
Ciphertext-Policy Attribute-Based Encrypted

Data Equality Test and Classification⋆

Yuzhao Cui1, Qiong Huang1⋆⋆, Jianye Huang1, Hongbo Li1, and Guomin Yang2

1 College of Mathematics and Informatics, South China Agricultural University,
Guangzhou 510642, China

2 School of Computing and Information Technology, University of Wollongong,
Wollongong, NSW 2522, Australia

Keywords: Attribute-Based Encryption; Authorization; Classification; Equal-
ity Test; Public Key Encryption

Abstract. Thanks to the ease of access and low expenses, it is now
popular for people to store data in cloud servers. To protect sensitive
data from being leaked to the outside, people usually encrypt the data
in the cloud. However, management of these encrypted data becomes a
challenging problem, e.g. data classification. Besides, how to selectively
share data with other users is also an important and interesting problem
in cloud storage. In this paper, we focus on ciphertext-policy attribute
based encryption with equality test (CP-ABEET). People can use CP-
ABEET to implement not only flexible authorization for the access to
encrypted data, but also efficient data label classification, i.e. test of
whether two encrypted data contain the same message. We construct
an efficient CP-ABEET scheme, and prove its security based on a rea-
sonable number-theoretic assumption. Compared with the only existing
CP-ABEET scheme, our construction is more efficient in key generation,
and has shorter attribute-related secret keys and better security.

Keywords. Attribute-Based Encryption, Authorization, Classification, Equality
Test, Public Key Encryption

1 Introduction

In the recent years, cloud computing technology has been well studied and is
becoming more and more popular in our daily life. Storage as a service (SaaS)
is an important component of cloud computing, and is widely used nowadays.

⋆ This work is supported by National Natural Science Foundation of China (Nos.
61872152, 61472146), Guangdong Natural Science Funds for Distinguished Young
Scholar (No. 2014A030306021), Guangdong Program for Special Support of Top-
notch Young Professionals (No. 2015TQ01X796), and Pearl River Nova Program of
Guangzhou (No. 201610010037).

⋆⋆ Qiong Huang is the corresponding author. Email: qhuang@scau.edu.cn.



People store large amounts of data in cloud to decrease the local storage burden.
However, data privacy is under threat because of the openness of public clouds.
To protect the user privacy, people are inclined to encrypt the data in. However,
encryption would make data process become difficult. After encryption, data
structures are usually hidden so that logical operations and other computation
operations could not be applied any more. For example, users cannot directly
search over encrypted files stored in the cloud. A naive method is to download
all the encrypted files from the cloud, decrypt them and then use traditional
methods to search over the plaintext files. Although in this way the data can
be searched, but it is cumbersome and requires a large computation and storage
cost, as well as a high requirement on the bandwidth, which is impractical.

When a company outsources the storage of a large volume of encrypted data
to the cloud, the management of these data becomes a complex problem. It is
necessary to label the data and classify them into different categories. We need
a mechanism to efficiently divide all the encrypted data into groups according
to data attributes. Thus, it is interesting and important to study the problem
of label classification of encrypted data.

On the other hand, access control of (encrypted) data in a company is also
a key issue. Each employee in the company has different attributes. Different
employees are provided different privileges to access different part of these da-
ta. The access privileges are usually authorized according their attributes. For
example, tax data of users in the company should only be accessed by an em-
ployee associated with attributes “Department of Finance” and “Tax Officer”
or an employee with attributes “Finance Manager” , but cannot be accessed by
an employee with attributes “Department of R&D” and “Programmer”. How to
design a mechanism to effectively manage the access control for all users in the
company is thus an important problem.

Yang et al. [19] introduced the primitive of public key encryption with equal-
ity test (PKEET) which allows anyone to efficiently test if two ciphertexts w.r.t
different public keys contain the same message without decryption. This special
property makes it suitable for implementing label classification. On the other
hand, ABE [13], especially Ciphertext-policy ABE (CP-ABE) [3], is a good u-
tility for access control. Ciphertext-policy ABE (CP-ABE) is a variant of ABE,
in which an access policy is embedded in a ciphertext while each user a formal
set of attributes is embedded in a secret key of each user. A user can decrypt
ciphertexts only if the embedded access policy can be satisfied by the user’s
attributes. CP-ABE with equality test (CP-ABEET) [15], integrating the ad-
vantage of PKEET and CP-ABE, can be used to classify encrypted data, and
in the meanwhile, implement flexible control of access to the encrypted data in
cloud. Roughly, CP-ABEET works as follows.

(Controlled Classification of Encrypted Data). First of all, attribute dis-
tribution is under control of the regulatory agency of the company. There are
some data managers in the company, and each of them is in charge of the man-
agement and maintenance of different part of the company’s data. Authorization
privileges for data classification are represented by attribute sets. Employees of

2



Fig. 1. System architecture of CP-ABEET

the company, including the data managers, receive attribute-related secret keys
from the regulatory agency. Before uploading to the cloud server, data owner
encrypts its data using a block cipher, e.g. AES. It also sets a label for the data,
an access policy specifying which data manager(s) can access the data and its
label, and encrypts the label using CP-ABEET encryption algorithm. The data
classifier obtains trapdoors from different data managers before classifying the
data. Given the Tds, it is then able to access the data as long as the attribute
sets embedded in the Tds satisfy the access policies embedded in the cipher-
texts, and classify these data according to their labels using the test function of
CP-ABEET. If two pieces of data are attached with the same label, they will be
put into the same category. Besides, the data managers are able to decrypt the
ciphertexts to recover the original data (as well as the label) using the decryption
function of CP-ABEET. Figure 1 shows the system architecture of CP-ABEET.

(Our Contributions). Although the CP-ABEET scheme proposed by Wang et
al. [15] is concrete, it is complex and requires a large computation for the server,
which makes it not suitable for practical use, e.g. label classification. Besides,
their scheme only achieves CPA-type indistinguishability when the adversary is
not given trapdoors, which does not capture some real-life attacks.

In this work, we propose a novel construction of CP-ABEET, and prove that
our construction achieves one-wayness if the adversary is given test trapdoors,
and achieves indistinguishability if the adversary is not given trapdoors. Com-
pared with the only known CP-ABEET scheme [15], our scheme is more com-
putationally efficient in key generation and has shorter attribute-related secret
keys. Besides, our scheme is CCA-type secure, while Wang et al.’s scheme [15]
is only CPA-type secure. The price of our scheme is that we need a stronger
number-theoretic assumption and more computational costs in decryption and

3



test algorithms. Table 1 (page 17) provides a detailed comparison between our
scheme and some related schemes, e.g. [9, 15, 20].

Paper Organization. We review related works in Sect. 2. Then in Sect. 3 we
introduce the preliminaries which are needed for our construction. In Sect. 4
we define CP-ABEET and its security models. The construction of CP-ABEET
is given in 5. The security analysis of CP-ABEET is provided in Sect. 6. We
compare our scheme with some related schemes in Sect. 7. Finally, we conclude
the paper in Sect. 8.

2 Related Works

(ABE): Sahai et al. initialized the study of fuzzy identity-based encryption,
the embryo of ABE, in 2005 [13]. Goyal et al. and Bethencourt et al. presented
the first key-policy ABE (KP-ABE) scheme [5] and the first ciphertext-policy
ABE (CP-ABE) scheme [3], respectively. There are many follow-ups, e.g. [1,5,7],
[4,16], and etc. Based on these ABE schemes, researchers proposed more complex
and flexible ABE schemes. However, there are still some issues with these ABE
schemes, among which the efficiency is a major one, e.g. ciphertext size and
decryption cost. Green et al. [6] gave a new method of efficiently and securely
outsourcing the decryption of ABE ciphertexts to a third-party server, which
reduces the overhead of users significantly. To further enhance user privacy, in
some ABE schemes [8,12], the access policy is hidden so that an adversary cannot
learn anything about the policy from the ciphertexts.

(PKEET): Yang et al. defined the concept of PKEET in 2010 [19] and present-
ed a concrete construction which allows to test if two ciphertexts decrypt to a
common result without decryption. However, since any entity is able to run the
test in their scheme, an adversary may learn some information about the mes-
sage from ciphertexts. An authorization mechanism is thus needed to control
the access to the test function. Fine-grained authorization policy PKEET (FG-
PKEET) was proposed to implement the accurate authorization in PKEET [14],
in which only the authorized users can perform the equality test.Public key en-
cryption with delegated equality test (PKE-DET) was proposed to optimize the
authorization mechanism [11], in which only the delegated party can run the
test. Furthermore, a PKEET scheme with flexible authorization was proposed
in [10], which further refines the authorization into four types.

(IBEET): As PKEET works in PKI, the management of certificates is complex.
Ma et al. defined the concept of identity-based encryption with outsourced equlity
test (IBEET) [9] to solve the aforementioned issue. A user in IBEET computes
a trapdoor Td using the secret key w.r.t. its identity and gives Td to the server
for equality test. Releasing the trapdoor indicates that the user delegates out
its equality testing capability. IBEET can be applied in encrypted database
system in which the server hosts the database and users could run equality test
on encrypted records. Considering the threat of curious database server, Wu et
al. [18] presented an IBEET scheme against insider attacks. Besides, to improve

4



the efficiency, Wu et al. reduced the use of HashToPoint function in their another
IBEET scheme [17], which is time costly. It is restricted in their scheme that
only particular keywords can be tested, in order to improve the security level of
their scheme.

(ABEET): There are not many schemes focusing on attribute based encryp-
tion with equality test (ABEET). Considering the relationship between ABE and
IBE, Zhu et al. proposed the first key-policy ABEET (KP-ABEET) scheme [20],
which provides more flexible authorization than previous works on PKEET and
IBEET. Wang et al. presented a ciphertext-policy ABEET (CP-ABEET) [15]
very recently. Both of the schemes are complex and suffer from high computa-
tional complexity.

3 Preliminaries

In this part we give a brief review of some basic definitions which are necessary
for our construction of CP-ABEET.

The following definitions of access structure and linear secret sharing scheme
(LSSS) are adapted from [16] and [2], respectively.

Definition 1 (Access Structure, AC [16]). Let P = {Pi}
n
i=1 be a set of

n parties, and A be a subset of 2P. We say A is monotone if ∀S1, S2, (S1 ∈
A) ∧ (S1 ⊆ S2) → (S2 ∈ A). A monotone collection A ⊆ 2P\{∅} is called a
monotone access structure. Sets in A are authorized, and those outside of A are
unauthorized.

Definition 2 (LSSS [2]). We say a secret sharing scheme Π over a set of
parties P is linear (over Zp) if the following two conditions hold.

1. For each party in P, the secret shares form a vector over Zp.
2. There exists a share generating matrix M of size ℓ× n. We use a map ρ(·)

to connect each row of M with its corresponding party in P. Let s ∈ Zp be
the secret to be shared, and r2, · · · , rn be random elements of Zp. The vector
Mv, where v = (s, r2, · · · , rn), contains the shares of s according to Π, and
(Mv)i is the share belonging to party ρ(i).

There is an efficient algorithm which can find a set of constants {wi} for
recovering the secret s, e.g.

∑

i∈I wiλi = s, where I is the set of indices of parties
in an authorized set and {λi} are valid shares of s generated by Π [2]. This is
known as the linear reconstruction property. Same as [16], we use (1, 0, · · · , 0)
as the target vector for LSSS. For any satisfying set of rows I in M , there exists
a vector w s.t. w · (1, 0, · · · , 0) = −1 and ∀i ∈ I, w ·Mi = 0.

Bilinear Pairing: Given cyclic groups G,GT of prime order p and a generator
g of G, we say e : G×G→ GT is a bilinear pairing if (1) ∀g1, g2 ∈ G, ∀x, y ∈ Zp,
e(g1

x, g2
y) = e(g1, g2)

xy; (2) e(g, g) generates GT ; and (3) ∀g1, g2 ∈ G, e(g1, g2)
can be computed in polynomial time.

5



(Decisional q-Parallel BDHE Assumption [16]): Suppose G is a group
of prime order p, and g is a generator. Choose at random s, a, b1, · · · , bq ∈ Zp.
Denote by

y :=
(

g, gs, ga, · · · , g(a
q), , g(a

q+2), · · · , g(a
2q);

∀1 ≤ j ≤ q, gs·bj ,

ga/bj , · · · , g(a
q/bj), g(a

q+2/bj), · · · , g(a
2q/bj);

∀1 ≤ j, k ≤ q, k 6= j, g(a·s·bk/bj), · · · , g(a
q·s·bk/bj)

)

.

Decisional q-parallel Bilinear Diffie-Hellman Exponent problem (BDHE) is that

given y, the adversary could not distinguish e(g, g)a
q+1s from a random element

R ∈ GT .

Definition 3 (Decisional q-parallel BDHE Assumption). We say that the
Decisional q-parallel BDHE assumption holds if for any probabilistic polynomial-
time (PPT) algorithm A,

|Pr[A(y, T = e(g, g)a
q+1s) = 0]− Pr[A(y, T = R) = 0]|

is negligible.

4 CP-ABEET

4.1 Definition

Definition 4 (CP-ABEET). A CP-ABEET scheme consists of PPT algo-
rithms (Setup,Encrypt, KeyGen,Trapdoor,Test,Decrypt), as below.

– Setup: Given a security parameter 1k and the maximal number N of at-
tributes in the system, it outputs a master public/secret key pair (Mpk,Msk).

– Encrypt: Given Mpk, an access structure (M,ρ) and a message m as input,
it outputs a ciphertext Ct.

– KeyGen: Given Msk and an attribute set S, it outputs a secret key SkS for
S.

– Trapdoor: Given Msk and an attribute set S, it outputs a trapdoor TdS for
S.

– Test: Given CtA,TdA of user A and CtB ,TdB of user B, it outputs 1 if CtA
and CtB contain the same plaintext, and 0 otherwise.

– Decrypt: Given Ct and SkS, it outputs a message m or a failure symbol ⊥.

Correctness requires that (1) an honestly generated ciphertext Ct could be cor-
rectly decrypted by a secret key SkS if S satisfies the access structure embedded
in Ct; and (2) honestly generated ciphertexts of the same message and hon-
estly generated trapdoors could pass the equality test, as long as attributes in
trapdoors satisfy the access structures in ciphertexts, respectively.

6



4.2 Security Models

We consider two security properties of CP-ABEET. Let A be an adversary. If A
is given the trapdoor, we require that it cannot recover the message from a given
ciphertext. Otherwise, we require that it cannot distinguish a given ciphertext
encapsulates which message. Below we formally define the security properties by
two games, where C is a challenger.

One-wayness against chosen access structure and chosen ciphertext
attacks (OW-CAS-CCA):

1. Setup. C prepares a master key pair (Mpk,Msk) and sends Mpk to A.
2. Query Phase 1. A adaptively issues queries for polynomially many times.

– ExtractQuery. A submits a set S of attributes, and is returned a corre-
sponding secret key SkS .

– TrapdoorQuery. A submits a set S of attributes, and is returned a cor-
responding trapdoor TdS .

– DecryptionQuery. A submits a ciphertext Ct and a set S of attributes,
and is returned the corresponding decryption result.

3. Challenge Phase. A submits (M∗, ρ∗) as the challenge access structure
such that A did not ask an Extract query on input any S satisfying (M∗, ρ∗)
in Query Phase 1. C chooses a random message m∗, and computes Ct∗ ←
Encrypt(Mpk, (M∗, ρ∗),m∗). It returns Ct∗ as the challenge ciphertext to
A.

4. Query Phase 2. A adaptively issues queries as in Query Phase 1, except
that it is not allowed to issue an Extract query on input any S satisfy-
ing (M∗, ρ∗), nor to issue a Decryption query (Ct∗, S) for any S satisfying
(M∗, ρ∗).

5. Guess. Finally, A outputs m′. If m′ = m∗, A wins.

A’s advantage AdvOW-CAS-CCA
A (k), is its probability of winning the game.

Definition 5 (OW-CAS-CCA Security). A CP-ABEET scheme is one-way
against chosen access structure and chosen ciphertext attacks (OW-CAS-CCA
secure) if there is no PPT adversary A, AdvOW-CAS-CCA

A (k) is non-negligible.

If we limit the adversary to submit its challenge access structure (M∗, ρ∗)
in an Init phase before being given the master public key Mpk, we have the
following definition.

Definition 6 (OW-SAS-CCA Security). A CP-ABEET scheme is one-way
against selective access structure and chosen ciphertext attacks (OW-SAS-CCA
secure) if there is no PPT adversary A, AdvOW-SAS-CCA

A (k) is non-negligible.

Indistinguishability against chosen access structure and chosen cipher-
text attacks (IND-CAS-CCA): The difference between IND-CAS-CCA and
OW-CAS-CCA is that the adversary in the former cannot do equality tests on
Ct∗.

7



1. Setup. Same as in OW-CAS-CCA game.
2. Query Phase 1. Same as in OW-CAS-CCA game.
3. Challenge Phase. A submits (M∗, ρ∗) as the challenge access structure a-

long with two messages m0,m1 of equal length. It is restricted that A did not
ask any Extract query S satisfying (M∗, ρ∗) in Query Phase 1. C then ran-
domly chooses a bit β, and computes Ct∗ = Encrypt(Mpk, (M∗, ρ∗),mβ).
It returns Ct∗ to A as the challenge ciphertext.

4. Query Phase 2. Same as in OW-CAS-CCA game, except that A cannot
ask any Trapdoor query S satisfying (M∗, ρ∗) either.

5. Guess. Finally, A outputs a bit β′. If β′ = β, A wins.

A’s advantage AdvIND-CAS-CCA
A (k), is the gap between the probability that β′ = β

and 1/2, e.g. |Pr[β′ = β]− 1/2|. We have the following definition.

Definition 7 (IND-CAS-CCA Security). A CP-ABEET scheme is indistin-
guishable against chosen access structure and chosen ciphertext attacks ( IND-
CAS-CCA secure) if there is no PPT A, AdvIND-CAS-CCA

A (k) is non-negligible.

Similarly, if we limit the adversary to submit (M∗, ρ∗) in an Init phase before
being given the master public key Mpk, we have the following definition.

Definition 8 (IND-SAS-CCA Security). A CP-ABEET scheme is indistin-
guishable against selective access structure and chosen ciphertext attacks ( IND-
SAS-CCA secure) if there is no PPT A, AdvIND-SAS-CCA

A (k) is non-negligible.

5 Our CP-ABEET Scheme

5.1 Construction

Our CP-ABEET scheme works as below.

– Setup(1k). The algorithm generates bilinear pairing parameters (G,GT , p, g, e),
randomly chooses α, α′, a ∈ Zp and calculates e(g, g)α, e(g, g)α

′

, ga. It also
chooses at random h1, · · · , hN ∈ G to represent the N attributes the system
supports. Besides, it selects two cryptographic hash functions: H1 : GT → G

and H2 : GT ×G
∗ → {0, 1}l1+l2 where l1 and l2 are representation lengths of

a G element and a Zp element, respectively. The algorithm outputs a master
key pair (Mpk,Msk), where

Mpk = (g, e(g, g)α, e(g, g)α
′

, ga, h1, · · · , hN ),

and Msk = (gα, gα
′

).
– Encrypt(Mpk, (M,ρ),m). Suppose that M is an ℓ × n matrix and ρ as-
sociates rows of M to attributes. The algorithm chooses a random vector
υ = (s, y2, · · · , yn) ∈ Z

n
p and computes λi = υ ·Mi for i = 1, · · · , ℓ. Besides,

it randomly chooses u, r1, · · · , rℓ ∈ Zp, and calculates

C = mu ·H1(e(g, g)
αs), C ′ = gs, C ′′ = gu,

8



∀1 ≤ i ≤ ℓ, Ci = gaλi · h−ri
ρ(i), Di = gri ,

C∗ = (m‖u)⊕H2(e(g, g)
α′s, C, C ′, C ′′,E),

whereE = (C1, D1, · · · , Cℓ, Dℓ). The algorithm outputs Ct = (C,C ′, C ′′, C1, D1, · · · , Cℓ, Dℓ, C
∗).

We implicitly assume that the access structure is contained in Ct.
– KeyGen(Msk, S). The algorithm randomly chooses t, t′ ∈ Zp, and calculates

SK : K = gα · gat, L = gt, {Kx = ht
x}x∈S ,

SK ′ : K ′ = gα
′

· gat
′

, L′ = gt
′

, {K ′
x = ht′

x }x∈S .

It outputs SkS = (SK,SK ′).
– Trapdoor(Msk, S). The algorithm randomly chooses t ∈ Zp, and calculates

TdS = (K = gα · gat, L = gt, {Kx = ht
x}x∈S).

It outputs TdS .
– Test(CtA,TdSA

,CtB ,TdSB
). Assume that SA (SB , resp.) is an authorized

set of (MA, ρA) of CtA ((MB , ρB) of CtB , resp.). Define IA = {i : ρA(i) ∈ SA}
and the set of reconstruction constants {wA,i ∈ Zp}i∈IA . The secret sA can
be reconstructed as sA =

∑

i∈IA
wA,i · λA,i, where {λA,i} are valid shares of

sA w.r.t. MA. We define IB and {wB,i ∈ Zp}i∈IB similarly. Parse CtA = (CA,
C ′

A, C
′′
A, CA,1, DA,1, · · · , CA,ℓ, DA,ℓ, C

∗
A) and CtB = (CB , C

′
B , C

′′
B , CB,1, DB,1, · · · , CB,ℓ, DB,ℓ, C

∗
B).

The algorithm computes

XsubA =
e(C ′

A,KA)
∏

i∈IA
(e(CA,i, LA)e(DA,i,KA,ρ(i)))wA,i

=
e(g, g)αsAe(g, g)asAtA
∏

i∈IA
e(g, g)tAaλA,iwA,i

= e(g, g)αsA .

XsubB = e(g, g)αsB is computed similarly. It then calculates

XA =
CA

H1(XsubA)
and XB =

CB

H1(XsubB )
.

The algorithm outputs 1 if

e(C ′′
A, XB) = e(C ′′

B , XA)

holds, and 0 otherwise.
– Decrypt(Ct, SkS). Parse Ct = (C,C ′, C ′′, C1, D1, · · · , Cℓ, Dℓ, C

∗). The al-
gorithm uses SK = (K,L, {Kx}x∈S) (the first part of SkS) to compute
Xsub = e(g, g)αs as in Test algorithm, and uses SK ′ = (K ′, L′, {K ′

x}x∈S)
(the other part of SkS) to compute X ′

sub = e(g, g)α
′s similarly. Then it com-

putes
m‖u← C∗ ⊕H2

(

X ′
sub, C, C

′, C ′′,E),

where E = (C1, D1, · · · , Cℓ, Dℓ). The algorithm outputs m if

C ′′ = gu and C = mu ·H1(Xsub)

hold, and 0 otherwise.

9



5.2 Correctness

– Test: Let mA, uA (resp. mB , uB) be the message and random number con-
tained in CtA (resp. CtB). We have

e(C ′′
A, XB) = e(guA , CB/H1(XsubB ))

= e(guA ,
muB

B H1(e(g, g)
αsB )

H1(e(g, g)αsB )
)

= e(guA ,muB

B ),

e(C ′′
B , XA) = e(guB , CA/H1(XsubA))

= e(guB ,
muA

A H1(e(g, g)
αsA)

H1(e(g, g)αsA)
)

= e(guB ,muA

A ).

If the messages mA = mB and the trapdoors TdA and TdB are honestly
generated, the following equation holds:

e(C ′′
A, XB) = e(guA ,muB

B )

= e(guB ,m
u1A

A )

= e(C ′′
B , XA).

This completes the correctness analysis of test algorithm.
– Decryption: Denote by E = (C1, D1, · · · , Cℓ, Dℓ). We have

C∗ ⊕H2(X
′
sub, C, C

′, C ′′,E)

=(m‖u)⊕H2(e(g, g)
α′s, C, C ′, C ′′,E)

⊕H2(e(g, g)
α′s, C, C ′, C ′′,E)

=m‖u.

If the following equations

C ′′ = gu and C = mu ·H1(Xsub)

hold, the decryption outputs the correct message. This completes the cor-
rectness analysis of decryption algorithm.

6 Security Analysis

In this section we analyze the security of our proposed CP-ABEET scheme under
the security models given in Sect. 4.2.

Theorem 1. If decisional q-parallel BDHE assumption holds, our CP-ABEET
scheme achieves OW-SAS-CCA security.

10



Proof. Suppose that A is a PPT adversary against the OW-SAS-CCA security
of our CP-ABEET scheme. We build an algorithm B to solve the decisional q-
parallel BDHE problem. B is given a problem instance (y, T ) (please refer to

Def. 3 for the definition of y). Define a bit b which is 0 if T = e(g, g)a
q+1s, and

1 if T is randomly selected from GT . B aims to guess the bit b, and works as
below.

1. Init. A sends (M∗, ρ∗) to B as the challenge access structure.

2. Setup. B randomly chooses α1, α2 ∈ Zp, and sets e(g, g)α = e(g, g)α1 ·

e(g, ga
q

) and e(g, g)α
′

= e(g, g)α2 ·e(ga, ga
q

). This implicitly sets α = α1+aq

and α′ = α2+aq+1. It chooses at random zx ∈ Zp for each attribute x. Define
a set X∗ = {i : ρ∗(i) = x}. B sets hx as

hx = gzx
∏

i∈X∗

gaM
∗

i,1/bi · ga
2M∗

i,2/bi · · · ga
nM∗

i,n/bi .

It gives Mpk = (g, e(g, g)α, e(g, g)α
′

, ga, h1, · · · , hN ) to A.
3. Query Phase 1. We restrict that the sets of attributes submitted by A

in Extract queries would not satisfy (M∗, ρ∗). B maintains two hash tables
HT1, HT2 which are initially empty, and works as below.

– H1 Queries. Given an element Q ∈ GT , B traverses the hash table HT1

to check if there is a tuple (Q, h1) in the table, and returns h1 to A if so;
otherwise, B randomly chooses a value h1 ∈ G, stores (Q, h1) into HT1,
and returns h1 to A.

– H2 Queries. Given Q = (Q,C,C ′, C ′′, (C1, D1), · · · , (Cℓ, Dℓ)) as input,
B traverses the hash table HT1 to check if there is a tuple (Q, h1) in the
table, and returns h1 to A if so; Otherwise, if there is not any (Q, h2) in
table HT2, B chooses a random h2 ∈ {0, 1}

l1+l2 , and stores (Q, h2) into
HT2. B returns h2 to A.

– Extract Queries. Given an attribute set S, B computes SkS as below.
Let I = {i : ρ(i) ∈ S}. B chooses at random r ∈ Zp and finds a vector
w = (w1 = −1, w2, · · · , wn) ∈ Zp

n such that w ·M∗
i = 0 for all i ∈ I. B

firstly calculates SK ′ = (K ′, L′, {K ′
x}) of SkS .B implicitly sets t′ as

t′ = r + w1a
q + w2a

q−1 + · · ·+ wna
q−n+1

by computing

L′ = gr
∏

i=1,··· ,n

(ga
q+1−i

)wi = gt
′

.

Then it calculates K ′ as

K ′ = gα
′

gat
′

= g(α2+aq+1)gat
′

= gα2 · gar
∏

i=2,··· ,n

(ga
q+2−i

)wi .

11



Note that the term g−aq+1

of component gat
′

which cannot be simulated,
will cancel out with the term ga

q+1

of gα
′

. For any x ∈ S, if there is no
i s.t. ρ(i) = x, B computes

K ′
x = hx

t′ = (gzx)t
′

= (gt
′

)zx = L′zx .

Otherwise, define X = {i : ρ(i) = x}. B computes K ′
x as

K ′
x = L′zx

∏

i∈X

∏

j=1,··· ,n

(

g(a
j/bi)r

·
∏

k=1,··· ,n
k 6=j

(ga
q+1+j−k/bi)wk

)M∗

i,j

.

Note that the terms ga
q+1/bi will all cancel out due to that w ·M∗

i = 0.
Furthremore, B randomly chooses a new element t ∈ Zp and computes
another part SK = (K,L, {Kx}) of SkS as follows.

K = gα · gat

= g(α1+aq) · gat

= gα1ga
q

· gat.

B then computes L = gt and Kx = hx
t for ∀x ∈ S. Finally B returns

the secret key SkS = (K,L, {Kx},K
′, L′, {K ′

x}).
– Trapdoor Queries. Given an attribute set S, B randomly chooses t and
computes TdS = (K,L, {Kx}) in the same way as above.

– Decryption Queries. Given (Ct, S), B parses Ct = (C,C ′, C ′′, C1, D1, · · · , Cℓ, Dℓ, C
∗),

and distinguishes the two cases below.
(a) Case 1: (M∗, ρ∗) is not satisfied by S. B computes the corresponding

private key SkS as in dealing with an Extract query, uses SkS to
decrypt Ct, and returns the output to A.

(b) Case 2: (M∗, ρ∗) is satisfied by S. In this case, A could not get SkS .
B firstly computes the trapdoor TdS as above, and computes

Xsub =
e(C ′,K)

∏

i∈I(e(Ci, L) · e(Di,Kρ(i)))wi
.

Then B traverses the hash table HT1 for the tuple (Xsub, h1) and
outputs ⊥ if not found, and traverses HT2 to see if there exits a
tuple ((X ′

sub, C, C
′, C ′′, C1, D1, · · · , Cℓ, Dℓ), h2). If there is no such a

tuple in HT2, B outputs ⊥. Otherwise, for each tuple found in HT2,
B computes

m‖u = C∗ ⊕ h2,

and checks whether the following equations hold:

C ′′ = gu and C = mu ·H1(Xsub).

If there is a tuple satisfying the following equation, B outputs the
corresponding message m.

12



4. Challenge. B chooses at random message m∗ and u∗ ∈ Zp, and computes

Ĉ = (m∗)u
∗

·H1(T · e(g
s, gα1)),

Ĉ ′ = gs and Ĉ ′′ = gu
∗

.

It randomly chooses y′2, · · · , y
′
n and uses vector v = (s, sa+y′2, sa

2+y′3, · · · , sa
n−1+

y′n) to share the secret s. Let Ai = {k : k 6= i ∧ ρ∗(k) = ρ∗(i)}. B chooses at
random r′1, · · · , r

′
ℓ ∈ Zp, and computes

Ĉi = h
r′i
ρ∗(i)(

∏

j=2,··· ,n

(ga)M
∗

i,jy
′

j ) · (gbi·s)−zρ∗(i)

· (
∏

k∈Ai

∏

j=1,··· ,n

(ga
j ·s·(bi/bk))M

∗

k,j ),

D̂i = g−r′ig−sbi ,

and

Ĉ∗ = (m∗‖u∗)⊕H2

(

T · e(gs, gα2), Ĉ, Ĉ ′, Ĉ ′′,

Ĉ1, D̂1, · · · , Ĉℓ, D̂ℓ

)

.

B returns Ct∗ = (Ĉ, Ĉ ′, Ĉ ′′, Ĉ1, D̂1, · · · , Ĉℓ, D̂ℓ, Ĉ
∗) to A.

5. Query Phase 2. B answers A’s queries as in Query Phase 1, except that
now we restrict A from issuing any Extract query S satisfying (M∗, ρ∗) and
any decryption query (S,Ct∗) with S satisfying (M∗, ρ∗).

6. Guess. A outputs a message m′. B outputs b′ = 0 if m′ = m∗, and b′ = 1
otherwise.

Below we analyze the probability that B successfully guesses b. If T =
e(g, g)a

q+1s, the simulation provided by B is perfect, and the view of A is the
same as that of a real attack. It holds that Pr[b′ = 0|b = 0] = AdvOW-SAS-CCA

A (k).
If T is randomly selected from GT , the challenge ciphertext hides m∗ perfectly,
and the probability that A outputs the correct message is thus negligible, e.g.
Pr[b′ = 0|b = 1] = negl(k). Therefore, we have the followings.

Pr[b′ = b] = Pr[b′ = 0 ∧ b = 0] + Pr[b′ = 1 ∧ b = 1]

=
1

2
(Pr[b′ = 0|b = 0] + 1− Pr[b′ = 0|b = 1])

=
1

2
(AdvOW-SAS-CCA

A (k) + (1− negl(k)))

=
1

2
+

1

2
AdvOW-SAS-CCA

A (k)−
1

2
negl(k).

If AdvOW-SAS-CCA
A (k) is non-negligible, the probability that B solves the deci-

sional q-parallel BDHE problem is thus non-negligibly larger than 1/2, which
contradicts the underlying assumption.

13



Theorem 2. If decisional q-parallel BDHE assumption holds, our CP-ABEET
scheme achieves IND-SAS-CCA security.

Proof. Suppose that A is a PPT adversary against the IND-SAS-CCA security
of our CP-ABEET scheme. We build an algorithm B to solve the decisional
q-parallel BDHE problem. B is given a problem instance (y, T ). Define a bit b

which is 0 if T = e(g, g)a
q+1s, and 1 if T is randomly selected from GT . B aims

to guess the bit b, and works as below.

1. Init. A sends (M∗, ρ∗) to B as the challenge access structure.
2. Setup. B randomly chooses α1, α2 ∈ Zp, and computes e(g, g)α = e(g, g)α1 ·

e(ga, ga
q

) and e(g, g)α
′

= e(g, g)α2e(ga, ga
q

). This implicitly sets α = α1 +
aq+1 and α′ = α2 + aq+1. It chooses at random zx ∈ Zp for each attribute
x. Define a set X∗ = {i : ρ∗(i) = x}. B sets hx as

hx = gzx
∏

i∈X∗

gaM
∗

i,1/bi · ga
2M∗

i,2/bi · · · ga
nM∗

i,n/bi .

It gives Mpk = (g, e(g, g)α, e(g, g)α
′

, ga, h1, · · · , hN ) to A.
3. Query Phase 1. B handles H1, H2 and Trapdoor queries as in the proof

of Theorem 1. Again, we restrict that the sets of attribute submitted by A
in Extract and Trapdoor queries would not satisfy (M∗, ρ∗). B answers the
adversary’s Extract and Decryption queries as below.
– Extract Queries. Given an attribute set S, B chooses at random r, v ∈
Zp and finds a vector w = (w1 = −1, w2, · · · , wn) ∈ Zp

n such that
w · M∗

i = 0 for all i ∈ I, where I = {i : ρ(i) ∈ S}. It generates
SK ′ = (K ′, L′, {K ′

x}) of SkS as in the proof of Theorem 1, and cal-
culates another part SK = (K,L, {Kx}) of SkS as follows. B implicitly
sets the value t as

t = v + w1a
q + w2a

q−1 + · · ·+ wna
q−n+1

by computing

L = gv
∏

i=1,··· ,n

(ga
q+1−i

)wi = gt.

Then it calculates K as

K = gαgat = g(α1+aq+1)gat

= gα1 · gav
∏

i=2,··· ,n

(ga
q+2−i

)wi .

Note that the term g−aq+1

of component gat will cancel out with the
term ga

q+1

of gα.
For any x ∈ S, if there is no i s.t. ρ(i) = x, B computes

Kx = hx
t = (gzx)t = (gt)zx = Lzx .

14



Otherwise, B computes Kx as

Kx = Lzx
∏

i∈X

∏

j=1,··· ,n

(

g(a
j/bi)r

·
∏

k=1,··· ,n
k 6=j

(ga
q+1+j−k/bi)wk

)M∗

i,j

,

where X = {i : ρ(i) = x}. Note that the terms ga
q+1/bi will all cancel

out due to that w ·M∗
i = 0. Finally, B returns the secret key SkS =

(K,L, {Kx},K
′, L′, {K ′

x}).
– Decryption Queries. Given (Ct, S), parse Ct = (C,C ′, C ′′, C1, D1, · · · ,
Cℓ, Dℓ, C

∗). B distinguishes the following two cases.
(a) Case 1: (M∗, ρ∗)k is not satisfied by S. B generates the corresponding

private key SkS as in dealing with an Extract query, uses SkS to
decrypt Ct, and returns the output to A.

(b) Case 2: (M∗, ρ∗)k is satisfied by S. In this case, A could not get SkS
nor TdS . B traverses hash table HT2 to check if there exists a tuple
((X ′

sub, C, C
′, C ′′, C1, D1, · · · , Cℓ, Dℓ), h2). If there is no such a tuple

in HT2, B outputs ⊥. Otherwise, for each satisfied tuple found in
HT2, B computes

m‖u = C∗ ⊕ h2.

If C ′′ = gu holds, B calculates h′
1 = C/mu, and searches hash table

HT1 for a tuple (Xsub, h
′
1). If found, B outputs m. Otherwise, B

outputs ⊥. Notice that there is a case in which Xsub is not the
correct one used in the generation of Ct. However, because of the
randomness of oracle H1, the probability that the adversary uses
a correct Xsub value in the generation of a well-formed ciphertext
without querying H1, is negligible.

4. Challenge. A submits two messages m∗
0,m

∗
1 with |m∗

0| = |m
∗
1|. B randomly

chooses β ∈ {0, 1} and u∗ ∈ Zp, and computes

Ĉ = (m∗
β)

u∗

·H1(T · e(g
s, gα1)),

Ĉ ′ = gs and Ĉ ′′ = gu
∗

.

It randomly chooses y′2, · · · , y
′
n and uses vector v = (s, sa+y′2, sa

2+y′3, · · · , sa
n−1+

y′n) to share the secret s. Denote by Ai = {k : k 6= i∧ρ(k) = ρ(i)}. B chooses
random values r′1, · · · , r

′
ℓ, and computes

Ĉi = h
r′i
ρ(i)(

∏

j=2,··· ,n

(ga)M
∗

i,jy
′

j ) · (gbi·s)−zρ(i)

· (
∏

k∈Ai

∏

j=1,··· ,n

(ga
j ·s·(bi/bk))M

∗

k,j ),

D̂i = g−r′ig−sbi

15



and

Ĉ∗ = (m∗‖u∗)⊕H2(T · e(g
s, gα2), Ĉ, Ĉ ′, Ĉ ′′,

Ĉ1, D̂1, · · · , Ĉℓ, D̂ℓ).

B returns Ct∗ = (Ĉ, Ĉ ′, Ĉ ′′, Ĉ1, D̂1, · · · , Ĉℓ, D̂ℓ, Ĉ
∗) to A.

5. Query Phase 2. B answers A’s queries as in Query Phase 1. Now we
restrict A from issuing any Extract query and Trapdoor query S satisfying
(M∗, ρ∗), and any decryption query (S,Ct∗) with S satisfying (M∗, ρ∗).

6. Guess. A outputs a bit β′. B outputs b′ = 0 if β′ = β, and b′ = 1 otherwise.

Below we analyze the probability that B successfully guesses b. In case T =
e(g, g)a

q+1s, the simulation provided by B is perfect, and the view ofA is the same
as that of a real attack. It holds that Pr[b′ = 0|b = 0] = 1

2 + AdvIND-SAS-CCA
A (k).

In case T is randomly selected from GT , Ct
∗ hides the bit β perfectly, and the

probability that A outputs the correct β is 1/2. Thus, B successfully guesses b
with probability 1/2, e.g. Pr[b′ = 0|b = 1] = 1/2. Therefore, it holds that

Pr[b′ = b] = Pr[b′ = 0 ∧ b = 0] + Pr[b′ = 1 ∧ b = 1]

=
1

2
(Pr[b′ = 0|b = 0] + 1− Pr[b′ = 0|b = 1])

=
1

2

(

1

2
+ AdvIND-SAS-CCA

A (k) +
1

2

)

=
1

2
+

1

2
AdvIND-SAS-CCA

A (k).

If AdvIND-SAS-CCA
A (k) is non-negligible, the probability that B solves the deci-

sional q-parallel BDHE problem is thus non-negligibly larger than 1/2, which
contradicts the decisional q-parallel BDHE assumption.

7 Comparison

We make a detailed comparison of our CP-ABEET with some related schemes in
Table 1 (page 17), in terms of running costs, functional properties, assumptions,
security level and etc. In the comparison we mainly consider the dominant com-
putation in Extract, Encrypt, Decrypt, and Test algorithms, e.g. bilinear
pairing evaluation and exponentiation operation. The second to the fifth rows
of Table 1 show the computational costs of Extract, Encrypt, Decrypt, and
Test algorithms. The sizes of a ciphertext and a secret key in the schemes are
showed in the sixth and seventh rows. The eighth row indicates whether the
scheme is attribute based. The ninth row shows the authorization type of each
scheme. The last two rows indicate the underlying assumptions and security
levels of the schemes.

As ABEET realizes flexible authorization on equality test over encrypted da-
ta, it is more suitable for practical use in secure data management of cloud com-
puting. Therefore, the following comparison focuses on ABEET schemes. From

16



Table 1. Performance Comparison with Related Schemes

PKEET [19] PKEET-FA [10](Type-1) IBEET [9] KP-ABEwET [20] CP-ABE-ET [15] Our CP-ABEET

Extract 1E 3E 2E 2AuE (4 + 6Au + 12A2

u)E (4 + 2Au)E

Encrypt 3E 6E 6E + 2P (2Au + 3)E (2NU + 11)E (3ℓ+ 5)E + 2P

Decrypt 3E 5E 2E + 2P (2Au + 2)E + 2AuP (8Au + 6)E + 12P (2Au + 2)E + (4Au + 2)P

Test 2P 2E + 2P 4P 2AuE + 2AuP (8Au + 4)E + 14P AuE + (2Au + 3)P

Ctsize 2|G|+ 1 2|G|+ 2 4|G|+ |Zp| (4 + 2Au)|G|+ 2|Zp| 8|G|+ |Zp| (2 + 2ℓ)|G|+ 2

Sksize 1|Zp| 3|Zp| 2|G| 2Au|G| (4 + 6Au)|G| (4 + 2Au)|G|

Attibute-Based No No No Yes Yes Yes

Authorization None Four Types Single Flexible Flexible Flexible

Assumption BDH BDH BDH tDBDH DLIN q-parallel BDHE

Security IND-CCA IND-CCA OW-ID-CCA OW-CCA & T-CCA IND-ID-CPA
OW-SAS-CCA
&IND-SAS-CCA

1. T-CCA security of KP-ABEwET means testability against chosen-ciphertext at-
tack of authorization under the chosen sets of attributes [20].
2. In Wang’s scheme [15], NU is the amount of attributes in their system.
3. We denote by Au the number of attributes used in Extract, Encrypt, Decrypt

and Test algorithms, and use |G| and |Zp| to denote the length of element represen-
tation in G and Zp, respectively. In our CP-ABEET scheme, ℓ denotes the number
of rows in M .
4. Both the IND-ID-CPA model in [15] and the OW-SAS-CCA and IND-SAS-CCA
models in our scheme consider the selective access structure, in which the attacker
submits its challenge access structure before seeing public parameters.

Table 1 we know that our CP-ABEET scheme provides the best security guaran-
tee among all the three attribute-based encryption schemes supporting equality
test. The computational complexity of Encrypt algorithm in our scheme is re-
lated to ℓ, number of rows in M . The computational costs of Extract, Decrypt
and Test algorithms in our scheme are related to the number Au of attributes,
which has the same order of magnitude of the number In of elements in set I
defined in Decrypt algorithm. Besides, the storage costs of Ct and Sk are relat-
ed to ℓ and Au. In Wang et al.’s scheme [15], Au is related to L1, which is the
number of wildcards defined in their scheme. The two numbers have the same or-
der of magnitude. Besides, our CP-ABEET scheme enjoys OW-SAS-CCA AND
IND-SAS-CCA security properties, which are of CCA-type. While Wang et al.’s
scheme only achieves IND-ID-CPA security, which is of CPA-type. Notice that,
both of the two schemes are provably secure in selective access structure mod-
el, in which the adversary is required to submit its challenge access structure
before seeing the public parameters. Therefore, our scheme has better security
than Wang et al.’s scheme.

Table 1 shows that our scheme has efficiency similar to Zhu et al.’s KP-
ABEwET [20]. Compared with CP-ABE-ET [15], our CP-ABEET is more secure
and has a more concise construction. Specifically, the key generation in our
scheme is more efficient than CP-ABE-ET [15], and the attribute-related secret
key is much shorter as well. As for the computational efficiency of Encrypt,
Decrypt and Test algorithms, our scheme is comparable with CP-ABE-ET [15]
when the number of attributes used in these algorithms is not large. Algorithms
Decrypt and Test would be less efficient when the access policy is complex or

17



the number of attributes is large, which is the price of security improvement of
our scheme.

8 Conclusion

We presented a novel construction of CP-ABEET, which combines advantages of
both CP-ABE and PKEET. It supports flexible authorization and can be used to
implement label classification for encrypted data efficiently. Our construction is
more secure than the only known CP-ABEET scheme. Besides, it is more efficient
in key generation cost and secret key size. We proved that our CP-ABEET
satisfies one-wayness security if adversary has trapdoors, and indistinguishability
if adversary is not given trapdoors. Our CP-ABEET scheme is a suitable solution
to encrypted data classification with flexible access control.

References

1. N. Attrapadung, B. Libert, and E. D. Panafieu. Expressive key-policy attribute-
based encryption with constant-size ciphertexts. In International Conference on
Practice and Theory in Public Key Cryptography Conference on Public Key Cryp-
tography, pages 90–108, Taormina, March 2011. Springer.

2. A. Beimel. Secure Schemes for Secret Sharing and Key Distribution. Technion-
Israel Institute of technology, Faculty of computer science, Israel, 1996.

3. J. Bethencourt, A. Sahai, and B. Waters. Ciphertext-policy attribute-based en-
cryption. In IEEE Symposium on Security and Privacy, pages 321–334, Oakland,
May 2007. IEEE Computer Society.

4. V. Goyal, A. Jain, O. Pandey, and A. Sahai. Bounded ciphertext policy attribute
based encryption. In International Colloquium on Automata, Languages, and Pro-
gramming, pages 579–591, Reykjavik, July 2008. Springer.

5. V. Goyal, O. Pandey, A. Sahai, and B. Waters. Attribute-based encryption for
fine-grained access control of encrypted data. In ACM Conference on Computer
and Communications Security, pages 89–98, Alexandria, October 2006. ACM.

6. M. Green, S. Hohenberger, B. Waters, et al. Outsourcing the decryption of ABE
ciphertexts. In Proceedings of USENIX Security Symposium, pages 34–34, San
Francisco, August 2011. USENIX Association.

7. J. Han, W. Susilo, Y. Mu, and J. Yan. Privacy-preserving decentralized key-
policy attribute-based encryption. IEEE Transactions on Parallel and Distributed
Systems, 23(11):2150–2162, Nov 2012.

8. A. Kapadia, P. P. Tsang, and S. W. Smith. Attribute-based publishing with hidden
credentials and hidden policies. In NDSS, volume 7, pages 179–192, San Diego,
February 2007. The Internet Society.

9. S. Ma. Identity-based encryption with outsourced equality test in cloud computing.
Information Sciences An International Journal, 328(C):389–402, 2016.

10. S. Ma, Q. Huang, M. Zhang, and B. Yang. Efficient public key encryption with
equality test supporting flexible authorization. IEEE Transactions on Information
Forensics and Security, 10(3):458–470, 2015.

11. S. Ma, M. Zhang, Q. Huang, and B. Yang. Public key encryption with delegated
equality test in a multi-user setting. The Computer Journal, 58(4):986–1002, 2015.

18



12. T. Nishide, K. Yoneyama, and K. Ohta. ABE with partially hidden encryptor-
specified access structure. acns08, lncs 5037, 2008.

13. A. Sahai and B. Waters. Fuzzy identity-based encryption. In International Con-
ference on Theory and Applications of Cryptographic Techniques, pages 457–473,
Aarhus, May 2005. Springer.

14. Q. Tang. Towards public key encryption scheme supporting equality test with
fine-grained authorization. In Australasian Conference on Information Security
and Privacy, pages 389–406, Melbourne, July 2011. Springer, Springer.

15. Q. Wang, L. Peng, H. Xiong, J. Sun, and Z. Qin. Ciphertext-policy attribute-
based encryption with delegated equality test in cloud computing. IEEE Access,
6:760–771, 2018.

16. B. Waters. Ciphertext-policy attribute-based encryption: An expressive, efficien-
t, and provably secure realization. In Public Key Cryptography - PKC 2011 -
14th International Conference on Practice and Theory in Public Key Cryptogra-
phy, Taormina, Italy, March 6-9, 2011. Proceedings, pages 53–70, Taormina, March
2011. Springer.

17. L. Wu, Y. Zhang, K. K. R. Choo, and D. He. Efficient identity-based encryp-
tion scheme with equality test in smart city. IEEE Transactions on Sustainable
Computing, 3(1):44–55, 2018.

18. T. Wu, S. Ma, Y. Mu, and S. Zeng. Id-based encryption with equality test against
insider attack. In Australasian Conference on Information Security and Privacy,
pages 168–183, Auckland, July 2017. Springer.

19. G. Yang, C. H. Tan, Q. Huang, and D. S. Wong. Probabilistic public key encryption
with equality test. In International Conference on Topics in Cryptology, volume
5985, pages 119–131, San Francisco, March 2010. Springer.

20. H. Zhu, L. Wang, H. Ahmad, and X. Niu. Key-policy attribute-based encryption
with equality test in cloud computing. IEEE Access, 5:20428–20439, 2017.

19


	Ciphertext-Policy Attribute-Based Encrypted Data Equality Test and Classification
	1 Introduction
	2 Related Works
	3 Preliminaries
	4 CP-ABEET
	4.1 Definition
	4.2 Security Models

	5 Our CP-ABEET Scheme
	5.1 Construction
	5.2 Correctness

	6 Security Analysis
	7 Comparison
	8 Conclusion


