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Abstract

Background: Next-generation sequencing (NGS) approaches are commonly used to identify key regulatory

networks that drive transcriptional programs. Although these technologies are frequently used in biological studies,

NGS data analysis remains a challenging, time-consuming, and often irreproducible process. Therefore, there is a

need for a comprehensive and flexible workflow platform that can accelerate data processing and analysis so more

time can be spent on functional studies.

Results: We have developed an integrative, stand-alone workflow platform, named CIPHER, for the systematic

analysis of several commonly used NGS datasets including ChIP-seq, RNA-seq, MNase-seq, DNase-seq, GRO-seq,

and ATAC-seq data. CIPHER implements various open source software packages, in-house scripts, and Docker

containers to analyze and process single-ended and pair-ended datasets. CIPHER’s pipelines conduct extensive

quality and contamination control checks, as well as comprehensive downstream analysis. A typical CIPHER

workflow includes: (1) raw sequence evaluation, (2) read trimming and adapter removal, (3) read mapping and

quality filtering, (4) visualization track generation, and (5) extensive quality control assessment. Furthermore, CIPHER

conducts downstream analysis such as: narrow and broad peak calling, peak annotation, and motif identification

for ChIP-seq, differential gene expression analysis for RNA-seq, nucleosome positioning for MNase-seq, DNase

hypersensitive site mapping, site annotation and motif identification for DNase-seq, analysis of nascent transcription

from Global-Run On (GRO-seq) data, and characterization of chromatin accessibility from ATAC-seq datasets. In

addition, CIPHER contains an “analysis” mode that completes complex bioinformatics tasks such as enhancer

discovery and provides functions to integrate various datasets together.

Conclusions: Using public and simulated data, we demonstrate that CIPHER is an efficient and comprehensive

workflow platform that can analyze several NGS datasets commonly used in genome biology studies. Additionally,

CIPHER’s integrative “analysis” mode allows researchers to elicit important biological information from the

combined dataset analysis.
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Background
Understanding the precise regulation of transcriptional

programs in human health and disease requires the

accurate identification and characterization of genomic

regulatory networks. Next-generation sequencing (NGS)

technologies are powerful, and widely applied tools to

map the in vivo genome-wide location of transcription

factors (TFs), histone modifications, nascent transcrip-

tion, nucleosome positioning, and chromatin accessibil-

ity features that make up these regulatory networks.

Although NGS technologies can be used in diverse

ways to investigate numerous aspects of genome biol-

ogy, reaching sound biological conclusions requires the

exhaustive analysis of these datasets to recognize and

account for many potential biases [1] including abnor-

mal fragment size distribution due to sonication, bias in

enzyme digestion in MNase and DNase samples, PCR

amplification bias and duplication, sequencing errors,

incorrect software usage, and inaccurate read mappings.

These problems, combined with the unprecedented

amount of data generated by sequencing platforms, have

provided unique opportunities for the development of

computational pipelines to automate time-consuming data

analysis processes such as ChiLin [2], HiChIP [3], Galaxy

[4], MAP-RSeq [5], and bcbionextgen [6], among others

(Fig. 1).

Properly implemented pipelines are essential to genome

and chromatin biology studies, but often fail to implement

the features required to overcome five major challenges:

(1) quickly processing large batches of data with minimal

user input, (2) remaining highly customizable for different

experimental requirements, (3) conducting comprehensive

quality control assessments of sequencing datasets to

identify potential areas of bias, (4) reducing the issues

associated with building, maintaining, and installing mul-

tiple pipelines and bioinformatics software, and (5) increas-

ing reproducibility among researchers.

Despite the many computational approaches that

already exist to analyze NGS datasets, there are no cur-

rently available tools designed to tackle all five chal-

lenges simultaneously. ChiLin, HiChIP, bcbio-nextgen,

and MAP-RSeq offer powerful command-line data ana-

lysis pipelines, but are limited to chromatin immunopre-

cipitation (ChIP) coupled with sequencing (ChIP-seq)

and whole transcriptome sequencing (RNA-seq) stud-

ies. Galaxy, an open, web-based platform for data ana-

lysis [4], offers an impressive number of bioinformatics

tools and workflows that can be used to process various

NGS datasets, but severely limits the size and number

of files that can be processed at once.

To overcome these previous obstacles, we devised

CIPHER, an integrated workflow platform that auto-

mates the processing and analysis of several commonly

used NGS datasets including ChIP-seq, RNA-seq, Global

Run On sequencing (GRO-seq) [7], micrococcal nuclease

footprint sequencing (MNase-seq) [8], DNase hypersensi-

tivity sequencing (DNase-seq) [9], and transposase-

accessible chromatin using sequencing ATAC-seq [10]

datasets. In addition, CIPHER also provides an easy-to-

use “analysis” mode that accomplishes complex bioinfor-

matics tasks such as enhancer prediction using a random

forest-based machine-learning model and provides

functions to integrate various NGS datasets together. By

combining Nextflow [11, 12] - a powerful workflow

language based on the Unix pipe concept, Docker [13] - a

container-based virtualization technology, open source

software and custom scripts, we provide a robust, and

powerful toolkit that simplifies NGS data analysis and

Fig. 1 Table of several available workflows for processing sequencing data and their capabilities in comparison to CIPHER. T, Trimming; M,

Mapping; PC, Peak Calling; PA, Peak Annotation; MI, Motif Identification; V, Visualization; DG, Differential Gene Expression; GO, Gene Ontology;

TC, Transcript Calling
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provides a significant improvement over currently avail-

able pipelines in terms of flexibility, speed and ease of use.

CIPHER manages to overcome the five previously

mentioned obstacles by: (1) parallelizing all the steps in

a typical pipeline therefore taking full advantage of a

desktop’s or cluster’s available RAM and CPUs, (2)

providing command line flags to alter the majority of pa-

rameters at each step, (3) incorporating extensive quality

control software and providing detailed QC reports spe-

cific to each pipeline, (4) combining pipelines for several

of the most commonly used NGS techniques into a sin-

gle, standalone tool, and (5) using a lightweight Docker

containers to package all the required software depend-

encies to run CIPHER into a standardized environment.

In this report, we demonstrate that CIPHER is a fast,

reproducible, and flexible tool that accurately processes

and integrates NGS datasets by recreating the results of

two published studies, and comparing CIPHER’s speed

and ease of use to two other ChIP-seq and RNA-seq

pipelines. We further validate CIPHER’s built-in random-

forest based enhancer prediction model by identifying po-

tentially functional enhancers in various human cell lines.

Implementation

Many previously described NGS workflows are devel-

oped using scripting languages such as Python or Perl as

a ‘glue’ to parse datasets, and automate the series of

commands that make up a processing pipeline. In con-

trast to these approaches, CIPHER was designed using

Nextflow, a specialized, and new workflow language that

is built around the Unix pipe concept [11]. By using

Nextflow as the underlying language for the CIPHER

platform, we gain access to several useful features, in-

cluding automatic parallelization, Docker and GitHub

support, the capacity to run locally on a desktop or on a

cluster, and the ability to seamlessly integrate custom

scripts in a variety of programming languages.

CIPHER can be run with default settings by specifying

the “–mode”, “–config”, “–readLen”, “–lib”, “–fasta”, and

“–gtf” flags. The “–mode” flag indicates the type of NGS

pipeline you wish to run from the currently available

workflows (e.g. “–mode chip” for ChIP-seq analysis),

while the “–config”, “–readLen” and “–lib” flags provide

information regarding file locations, read length and

type of sequencing (e.g. single-ended or pair-ended),

respectively, so that the pipeline runs the appropriate

processes. Finally, the “–fasta” and “–gtf” flags indicate

reference annotation information that is required for

mapping and downstream exploration such as differen-

tial gene expression (DGE) analysis. In the case that the

user is not familiar with reference FASTA and GTF files

or where to acquire them, providing the “–download_-

data” flag will automatically download the appropriate

Ensembl/Gencode reference files for a specified organism,

if it exists (e.g. “–download_data hg19” will download

Gencode fasta and gtf files for the hg19 human genome).

In addition, there are various other flags that can be

set to customize the analysis further. More information

regarding these flags can be found by setting the “–help”

flag or by visiting CIPHER’s online documentation

(available at: cipher.readthedocs.io). By default, CIPHER

will output processed files into a “./report” directory

(which can be changed by specifying the “–outdir” flag).

The output includes various files and is largely

dependent on the pipeline mode specified, but in general

provides quality control reports in pdf or html format,

gzipped fastq files of raw sequences after trimming and

adapter removal, sorted BAM files of mapped and

unmapped alignments along with various files that con-

tain detailed statistics regarding the number of unique,

multimapped, and low-quality reads, as well as normal-

ized track files in bigWig format for visualization.

Further pipeline dependent downstream analysis such as

narrow and broad peak calls for ChIP-seq, differential

gene expression lists for RNA-seq, nucleosome positions

and DNase hypersensitive sites (DHS) for MNase-seq

and DNase-seq respectively, unannotated transcription

units for GRO-seq, and chromatin accessible sites for

ATAC-seq are also output. Notably, unlike other pub-

lished pipelines (Fig. 1), CIPHER is the first platform that

merges multiple workflows and complicated bioinformat-

ics tools into a single, easy to use, parallelized, and scalable

toolkit, removing the obstacles that arise from finding,

building, maintaining, and updating multiple workflows.

This approach can be applied to data generated through

both pair-ended and single-ended sequencing to map

genomic elements and regulatory features in diverse

organisms.

CIPHER’s pipelines conduct extensive quality and

contamination control checks, as well as comprehen-

sive downstream analysis (Fig. 2). A typical CIPHER

workflow can be split into two major stages: a fastq

sequence filtering, adapter trimming, and read mapping

stage, and a downstream analysis stage. During the

‘sequence filtering, trimming, and mapping’ stage, raw

sequences are trimmed of adapters and low-quality

reads using BBDuk [14], and are then mapped to a refer-

ence genome (Fig. 2a). CIPHER allows the user to choose

between three different aligners for non-splice aware data-

sets: BBMap [14], the Burrow-Wheeler Aligner (BWA)

[15] and Bowtie2 [16], and three different aligners for

splice aware datasets: BBMap [14], STAR [17], and

HISAT2 [18] via the “–aligner” flag. After mapping, the

‘downstream analysis’ stage consists of running the

samples through various steps to extract biological infor-

mation including peak calling for narrow (MACS2) and

broad binding domains (EPIC), peak annotation and motif

identification (HOMER) [19] for ChIP-seq; DGE analysis
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for RNA-seq (RUVSeq, edgeR, and DESeq2); analysis of

nascent transcription from GRO-seq (groHMM);

nucleosome positioning for MNase-seq (DANPOS2);

positioning/strength of DHS (MACS2), site annotation

(HOMER), and motif identification (HOMER) for

DNase-seq; and chromatin accessibility peak calling

(MACS2), and annotation for ATAC-seq (HOMER)

(Fig. 2b). Overall, CIPHER ensures comprehensive,

a

b

Fig. 2 Brief visual representation of CIPHER’s two stage workflows. a Fastq files are trimmed of adapters and low quality reads using BBDuk, and

then mapped to the reference genome using user’s preferred aligner. b Mapped reads are then run through a downstream analysis pipeline that

reveals biological functions and is dependent on the type of dataset input. See text for complete details
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reproducible, customizable, and accurate automated

NGS dataset processing (see below).

Trimming

Trimming adapter sequences is a common pre-processing

step during NGS data analysis, as adapter contamination

can often disturb downstream examination. Many tools

exist for the removal of adapters such as Trimmomatic

[20], cutadapt [21], Trim Galore [22], and BBDuk [14].

CIPHER implements BBDuk, which is an extremely fast,

scalable, and memory-efficient decontamination tool to

remove Illumina, Nextera, and small RNA adapters from

raw sequencing data. By default, CIPHER will also filter

out low-quality (default: mapq <20) and short-length

(default: length < 10) reads as this has been shown to in-

crease the quality and reliability of downstream analysis

[23]. Additional adapter sequences can be added manually

to an “adapters.fa” file located in CIPHER’s “bin” directory.

Mapping

Mapping or alignment, while generally being the most

computationally intensive part of any pipeline, is also a

crucial and often confusing pre-processing step. Low

mapping efficiencies can be caused by numerous issues

including adapter or organismal contamination, poor

sequence quality, high-levels of ribosomal RNA con-

tent, poor library-preparation quality, and/or inappro-

priate parameter use, which can often lead to incorrect

or inefficient downstream analysis.

While several mapping software packages have been

developed to map reads to a reference genome, they are

typically designed to address a specific type of data or se-

quencing technology. For example, ChIP-seq data makes

use of splice-unaware aligners such as BWA [15], Bowtie2

[16], and BBMap [14] while RNA-seq data requires a

splice-aware aligner to avoid introducing long gaps in the

mapping of a read due to intronic regions, and thus lead-

ing to false mappings. Several splice-aware aligners exist

including BBMap [14], STAR [17], and HISAT2 [18].

Notably, CIPHER integrates pipelines that require

splice-aware (RNA-seq) and splice-unaware mappers

(ChIP-seq, MNase-seq, DNase-seq, ATAC-seq and

GRO-seq), and supports both single-ended and pair-

ended sequencing datasets. Thus, to appeal a broader

audience, CIPHER allows the user to choose from five dif-

ferent aligners (BBMap, BWA, Bowtie2, HISAT2, and

STAR) to fit any experimental condition and dataset.

By default, CIPHER will map reads to a reference

genome using BBMap, a fast short-read aligner for both

DNA and RNA-seq datasets, that is capable of mapping

very large genomes containing millions of scaffolds with

very high-sensitivity and error tolerance. Because read

alignment often requires a large amount of flexibility for

specific datasets (e.g. removing the first 5 nucleotides from

the 5′ end of a read), CIPHER enables the user to set all

of an aligner’s parameters at the top level.

Quality control

To ensure properly sound biological conclusions, it is

crucial that the user accurately and thoroughly evaluates

the quality of their sequencing datasets. To this end,

CIPHER incorporates a number of quality control tools

to identify potential biases, contaminations, and errors

in NGS datasets.

All pipelines integrate FastQC [24], an open source

module that is used to analyze raw sequencing datasets

for any abnormalities such as high duplication levels or

adapter contamination, as well as low-quality and

short-length reads. ChIP-seq, DNase-seq, ATAC-seq,

and MNase-seq datasets are run through ChIPQC [25],

an R package that automatically computes several qual-

ity control metrics including the total number of reads

in each BAM file per sample, mapping statistics (e.g. num-

ber of successfully mapped reads, number of mapped

reads with a quality score less than N, multimappers),

estimated fragment length by calculating cross-coverage

score, and the percentage of reads that overlap called

peaks (known as FRIP) when possible.

Fingerprint plots that predict enrichment of ChIP-seq

datasets are generated to judge how well a ChIP experi-

ment worked using deeptool’s [26] “plotFingerprint”

function. For RNA-seq datasets, QoRTs [27] is used to

detect and identify various errors, biases, and artifacts

produced by single-ended and pair-ended sequencing.

Furthermore, RNA-seq data is run through Preseq [28]

to predict the yield of distinct reads from a genomic

library after an initial sequencing experiment. These

predictions can be used to examine the value of further

sequencing, optimize sequencing depth, or screen

multiple libraries to avoid low complexity samples by

estimating the number of redundant reads from a

given sequencing depth.

MultiQC [29] is used to aggregate the results from

various quality control files into a single, easy to read

HTML report, summarizing the output from numerous

bioinformatics tools such as FastQC so that potential

problems can be detected more easily and output can be

parsed by the user quickly.

Peak calling

For our purposes, peak calling refers to the identification

of TF and histone binding domains, nucleosome positions,

DHS, and chromatin accessible sites (Fig. 2). There are

two major types of ChIP-seq binding profiles: narrow and

broad binding (Fig. 2b). Narrow peak calls are typically

accomplished by identifying locations with an extreme

number of reads as compared to an input, while broad

peak calls are more concerned with determining the edges
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or boundaries of these diffuse peaks. Because the mech-

anisms of discovery for these binding domains are very

different, CIPHER integrates, at difference to other

pipelines, two different software algorithms. For narrow

binding profiles, MACS2 [30] is used to identify candi-

date regions by using a dynamic Poisson distribution to

capture background levels, and scans the genome for

enriched overlapping regions which are then merged

into peaks. For broad binding profiles, EPIC [31], a fast,

parallel and memory efficient implementation of the

SICER [32] algorithm, is used. EPIC improves on the

original SICER by taking advantage of the advances in

Python data science libraries, such as the Pandas mod-

ule, to improve the algorithm’s proficiency and handle

the large amounts of data that the original software is

unable to.

By default, CIPHER will estimate the fragment length

for each sample using the SPP R package [33], and

bypass MACS2’s shifting model using the “–nomodel”

flag. Each read is extended in a 5′ - > 3′ direction using

the “–extsize” flag set to the estimated fragment size.

CIPHER also will use false discovery rate (FDR) values

as a cutoff to call significant regions (default: “–qvalue

0.01”). Narrow peaks are called for samples with a con-

trol (e.g. Input) or without. All duplicate tags are kept

(that is all tags in the same orientation and strand)

using the “–keep-dup all” flag. Broad peaks are only

called for samples with a control. Similarly to MACS2,

reads are extended to estimated fragment size. EPIC

pools all windows with sequencing reads together and

estimates a composite score, allowing very long stretches

of broad signal (such as some chromatin domains) to be

detected. By default, CIPHER will scan the genome by

separating them into 200-bp windows. Enriched broad

regions are estimated and an FDR score is calculated for

each region, those that fall beneath the provided cutoff

(default: 0.01) are not reported.

Nucleosome positions are determined using the

DANPOS2 software suite [34] (Fig. 2b). DANPOS2 is a

toolkit for the statistical analysis of nucleosome posi-

tioning, including changes in location, fuzziness, and

occupancy. The “dpos” function from the DANPOS2

toolkit is used to identify nucleosome positions from

MNase-seq datasets. Fragment size is automatically

calculated by CIPHER as previously mentioned, and

several flags can be set to specify read density cutoffs,

window size, merge distance, wiggle step size, and wig

smoothing size to accommodate different datasets, as

explained in detail in the user manual available at

cipher.readthedocs.io.

DHS characterize chromatin accessible regions in the

genome where TFs can bind (Fig. 2b). While several

DNase-seq specific peak callers such as F-seq [35] have

been developed, studies have also shown that MACS2 can

be used to accurately predict DNase hypersensitive po-

sitions [36]. Thus, to limit the number of dependencies,

CIPHER uses MACS2 to identify chromatin accessible

regions from DNase-seq data. DHS are predicted in a

similar manner to narrow ChIP-seq binding sites, ex-

cept a combination of the “–extsize” and “–shift” flags

are used to shift the ‘cutting’ ends (e.g. sites where

DNase cuts the DNA) and then reads are extended into

fragments. By default, reads are shifted by calculating

“-1 * one-half the estimated fragment size” as indicated

in the MACS2 manual.

A similar approach to the identification of chromatin

accessible sites from ATAC-seq data is used. CIPHER

takes advantage of MACS2 flexible algorithm to call

peaks in a similar manner to DHS. However, “–extsize”

of 73 and “–shift” of −37 is used since the DNA wrapped

around a nucleosome is about 147-bp in length.

Visualization

To visualize binding site, gene expression, chromatin

accessibility, and gene annotation information, various

visualization tracks (e.g. bedGraphs and bigWigs) are

produced. Deeptools [26] is used to generate bigWig’s

for every workflow. All tracks are normalized by reads

per genomic content (RPGC), which reports read coverage

normalized to 1X sequencing depth. Sequencing depth is

defined as the total number of mapped reads times the

fragment length divided by the effective genome size

(EGS). CIPHER automatically calculates EGS using EPIC’s

“epic-effective.sh” script. ChIP-seq, MNase-seq, DNase-

seq, and ATAC-seq datasets have their reads extended to

their estimated fragment size, while RNA-seq and GRO-

seq datasets do not. CIPHER outputs sense and anti-sense

bigWigs for RNA-seq and GRO-seq datasets indicative of

sense and anti-sense transcription. Furthermore, CIPHER

outputs RPM-normalized bedGraph files via MACS2 that

can be used in some “analysis” mode functions.

Differential gene expression

DGE analysis generally refers to the up- or down-

regulation of transcripts produced by a cell in response to

or because of an aggravation (e.g. knock-out of a gene/

genomic domain or knock-down of a certain factor).

CIPHER’s DGE pipeline is straightforward and includes

basic mapping, quantification, and DGE analysis steps. As

previously described, mapping is completed by the user’s

choice of aligner, while quantification is accomplished by

the featureCounts module [37] of the Subread suite. Fea-

turecounts is a fast, general purpose read summarization

program that counts mapped reads for genomic features

such as genes. Actual DGE analysis is completed by both

the edgeR [38] and DESeq2 [39] packages from Bioconduc-

tor, as they are the most commonly used DGE packages in

publications.
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Enhancer prediction

Enhancers are short DNA sequences that act as TF

binding hubs, and function in a spatio-independent

manner to fine-tune promoter activity at distances

ranging hundreds of bases to megabases. To predict en-

hancers, we developed and applied a random-forest tree

(RFT) machine-learning model that combines chromatin

accessibility (DNase-seq) and chromatin signature datasets

obtained from ChIP-seq (H3K4me1, H3K27ac, and

H3K4me3) (Fig. 3a). The RFT model (implemented in R

(version 3.3.1) using the randomForest package) was con-

structed using the classical concept of binary classification

trees, with each feature being the average coverage signal

of a marker within a set distance along a genomic element.

CIPHER takes RPM-normalized bedgraph files of DNase-

seq and ChIP-seq as input to build the RFT model.

RFT model construction underwent two stages: training

and testing. In the ‘training’ stage, a forest is constructed

using two classes of genomic elements (one class contain-

ing a previously determined set of enhancer elements

from the Encyclopedia of DNA Elements (ENCODE)

project [40] and a second class with an equal number of

promoter regions (−1/+1 Kb from the transcription start

site (TSS)). In the ‘testing’ stage, a third of the classes and

their classifications that are not used for training are

selected to test the accuracy of the generated RFT-model.

The accuracy of the model was tested using a confusion

matrix from the caret package in R. Notably, CIPHER’s en-

hancer prediction-model accuracy achieved slightly above

93%, which means that the majority of ‘true’ enhancers

were identified during our ‘testing’ stage, indicating reliably

efficient enhancer identification functionality.

The provided reference genome is split into 200-bp bins,

and the enhancer prediction model categorizes each

window into “enhancer” or “non-enhancer” bins (Fig. 3b).

Bins that are within 1-bp of each other are further merged

to form a single continuous region. To account for false-

positive enhancer predictions, we set a strict cut-off using

DHS peaks whereby a DNase associated peak must

overlap the predicted enhancer by at least a single bp

(q < 0.01, MACS2) to be considered a ‘validated’ enhancer

and output as a result (Fig. 3c).

Analysis mode

CIPHER’s “analysis” mode was created to take advantage

of CIPHER’s broad NGS data processing workflows. In

“analysis” mode, CIPHER can run several functions that

integrate various input files and combines them to answer

a more specific or typically more complex biological ques-

tion. Currently, CIPHER contains two main analysis func-

tions. We have already touched on CIPHER’s enhancer

prediction functionality, but “analysis” mode also contains

a “geneExpressionNearPeaks” function that calculates

fragments per kilobase per million mapped reads (FPKM)

and transcripts per kilobase per million mapped reads

(TPM) normalized expression values of genes near an

input list (e.g. list of peaks or enhancers). This is accom-

plished by taking the Stringtie [41] output file from an

RNA-seq experiment and a list of MACS2/EPIC called

peaks from ChIP-seq and identifying the nearest gene to

each peak and then merging the information. By taking

advantage of this “analysis” mode we hope CIPHER

provides a much more integrative tool-kit that expands

beyond simple data processing.

Results
To validate CIPHER’s potential in NGS data analysis,

we used data from the Gene Expression Omnibus re-

pository (GEO) to re-create two previously published

studies: a ChIP-seq study from McNamara et al. [42]

and a GRO-seq study from Liu et al. [43]. Furthermore,

we briefly compared CIPHER’s speed, and ease of use

to alternative pipelines such as HiChIP and MAP-RSeq.

Next, we used real and simulated data to evaluate and

describe how to compare the performance of various

adapter decontamination tools (BBDuk, Cutadapt and

Trimmomatic) and DNA mappers (BBMap, BWA, and

Bowtie2) using ENCODE datasets. Finally, we confirm

CIPHER’s enhancer-prediction model by calling en-

hancers in three human cell lines. Performance tests

were run on a 32 core, dual-core Intel Xeon E5 with

128GB RAM WhisperStation.

Validating CIPHER’s pre-processing abilities and accuracy

To determine if CIPHER’s workflows are appropriate for

typical NGS studies, we downloaded the raw data from

two studies [42, 43] and ran them through CIPHER to

attempt reproduce their conclusions.

The first study by McNamara et al. consisted of several

ChIP-seq datasets, and provided evidence that KAP1, also

known as TRIM28, acts as a scaffold to recruit the 7SK

snRNP complex to gene promoters to facilitate productive

transcription elongation in response to stimulation. Their

bioinformatics analysis showed that 70% of all genes in

the human genome containing a form of RNA polymerase

II (Pol II) that is paused at promoter-proximal regions

(defined as −250/+1000 from the known TSS), also

contained the KAP1-7SK snRNP complex as revealed by

co-occupancy of KAP1 and three subunits of the 7SK

snRNP complex (HEXIM, LARP7, and CDK9). The same

authors also published a thorough methods paper that

provided a detailed experimental description and analysis

of ChIP-seq datasets [44], in which mapping to the UCSC

hg19 genome was completed by Bowtie [45] and peak

calling was accomplished by MACS2. The study led to the

identification of 14,203 target genes in the human genome

containing this regulatory complex.
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To determine whether we could reproduce McNamara et

al.’s results using CIPHER, we processed six of their ChIP-

seq datasets (Pol II, KAP1, HEXIM, LARP7, CDK9 and In-

put). Given that CIPHER does not include a Bowtie aligner,

we used the more recent Bowtie2 aligner (“–aligner

bowtie2” flag in CIPHER) but all other settings were left as

default. CIPHER processed all ChIP-seq datasets (~30

million reads per dataset) in 7 h and 23 min. We then iden-

tified ~26,000 promoter-proximal regions (defined as in the

original manuscript (−250/+1000-bp from known TSS))

c

b

a

Fig. 3 Outline of the random forest machine learning process for enhancer prediction by CIPHER. a Enhancer elements can be identified de novo

in a preferred cell line by using select histone modification and chromatin accessibility data and inputting it into CIPHER, which will then output

a list of predicted enhancer elements by applying the model to the cell line. Genomic features (histone modification and chromatin accessibility

data) are calculated for defined enhancers obtained from the ENCODE project. Non-enhancer elements are promoter regions −/+ 1 Kb from the

TSS of all known genes. A subset of all enhancer and non-enhancer elements is split into two groups: (1) a testing and (2) a training dataset. The

training dataset is used to generate the machine-learning model where decision trees are generated until the model can effectively separate

enhancers from non-enhancers. The testing dataset is used to validate the model, and a confusion matrix is used to calculate the accuracy of the

model. b Enhancer identification workflow. DNase chromatin accessibility (DHS) and chromatin signatures (H3K4me1, H3K4me3, and H3K27ac) are

used as input data. CIPHER splits the reference genome into 200-bp windows and then applies its random forest-based machine learning model

to each reference window to classify each window as an ‘enhancer’ or ‘non-enhancer’. Enhancer windows are then merged so that windows

within 1 bp of each other form a single continuous enhancer element. c Genome browser tracks of DHS and enhancer signature markers

(H3K27ac and H3K4me1) alongside the position of the predicted enhancer elements (blue blocks) output by CIPHER’s machine learning model

Guzman and D’Orso BMC Bioinformatics  (2017) 18:363 Page 8 of 16



and conducted co-occupancy analysis of called peaks.

Our analysis revealed 14,397 KAP1-7SK snRNP target

genes as opposed to the original manuscript’s 14,203

(Table 1) (Additional file 1: Table S1).

The second study by Liu et al. consisted of several

GRO-seq datasets to explore the role of two human fac-

tors (JMJD6 and BRD4) on the activation of the Pol II

paused form in a process called ‘Pol II pause release’

[43]. The study is quite elaborate, but does include a

number of DEG that are central to the paper for either

the JMJD6 (386 down-regulated; 1722 up-regulated)

and/or BRD4 (744 down-regulated; 1805 up-regulated)

complex subunits. According to their methods, all reads

were aligned to the hg19 RefSeq genome by Bowtie2,

and feature counting was completed by HOMER. EdgeR

was used to compute actual DEG at a FDR of <0.001.

We decided to reproduce one important section of this

previous study by processing six GRO-seq datasets: 2

non-target (NT) replicates, and 4 Brd4 knockdown (KD)

replicates. As previously done, we left all settings at default

except for altering the “–aligner” flag to use Bowtie2. CI-

PHER processed all six GRO-seq datasets (~50 million

reads per dataset) in approximately 10 h. DGE analysis of

NT versus BRD4 KD resulted in 2528 differentially

expressed genes at an FDR < 0.001 (Table 1). We then

overlapped both gene sets and found that CIPHER called

98% of the same genes as reported in the Liu et al. study,

providing compelling evidence that CIPHER can be used,

even with default settings, to accurately process and

analyze various NGS datasets.

Ease-of-use and speed comparisons of CIPHER versus

alternative pipelines

The adoption of new software is largely dependent on

proper documentation, and how easy the new software

is to install and use when compared to other alterna-

tives. Here we briefly examined and compared the speed

and ease-of-use of CIPHER versus two other pipelines

(HiChIP for ChIP-seq and MAP-RSeq for RNA-seq).

We first downloaded and installed both HiChIP and

MAP-RSeq standalone versions. While both pipelines pro-

vided virtual machines (VM) that already came packaged

with all the necessary software and dependencies, we

found that these VMs were clunky, slow and only really

meant to demonstrate the pipeline for testing purposes.

While both pipelines provided detailed instructions on

how to manually install all the software and dependencies

that were required, users who are unfamiliar with bash or

Unix commands would have significant trouble installing

them. Furthermore, both pipelines provided a version of

their pipelines that could only be run exclusively on a SGE

cluster, greatly limiting their use.

In comparison, CIPHER only requires the manual in-

stallation of Nextflow and Docker, greatly reducing the

number of obstacles a new user may encounter during

their setup. By default, CIPHER will automatically fetch

Docker containers that hold all the required software

and dependencies that are needed to run the pipeline,

without the slow-down that comes with a typical VM. In

cases where the user does not or cannot use/install

Docker, we have provided detailed instructions on how

to download all the software required to run CIPHER

using the Anaconda package manager in our documen-

tation (cipher.readthedocs.io). Importantly, CIPHER can

be easily run on several cluster services including SGE,

SLURM, LSF, PBS/Torque, NQSII, HTCondor, DRMAA,

DNAnexus, Ignite, and Kubernetes without altering the

original script, thus vastly increasing the flexibility and

usage of our workflow platform.

We next compared the difficulties in running each of

the pipelines on several ChIP-seq and RNA-seq samples.

We discovered that HiChIP required three configuration

files and MAP-RSeq required four configuration files that

need to be modified and completed before the workflow

can be run, leading to an extremely tedious pipeline setup

process. In contrast, CIPHER only requires the creation of

a single configuration file that contains the merge ID,

sample ID, path(s) to fastq(s), control ID, and marker ID

for each sample vastly reducing the time and complexity

of the initial startup.

Finally, we ran each of the pipelines on single and mul-

tiple in-house datasets to test their speed. For ChIP-seq

we first ran a single sample and its associated input (~30

million reads each) and then conducted another run that

included five samples and their associated input (~30 mil-

lion reads each). We found that for the single sample data-

set, HiChIP took approximately 2X longer than CIPHER

(~8 h versus ~4 h, respectively). However, the difference

in run time became vastly more noticeable when the

pipelines were run on multiple datasets (6 samples), in

which HiChIP took approximately 4X longer to finish

than CIPHER (~30 h versus ~8 h, respectively).

Fairly similar results were obtained with the MAP-RSeq

pipeline, where processing a single RNA-seq sample (~50

million reads; no DGE analysis) took approximately 1.5X

as long using MAP-RSeq than CIPHER (~8 h versus

~6 h), while processing 18 samples (~50 million each; no

DGE analysis) took approximately 15X as long using the

MAP-RSeq pipeline (~126 h, run was stopped after 72 h

versus ~8 h). These speed differences are likely the result

Table 1 Comparing CIPHER’s output with original publication

results

CIPHER Original Publication

KAP1-7SK snRNP Target Genes 14,397 14,203

BRD4-KD DGE Genes 2528 2549

A table of re-created results from original publication data using CIPHER
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of CIPHER’s innate ability to process a large number of

datasets in parallel, while both HiChIP and MAP-RSeq

have to process datasets serially (e.g. one at a time). To-

gether this demonstrates the ease-of-use and speed of CI-

PHER compared with other pipelines.

Adapter decontamination tool performance tests on

down-sampled ENCODE datasets

We downloaded ChIP-seq (H3K4me1) from the ENCODE

project in human colonic cancer cells (HCT116) to obtain

real quality distributions. We then down-sampled the ori-

ginal fastq files into three different datasets containing

1 M, 5 M and 10 M reads using BBMap’s “reformat.sh”

script. Using a dataset of 25 Ilumina TruSeq adapters we

randomly added adapters to the reads using the “addadap-

ters.sh” script from the BBMap suite with “qout = 33” and

“right” flags set, to ensure that adapters will be 3′-type

adapters. This ensures that adapters will be added at a

random location from 0 to 149, and possibly run off the

3′ end of the read, but the read length always stays at 150.

If the adapter finishes before the end of the read, random

bases are used to fill in the rest. Using this approach,

about 50% of all reads get adapters. Once the adapter is

added, each of the adapter nucleotides is possibly changed

into a new nucleotide, with a probability from the read’s

quality score for that nucleotide to simulate sequencing

error.

Speed tests were conducted using the “time” Unix

command for 1 M, 5 M and 10 M reads and averaging

the completion times over 3 runs. Accuracy was esti-

mated by replacing each read’s original name with a syn-

thetic name indicating the read’s original length and

length after trimming. For example, “@0_150_15” means

that the read was originally 150 bp long and 15 bp after

trimming because an adapter was added at position 15

(0-based). This allows BBMap’s “addadapters.sh” script

(with the “grade” flag set) to quantify both the number

of bases correctly and incorrectly removed, as well as

the percentage of true-positive adapter sequences

remaining and non-adapters removed.

Performance tests showed that BBDuk outperforms the

speed category by a large margin, with Trimmomatic not

far behind, and Cutadapt being extremely slow (Fig. 4a)

while accuracy tests revealed that Cutadapt removes more

correct adapters, with BBDuk following closely behind

and Trimmomatic at the end (Fig. 4b). However, Cutadapt

removed two times more incorrect adapter sequences

than other trimmers resulting in a higher amount false-

positive adapter trimming (Table 2). Taken together, the

combined speed and accuracy of BBDuk, along with its

easy to use parameters, and ability to work on single-

ended as well as pair-ended sequencing, make it a great

choice for read trimming and adapter removal.

Alignment tool performance tests on simulated datasets

To compare mappers against each other, we generated

a dataset using Teaser [46], which is a tool that can be

used to analyze the performance of various read map-

pers on simulated or real world datasets. We simulated

a single human Illumina-like read set assuming a gen-

omic SNP frequency of 0.1% and a 0.3% probability for

the occurrence of insertions and deletions. Read length

for the simulated dataset was set to 100 bp and

assumed a sequencing error of 0.6%. To reduce com-

puting times, we had Teaser randomly sample 0.01% of

non-overlapping sequences from the genome. The sim-

ulated reads were then mapped to the entire UCSC

hg38 reference genome and mapping statistics were

evaluated (Fig. 5). All mappers were run in Teaser’s

default mode with no additional parameters unless other-

wise indicated.

Results showed that BBMap and BWA-MEM correctly

mapped more simulated reads (83.889% and 82.863%,

a b

Fig. 4 Performance tests for various adapter decontamination tools. a A line graph indicating the number of reads processed on the x-axis and

the time in seconds the tool used to process that number of reads on the y-axis. b A barplot indicating the percentage of total adapters (light blue),

adapters removed (dark blue), and incorrectly removed adapters (false positives, green) for each tool tested
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respectively) than Bowtie2 (56.545%) (Fig. 5a). All three

tools mapped ~7–10% of reads incorrectly (defined as

reads that mapped to incorrect loci), but Bowtie2 was

not able to map 35% of simulated reads to the human

genome at all compared to the ~7–10% of unmapped

reads for BBMap and BWA-MEM. Teaser also reported

the precision (fraction of correctly mapped reads com-

pared to all mapped reads) and the recall rate (fraction

of correctly mapped reads if compared to correctly

mapped reads and non-mapped reads) for each mapper.

Not surprisingly, BBMap achieved the highest precision

and recall rating at 90.47% and 92.03% respectively,

with BWA-MEM close behind at 89.24% precision and

92.07% recall and Bowtie2 performing significantly

worse (88.18% precision and 61.19% recall rating) (Fig.

5b).

BBMap, BWA-MEM and Bowtie2 appear to perform

on par in terms of accuracy, performance tests for mem-

ory usage and speed indicated that BBMap was slower

and used larger amounts of RAM than either of the

other two programs (Fig. 5c and d). However, BBMap

builds its index on the fly and thus its resulting time is

not indicative of its pure mapping speed. In conclusion,

we propose that all three mappers perform compara-

tively well on our simulated dataset, with Bowtie2

showing slightly lower performance test results in several

sections. It is important to keep in mind that all aligners

can be altered quite significantly to achieve higher sensi-

tivity, and improve mapping results, and in our case, we

only tested the mappers using their default settings and

levels of stringency. Taken together, CIPHER offers

ample alignment/mapping opportunities giving the user

a broad spectrum of pipelines to be selected depending

on their specific needs and biological questions to be

answered.

Enhancer-identification model validation

Enhancers are short DNA-sequences that can regulate

basal gene transcription over distances ranging from a

Table 2 Summary of performance statistics for various trimming

tools and number of reads

Tool Number of
Reads

Speed
(sec)

Adapters
Remaining (%)

False
Positives (%)

BBDuk 1 M 1.2

BBDuk 5 M 2.3 37.2 0.0099

BBDuk 10 M 3.5

Cutadapt 1 M 208

Cutadapt 5 M 1037 10.1 2.1059

Cutadapt 10 M 2084

Trimmomatic 1 M 25

Trimmomatic 5 M 93 57.7 0.0004

Trimmomatic 10 M 145

A table of performance tests and statistics between various trimming tools.

Each tool was tested on datasets with 1 M, 5 M or 10 M reads. Speed tests

were averaged across three replications. Adapters remaining and false

positives tests were only conducted on 5 M read datasets, as the difference

between 1 M, 5 M, and 10 M datasets was minimal

a

c

b

d

Fig. 5 Performance tests for various mapping tools. a A barplot indicating the percentage of reads correctly mapped (green), wrongly mapped (orange),

and not mapped (blue) for each tool. b A scatter plot indicating the precision and recall rates for each tool. Top right indicates best performance overall.

c A barplot of memory usage in MB for each tool. d A barplot of the number of minutes per million reads mapped each tool took
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Fig. 6 (See legend on next page.)
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few kilobases to megabases. Enhancers are characterized by

the presence of various genomic features including: (1) an

accessible chromatin landscape, (2) distinct chromatin sig-

natures, (3) TF binding, and (4) bi-directional transcrip-

tional activity as revealed by the presence of enhancer-

derived non-coding RNAs (eRNAs) based on GRO-seq

data [47, 48].

Previous studies have shown that it is possible to accur-

ately predict enhancer elements using machine-learning

models by combining these various regulatory features

[49–53]. However, most of this enhancer-prediction mod-

eling is bundled into software that is highly technical in

nature and often requires specialized paid software such

as MATLAB to use. To simplify enhancer identification,

CIPHER implements a random-forest based classifier

similar to the model developed by Bing Ren’s group at

UCSD [50] (Fig. 3). Our model predicts transcriptional

enhancers based on a combination of chromatin signa-

tures (H3K4me1, H3K27Ac, H3K4me3) and DNase-seq

information.

To validate CIPHER’s enhancer prediction functionality,

we identified enhancer elements in two cell lines (HCT116

and HeLa). Using ChIP-seq and DNase-seq datasets from

the ENCODE project, we generated average coverage pro-

files for H3K4me1, H3K27ac, H3K4me3, and DNase-seq.

These coverages profiles were fed into CIPHER’s “analysis”

mode.

Enhancer activity can be inferred from the presence or

absence of histone markers. Enhancers are typically

marked with high levels of H3K4me1, in contrast to pro-

moters that are marked with higher levels of H3K4me3.

More recently, H3K27ac and high eRNA content have

been found to distinguish functionally active from primed

or latent enhancers [47, 54] (Fig. 6a). Thus, predicted

enhancers were further divided into active and primed

enhancer ‘states’ based on their H3K27ac levels or lack

thereof, respectively. CIPHER predicted 18,877 active and

11,460 primed elements in HCT116 and 38,045 active and

10,600 primed elements that contained the expected

DNase-sensitivity pattern (DNase-seq), chromatin signa-

tures (ChIP-seq), and transcriptional activity content

(GRO-seq) (Fig. 6b and c).

Chromatin state profiles were evaluated by constructing

heatmaps for active and primed enhancers ranked by

decreasing levels of chromatin accessibility (Fig. 6b and c).

This analysis revealed accessible chromatin at the center

of all predicted enhancers as shown by DNase-seq, and

chromatin signatures surrounding the nucleosome free

region (NFR) in a ‘peak-valley-peak’ pattern that is consist-

ent with traditional enhancer signatures [55] (Fig. 6d).

(See figure on previous page.)

Fig. 6 Definition of enhancer states and validation of enhancer-prediction model. a Enhancer states and their corresponding chromatin

signatures, DNase hypersensitive sites (DHS), and eRNA levels. Red and blue indicate sense and antisense eRNAs, respectively. b Heat maps

of DNase, H3K4me1, H3K27ac, H3K4me3, and GRO-seq (red: sense eRNAs, blue: antisense eRNAs) signal at active enhancers centered on the

middle of all enhancers and extended 3 Kb in either direction. c Heat maps of DNase, H3K4me1, H3K27ac, H3K4me3, and GRO-seq (red: sense

eRNAs, blue: antisense eRNAs) signal at primed enhancers centered on the middle of all enhancers and extended 3 Kb in either direction.

d Genome browser view of predicted enhancers and their associated genome features. e Heat maps of HeLa active enhancers centered

on the middle of all enhancers and extended 3 Kb in either direction. f Heat maps of HeLa primed enhancers centered on the middle of

all enhancers and extended 3 kb in either direction

a b

Fig. 7 GRO-seq coverage at active versus primed enhancers. Metagene plots of GRO-seq coverage −/+ 3 Kb from the center of (a) active and (b)

primed enhancers in HCT116 cells. Red indicates sense transcripts and blue indicates antisense transcripts (eRNAs)
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Furthermore, while both active and primed enhancers

contained comparable levels of H3K4me1, active en-

hancers contained larger H3K27ac levels (average cover-

age: 0.72 versus 0.099), and stronger eRNA sense (6 versus

1) and anti-sense (5 versus 1) read coverage compared

with primed enhancers, consistent with increased enhan-

cer activity (Fig. 7a and b). Moreover, as expected, active

enhancers contain lower levels of the active promoter sig-

nature (H3K4me3) compared with the associated gene

pair (average coverage: 0.247 and 1.712, respectively).

Using CIPHER in combination with our previous strin-

gent cut-off, we also predicted enhancers in other cell

lines: 38,045 active and 10,600 primed enhancers in HeLa

(Fig. 6e and f), and 38,551 active and 2292 primed

enhancers in K562 cells (data not shown). Collectively,

these results demonstrate that our enhancer-recognition

model can reliably detect enhancer elements using ChIP-

seq and DNase-seq datasets in a broad range of cell lines.

Conclusions

CIPHER is a robust, and comprehensive NGS data analysis

workflow suite with numerous functions and quality con-

trol metrics. It integrates pipelines for several of the most

commonly generated datasets used in current genome biol-

ogy studies and features an “analysis” mode that conducts

complex bioinformatics challenges such as enhancer identi-

fication and integrative dataset analysis functions. CIPHER

is extremely easy to run and makes use of Docker con-

tainers so there are no dependency issues. Entire datasets

can be reproduced among researchers starting from raw

data in a single command. Here we re-created the results of

two published studies, briefly compared CIPHER’s ease of

use and speed to two other automated pipelines and pro-

vided performance metrics for several adapter decontamin-

ation and mapping tools. We further validate CIPHER’s

enhancer-prediction model in various human cell lines.

Although CIPHER has combined several comprehen-

sive and thorough pipelines for commonly used NGS

approaches, there are still quite a few challenges that

remain to be addressed. CIPHER’s current RNA-seq

pipeline is largely optimized for typical two-type ex-

perimental designs (e.g. WT versus KO) and must be

rewritten to ensure multi-design experiment DEG ana-

lysis and time-series analysis. We also plan to include

pipelines for genome-wide association studies (GWAS)

and de novo transcriptome assembly in the near future.

Additionally, CIPHER currently only runs entire work-

flows, but we are aware that individuals may prefer to

use only a subset of tools to complete certain tasks,

thus it will be beneficial to allow this type of modular

tool selection in the near future. As new or improved

methods/software become available, the modular de-

sign of CIPHER will enable their smooth integration

into our existing pipelines.

Additional file

Additional file 1: Table S1. [List of KAP1-7SK snRNP target genes

identified by CIPHER] (TXT 489 kb)
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