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Abstract. We present a newmethodology for realizing Ciphertext-Policy
Attribute Encryption (CP-ABE) under concrete and noninteractive
cryptographic assumptions in the standard model. Our solutions allow any
encryptor to specify access control in terms of any access formula over
the attributes in the system. In our most efficient system, ciphertext size,
encryption, and decryption time scales linearly with the complexity of the
access formula. The only previous work to achieve these parameters was
limited to a proof in the generic group model.

We present three constructions within our framework. Our first system
is proven selectively secure under a assumption that we call the decisional
Parallel Bilinear Diffie-Hellman Exponent (PBDHE) assumption which
can be viewed as a generalization of the BDHE assumption. Our next
two constructions provide performance tradeoffs to achieve provable se-
curity respectively under the (weaker) decisional Bilinear-Diffie-Hellman
Exponent and decisional Bilinear Diffie-Hellman assumptions.

1 Introduction

Public-Key encryption is a powerful mechanism for protecting the confidentiality
of stored and transmitted information. Traditionally, encryption is viewed as a
method for a user to share data to a targeted user or device. While this is
useful for applications where the data provider knows specifically which user he
wants to share with, in many applications the provider will want to share data
according to some policy based on the receiving user’s credentials.

Sahai and Waters [35] presented a new vision for encryption where the data
provider can express how he wants to share data in the encryption algorithm
itself. The data provider will provide a predicate f(·) describing how he wants
to share the data and a user will be ascribed a secret key associated with their
credentials X ; the user with credentials X can decrypt a ciphertext encrypted
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with predicate f if f(X) = 1. Sahai and Waters [35] presented a particular for-
mulation of this problem that they called Attribute-Based Encryption (ABE),
in which a user’s credentials is represented by a set of string called “attributes”
and the predicate is represented by a formula over these attributes. Several
techniques used by SW were inspired by prior work on Identity-Based Encryp-
tion [36, 13, 23, 18, 10]. One drawback of the Sahai-Waters approach is that their
initial construction was limited to handling formulas consisting of one threshold
gate.

In subsequent work, Goyal, Pandey, Sahai, and Waters [27] further clarified
the concept of Attribute-Based Encryption. In particular, they proposed two
complementary forms of ABE. In the first, Key-Policy ABE, attributes are used
to annotate the ciphertexts and formulas over these attributes are ascribed to
users’ secret keys. The second type, Ciphertext-Policy ABE, is complementary
in that attributes are used to describe the user’s credentials and the formulas
over these credentials are attached to the ciphertext by the encrypting party. In
addition, Goyal et al. [27] provided a construction for Key-Policy ABE that was
very expressive in that it allowed the policies (attached to keys) to be expressed
by any monotonic formula over encrypted data. The system was proved selec-
tively secure under the Bilinear Diffie-Hellman assumption. However, they left
creating expressive Ciphertext Policy ABE schemes as an open problem.

The first work to explicitly address the problem of Ciphertext-Policy Attribute-
Based Encryption was by Bethencourt, Sahai, and Waters [7]. They described an
efficient system that was expressive in that it allowed an encryptor to express an
access predicate f in terms of any monotonic formula over attributes. Their system
achieved analogous expressiveness and efficiency to the Goyal et al. construction,
but in the Ciphertext-Policy ABE setting. While the BSW construction is very
expressive, the proof model used was less than ideal — the authors only showed
the scheme secure in the generic group model, an artificial model which assumes
the attacker needs to access an oracle in order to perform any group operations1.

Recently, ABE has been applied in building a variety of secure systems [34,
40, 9, 8]. These systems motivate the need for ABE constructions that are both
foundationally sound and practical.

Ciphertext Policy ABE in the Standard Model. The lack of satisfaction with
generic group model proofs has motivated the problem of finding an expressive
CP-ABE system under a more solid model. There have been multiple approaches
in this direction.

First, we can view the Sahai-Waters[35] construction most “naturally” as
Key-Policy ABE for a threshold gate. In their work, Sahai and Waters describe
how to realize Ciphertext-Policy ABE for threshold gates by “grafting” so called
“dummy attributes” over their basic system. Essentially, they transformed a KP-
ABE system into a CP-ABE one with the expressiveness of a single threshold

1 Alternatively, we could derive a concrete, but interactive and complicated assump-
tion directly from the scheme itself and argue that the scheme is secure under this
assumption. However, this view is also not very satisfactory.
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gate2. Cheung and Newport[22] provide a direct construction for constructing
a policy with a single AND gate under the Bilinear Diffie-Hellman assumption.
Their approach has the drawbacks that it only allows a fixed number of sys-
tem attributes and is limited to an AND gate (does not enable thresholds). In
retrospect these two limitations actually make it less expressive than the SW
transformation, although this wasn’t necessarily immediately apparent.

Most recently, Goyal, Jain, Pandey, and Sahai [26] generalized the transfor-
mational approach to show how to transform a KP-ABE system into a CP-ABE
one using what they call a “universal access tree”. In particular, they provided a
mapping onto a “universal” (or complete) access tree of up to depth d formulas
consisting of threshold gates of input size m, where m and d are chosen by the
setup algorithm. They applied a similar ”dummy attribute” approach.

In order to accommodate a general access formula of size n, their scheme first
translates this into a balanced formula. Under standard techniques a formula of
size n can be “balanced” such that any formula (tree) of size n can be covered
by a complete tree of size approximately O(n3.42). Their work was the first
feasibility result for expressive CP-ABE under a non-interactive assumption.
Unfortunately, the parameters of ciphertext and private key sizes add encryption
and decryption complexity blow up (in the worst case) by an n3.42 factor limiting
its usefulness in practice. For instance, in a system with U attributes defined
and n nodes the ciphertext overhead will be approximately a factor of U · n2.42

greater than that of the BSW system. To give a concrete example, for the modest
parameters of universe size U = 100 attributes and a formula of 20 nodes the
blowup factor relative to BSW is approximately 140, 000.

Our Contribution. We present a new methodology for realizing Ciphertext-
Policy ABE systems from a general set of access structures in the standard model
under concrete and non-interactive assumptions. Both the ciphertext overhead
and encryption time scale with O(n) where n is the size of the formula. In addi-
tion, decryption time scales with the number of nodes.

Our first system allows an encryption algorithm to specify an access formula
in terms of any access formula. In fact our techniques are slightly more general.
We express access control by a Linear Secret Sharing Scheme (LSSS) matrix M
over the attributes in the system. Previously used structures such as formulas
(equivalently tree structures) can be expressed succinctly [6] in terms of a LSSS.
We do not lose any efficiency by using the more general LSSS representation
as opposed to the previously used tree access structure descriptions. Thus, we
achieve the same performance and functionality as the Bethencourt, Sahai, and
Waters construction, but under the standard model.

In addition, we provide two other constructions that tradeoff some performance
parameters for provable security under the respective weaker assumptions of
decisional-Bilinear Diffie-Hellman Exponent (d-BDHE) and decisional-Bilinear
Diffie-Hellman assumptions. In Table 1 we summarize the comparisons between
our schemes and the GJPS and BSW CP-ABE systems in terms of ciphertext and

2 The Sahai-Waters construction was given prior to the Key-Policy and Ciphertext-
Policy distinction; our interpretation is a retrospective one.
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key sizes and encryption and decryption times. Taken all together our first scheme
realizes the same efficiency parameters as the BSW encryption scheme, but un-
der a concrete security assumption. At the same time, our d-BDH construction is
proved under the same assumption as the GJPS system and achieves significantly
better performance.

Our Techniques. Our techniques provide a framework for directly realizing prov-
ably secure CP-ABE systems. In our systems, the ciphertext distributes shares
of a secret encryption exponent s across different attributes according to the
access control LSSS matrix M .

A user’s private key is associated with a set S of attributes and he will be able to
decrypt a ciphertext iff his attributes “satisfy” the access matrix associated with
the ciphertext. As in previous ABE systems, the primary challenge is to prevent
users from realizing collusion attacks. Our main tool to prevent this is to random-
ize each key with an freshly chosen exponent t. During decryption, each share will
be multiplied by a factor t in the exponent. Intuitively, this factor should “bind”
the components of one user’s key together so that they cannot be combined with
another user’s key components. During decryption, the different shares (in the ex-
ponent) that the algorithm combines are multiplied by a factor of t. Ultimately,
these randomized shares are only useful to that one particular key.

Our construction’s structures and high level intuition for security is similar to
the BSW construction. The main novelty in our paper is provide a method for
proving security of such a construction. The primary challenge one comes across
is (in the selective model) how to create a reduction that embeds a complex
access structure in a short number of parameters. All prior ABE schemes follow
a “partitioning” strategy for proving security where the reduction algorithm
sets up the public parameters such that it knows all the private keys that it
needs to give out, yet it cannot give out private keys that can trivially decrypt
the challenge ciphertext. In prior KP-ABE schemes the challenge ciphertext
was associated with a set S∗ of attributes. This structure could fairly easily
be embedded in a reduction as the public parameter for each attribute was
simply treated differently depending whether or not it was in S∗. In CP-ABE,
the situation is much more complicated as ciphertexts are associated with a
potentially large access structure M∗ that includes attributes multiple times. In
general, the size of M∗ is much larger than the size of the public parameters3.
Consequently, there is not a simple “on or off” method of programming this into
the parameters. Arguably, it is this challenge that lead the BSW paper to apply
the generic group heuristic and GJPS paper to translate the problem back to
KP-ABE.

In this paper, we create a method for directly embedding any LSSS structure
M∗ into the public parameters in our reduction. In the proofs of our system a
simulator can “program” the LSSS matrix M∗ of the challenge ciphertext (in
the selective model of security). Consider a LSSS matrix M∗ of size l∗ × n∗.
For each row i of M∗ the simulator needs to program in � pieces of information

3 Here we roughly mean size to be number of rows in the LSSS system or nodes in an
access tree.



Ciphertext-Policy Attribute-Based Encryption 57

(M∗
i,1, . . . , M

∗
i,�) into the parameters related to the attribute assigned to that

row. In our most efficient system we program in M∗ using the d-Parallel BDHE
assumption; however, in Section 5 we show variations of our construction that
are provably secure using similar ideas, but under weaker assumptions.

Our methodology of creating a system and proof that directly addresses CP-
ABE stands in contrast to the approach of GJPS which essentially maps CP-ABE
requirements onto a KP-ABE scheme.

Table 1. Comparison of CP-ABE systems in terms of ciphertext size, private key size,
encryption and decryption times and assumptions. We let n be the size of an access
formula , A be the number of attributes in a user’s key, and T be (minimum needed)
number of nodes satisfied of a formula by a user’s attributes, and U be the number of
attributes defined in the system. For our d-BDHE construction of the system defines a
parameter kmax, which is the maximum number of times a single attribute will appear
in a particular formula. In the GJPS construction and our d-BDH one of Section 5 the
systems define nmax as a bound on the size any formula. The ciphertext and private
key sizes are given in terms of the number of group elements, encryption time in terms
of number of exponentiations, and decryption in terms of number of pairing operations.

System Ciphetext Size Private Key Size Enc. Time Assumption

BSW[7] O(n) O(A) O(n) Generic Group

GJPS[26] O(U · n3.42
max) O(A · n3.42

max) O(U · n3.42
max) d-BDH

Section 3 O(n) O(A) O(n) d-Parallel BDHE

Full version [42] O(n) O(kmax · A) O(n) d-BDHE

Section 5 O(n2) O(kmax · A + nmax) O(n2) d-BDH

1.1 Related Work

Some of the roots of ABE can be traced back to Identity-Based Encryption [36,
13, 23, 18, 10, 41, 24, 14] (IBE). One can view IBE as a very special case of
ABE.

Different authors [38, 32, 4, 17, 3, 5] have considered similar problems without
considering collusion resistance. In these works a data provider specifies an access
formula such that a group of users can decrypt if the union of their credentials
satisfies the formula. By only requiring the union of the credentials one does not
worry about collusion attacks. In these schemes a setup authority simply assigns
a separate public key to each credential and gives the corresponding secret key to
each user that possesses the credential. Encryption is done by splitting secrets
and then encrypting each share to the appropriate public key. Some of these
schemes were inspired by earlier work [21, 20].

Since the introduction of Attribute-Based Encryption by Sahai and Waters [35],
there have been several papers [27, 7, 19, 33, 26] that have proposed different
varieties of ABE. Most of them have been for monotonic access structures over
attributes; one exception is the work of Ostrovsky, Sahai, and Waters [33] that
showed how to realize negation by integrating revocation schemes into the GPSW
ABE cryptosystem.
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Most work on ABE is focused on complex access controls for hiding an en-
crypted payload of data. A related line of work called predicate encryption or
searching on encrypted data attempts to evaluate predicates over the encrypted
data itself [39, 12, 1, 16, 15, 37, 29]. These systems have the advantages of hid-
ing the associated access structures themselves and thus providing a level of
“anonymity”. The concept of predicate encryption is more general than the one
we consider. However, the predicate encryption systems realized thus far tend
to be much less expressive than access control systems that leave the access
structures in the clear.

Other examples of encryption systems with more “structure” added include
Hierarchical Identity-Based Encryption [28, 25] and Wildcard IBE [2].

Finally, Lewko et. al. [31] recently leveraged the encoding technique from our
work to build an ABE system that achieves adaptive (non-selective) security.
The system of Lewko et. al. is based in composite order groups, which results
in some loss of practical efficiency compared to our most efficient system. In
addition, our BDH system is based off of more standard assumptions than those
used in Lewko et al.

2 Background

We first give formal definitions for access structures and relevant background on
Linear Secret Sharing Schemes (LSSS). Then we give the security definitions of
ciphertext policy attribute based encryption (CP-ABE). Finally, we give back-
ground information on bilinear maps.

2.1 Access Structures

Definition 1 (Access Structure [6]). Let {P1,P2,. . .,Pn} be a set of par-
ties. A collection A ⊆ 2{P1,P2,...,Pn} is monotone if ∀B, C : if B ∈ A and
B ⊆ C then C ∈ A. An access structure (respectively, monotone access struc-
ture) is a collection (respectively, monotone collection) A of non-empty subsets
of {P1, P2, . . . , Pn}, i.e., A ⊆ 2{P1,P2,...,Pn}\{∅}. The sets in A are called the
authorized sets, and the sets not in A are called the unauthorized sets.

In our context, the role of the parties is taken by the attributes. Thus, the access
structure A will contain the authorized sets of attributes. We restrict our atten-
tion to monotone access structures. However, it is also possible to (inefficiently)
realize general access structures using our techniques by having the not of an
attribute as a separate attribute altogether. Thus, the number of attributes in
the system will be doubled. From now on, unless stated otherwise, by an access
structure we mean a monotone access structure.

2.2 Linear Secret Sharing Schemes

We will make essential use of linear secret-sharing schemes. We adapt our defi-
nitions from those given in [6]:
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Definition 2 (Linear Secret-Sharing Schemes (LSSS) ). A secret-sharing
scheme Π over a set of parties P is called linear (over Zp) if

1. The shares for each party form a vector over Zp.
2. There exists a matrix an M with � rows and n columns called the share-

generating matrix for Π. For all i = 1, . . . , �, the i’th row of M we let the
function ρ defined the party labeling row i as ρ(i). When we consider the
column vector v = (s, r2, . . . , rn), where s ∈ Zp is the secret to be shared,
and r2, . . . , rn ∈ Zp are randomly chosen, then Mv is the vector of � shares
of the secret s according to Π. The share (Mv)i belongs to party ρ(i).

It is shown in [6] that every linear secret sharing-scheme according to the above
definition also enjoys the linear reconstruction property, defined as follows: Sup-
pose that Π is an LSSS for the access structure A. Let S ∈ A be any authorized
set, and let I ⊂ {1, 2, . . . , �} be defined as I = {i : ρ(i) ∈ S}. Then, there
exist constants {ωi ∈ Zp}i∈I such that, if {λi} are valid shares of any secret s
according to Π , then

∑
i∈I ωiλi = s.

Furthermore, it is shown in [6] that these constants {ωi} can be found in time
polynomial in the size of the share-generating matrix M .

Note onConvention. We note thatwe use the convention that vector (1, 0, 0, . . . , 0)
is the “target” vector for any linear secret sharing scheme. For any satisfying set
of rows I in M , we will have that the target vector is in the span of I.

For any unauthorized set of rows I the target vector is not in the span of the rows
of the set I. Moreover, there will exist a vector w such that w · (1, 0, 0 . . . , 0) = −1
and w · Mi = 0 for all i ∈ I.

Using Access Trees. Prior works on ABE (e.g., [27]) typically described access for-
mulas in terms of binary trees. Using standard techniques [6] one can convert any
monotonic boolean formula into an LSSS representation. An access tree of � nodes
will result in an LSSS matrix of � rows. We refer the reader to the appendix of [30]
for a discussion of how to perform this conversion.

2.3 Ciphertext-Policy ABE

A ciphertext-policy attribute based encryption scheme consists of four algorithms:
Setup, Encrypt, KeyGen, and Decrypt.

Setup(λ, U). The setup algorithm takes security parameter and attribute universe
description as input. It outputs the public parameters PK and a master key MK.

Encrypt(PK, M, A). The encryption algorithm takes as input the public param-
eters PK, a message M , and an access structure A over the universe of attributes.
The algorithm will encrypt M and produce a ciphertext CT such that only a user
that possesses a set of attributes that satisfies the access structure will be able to
decrypt the message. We will assume that the ciphertext implicitly contains A.

Key Generation(MK, S). The key generation algorithm takes as input the master
key MK and a set of attributes S that describe the key. It outputs a private key
SK.
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Decrypt(PK, CT, SK). The decryption algorithm takes as input the public param-
eters PK, a ciphertext CT, which contains an access policy A, and a private key
SK, which is a private key for a set S of attributes. If the set S of attributes satisfies
the access structure A then the algorithm will decrypt the ciphertext and return
a message M .

We now describe a security model for ciphertext-policy ABE schemes. Like
identity-based encryption schemes [36, 13, 23] the security model allows the ad-
versary to query for any private keys that cannot be used to decrypt the challenge
ciphertext. In CP-ABE the ciphertexts are identified with access structures and
the private keys with attributes. It follows that in our security definition the ad-
versary will choose to be challenged on an encryption to an access structure A

∗

and can ask for any private key S such that S does not satisfy A
∗. We now give the

formal security game.

Security Model for CP-ABE.

Setup. The challenger runs the Setup algorithm and gives the public parameters,
PK to the adversary.

Phase 1. The adversary makes repeated private keys corresponding to sets of
attributes S1, . . . , Sq1 .

Challenge. The adversary submits two equal length messages M0 and M1. In
addition the adversary gives a challenge access structure A

∗ such that none of
the sets S1, . . . , Sq1 from Phase 1 satisfy the access structure. The challenger
flips a random coin b, and encrypts Mb under A

∗. The ciphertext CT∗ is given
to the adversary.

Phase 2. Phase 1 is repeated with the restriction that none of sets of attributes
Sq1+1, . . . , Sq satisfy the access structure corresponding to the challenge.

Guess. The adversary outputs a guess b′ of b.

The advantage of an adversary A in this game is defined as Pr[b′ = b] − 1
2 . We

note that the model can easily be extended to handle chosen-ciphertext attacks by
allowing for decryption queries in Phase 1 and Phase 2.

Definition 3. A ciphertext-policy attribute-based encryption scheme is secure if
all polynomial time adversaries have at most a negligible advantage in the above
game.

We say that a system is selectively secure if we add an Init stage before setup where
the adversary commits to the challenge access structure A

∗. All of our construc-
tions will be proved secure in the selective security model.

2.4 Bilinear Maps

We present a few facts related to groups with efficiently computable bilinear maps
and then give our number theoretic assumptions.

Let G and GT be two multiplicative cyclic groups of prime order p. Let g be a
generator of G and e be a bilinear map, e : G × G → GT . The bilinear map e has
the following properties:
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1. Bilinearity: for all u, v ∈ G and a, b ∈ Zp, we have e(ua, vb) = e(u, v)ab.
2. Non-degeneracy: e(g, g) �= 1.

We say that G is a bilinear group if the group operation inG and the bilinear map e :
G×G → GT are both efficiently computable. Notice that the map e is symmetric
since e(ga, gb) = e(g, g)ab = e(gb, ga).

Decisional Parallel Bilinear Diffie-Hellman Exponent Assumption. We
define the decisional q-parallel Bilinear Diffie-Hellman Exponent problem as fol-
lows. Choose a group G of prime order p according to the security parameter. Let
a, s, b1, . . .,bq ∈ Zp be chosen at random and g be a generator of G. If an adversary
is given y=

g, gs, ga, . . . , g(aq), , g(aq+2), . . . , g(a2q)

∀1≤j≤q gs·bj , ga/bj , . . . , g(aq/bj), , g(aq+2/bj), . . . , g(a2q/bj)

∀1≤j,k≤q,k �=j ga·s·bk/bj , . . . , g(aq·s·bk/bj)

it must remain hard to distinguish e(g, g)aq+1s ∈ GT from a random element in
GT .

An algorithm B that outputs z ∈ {0, 1} has advantage ε in solving decisional
q-parallel BDHE in G if

∣
∣
∣
∣Pr

[
B(y, T = e(g, g)aq+1s) = 0

]
− Pr

[B(y, T = R
)

= 0
]
∣
∣
∣
∣ ≥ ε

Definition 1. We say that the (decision) q parallel-BDHE assumption holds if no
polytime algorithm has a non-negligible advantage in solving the decisional
q-parallel BDHE problem.

We give a proof that the assumption generically holds in the full version of our
paper [42].

3 Our Most Efficient Construction

We now give our main construction that both realizes expressive functionality and
is efficient and is provably secure under a concrete, non-interactive assumption.

In our construction the encryption algorithm will take as input a LSSS access
matrix M and distribute a random exponent s ∈ Zp according to M . Private keys
are randomized to avoid collusion attack.

Setup(U). The setup algorithm takes as input the number of attributes in the
system. It then chooses a group G of prime order p, a generator g and U random
group elements h1, . . . , hU ∈ G that are associated with the U attributes in the
system. In addition, it chooses random exponents α, a ∈ Zp.

The public key is published as

PK = g, e(g, g)α, ga, h1, . . . , hU .

The authority sets MSK = gα as the master secret key.
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Encrypt(PK, (M, ρ),M ). The encryption algorithm takes as input the public pa-
rameters PK and a message M to encrypt. In addition, it takes as input an LSSS
access structure (M, ρ). The function ρ associates rows of M to attributes.

Let M be an � × n matrix. The algorithm first chooses a random vector v =
(s, y2, ..., yn) ∈ Z

n
p . These values will be used to share the encryption exponent s.

For i = 1 to �, it calculates λi = v · Mi, where Mi is the vector corresponding to
the ith row of M . In addition, the algorithm chooses random r1, . . . , r� ∈ Zp.

The ciphertext is published as CT =

C = Me(g, g)αs, C′ = gs

(C1 = gaλ1h−r1
ρ(1), D1 = gr1), . . . , (C� = gaλ�h−rn

ρ(�) , D� = gr�)

along with a description of (M, ρ).

KeyGen(MSK, S). The key generation algorithm takes as input the master secret
key and a set S of attributes. The algorithm first chooses a random t ∈ Zp. It
creates the private key as

K = gαgat L = gt ∀x ∈ S Kx = ht
x.

Decrypt(CT,SK). The decryption algorithm takes as input a ciphertext CT for
access structure (M, ρ) and a private key for a set S. Suppose that S satisfies the
access structure and let I ⊂ {1, 2, . . . , �} be defined as I = {i : ρ(i) ∈ S}. Then,
let {ωi ∈ Zp}i∈I be a set of constants such that if {λi} are valid shares of any secret
s according to M , then

∑
i∈I ωiλi = s. (Note there could potentially be different

ways of choosing the ωi values to satisfy this.)
The decryption algorithm first computes

e(C′, K)/
(∏

i∈I(e(Ci, L)e(Di, Kρ(i)))ωi
)

=

e(g, g)αse(g, g)ast/
(∏

i∈I e(g, g)taλiωi
)

= e(g, g)αs

The decryption algorithm can then divide out this value from C and obtain the
message M.

3.1 Proof

An important step in proving our system secure will be for the reduction to “pro-
gram” the challenge ciphertext into the public parameters. One significant obstacle
that we will encounter is that an attribute may be associated with multiple rows in
the challenge access matrix (i.e. the ρ function is not injective). This is analogous
to an attribute appearing in multiple leafs in an access tree.

For example, suppose that in our reduction we want to program our parameters
such that for hx based on the i-th row of M∗ if ρ∗(i) = x. However, if there exist
i �= j such that x = ρ(i) = ρ(j) then there is an issue since we must program both
row i and row j in the simulation. Intuitively, there is a potential conflict in how
to program the parameters.
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In this reduction we resolve this by using different terms from the parallelBDHE
assumption to program multiple rows of M∗ into one group element corresponding
to an attribute. The extra terms provided allow us to do so without ambiguity4.
In Section 5 we show a tradeoff where our reduction can program the information
using just the decisional Bilinear Diffie-Hellman assumption, but at some loss of
efficiency.

We prove the following theorem.

Theorem 1. Suppose the decisional q-parallel BDHE assumption holds. Then no
polytime adversary can selectively break our system with a challenge matrix of size
�∗ × n∗, where �∗, n∗ ≤ q.

Suppose we have an adversary A with non-negligible advantage ε =AdvA in the
selective security game against our construction. Moreover, suppose it chooses a
challenge matrix M∗ where both dimensions are at most q. We show how to build
a simulator, B, that plays the decisional q-parallel BDHE problem.

Init. The simulator takes in a q-parallel BDHE challenge y, T . The adversary gives
the algorithm the challenge access structure (M∗, ρ∗), where M∗ has n∗ columns.

Setup. The simulator chooses random α′ ∈ Zp and implicitly sets α = α′ + aq+1

by letting e(g, g)α = e(ga, gaq

)e(g, g)α′
.

We describe how the simulator “programs” the group elements h1, . . . , hU . For
each x for 1 ≤ x ≤ U begin by choosing a random value zx. Let X denote the set
of indices i, such that ρ∗(i) = x. The simulator programs hx as:

hx = gzx

∏

i∈X

gaM∗
i,1/bi · ga2M∗

i,2/bi · · · gan∗
M∗

i,n∗/bi .

Note that if X = ∅ then we have hx = gzx . Also note that the parameters are
distributed randomly due to the gzx value.

Phase I. In this phase the simulator answers private key queries. Suppose the sim-
ulator is given a private key query for a set S where S does not satisfy M∗.

The simulator first chooses a random r ∈ Zp. Then it finds a vector w =
(w1, . . . , wn∗) ∈ Zp

n∗
such that w1 = −1 and for all i where ρ∗(i) ∈ S we have

that w ·M∗
i = 0. By the definition of a LSSS such a vector must exist. Note that if

such a vector did not exist then the vector (1, 0, 0, . . . , 0) would be in the span of S.
See the discussion in Section 2.

The simulator begins by implicitly defining t as

r + w1a
q + w2a

q−1 + · · · + wn∗aq−n∗+1.

It performs this by setting L = gr
∏

i=1,...,n∗(gaq+1−i

)wi = gt.

4 We note that certain assumptions have been leveraged to “program” a large amount
of information into single group elements in other contexts. Gentry’s reduction [24]
embeds a degree q polynomial into a single group element.
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We observe that by our definition of t, we have that gat contains a term of g−aq+1
,

which will cancel out with the unknown term in gα when creatingK. The simulator
can compute K as:

K = gα′
gar

∏

i=2,...,n∗
(gaq+2−i

)wi .

Now we must calculate Kx ∀x ∈ S. First, we consider x ∈ S for which there is no
i such that ρ∗(i) = x. For those we can simply let Kx = Lzx .

The more difficult task is to create key components Kx for attributes x ∈ S,
where x is used in the access structure. For these keys we must make sure that
there are no terms of the form gaq+1/bi that we can’t simulate. However, we have
that M∗

i · w = 0; therefore, all of these terms cancel.
Again, let X be the set of all i such that ρ∗(i) = x. The simulator creates Kx in

this case as follows.

Kx = Lzx

∏

i∈X

∏

j=1,...,n∗

⎛

⎜
⎜
⎝g(aj/bi)r

∏

k=1,...,n∗
k �=j

(gaq+1+j−k/bi)wk

⎞

⎟
⎟
⎠

M∗
i,j

Challenge. Finally, we build the challenge ciphertext. The adversary gives two
messages M0,M1 to the simulator. The simulator flips a coin β. It creates C =
MβT · e(gs, gα′

) and C′ = gs.
The tricky part is to simulate the Ci values since this contains terms that we

must cancel out. However, the simulator can choose the secret splitting, such that
these cancel out. Intuitively, the simulator will choose random y′

2, . . . , y
′
n∗ and the

share the secret using the vector

v = (s, sa + y′
2, sa

2 + y′
3, . . . , sa

n−1 + y′
n∗) ∈ Zp

n∗
.

In addition, it chooses random values r′1, . . . , r
′
�.

For i = 1, . . . , n∗, we define Ri as the set of all k �= i such that ρ∗(i) = ρ∗(k). In
other words, the set of all other row indices that have the same attribute as row i.
The challenge ciphertext components are then generated as

Di = g−r′
ig−sbi

Ci = h
r′

i
ρ∗(i)

(
∏

j=2,...,n∗
(ga)M∗

i,jy′
j

)

(gbi·s)−zρ∗(i) ·
⎛

⎝
∏

k∈Ri

∏

j=1,...,n∗
(gaj·s·(bi/bk))M∗

k,j

⎞

⎠

Phase II. Same as phase I.

Guess. The adversary will eventually output a guess β′ of β. The simulator then
outputs 0 to guess that T = e(g, g)aq+1s if β = β′; otherwise, it outputs 1 to indi-
cate that it believes T is a random group element in GT .

When T is a tuple the simulator B gives a perfect simulation so we have that

Pr
[
B
(
y, T = e(g, g)aq+1s

)
= 0
]

=
1
2

+ AdvA.
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When T is a random group element the message Mβ is completely hidden from
the adversary and we have Pr[B(y,T = R) = 0] = 1

2 . Therefore, B can play the
decisional q-parallel BDHE game with non-negligible advantage.

4 Constructions from Weaker Assumptions

Our first construction provided a very efficient system, but under a strong (but
still non-interactive) assumption. To bridge this gap we introduce two additional
constructions that provide a tradeoff of performance versus strength of assump-
tions. We effectively explore a spectrum between system efficiency and strength of
assumption. The final construction is proven secure under the simple decisional-
BDH assumption.

Overview. The primary obstacle in achieving security from weaker assumptions
is that we must be able to reflect the challenge access structure M∗ in the param-
eters during the reduction. We create two different constructions using the same
framework.

In our full version [42] we give a construction provably secure under the existing
d-BDHE assumption introduced by Boneh, Boyen and Goh [11]. To accommodate
a weaker assumption we introduce a parameter kmax which is the maximum num-
ber of times any one attribute can appear in an access formula. A private key in
this system will be a factor of kmax larger than our main construction.

Next, in Section 5 we give a construction provably secure under the much more
standard decisional Bilinear Diffie-Hellman assumption. To realize security under
this assumption our system must additionally introduce a parameter nmax, where
performance parameters will be a factor of nmax larger than our most efficient
construction.

5 Bilinear Diffie-Hellman Construction

While our unrestricted construction realizes a potentially ideal type of efficiency,
we would like to also show that secure CP-ABE systems can be realized from static
assumptions. Here we show how to realize our framework under the decisional Bi-
linear Diffie Hellman d-(BDH) assumption.

The primary challengewith realizing a construction provably secure under BDH
is we need a way for a reduction to embed the challenge matrix M∗ in the param-
eters. Since the BDH assumption gives the reduction less components to embed
this, there is no obvious path for reducing the previous constructions to d-BDH.
We surmount this obstacle by expanding our ciphertexts and public parameter
space. By doing this we enable our reduction to embed the challenge matrix.

Our construction is parametrized by a integer nmax that specifies the maximum
number of columns in a ciphertext policy. The public parameters, keys and cipher-
text size will all grow linearly in this parameter5.
5 One could achieve smaller ciphertexts by creating multiple systems with different nmax

values and use the one that fit the actual policy most tightly.
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Like our first construction we restrict ρ() to be an injective function, but can
alleviate this restriction by applying a similar transformation to allow an attribute
to appear kmax times for some specified kmax. Our construction follows.

Setup(U, nmax). The setup algorithm takes as input, U , the number of attributes
in the system U and nmax the maximum number of columns in an LSSS matrix (or
number of nodes in an access formula). It then creates a group G of prime order
p and a generator g and chooses random elements (h1,1, . . . , h1,U ), . . . , (hnmax,1 ,
. . .,hnmax,U ) In addition, it chooses random exponents α, a ∈ Zp.

The public key is published as

PK = g, e(g, g)α, ga,

(h1,1, . . . , h1,U ), . . . , (hnmax,1, . . . , hnmax,U )

The authority sets MSK = gα as the master secret key.

Encrypt(PK, (M, ρ),M ). The encryption algorithm takes as input the public pa-
rameters PK and a message M to encrypt. In addition, it takes as input an LSSS
access structure (M, ρ). The function ρ associates rows of M to attributes. In this
construction we limit ρ to be an injective function, that is an attribute is associated
with at most one row of M .

Let M be an �×nmax matrix. (If one needs to create a policy for n < nmax, then
one can simply “pad out” the rightmost nmax − n columns with all zeros.) The
algorithm first chooses a random vector v = (s, y2, ..., ynmax) ∈ Z

n
p . These values

will be used to share the encryption exponent s.
The ciphertext is published as

CT = C = Me(g, g)αs, C′ = gs, ∀ i=1,...,�
j=1,...,nmax

Ci,j = gaMi,jvj h−s
j,ρ(i)

along with a description of M, ρ.

KeyGen(MSK, S). The key generation algorithm takes as input the master secret
key and a set S of attributes. The algorithm first chooses a random t1, . . . , tnmax ∈
Zp. It creates the private key as

K = gαgat1 L1 = gt1 , . . . , Ln = gtnmax

∀x ∈ S Kx =
∏

j=1,...,nmax

h
tj

j,x.

Decrypt(CT,SK). The decryption algorithm takes as input a ciphertext CT for
access structure (M, ρ) and a private key for a set S. Suppose that S satisfies the
access structure and let I ⊂ {1, 2, . . . , �} be defined as I = {i : ρ(i) ∈ S}. Then, let
{ωi ∈ Zp}i∈I be a set of constants such that, if {λi} are valid shares of any secret
s according to M , then

∑
i∈I ωiλi = s. (Note there could potentially be different

ways of choosing the ωi values to satisfy this.)
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The decryption algorithm first computes

e(C′, K)/

⎛

⎝
∏

j=1,...,nmax

e(Lj,
∏

i∈I

Cωi

i,j)

⎞

⎠
∏

i∈I

e(Kωi

ρ(i), C
′)

= e(C′, K)/
( ∏

j=1,...,nmax

e(gtj , g
∑

i∈I aMi,jvjωi) ·

e(gtj ,
∏

i∈I

h−sωi

j,ρ(i))
)∏

i∈I

e(Kωi

ρ(i), g
s)

= e(C′, K)/
∏

j=1,...,nmax

e(gtj , g
∑

i∈I aMi,jvjωi)

= e(C′, K)/e(gt1, g
∑

i∈I aMi,1v1ωi)
= e(gs, gαgat1)/e(g, g)at1s

= e(g, g)αs

The decryptor can then divide out this value from C and obtain the message M.

5.1 Proof

We prove the following theorem.

Theorem 2. Suppose the decisional BDH assumption holds. Then no polytime ad-
versary can selectively break our system.

Due to space limitations we defer the proof of the system to our full version [42].

6 Large Universe of Attributes

One aspect of our main construction is that it defines the set of attributes to be used
in the parameters. One useful feature is to be able to dynamically use any string
as an attribute. In our full version [42] we show how in the random oracle we can
realize any number of attributes with constant size parameters by simply hashing
the attribute string. Also in our full version provide a large universe construction
in the standard model.
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