lines, respectively [87]. In 

contrast, cilengitide has no effect on cell adhesion mediated by the α1β1, α2β1, or α5β1 integrins, nor 

does it affect fibrinogen binding to the platelet glycoprotein IIbIIIa receptor, providing support for its 

target selectivity [87]. 
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The anti-angiogenic activity of cilengitide has been demonstrated in the rabbit cornea retina and 

chicken chorioallantoic membrane models [88-90]. It also blocks proliferation and differentiation of 

human umbilical vein endothelial cells as well as human endothelial precursor cells [91, 92] and can 

induce endothelial cell apoptosis [93]. However, cyclic RGD-peptidomimetics can exert a biphasic effect 

on αvβ3 activity including antagonism at high concentrations and agonism at low concentrations [94]. 

Along these lines, a recent report demonstrated that use of an osmotic minipump to deliver sustained 

nanomolar concentrations of RGD-mimetic integrin inhibitors promoted angiogenesis and tumor growth 

in B16F0 melanoma and LLC lung carcinoma cells grown subcutaneously in syngeneic C57BL6 mice 

[95]. However, exposure to micromolar concentrations of integrin inhibitors, which are typically achieved 

following pulse dosing in ongoing clinical trials, inhibits angiogenesis as measured by either microvessel 

sprouting of mouse aortic rings incubated with VEGF or by quantification of tubule formation in a 

fibroblast-HUVEC co-culture model.  

 

Cilengitide has demonstrated preclinical single-agent anti-tumor activity against melanoma[96] and 

orthotopic brain tumor xenografts [36, 71], which may be due to apoptosis induced by tumor cell 

detachment [71]. Recent preclinical work has focused on the clinical observation that MGMT methylated 

tumors tend to respond positively to cilengitide combined with XRT/TMZ compared to MGMT 

unmethylated tumors [43]. In these experiments, targeted alteration of MGMT expression in genetically 

engineered cell lines did not affect cilengitide activity [37], suggesting that the beneficial effect of 

cilengitide may be more related to its effect on the tumor microenvironment such as normalization of 

tumor vasculature to improve TMZ delivery or by exerting a stronger synergy with XRT/TMZ in 

chemosensitive tumors compared to chemotherapy-insensitive tumors. Finally, cilengitide has been 

shown to potentiate the anti-tumor activity of chemotherapy and radiation therapy in preclinical tumor 

models including GBM [37-40, 93, 97]. 

 

Clinical efficacy 
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Phase I studies 

Table 2 highlights some of the clinical studies conducted to date with cilengitide in oncology; however, 

this review will focus primarily on studies targeting primary CNS tumors. The initial phase I trials of 

cilengitide prioritized the evaluation of safety and toxicity with secondary pharmacokinetic and 

correlative endpoints.  An initial phase I study enrolled 37 patients with advanced solid tumors [85]. 

Cilengitide was administered intravenously over one hour twice weekly. In this study, no dose limiting 

toxicities (DLT) were observed and the MTD was not determined despite an escalation of cilengitide 

dosing in successive cohorts from 30 mg/m
2
 up to 1600 mg/m

2
.  Dose-dependent pharmacokinetics were 

observed and, as expected, increased in a dose proportional manner.  Of note, the systemic exposure 

achieved at 120 mg/m
2
 and above was within the concentration range for tumor inhibition predicted by 

pre-clinical models.  An examination of serum angiogenic factors was also performed but failed to 

establish a pharmacodynamic correlation with stable or progressive disease.   Three patients achieved 

stable disease but there were no objective radiographic responses. 

 

Novel endpoints incorporating correlative assessments to determine biological activity were evaluated 

in a second phase I study in advanced solid tumor patients [83].  In this study cilengitide was again 

administered twice weekly as a 1-hour infusion beginning at a dose level of 120 mg/m
2
. Despite an 

escalation of the dose to 2400 mg/m
2
, no DLTs were observed and no MTD was identified. Endothelial 

cell apoptosis, gene expression profiles, systemic angiogenic factor measurements, and tumor tissue mean 

vessel density were assessed as potential biologic endpoints; however, none of these measures reliably 

predicted anti-tumor activity.  

 

A phase I study of cilengitide limited to patients with recurrent malignant glioma was subsequently 

performed [42]. The rationale for a dedicated malignant glioma phase I study was the concern that CNS 

tumor patients may require a different MTD due to the risk of CNS hemorrhage or stroke potentially 

associated with anti-angiogenic or anti-vascular agents. A total of 51 patients enrolled on this study. 
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Cilengitide was escalated from 120 mg/m
2
 to 2400 mg/m

2
. Infrequent and inconsistent toxicities were 

observed across administered dose levels and the MTD was not defined. Specific DLTs encountered 

included a grade 3 thrombosis, grade 4 myalgia/arthralgia, grade 3 anorexia/hypokalemia/hyponatremia, 

and grade 3 thrombocytopenia.  There were no episodes of intracranial hemorrhage or stroke. Evidence of 

anti-tumor activity was observed both in higher and lower dose levels and included complete and partial 

responses in two and four patients, respectively, and stable disease for at least six months in six additional 

patients.  Pharmacokinetic analyses from this study revealed that 1) the kinetics of cilengitide were linear, 

2) flat dosing was feasible because dosing per body surface area did not affect drug clearance, and 3) 

concurrent use of either enzyme inducing anticonvulsants or corticosteroids did not affect cilengitide 

pharmacokinetics.  Perfusion MR imaging and the measurement of plasma angiogenic growth factors 

were performed to identify potential biomarkers of anti-tumor activity.  Decreased tumor perfusion was 

noted more commonly among patients treated with the higher cilengitide dose. 

 

A companion dose escalation phase I study was performed in pediatric patients with recurrent 

malignant glioma and enrolled 31 patients.  Intracranial hemorrhage occurred in 3 patients who were 

treated at the highest dose level (2400 mg/m
2
). However, two of these events were asymptomatic and it 

was unclear if these events were related to cilengitide or underlying tumor activity.  One patient with a 

recurrent GBM experienced a complete response and two had stable disease. The recommended dose for 

subsequent studies in children is 1800 mg/m
2 
[44].  

 

Phase II studies 

A phase II study, with PFS-6 as the primary endpoint, was then performed in adults with GBM at first 

recurrence [9]. This study evaluated two dose levels of cilengitide including an intermediate-low (500 

mg) dose and an intermediate-high (2000 mg) dose. The rationale for this design was based on results of 

the prior phase I study: 1) durable responses were observed across the spectrum of dose levels evaluated 

and 2) the MTD was not defined. Key eligibility criteria included the following: histologically confirmed 
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GBM that recurred following surgery, radiotherapy, and no more than one chemotherapy regimen; age 

≥18 years; measurable (≥1 cm
2
), contrast-enhancing tumor; KPS ≥70; and adequate bone marrow, hepatic 

and renal function. Patients were randomized to receive single-agent cilengitide at either 500 mg or 2000 

mg per dose as a 1-hour infusion twice weekly with a 72 hour interval between infusions. Four-week 

treatment cycles were repeated until unacceptable toxicity, progressive disease (PD), or consent 

withdrawal. Treatment arms were stratified to equally enroll based on degree of pre-enrollment surgery 

(none vs. biopsy/subtotal resection) and KPS (70-80 vs. 90-100).  The study enrolled 81 patients, 

including 41 on the 500 mg arm and 40 on the 2000 mg arm. Patients on both arms tolerated therapy well 

and there were no consistent significant toxicities observed overall, nor was a there a difference in the 

incidence of adverse events between the two dose groups. Four patients experienced grade 3 non-

hematologic toxicities that were possibly related to cilengitide therapy including single patients with 

transaminase elevation, arthralgia, weight gain and headache with altered mental status. There were no 

grade 4 or 5 study-related, non-hematologic events. Only one patient experienced an intracranial 

hemorrhage (grade 2) however this event occurred at the  time of tumor progression. Pharmacokinetic 

evaluation revealed linear exposures for both plasma and cerebrospinal fluid. Although evidence of anti-

tumor activity was observed for patients in both arms, those treated with the 2000 mg dose achieved 

higher rates of radiographic response (Figure 2), and improved PFS-6 and overall survival; however the 

randomized phase II study design was not powered to define superiority of one of the treatment arms 

(Table 3).   

 

A parallel phase II study, conducted by the North American Brain Tumor Consortium (NABTC-

0302), was designed to evaluate intratumoral penetration of cilengitide among recurrent GBM patients 

with no more than two prior episodes of tumor progression [86].  Patients were randomized to receive 

three doses of cilengitide at either 500 mg or 2000 mg per dose on days 8, 4 and 1 prior to planned 

surgical debulking. Cilengitide was continued after surgery at 2000 mg/dose twice weekly for all patients. 

Among the 30 patients enrolled, cilengitide was well tolerated. Eight patients developed grade 3/4 
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lymphopenia and one patient each experienced grade 3 fatigue, thrombocytopenia, myalgias and non-

cardiac pulmonary edema. In addition, there were no episodes of peri-operative hemorrhage or wound 

healing difficulty. The average intratumoral concentration of cilengitide, assessed approximately 24 hours 

after the last cilengitide dose, were 400 and 1190 ng/gram of tissue for the 500 and 2000 mg dosing 

cohorts, respectively. The calculated tissue to plasma ratios were 1.83 for the 500 mg dose and 4.17 for 

the 2000 mg dose. Importantly, this study confirmed that cilengitide achieved effective GBM intratumoral 

penetration that was retained for at least 24 hours.   

 

The cumulative clinical experience among recurrent GBM patients demonstrated that cilengitide as a 

single agent was well tolerated, effectively penetrated into GBM tumors and was associated with 

therapeutic benefit in some patients with recurrent GBM. Therefore, studies to evaluate cilengitide in 

newly diagnosed GBM were undertaken. Further support for this decision included preclinical orthotopic 

GBM xenograft data demonstrating that cilengitide enhanced the anti-tumor activity of radiation therapy 

in a schedule dependent manner [38]. Two parallel phase II clinical trials in newly diagnosed GBM were 

conducted. In the first study, 52 patients were enrolled in a single-arm, uncontrolled, multi-center study 

with PFS-6 as the primary endpoint [43].  All patients received cilengitide at 500 mg/dose twice weekly 

throughout standard XRT/TMZ followed by six cycles of adjuvant TMZ plus cilengitide. The protocol 

specified cilengitide administration continue until the end of 6 cycles of adjuvant TMZ; therafter,  patients 

were allowed to continue cilengitide on a voluntary basis, but only 7 patients elected to do so. Relevant 

patient characteristics included a median age of 57 years, an ECOG score of 0-1 in 92%, and a gross total 

resection in 44%. Thirty-three percent of patients were on CYP3A-inducing anti-epileptics (EIAEDs). 

MGMT gene promoter methylation status was available in 45 patients (87%) and 23 (51%) had evidence 

of MGMT methylation. Median follow-up of treated patients was 34 months. No significant toxicity was 

attributable to the addition of cilengitide to XRT/TMZ. Overall hematological toxicity was modest and 

occurred within the range expected for XRT/TMZ. Constitutive symptoms (nausea, headache, 
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fatigue, vomiting, and anorexia) were the most common non-hematologic AEs. Importantly, 

intracranial hemorrhage occurred rarely and within the range expected for XRT/TMZ without Cilengitide 

[3]. Fifty patients (96%) completed combination therapy with cilengitide plus concomitant XRT/TMZ, 

and 23 (44%) patients completed all six cycles of adjuvant TMZ plus cilengitide. Early discontinuation 

was due to progressive disease in 19 patients (37%), toxicity in nine patients (17%) and consent 

withdrawal in one patient (2%). Pharmacokinetic studies revealed that cilengitide exposure did not 

accumulate with repeated administration and that cilengitide metabolism was not affected by concurrently 

administered TMZ, XRT or EIAEDs. TMZ pharmacokinetics were concordant with previously published 

data,[98] indicating that cilengitide did not influence TMZ metabolism. With a median follow-up of 34 

months, PFS-6 was 69% and median OS was 16.1 months. Patients with MGMT methylated tumors had 

significantly longer PFS (p< 0.001) and OS (p=0.022) compared to those with unmethylated tumors 

(Table 4).  Of note, PFS-6 and median OS were also higher for the MGMT methylated patients treated 

with cilengitide on this study compared to historical controls treated with standard therapy [47]. In 

contrast, patients on this study with unmethylated MGMT tumors had a similar outcome compared to 

those treated historically with standard therapy alone. The mechanism underlying a preferential benefit 

for cilengitide among newly diagnosed GBM patients with MGMT methylated tumors undergoing 

XRT/TMZ is not clear but could include 1) direct potentiation of the anti-tumor effect of TMZ and 2) an 

anti-angiogenic effect that normalizes tumor vasculature allowing greater TMZ delivery and/or 

oxygenation [99]. For both of these possible mechanisms, patients with MGMT methylated tumors would 

be predicted to achieve greater anti-tumor benefit from cilengitide compared to those with unmethylated 

tumors. In addition, a dose over 500 mg might be required to have an anti-tumor effect on GBM tumors 

with unmethylated MGMT status. 

 

A second phase II study evaluating cilengitide for newly diagnosed GBM patients was conducted by 

the New Agents Brain Tumor Treatment (NABTT) cooperative group (NABTT 0306) [100]. In this 

study, cilengitide was administered twice weekly throughout standard XRT/TMZ, during the 6 monthly 
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cycles of adjuvant TMZ, and continued thereafter until PD. A safety lead-in period was included that 

enrolled three, six-patient cohorts who received cilengitide at 500 mg/dose, 1000 mg/dose and 2000 

mg/dose, respectively. No DLTs were observed among any patients treated at these dose levels. 

Thereafter, 94 patients were enrolled to the phase II component of the study that included randomization 

to cilengitide doses of either 500 or 2000 mg.  The median age of the 112 enrolled patients was 55 years, 

the median KPS was 90 and 76% of patients underwent a debulking craniotomy. Median overall survival 

for all patients was 18.9 months and overall survival at one year was 80%. Improved outcome was again 

observed with the 2000 mg dose level compared to the 500 mg dose. MGMT status was also assessed 

from archival tumor tissue using immunohistochemistry and a subgroup analysis of outcome based on 

MGMT status will be forthcoming.  

 

Based on the encouraging results observed among recurrent and newly diagnosed GBM patients to 

date, a randomized phase III study (CENTRIC) evaluating the addition of cilengitide to standard 

XRT/TMZ and adjuvant TMZ followed by cilengitide maintenance compared to standard XRT/TMZ and 

adjuvant TMZ alone for newly diagnosed GBM patients with methylated MGMT tumors was initiated. 

Over 500 patients will be randomized with completed enrollment expected by early 2011 and preliminary 

outcome results by 2013. For patients with an unmethylated MGMT promoter, a companion phase II 

study of cilengitide (CORE) is evaluating safety, feasibility and efficacy of intensified, daily cilengitide 

(2000 mg up to five times per week) during  XRT/TMZ chemoradiotherapy. Thereafter, all patients in this 

study will receive 6 cycles of standard 5-day TMZ cycles plus cilengitide dosed at 2000 mg twice weekly 

until progression, unacceptable toxicity, non-compliance or consent withdrawal. No DLTs were observed 

during the safety run-in component of this study. The phase II portion of the study is underway and 

randomizes patients to one of three arms (80 patients per arm) including: 1) cilengitide 2000 mg/dose 

daily for five days per week (Monday-Friday) with standard TMZ/XRT and then followed at 2000 mg 

twice weekly with adjuvant TMZ and subsequently as cilengitide maintenance, 2) cilengitide 2000 

mg/dose twice weekly with standard TMZ/XRT and with adjuvant TMZ and subsequently as cilengitide 
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maintenance, and 3) standard TMZ/XRT and with adjuvant TMZ. A second randomized phase II study of 

cilengitide (CECIL) is evaluating the 1-year OS rate in newly diagnosed GBM patients treated with 

XRT/TMZ followed by 6 cycles of dose intensified TMZ (administered at a daily dose of 100 mg/m²/day 

for 21 out of 28 days) combined with 52 weeks of either cilengitide (at a dose of 2000mg twice a week) 

or cetuximab (at an initial dose of 400mg/m² followed by a once-weekly dose of 250 mg/m²) [www: 

ClinicalTrials.gov Identifier NCT01044225]. 

 

Safety and tolerability 

Cumulative experience with cilengitide to date indicates that it has a favorable safety profile. Phase I 

studies of cilengitide monotherapy among adult solid tumor and GBM patients did not identify dose 

dependent or dose-limiting toxicity despite wide dosing ranges of cilengitide tested (up to 2400 mg/m
2
 

which approximates 4000 mg twice weekly) [42, 44, 85]. Furthermore, no consistent toxicities have been 

observed in additional phase II studies [9, 43, 83, 85, 101, 102]. Among all adverse events reported,  

regardless of causality, among patients treated with cilengitide, the most common observed non-

hematologic toxicities include fatigue, nausea, dyspnea, headache, peripheral edema, diarrhea, 

constipation and anorexia. Importantly, cilengitide is not associated with hemorrhages, delayed wound 

healing or wound dehiscence, or other adverse events when administered peri-operatively to GBM 

patients undergoing craniotomy [86].  In addition, cilengitide does not appear to exacerbate toxicity 

associated with chemotherapy or radiotherapy [43, 84].  

 

Regulatory affairs 

Cilengitide is an investigational drug that is being evaluated in randomized, controlled clinical trials in 

GBM, non-small cell lung cancer and squamous cell carcinoma of the head and neck. Phase I/II trials are 

also ongoing for other indications (Table 3). An ongoing randomized, registration phase III study targets 

newly diagnosed GBM patients with MGMT methylated tumors. A complementary development program 

is active through the Cancer Therapy Evaluation Program (CTEP) of the US National Cancer Institute via 
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a Cooperative Research and Development Agreement (CRADA). Cilengitide has received orphan drug 

status for development in malignant glioma by both the European Medicines Agency and the United 

States Food and Drug Administration. 

 

Conclusion 

Cilengitide is an RGD pentapeptidomimetic that blocks ligand binding and subsequent activation of the 

αvβ3 and αvβ5 integrins. Preclinical studies demonstrate anti-tumor activity in glioma and other solid 

tumors that can augment the activity of cytotoxic chemotherapy and radiotherapy. In addition, several 

preclinical assays indicate that cilengitide has anti-angiogenic activity. Clinical trials to date confirm a 

favorable safety profile and lack of MTD. Pharmacokinetic studies demonstrate predictable, linear 

pharmacokinetics and, in GBM patients, intratumoral and CSF concentrations above levels associated 

with anti-tumor activity in preclinical models. Durable radiographic responses, encouraging disease 

control and promising overall survival results, favoring the 2000 mg dose, have been achieved in a phase 

II study using cilengitide monotherapy among recurrent GBM patients. Two recently completed phase II 

studies also demonstrate encouraging overall survival results when cilengitide is combined with standard 

XRT/TMZ for newly diagnosed GBM patients. Accrual to an ongoing phase III trial in newly diagnosed 

GBM patients with a methylated MGMT promoter is nearing completion and this study will determine if 

the addition of cilengitide to standard XRT/TMZ improves overall survival compared to standard 

XRT/TMZ alone. Randomized clinical trials are also underway with cilengitide in non-small cell lung 

cancer and head and neck squamous cell carcinoma. 

 

Executive summary 

Mechanism of action 

 Cilengitide is a cyclized RGD-containing pentapeptide (peptidomimetic) that blocks ligand binding 

and subsequent activation of the αvβ3 and αvβ5 integrins. 

Pharmacokinetic properties 
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 Cilengitide has a rapid distribution with maximum concentrations achieved within one hour. The mean 

elimination half-life is 3-5 hours. Concentrations above predicted preclinically active levels have been 

documented in tumors and cerebrospinal fluid of GBM patients 24 hrs after last cilengitide 

administration. Clearance is predominantly via the renal route. 

Clinical efficacy 

 Durable radiographic responses, encouraging disease control, and promising overall survival results 

have been achieved in phase I and II studies using cilengitide monotherapy among recurrent GBM 

patients. Two recently completed phase II studies have also demonstrated encouraging overall survival 

when cilengitide was combined with standard XRT/TMZ for newly diagnosed GBM patients. 

Safety and Tolerability 

 Side effects:  

- Several clinical trials confirm a favorable safety profile and lack of MTD as well as significant 

attributable toxicity. The most common observed non-hematologic adverse events in cilengitide 

trials include fatigue, nausea, dyspnea, headache, peripheral edema, diarrhea, constipation and 

anorexia. 

 Precautions:  

- None 

 Monitoring: 

- None 

 Contraindications:  

- None other than documented hypersensitivity. 

 Drug interactions:  

- None documented to date. 

 Dosage and administration:  

- For adults, flat dosing of 2000 mg intravenously over one hour two days per week with doses 

separated by 72 hours (Monday and Thursday or Tuesday and Friday). Dosing among pediatric 
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patients has not been firmly established but the recommended dosing schedule for phase II studies 

is 1800 mg/m
2
. 

 

Future perspective 

Integrins are attractive therapeutic targets for many malignancies given their myriad contribution to 

underlying tumor biology. To date, integrin targeting agents, including cilengitide, have been associated 

with a favorable safety profile. Cilengitide can be safely combined with chemotherapy and radiation 

therapy, and provides encouraging clinical anti-tumor activity so far.  A recent preclinical study suggests 

that prolonged exposure to extremely low doses of RGD-mimetic integrin inhibitors may be associated 

with stimulation of tumor growth and angiogenesis  [95]. Although this is not the dosing regimen used 

clinically with cilengitide and such findings have not been observed in the clinical application of anti-

integrin agents to date[103] ongoing and future studies should evaluate such an adverse potential.  

Overall, the ongoing randomized, controlled phase III (CENTRIC) and randomized, controlled phase 

II (CORE, ADVANTAGE, CERTO) studies will provide data on the clinical efficacy of cilengitide in 

GBM, NSCLC and SCCHN with clinically relevant doses and schedules. 

A critical area of future focus will be the identification of biomarkers associated with durable benefit or 

early failure. Finally, the development of more convenient formulations for patients may facilitate 

improved compliance and overall patient satisfaction. 

 

Information resources 

Merck Serono: www.merckserono.com 

 

Figure Legends 

Figure 1.  Chemical structure of cilengitide.  

Figure 2.  Representative durable radiographic response of a patient with recurrent GBM treated with 

single-agent cilengitide. 
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Figure 1. 



Figure 2.  Representative radiographic response of a recurrent GBM patient treated with single agent cilengitide. This patient maintained 

this response for over 3.5 years.



Table 1. Listing of integrin targeting agents in clinical development for oncology. 
 

Agent Company Target Class Route of 

Administration 

Indications Phase of 

Development 

Cilengitide Merck Serono αvβ3/5 peptidomimetic i.v. Glioblastoma  

(SCCHN, NSCLC, other) 

 

Phase III 

intetumumab -

(CNTO95) 

 

Centocor αv MAb i.v. HRPC  

(melanoma, solid tumours) 

Phase II 

E7820 Eisai α2 Misc: Sulphonamide derivative p.o CRC (lymphoma) Phase II 

 

Volociximab Biogen α5β1 MAb i.v. RCC, melanoma (Pancreas) Phase II 

 

Etaracizumab 

(MEDI-522, Abegrin) 

 

Medimmune αv ß3 MAb i.v. Prostate Phase II 

ATN 161     Attenuon α5ß1 peptidomimetic i.v. Glioblastoma Phase II 

 

DI 17E6 Merck Serono αv  MAb i.v. CRC, Prostate  Phase II 

 

MK0429 MSD αvβ3 Non-peptidomimetic p.o. HRPC Phase I 

 

GLPG 0187 Galapagos 5 integrin receptors peptidomimetic p.o./s.c. Bone mets in mBC Phase I 

 

PF-04605412 Pfizer α5β1 MAb i.v. Solid Tumours Phase I 

 

IMGN388 ImmunoGen αv MAb (DM4 cell-killing agent 

attached) 

 

i.v. Solid Tumours Phase I 

 

Celastrol - β1 Integrin Misc. - Prostate, Pancreas Preclinical 

 

HYD1 Moffitt Cancer Center inhibitory peptide peptidomimetic - Multiple myeloma Preclinical 

 

264RAD AstraZeneca Integrin alphavbeta6 ligand MAb - Oncology Preclinical 

Abbreviations: i.v. = intravenous; MAb = monoclonal antibody; Misc. = miscellaneous; p.o. = oral; s.c. = subcutaneous;  



Table 2.  Clinical trials with cilengitide in adults with malignant glioma (MG) and published or ongoing randomized controlled trials for other cancer indications. 

Study Study Population Trial Phase Trial Design Dose 
(2X/week unless otherwise specified) 

No. Patients Reference 

NABTT 9911 Recurrent MG I Dose escalation 200-2400 mg/m2 51 Nabors LB et al. 200742 

PBTC-012 Refractory pediatric CNS 

tumors 

I Dose escalation 120-2400 mg/m2 33 MacDonald TJ et al.44 

EMD 009 Recurrent GBM II Randomized 500mg – 2000 mg 81 Reardon DA et al.9 

NABTC 0302 Recurrent GBM II (peri-operative) Randomized 500mg vs 2000 mg 30 Gilbert M et al.86 

EMD 010 Newly diagnosed GBM II Single arm 500mg 52 Stupp R et al.43 

NABTT 0306 Newly diagnosed GBM II (with safety run-in) Randomized 500mg vs 2000 mg 112 Grossman SA et al.100 

CENTRIC Newly diagnosed GBM; 

MGMT methylated 

III Randomized 2000 mg 504 Ongoing 

CORE Newly diagnosed GBM; 

MGMT unmethylated 

II (with safety run-in) Randomized 2000 mg 2-5X/week 240 Ongoing 

CECIL Newly diagnosed GBM; 

MGMT unmethylated 

II Randomized 2000 mg 108 Ongoing 

NCI 3358 Advanced solid tumor I/II Single arm 600 mg/m2 vs 1200 mg/m2 20 Harihan S et al. 200783 

 Advanced solid tumor I Single arm 30 mg/m2-1600 mg/m2 37 Eskens FA et al. 200385 

EMD 004 Pancreatic cancer II Randomized 600 mg/m2 89 Friess H et al. 200684 

NCI 6735 Prostate cancer II Single arm 2000 mg 44 Bradley DA et al. 2010101 

NCI 6372 Prostate cancer II Randomized 500 mg vs 2000 mg 106 Ongoing 

CERTO Non-small cell lung cancer II (with safety run-in) Randomized 500-2000 mg 189 Ongoing 

ADVANTAGE Head and neck cancer I/II Randomized 500-2000 mg 194 Ongoing 

Abbreviations: CNS – central nervous system;  EMD: EMD Serono, Inc. (US affiliate of Merck KGaA, Darmstadt, Germany); GBM – glioblastoma; MG – malignant glioma;mg – milligrams; 

MGMT – methylguanine methyltransferase; NABTT – New Agents Brain Tumor Therapy Group; NABTC – North American Brain Tumor Consortium; NA – not availabl; NCI – National Cancer 

Institute 

PBTC – Pediatric Brain Tumor Consortium 



Table 3. Efficacy of single-agent cilengitide by dose level among recurrent GBM 
 

Outcome or Response 
Stratum A (n=41) 
(500 mg per day) 

Stratum B (n=40) 
(2000 mg per day) 

   

Number of patients with a 
radiographic response (%) 

2 (5) 5 (13) 

   
Median time to progression 
(weeks) 

7.9 8.1 

95% CI 7.7, 15.6 7.9, 15.0 
   
6-month PFS (%) 10 15 
95% CI 2.8, 23.7 5.7, 29.8 
   
Overall survival  (months) 6.5 9.9 
95% CI 5.2, 9.3 6.4, 15.7 
HR 0.70 [0.43, 1.14], p=0.15 
   

Number of patients completing 12 
cycles (%) 

3 (7) 5 (13) 

   

Number of patients completing 24 
cycles (%) 

2 (5) 2 (5) 

 

   

   

   



Table 4. Activity of cilengitide (500 mg/dose) among newly diagnosed GBM patients by MGMT methylation status compared with historical control. 
 
 Cilengitide Phase II

1
 

 

EORTC/NCIC
2,3

 

 All (n=52)* MGMT 

methylated (n=23) 

MGMT 

unmethylated 

(n=22) 

 RT + TMZ
2 

(n=287) 

MGMT methylated
3 

(n=46) 

MGMT 

unmethylated
3 

(n=60) 

Median       

PFS (months) 8 (6.0 – 10.7) 13.4 (8.6 – 22.8) 3.4 (2.3 – 7.1) 6.9 (5.8 – 8.2) 10.3 (6.5 – 14.0) 5.3 (5.0 – 7.6) 

PFS – 6 (%) 69 (54 – 80) 91 (70 – 98) 41 (21 – 60) 53.9 (48.1 – 59.6) 68.9 (55.4 – 82.4) 40.0 (27.6 – 52.4) 

       

Median       

Overall Survival 

(months) 

16.1 (13.1 – 

23.2) 

23.2 (15.5 – NR) 13.1 (9.7 – 17.6) 14.6 (13.2 – 16.8) 21.7 (17.4 – 30.4) 12.7 (11.6 – 14.4) 

       

Overall Survival       

12 months 68 (53 – 79) 91 (69 – 98) 51 (28 – 70) 61.1 (55.4 – 66.7) NR NR 

24 months 35 (22 – 48) 46 (25 – 64) 20 (6 – 40) 26.5 (21.2 – 31.7) 46.0 (31.2 – 60.8) 13.8 (4.8 – 22.7) 

*data in parentheses is 95% confidence intervals unless otherwise indicated 
1
Stupp R et al. J Clin Oncol 28:2712‐8, 2010 

2
Stupp R et al. N Engl J Med 352:987‐96, 2005 

3
Hegi ME et al. N Engl J Med 352:997‐1003, 2005 

 




