
IEEE TDSC, VOL. X, NO. X, MONTH YEAR 1

CipherXRay: Exposing Cryptographic Operations and

Transient Secrets from Monitored Binary Execution

Xin Li, Member, IEEE, Xinyuan Wang, Member, IEEE, Wentao Chang, Member, IEEE

Abstract—Malwares are becoming increasingly stealthy, more
and more malwares are using cryptographic algorithms (e.g.,
packing, encrypting C&C communication) to protect themselves
from being analyzed. The use of cryptographic algorithms and
truly transient cryptographic secrets inside the malware binary
imposes a key obstacle to effective malware analysis and defense.

To enable more effective malware analysis, forensics and
reverse engineering, we have developed CipherXRay – a novel
binary analysis framework that can automatically identify and
recover the cryptographic operations and transient secrets from
the execution of potentially obfuscated binary executables. Based
on the avalanche effect of cryptographic functions, CipherXRay
is able to accurately pinpoint the boundary of cryptographic
operation and recover truly transient cryptographic secrets
that only exist in memory for one instant in between multi-
ple nested cryptographic operations. CipherXRay can further
identify certain operation modes (e.g., ECB, CBC, CFB) of the
identified block cipher and tell whether the identified block cipher
operation is encryption or decryption in certain cases.

We have empirically validated CipherXRay with OpenSSL,
popular password safe KeePassX, the ciphers used by malware
Stuxnet, Kraken and Agobot, and a number of third party
softwares with built-in compression and checksum. CipherXRay
is able to identify various cryptographic operations and recover
cryptographic secrets that exist in memory for only a few
microseconds. Our results demonstrate that current software
implementations of cryptographic algorithms hardly achieve any
secrecy if their execution can be monitored.

Index Terms—Binary analysis, avalanche effect, key recovery
attack on cryptosystem, transient cryptographic secret recovery,
secrecy of monitored execution, reverse engineering.

I. INTRODUCTION

Malware analysis, forensics and reverse engineering seek

to understand the inner workings of malware, which are

invaluable to defending against malware. To prevent them-

selves from being analyzed and reverse engineered, more and

more malwares (e.g., Agobot, MegaD, Kraken, Conficker) are

using cryptographic algorithms (e.g., packing [51], encrypt-

ing C&C communication) to protect the malicious code and

communication [40]. To prevent the in-memory cryptographic

secrets (e.g., key, IV) from being recovered by key searching

tools (e.g., rsakeyfind), sophisticated malware can make the

cryptographic secrets truly transient in memory by encrypting

or destroying the secrets right after using them at run-time.

The use of cryptographic algorithms and truly transient crypto-

graphic secrets inside the malware binary executable imposes

a key obstacle to effective malware analysis and defense.

In order to recover the true logic of packed malware and

the plaintext of the encrypted malware C&C communication,

Xin Li, Xinyuan Wang and Wentao Change are with the Department of
Computer Science, George Mason University, Fairfax, VA 22030, USA. email:
{xlih, xwangc, wchang7}@gmu.edu

���������	
������

���������	� �����	� �����	� ���������	���������

���

����	���	������	��	����	��	�����������	���� ���	���	!�����	�����	��������

Fig. 1. Transient Cryptographic Secrets with Multiple Rounds of Crypto-
graphic Operations

we have to be able to effectively analyze the cryptographic

operations and recover their secrets from the malware binary

executable.

A number of methods [45], [43], [29] have been proposed

to automatically recover the cryptographic keys from process

memory or file. However, these methods require the cryp-

tographic keys to be statically stored in plaintext form and

they are not effective when the cryptographic keys are stored

encrypted or transient.

Recently proposed binary analysis approaches (Reformat

[49], Dispatcher [17], [27]) are able to automatically detect

the existence of cryptographic operations from a given binary

execution based on instruction profiling (i.e., calculate the

percentage of bitwise and arithmetic instruction) and signature

(e.g., specific constants and sequence of mnemonics) of par-

ticular cryptographic implementations. However, they are not

effective in the presence of multiple rounds of cryptographic

operations.

For example, sophisticated security software such as KeeP-

ass [6] (and KeePassX [7]) re-encrypts (with a random key

generated at run-time) all the sensitive data (e.g., passwords,

master keys) right after they have been decrypted and used

at run-time. As illustrated in Figure 1, the plaintext form

cryptographic secrets are transient in that they exist in memory

for only one instant between cipher 1 and cipher 2 operations.

KeePass has claimed [4] “even if you would dump the KeePass

process memory to disk, you couldn’t find the passwords.”

In order to recover such transient cryptographic secrets,

one needs to reliably identify not only exactly where but also

exactly when those transient cryptographic secrets will be in

memory. This requires one to accurately pinpoint the boundary

of each of the multiple rounds of cryptographic operations.

Unfortunately, existing instruction profiling and signature

based binary analysis approaches ([49], [17], [27]) tend to

think multiple rounds of cryptographic operations (e.g., Cipher

1 and Cipher 2 in Figure 1) as one big cryptographic operation

thus they are not able to recover the transient secrets in be-

tween multiple rounds of cryptographic operations. To the best

of our knowledge, no existing binary analysis could accurately

pinpoint the boundary between multiple rounds of crypto-

graphic operations and recover truly transient cryptographic

IEEE TDSC, VOL. X, NO. X, MONTH YEAR 2

secrets from the execution of a given binary executable.

In this paper, we present CipherXRay – a novel binary

analysis framework that can accurately pinpoint the boundary

of individual cryptographic operation from multiple rounds

of cryptographic operations and recover truly transient se-

crets from the execution of a potentially obfuscated binary

executable. Instead of using instruction profiling, we build

CipherXRay upon one of the defining characteristics of all

(good) cryptographic algorithms – the avalanche effect, which

refers to the desired property of cryptographic function such

that one bit change in the input or key would cause significant

change in the output.

CipherXRay has the following nice features:

• It is able to reliably detect, pinpoint and distinguish the

operations of public key cryptographic algorithms (e.g.,

RSA), block cipher (e.g., AES), and hash (e.g., SHA-

1), even if they are mingled with each other or non-

cryptographic operations, from the execution of a given

binary executable.

• It can accurately pinpoint the location, size and boundary

of the input, the output and the key buffers of each

of the multiple rounds of cryptographic operations and

determine the exact time when the input, the output, the

IV and the key of each identified cryptographic operation

will be ready. This allows us to recover the data input,

the data output, the secret key (e.g., 256-bit AES key) or

the private key (e.g., 1024-bit RSA key) used in every

identified cryptographic operation even if multiple cryp-

tographic operations are nested (e.g., encryption first and

hash second) and the cryptographic secrets are transient.

• CipherXRay can further identify certain operation modes

(e.g., ECB, CBC, CFB) of the identified block cipher and

tell whether the identified cipher operation is encryption

or decryption in certain cases.

• Since the binary code obfuscation (e.g., self-modifying

code) does not change or remove the avalanche effect

of any cryptographic operations in the original binary

executable, CipherXRay could be effective on obfuscated

binary executable as long as the avalanche effect can be

detected.

• It is quite generic in that it is not dependent on specific

implementation.

We have empirically evaluated the effectiveness of Ci-

pherXRay with OpenSSL, popular KeepassX password safe,

malware Stuxnet, Kraken and Agobot, and a number of

third party softwares with built-in chechsum and compression.

Despite that KeePassX re-encrypts all the sensitive data within

21 microseconds after they have been decrypted and used

at run-time, CipherXRay is able to recover not only all the

protected entry passwords but also the 256-bit master key

and the 128-bit IV that enable one to directly decrypt the

KeePassX password file using OpenSSL; CipherXRay is also

able to recover all block cipher secret keys from the binary

executables obfuscated by a number of packers (e.g., UPX

[10], ASPack, PECompact). CipherXRay has successfully

recovered the secret key used by Agobot and the secrets of

proprietary ciphers used by Kraken and Stuxnet malware.

To the best of our knowledge, CipherXRay is the first binary

analysis framework that can accurately 1) pinpoint the bound-

ary between multiple rounds of cryptographic operations; 2)

recover truly transient cryptographic secrets and keys that exist

in run-time memory for only a few micro seconds; and 3)

recover the type of cryptographic operations and certain modes

of operation of block ciphers. Our results demonstrate that

the current software implementation of existing cryptographic

algorithms achieves virtually no secrecy if their execution can

be monitored.

The rest of this paper is organized as follows. Section II

overviews CipherXRay. Section III describes how to detect

the avalanche effect. Section IV discusses how to recover

cryptographic secrets based on the avalanche effect. Section

V presents how to recover the type, mode of operation of

the identified cryptographic operation. Section VI presents the

empirical evaluation of CipherXRay. Section VII discusses

CipherXRay’s implication, limitation and potential counter-

measures. Section VIII overviews related works. Section IX

concludes the paper.

II. OVERVIEW OF CIPHERXRAY

A. Goals and Assumptions

Given a potentially obfuscated binary executable, we want

to uncover the cryptographic operations (e.g., encryption,

decryption, hash) and their secrets from the execution. Specif-

ically, we want to

• Determine if there is any cryptographic operation (e.g.,

encryption, decryption, hash) in its execution. If yes, we

would like to pinpoint the location of all the crypto-

graphic functions, their respective mode and the order

of execution.

• Pinpoint the location, size and boundary of the input and

the output buffers used by each cryptographic function

identified.

• Determine exactly when the input and the output of

each cryptographic function will be at which buffers.

This enables us to recover those truly transient input

and output of each cryptographic operation that will be

immediately destroyed or re-encrypted after run-time use.

• Determine if there is any key used in each cryptographic

operation. If yes, we would like to recover the key even

if it will be destroyed right after run-time use.

We assume that we can monitor the execution of the binary

executable we are interested in. While the binary executable

could be obfuscated, we assume the input and the output of

any called cryptographic functions reside in some continuous

memory buffer at run-time. The key, especially the private

key, used in the cryptographic function could be stored in a

transformed form, and it will be derived at run-time.

B. The Principle of CipherXRay

CipherXRay is designed upon the avalanche effect, which

refers to the desirable property of all cryptographic algo-

rithms (e.g., public key cryptographic algorithms, symmetric

cryptographic algorithms, hash functions) such that a slight

change (e.g., flipping a single bit) in the input would cause

IEEE TDSC, VOL. X, NO. X, MONTH YEAR 3

����������	
��

����
���

������������ �������������

(a) One bit change in the input

����������	
��

����
���

������������ �������������

(b) Another bit change in the input

Fig. 2. The Avalanche Effect of Cryptographic Function

significant changes (e.g., half the output bits flip) in the output.

Specifically, cryptographic functions are designed to exhibit

the avalanche effect despite any obfuscation might be used

in the implementation. On the other hand, non-cryptographic

code almost never has the avalanche effect. Therefore, the

avalanche effect is an fairly unique and defining character-

istic of all good cryptographic functions. This enables us to

reliably identify the cryptographic operations from potentially

obfuscated executables.

Another nice feature of the avalanche effect is that it allows

us to accurately pinpoint the location, size and boundary of

both the input and output buffers. Figures 2(a) and 2(b) show

the avalanche effect on the output buffer by changing two

different bits in the input buffer. While changing different bits

in the input buffer results different bits changed in the output

buffer, the changed bits are cohesive within the fixed output

buffer.

Let m ≥ 1 and n ≥ 1 be the number of bytes of the

input and the output of the cryptographic function respectively.

Because of the avalanche effect, any single bit change in the

input would cause 4n bits changed in the output. Here we

call those changed 4n bits in the output “touched” by the

bit change in the input. Assume the 4n bits in the output

touched by any bit in the input are random and independent

from each other, then no more than 8n
2x

bits in the output would

remain untouched after x > 1 different bit changes in the

input. In other words, changing 8 different bits in the input of

a good cryptographic function would leave no more than half

bit untouched in a 128-bit output.

Given the location of buffers a and b, one can measure

the impact of buffer a to buffer b by repeatedly changing

different bits in buffer a and comparing the corresponding

results in buffer b. This method is however not practical when

the location of the input and the output buffers is unknown.

Due to potential inherent randomness (e.g., using real-time

clock value as seed), different runs of one executable may

generate different internal states and outputs with exact the

same input. Therefore, it is desirable to be able to measure

the impact between any two chosen buffers with only one run

of a given binary executable.

If any bit in memory impacts any other bit in memory during

the binary execution, then there must exist information flow

between those two bits. If we can track the information flow

from a given source, we could measure the impact between

memory buffers and detect the avalanche effect with a single

run of the binary executable.

C. Overall CipherXRay Architecture

To handle potential dynamic binary transformations (e.g.,

packing) inside a binary executable, we build our CipherXRay

framework upon dynamic binary analysis (DBA). On the

other hand, we leverage results from static binary analysis

to help dynamic binary analysis whenever possible. Since

the cryptographic operations inside the binary executable is

generally independent from the underlying operating system,

we focus on analyzing the user space binary executables in

this proof-of-concept research.1.

Figure 3 shows the overall architecture of CipherXRay.

CipherXRay dynamically intercepts and instruments the run-

time instructions of the binary executable and collect valuable

run-time information about the binary’s execution. Specifi-

cally, CipherXRay tracks and records the taint propagation,

the address and value of the bytes involved in the taint

propagation. CipherXRay further analyzes the recorded run-

time information and checks the patterns of instruction exe-

cution and memory access for any avalanche effect. Based on

the detected avalanche effect patterns, CipherXRay identifies

cryptographic operations and determines the exact location,

size and boundary of the input buffer, the output buffer and

any key buffer involved in each of the identified cryptographic

operations and the exact time when the input, the output and

the key (if any) will be in their corresponding buffers.

III. IDENTIFICATION OF THE AVALANCHE EFFECT

Assume we are able to effectively track the information flow

across cryptographic functions, and we know the taint source

(e.g., information received from the network), we want to iden-

tify if any part of the information flow from the taint source

exhibits any avalanche effect. To the best of our knowledge,

all existing cryptographic function implementations store the

input, the output and the key of the cryptographic function in

continuous memory buffers due to efficiency considerations.

Therefore, we need ways to effectively and efficiently iden-

tify the avalanche effect between any two given continuous

memory buffers of certain sizes.

1However, our binary analysis framework could be applied to kernel space
binary executable if needed

IEEE TDSC, VOL. X, NO. X, MONTH YEAR 4

������

������	
�������

������	����

������	
�����

������	����

���

�����	

����������

����������

������	�����	

�������

�����	��������������	

���

Fig. 3. Overall CipherXRay Architecture

A. Metrics for Detecting the Avalanche Effect

Given two continuous buffers a[0, . . . m − 1] of m bytes

and b[0, . . . n−1] of n bytes, if the information flow from any

byte a[i] (i ∈ [0,m− 1]) touches one or more bytes in buffer

b[0, . . . n−1], we say a[i] taints bytes in buffer b[0, . . . n−1].
If there exists the avalanche effect from buffer a[0, . . . m− 1]
to buffer b[0, . . . n − 1], then any bit in buffer a[0, . . . m − 1]
should taint about 4n random bits in buffer b[0, . . . n − 1].
In addition, the bits in buffer b[0, . . . n − 1] tainted by each

bit in buffer a[0, . . . m − 1] should be cohesive within buffer

b[0, . . . n − 1]. In other words, any byte a[i] would leave no

more than 8n
28 = n

32 bit untainted in buffer b[0, . . . n− 1]. The

probability that any byte a[i] would leave one byte in buffer

b[0, . . . n − 1] untainted is

8n − 8
4n

8n

4n

8

< (1
2)64 (for n ≥ 2)

Therefore, if there exists the avalanche effect from the m-

byte buffer a to the n-byte buffer b, then every byte in buffer

a would taint virtually every byte in buffer b.

To quantitatively measure the avalanche effect between two

buffers, we use C(a,m, b, n) to denote the buffer a’s m-th

contribution rate to the n-byte buffer b, which is defined as the

portion of the first n bytes of buffer b that would be tainted by

every byte from the first m bytes of buffer a. C(a,m, b, n) ≈
100% if and only if there exists the avalanche effect from the

first m bytes of buffer a to the first n bytes of buffer b.

For example, Figure 4 shows that the m-byte buffer pointed

by pointer a2 has avalanche effect over the n-byte buffer

pointed by pointer b2. Therefore, C(a2,m, b2, n) will be about

100%. Because the bytes between pointers a1 and a2 do

not have avalanche effect to buffers b1[0, . . . , n − 1] and

b2[0, . . . , n − 1], both C(a1,m, b1, n) and C(a1, m, b2, n)
will be close to zero. On the other hand, C(a2,m, b1, n) ≈
n−(b2−b1)

n
(n ≥ b2 − b1) as buffer a2[0, . . . m − 1] does not

have avalanche effect over memory region b1[0, . . . b2−b1+1]
but over memory region b2[0, . . . n − (b2 − b1) + 1].

Therefore, if there exists avalanche effect from buffer

a[0, . . . m− 1] to buffer b[0, . . . n− 1], we can eventually find

the right values of a, m, b, and n that make C(a,m, b, n) ≈
100% by trying different values of a, m, b, and n. This allows

us to accurately pinpoint the location, size and boundary

of both the input and the output buffers of cryptographic

functions.

Note, when searching for avalanche effect, we only need to

consider those bytes that have taint relationship and aggregate

them together. This allows CipherXRay to complete the search

���������	
������������������������

���������������������	
��������

�
��
�
��
�

��

��

��

��

�
��
�
��
�

Fig. 4. Taint Contribution Rate between Buffers

efficiently in polynomial time.

B. How to Identify the Avalanche Effect When the Input is

Unknown?

One challenge in identifying the avalanche effect is that

the location and the size of the input buffer of the crypto-

graphic operation is unknown. To pinpoint the input buffer,

we taint any memory region and the input sources (e.g.,

file input and network input) which could potentially contain

the input buffer of the cryptographic operation and monitor

the execution of the binary. We need to periodically check

the monitored execution for the avalanche effect. Since most

software implementations of cryptographic algorithms consist

of multiple meaningful routines, it is natural to check at the

granularity of routine. Alternatively, we can check after every

x > 0 instructions have been executed or a buffer has been

updated. This approach would be more effective on those

software implementations that have very few big routines or

have lot of function inlinings. Due to space consideration, we

only present how we periodically check at the granularity of

routines.

We view the execution history as a sequence of routine

invocations ordered by their completion time. Let f1, f2, ..., fn

be the sequence of routine invocations where fi+1 completes

right after fi for any i ≥ 1. For each routine invocation fi,

we construct a set Bi which contains those tainted buffers

that have been updated in fi or are still alive when fi

completes. Note, the run-time information collected by Ci-

pherXRay contains the snapshot of the value of tainted buffers,

therefore, CipherXRay works even if the cryptographic input

or key have been destroyed right after using inside any fi.

For each Bi, we take every continuous buffer a in set Bi

as the potential input buffer, and every continuous buffer

b in sets Bi+1, Bi+2, ..., Bn as the potential output buffer

IEEE TDSC, VOL. X, NO. X, MONTH YEAR 5

1: for each fi do

2: j ← 0
3: k ← 8
4: if j + k ≤ m then

5: calculate S

6: if S is empty then

7: continue

8: else

9: for each k-byte buffer x in S do

10: if aj+k doesn’t taint every byte in x then

11: mark buffer a[j, j + k) as a block

12: j ← j + k

13: goto 4

14: end if

15: end for

16: k ← k + 1
17: goto 4

18: end if

19: end if

20: if at least one block is identified then

21: break

22: end if

23: end for

Fig. 5. Recovering Block Ciphers

respectively. By applying the metrics defined above, we can

detect the avalanche effect between any two continuous buffers

a and b. Due to the nature of the avalanche effect, we are

able to correlate the input buffer and output buffer of the

cryptographic operation if there is any, and discover the exact

range of the input buffer and output buffer even if part of

buffers a and b is not involved in the cryptographic operation.

The algorithm to pinpoint the input and output buffers is

further detailed in section IV-A.

IV. RECOVERING THE SECRETS OF IDENTIFIED

CRYPTOGRAPHIC OPERATIONS

A. Recovering the Input and the Output of the Identified

Cryptographic Operation

Given a continuous buffer a of m bytes, we use the

following algorithms to detect whether buffer a contains the

input of a cryptographic operation and if yes, further discover

boundary of the input and output buffers.

Figure 5 shows the high level algorithm for identifying

and recovering the input and the output of block ciphers.

Specifically, we examine the avalanche effect at each routine

completion fi. Every time we examine a small portion of

buffer a from offset j with a length of k. We further define

the set S as the intersection of buffers which are 1) no

less than k bytes, 2) tainted by bytes aj , aj+1, ..., aj+k−1 at

fi. The algorithm stops either when there is a block cipher

cryptographic operation identified and all of its corresponding

input and output blocks are recovered, or when all routine

invocations are checked and there is no block cipher identified.

Since hash function exhibits different dataflow patterns than

block cipher, the algorithm for hash function, shown in Figure

1: j ← 0
2: k ← 8
3: if j + k ≤ m then

4: calculate S

5: if S is empty then

6: j ← j + 1
7: goto 3

8: else

9: for every buffer b in S do

10: for l = j + k → m − 1 do

11: if NOT al taints every byte in b then

12: break

13: end if

14: end for

15: mark buffer b as the hash of buffer a[j, l)
16: end for

17: end if

18: end if

Fig. 6. Recovering Hash

6, is slightly different from that for block ciphers. Recognizing

that hash functions usually calculate the hash of a long buffer

piece by piece, we repeatedly check all routine invocations.

If there are more bytes which have 100% contribution to the

hash buffer already identified, we aggregate them into the input

buffer. Once the potential hash buffer is no longer alive or we

have checked all routine invocations, we consider this buffer

as the final hash buffer.

Public key cryptographic operations can be handled by the

same algorithm for hash function detection.

Once we have pinpointed the location, size and the boundary

of the input and output buffers of the identified cryptographic

operation, we can easily recover the content of the input from

the snapshot of the identified input buffer right before it is

consumed by the cryptographic operation and the content of

the output from the snapshot of the identified output buffer

right after the cryptographic operation has finalized the output.

Note, our algorithms can recover the input and the output even

if the generated output overwrites the input buffer.

As a concrete example, suppose we have a hypothetical

general block cipher XYZ whose block size is 16 bytes. Figure

7 shows the sketch implementation of XYZ’s encryption in

ECB chaining mode. The blockwise encryption is done in

function XYZ_Encrypt_Block(). Assume we use the XYZ

block cipher to encrypt a 32-byte plaintext buffer which is part

of a larger buffer a in which the first several bytes are not the

input to XYZ_Enc_ECB(), and the corresponding ciphertext

is stored in buffer b. For the sake of simplicity, the plaintext has

exactly two blocks, so XYZ_Encrypt_Block() is invoked

twice. Let I1 and I2 be the two invocations’ completion points

in the execution history.

The avalanche effect observed during the execution of XYZ

block cipher encryption is shown in Figure 8. At I1, as

depicted in Figure 8(a), when we apply algorithm in Figure

5, no taint propagation to any part of buffer b is detected

until the byte at offset a1 is being examined. Since at I1,

the encryption of the first block a[a1, a1 + 15] completes,

IEEE TDSC, VOL. X, NO. X, MONTH YEAR 6

void XYZ_Enc_ECB(char *input, char *output, KEY *key) {

initialization;

for each block input_block in input

{ pre-block handling;

XYZ_Encrypt_Block(input_block, output_block, key);

post-block handling;

}

}

Fig. 7. Sketch Implementation of XYZ’s Encryption in ECB Mode

�

����� ��

�������

��

�

����������	
��	�	�����������������������

���������������
�	�

��������

��������

(a) Taint Propagation at I1

�

����� ��

�������

��

�

����������	
	����	
	�����������������������

��������������	���	�

��������

��������

(b) Taint Propagation at I2

Fig. 8. Avalanche Effect of XYZ Block Cipher at I1 and I2

the avalanche effect from a[a1, a1 + 15] to b[0, 15] can be

detected. Further more, a[a1+16, a1+31] doesn’t taint any part

of buffer b, so the algorithm marks buffer a[a1, a1 + 15] as

a block.

The algorithm then continues at I2. In Figure 8(b), after the

second block of the plaintext is encrypted, a new instance of

avalanche effect from the plaintext to the ciphertext is added.

When we apply algorithm in Figure 5, in addition to the

previously detected block a[a1, a1 + 15], the new avalanche

effect from buffer a[a1+16, a1+31] to buffer b[16, 31] can be

detected and buffer a[a1+16, a1+31] and buffer b[16, 31] are

added as the new input block and output block respectively.

As a result, the algorithm successfully identifies the two-

block plaintext buffer and the corresponding ciphertext buffer.

The information regarding the two buffers is preserved for

further processing to identify the mode and type of the block

cipher operation.

B. Recovering the Secret Key and the Private Key

The security of cryptography is based on the secrecy of the

key used in the cryptographic operation. In any pure software

implementation of cryptographic algorithms, the key to be

used must be somewhere in the memory at certain time no

matter how the key is derived or obtained. Once we have

identified some cryptographic operation, we want to know if

there is any key involved. If yes, we want to identify when

and where the key will be and recover it.

The key of any cryptographic algorithm must exhibit the

avalanche effect on the data output. However, there are other

sources in the memory that could have the avalanche effect on

the data output:

• The data input to some cryptographic algorithms (e.g.,

block cipher, hash).

• The initialization vector used in the cryptographic oper-

ation.

• Internal buffers used in the cryptographic operation.

• Some static (or global) data (e.g., S-Box in AES) used

in the cryptographic operation.

• Intermediate results in key derivation.

In order to reliably recover the key, we need to distinguish

the key from above listed “noise” sources. Fortunately, we are

able to do so based on the avalanche effect pattern and data

liveness analysis:

• Distinguish the key from the data input: For a block

cipher with multiple blocks of data input, the data input

to the block cipher will be different for different block.

On the other hand, the same key will be used for each

block.

• Distinguish the key from the initialization vector: For

a block cipher with multiple blocks of data input, the

initialization vector will be used for the first block only,

while the key will be used for all blocks.

• Distinguish the key from the internal buffers used in

the cryptographic operation: While the life span of the

internal buffers in a cryptographic operation is no more

than the life span of the cryptographic operation, the life

span of the key buffer should be more than the life span

of the whose cryptographic operation.

• Distinguish the key from the static (or global) data used

in the cryptographic operation: Every byte of the key

would impact the whole cryptographic output. On the

other hand, any byte in the static data (e.g., S-Box in

AES) used in the cryptographic operation usually impact

only small portion of the cryptographic output.

• Distinguish the key from intermediate results in key

derivation: For efficiency consideration, usually the key

will be derived once even if it will be used many time.

Even if the key will be derived (repeatedly) every time

before the key will be used, we can always choose the

buffer that has been updated most recently and yet its life

span is longer than the cipher operation. In other words,

we choose the candidate key buffer that is “closest” in

time to the start of the cipher operation.

V. IDENTIFICATION OF THE TYPE OF CRYPTOGRAPHIC

OPERATIONS

Based on the avalanche effect, we can detect the existence

of cryptographic operations in the binary executable. We want

to further determine the type of the cryptographic operations

and their internals. For example, is the detected cryptographic

operation a hash or a cipher? If it is a cipher, is it a block cipher

or a stream cipher? If it is a block cipher, what operation mode

it is using? Is the cipher operation encryption or decryption?

A. Distinguishing Different Types of Cryptographic Operation

While all cryptographic operations exhibit the avalanche

effect one way or the other, the patterns of the exhibited

avalanche effect are different for different types of cryp-

tographic operations. This gives us a way to differentiate

different types of cryptographic operations.

IEEE TDSC, VOL. X, NO. X, MONTH YEAR 7

�����

����

������

(a) Hash Function

�����

������

������

(b) Cipher Function

�����

��������	
���

������

(c) Stream Cipher

�����

��������	
��

������

(d) Block Cipher

Fig. 9. Different Patterns of the Avalanche Effect between a Cryptographic Hash, a Stream Cipher and a Block Cipher Functions

1) Distinguishing a Hash from a Cipher: One of the

fundamental difference between a hash function and a cipher

is that the output size of a Cryptographic hash function is

fixed while the output size of a cipher corresponds to the

input size. 2 Therefore, we can tell the identified cryptographic

operation is not a cipher if the output is smaller than the input

involved in the avalanche effect. If the identified cryptographic

operation generates the output of fixed size with different input

of different sizes, the cryptographic operation is likely a hash.

Due to the avalanche effect, any byte in the hash input would

impact almost all bytes in the hash output. If the identified

cryptographic operation does not exhibit this pattern, it is not

a hash. Figures 9(a) and 9(b) illustrate the different patterns

of the avalanche effect between a hash function and a cipher.

2) Distinguishing a Stream Cipher from a Block Cipher:

A stream cipher generates the ciphertext by combining (e.g.,

XOR) the cleartext with the pseudorandom bitstream gener-

ated from using the secret key. Therefore, any byte of the

stream cipher input would impact only one byte of the stream

cipher output of corresponding offset, and any byte in the

key would impact the whole pseudorandom bitstream. In other

words, the data input (i.e., cleartext) of a stream cipher has no

avalanche effect on its data output (i.e., ciphertext) while its

key input does. On the other hand, both the data input and the

key input of a block cipher have the avalanche effect on its data

output. This enables us to distinguish a stream cipher from a

block cipher by analyzing the information flow patterns. Note,

certain operation mode (e.g., Integer Counter Mode) could turn

a block cipher into a stream cipher. The block cipher in such

operation mode will be considered a stream cipher. Figures

9(c) and 9(d) show the different patterns of the avalanche

effect of a stream cipher and a block cipher. Due to space

limitation, we are not able to discuss the details about how to

detect stream ciphers in this paper.

B. Detect Block Cipher Modes of Operation

When the input to a block cipher is longer than its block

size, the input needs to be partitioned into multiple blocks

before it can be processed by the block cipher. The block

cipher mode of operation determines how the block cipher

operation will be applied to multiple blocks. Different mode

of operation exhibits different pattern of the avalanche effect

between the input blocks and the output blocks. This gives us

2The output size of a cipher may be slightly bigger than the input size due
to padding

Mode of Operation Encryption Decryption

ECB 〈1 : n〉 〈1 : n〉
CBC 〈1 : n, 1 : n, 1 : n, . . .〉 〈1 : n, 1 : 1〉
CFB 〈1 : 1, 1 : n, 1 : n, . . .〉 〈1 : 1, 1 : n〉
OFB 〈1 : 1〉 〈1 : 1〉

TABLE I
PATTERNS OF THE AVALANCHE EFFECT OF DIFFERENT MODES OF

OPERATION

a way to detect and differentiate the block cipher modes of

operation.

Given input block X[0, . . . , n − 1] and output block

Y [0, . . . , n − 1], the pattern of the avalanche effect between

them could be:

• 1 : 1 every byte X[i] (i ∈ [0, n−1]) from the input block

X[0, . . . , n− 1] has 100% contribution rate to only byte

Y [i] in the output block Y [0, . . . , n − 1].
• 1 : n every byte X[i] (i ∈ [0, n−1]) from the input block

X[0, . . . , n−1] has 100% contribution rate to every byte

Y [j] (j ∈ [0, n− 1]) in the output block Y [0, . . . , n− 1].

Table I shows the patterns of the avalanche effect between

the input blocks and output blocks under different modes of

operation.

The encryption and decryption in ECB (Electronic Code-

book) mode have exact the same pattern of the avalanche

effect between the input blocks and output blocks: 〈1 : n〉.
Specifically, every byte in a given input block impacts every

byte in the corresponding output block and it has no impact

on any other output block.

The pattern of the avalanche effect in CBC (Cipher Block

Chaining) mode encryption is 〈1 : n, 1 : n, 1 : n, . . .〉 in

that every byte in a given input block impacts every byte

in the corresponding output block and all the subsequent

output blocks. The pattern of the avalanche effect in CBC

(Cipher Block Chaining) mode decryption is 〈1 : n, 1 : 1〉
in that every byte in a given input block impacts every byte

in the corresponding output block and only one byte in the

subsequent block.

The pattern of the avalanche effect in CFB (Cipher Feed-

back) mode encryption is 〈1 : 1, 1 : n, 1 : n, . . .〉 in that

every byte in a given input block impacts only one byte in the

corresponding output block and every byte in all subsequent

output blocks. The pattern of the avalanche effect in CFB

(Cipher Feedback) mode decryption is 〈1 : 1, 1 : n〉 in that

every byte in a given input block impacts only one byte in the

corresponding output block and every byte in the subsequent

IEEE TDSC, VOL. X, NO. X, MONTH YEAR 8

output block.

The encryption and decryption in OFB (Output Feedback)

mode have exact the same pattern of the avalanche effect be-

tween the input blocks and output blocks: 〈1 : 1〉. Specifically,

every byte in a given input block impacts only one byte in the

corresponding output block and it has no impact on any other

output block.

Therefore, we can reliably distinguish between ECB, CBC,

CFB and OFB modes of operation based on the patterns of

the avalanche effect as long as the block cipher input (and

output) is no less than three blocks. Specifically, we make no

distinction between block cipher in OFB (and CTR) mode and

stream cipher since OFB (and CTR) mode does turn a block

cipher into a stream cipher.

C. Distinguishing between Encryption and Decryption of

Block Cipher

As shown in Table I, the encryption and the decryption in

CBC and CFB modes have different patterns of the avalanche

effect. Therefore, we can determine whether a block cipher is

encryption or decryption if it is in CBC or CFB mode.

For block cipher in ECB mode, the encryption and the

decryption have exactly the same pattern of the avalanche

effect: 〈1 : n〉. Nevertheless, we can distinguish the encryption

from the decryption in ECB mode as long as there exists any

padding in the last block of the plaintext. Because the padding

is generated from the encryption code, it has different source

of information flow than the “real” plaintext. The last block of

the input to the block cipher encryption is the padded plaintext,

and the last block of the input to the block cipher decryption

is the ciphertext. Therefore, if we taint the source of the input

to the block cipher, only part of the last block of the input (the

plaintext) to the block cipher encryption will be tainted (the

padding part will not be tainted), and the whole last block of

the input (the ciphertext) to the block cipher decryption will

be tainted. This allows us to distinguish the encryption from

the decryption for block ciphers in ECB mode.

VI. EMPIRICAL EVALUATION

We have implemented a proof-of-concept prototype of Ci-

pherXRay upon the dynamic instrumentation framework Val-

grind [41] in Linux3. Specifically, we have built our dynamic

information analysis upon Flayer tool [22]. Besides standard

data flow tracking, we have implemented preliminary support

of tracking conditional control dependency by analyzing the

control flow and data flow together. Due to inherent limitation

of pure dynamic analysis, our current CipherXRay prototype

does not support analyzing implicit data flow.

We have evaluated CipherXRay with OpenSSL [9] crypto

library, Common-Off-The-Shelf KeePassX password manager,

encrypted C&C communication of Agobot, proprietary ciphers

used by malware Kraken and Stuxnet, a number of third

party programs that use various checksum and compression

algorithms. We have also conducted preliminary experiments

3CipherXRay is not bound to any operating system, and it can be ported
to any operating system and even VMM or hypervisor

with several packers. Note, although the source code of many

of the programs (e.g., OpenSSL, KeePassX) and malware (e.g.,

Agobot) used in our experiments were available, CipherXRay

used the binary executables only in all the experiments.

The source code was only used as the “ground truth” for

verifying the results by CipherXRay. The Windows packers

we experimented were in the binary executable form only.

All the experiments have been conducted on a PC with an

3.07GHz Intel Core i7 CPU and 4GB RAM running Linux

kernel 2.6.32.

A. Combination of Multiple Rounds of Block Cipher Opera-

tions and Hash

To evaluate CipherXRay’s capability in detecting crypto-

graphic operations and revealing the internals of the crypto-

graphic operations, we designed test program 1 which

reads the plaintext from a disk file and processes the plaintext

with multiple rounds of block cipher encryption and decryp-

tion followed by a final round of hash in the following order:

1) Blowfish Encryption in CBC mode

2) AES-256 Encryption in CFB mode

3) AES-256 Decryption in CFB mode

4) Blowfish Decryption in CBC mode

5) SHA-1 Hash

The two block ciphers, Blowfish and AES-256, use different

secret keys. In this experiment, CipherXRay should be able to

distinguish a block cipher from a hash function. For block

ciphers, CipherXRay should further identify the block size,

the operation mode, the chaining mode, the secret key, the

size and the location of the corresponding input buffer and

output buffer; for hash functions, CipherXRay should be able

to tell the size and the location of the input buffer and output

hash buffer.

To demonstrate CipherXRay’s accuracy in pinpointing the

boundary of the input buffer of a block cipher, we intentionally

skip the first 100-byte of the plaintext read from a file and feed

the remaining as the input to the Blowfish block cipher in step

1). The subsequent steps take the output of the previous step

as the input.

Table II shows the information (e.g., cryptographic function

, the address and size of the input buffer, the output buffer

and the secret key if there is one) about each block cipher and

the SHA-1 hash collected by test program 1, which will

be used as the “ground truth” in validating the CipherXRay’s

analysis results.

Table III shows the analysis output by CipherXRay. It has

similar structure to Table II with two differences: Table III

doesn’t show the block cipher algorithm because CipherXRay

is unable to identify it; Table III has also two extra columns

regarding the runtime execution information of the block

cipher operation:

1) The entry point address of the routine who is the first

to see the complete output buffer of the cryptographic

operation at its execution end.

2) The return EIP address.

By comparing the two tables, we can observe that Ci-

pherXRay successfully identified the chaining mode, the op-

eration type, the address and size of the input buffer, the

IEEE TDSC, VOL. X, NO. X, MONTH YEAR 9

Crypto Operation
Input Buffer Output Buffer

Block Size
Key

Address Size Address Size Address Size

Blowfish CBC Encryption 804b780 867 804afa0 872 8 804a740 16

AES-256 CFB Encryption 804afa0 872 804a7c0 872 16 804a760 32

AES-256 CFB Decryption 804a7c0 872 804c740 872 16 804a760 32

Blowfish CBC Decryption 804c740 872 804bf60 867 8 804a740 16

SHA-1 804bf60 867 be9236bc 20 N/A N/A N/A

TABLE II
BLOCK CIPHER INFORMATION FROM TEST PROGRAM 1

Crypto Operation
Input Buffer Output Buffer

Block Size
Key Runtime Environment

Address Size Address Size Address Size Routine Return EIP

CBC Encryption 804b780 867 804afa0 872 8 804a740 16 4099bc0 40e4463

CFB Encryption 804afa0 872 804a7c0 872 16 804a760 32 4094c60 40e533a

CFB Decryption 804a7c0 872 804c740 872 16 804a760 32 4094c60 40e533a

CBC Decryption 804c740 872 804bf60 872 8 804a740 16 4099bc0 40e4463

Hash 804bf60 867 be9236bc 20 N/A N/A N/A 407f470 407fb2a

TABLE III
BLOCK CIPHER OPERATIONS IDENTIFIED BY CIPHERXRAY

output buffer and the secret key of the first three block

cipher operations. CipherXRay also successfully identified the

hash operation which follows the last round of block cipher

operation. For the last block cipher operation, i.e., Blowfish

CBC decryption, the size of the output buffer identified by Ci-

pherXRay is 872 bytes while the actual size reported by test

program 1 is 867 bytes. The size difference is caused

by the padding of CBC mode. In CBC mode decryption,

the padding bytes will be stripped off by the block cipher

and the application only sees the stripped buffer. However,

CipherXRay tracks the decryption process according to the

avalanche effect and stops once the complete output buffer

is seen. As a result, the output buffer of a CBC mode block

cipher decryption operation identified by CipherXRay will be

the unstripped buffer. Thus, the size difference is reasonable.

To further prove CipherXRay’s accuracy, we examined the

runtime environment information for each step. By checking

OpenSSL’s crypto library’s symbol table, we found the routine

symbol names which correspond to the runtime environment

addresses listed in Table III. The routine symbol names are

shown in the table below.

Address Routine Name

4099bc0 BF_cbc_encrypt()

40e4463 bf_cbc_cipher()

4094c60 AES_cfb128_encrypt()

40e533a aes_256_cfb128_cipher()

407f470 SHA1_Final()

407fb2a SHA1()

From the two tables, we can learn that for step 1 and step 4,

the complete output buffer of the block cipher operation is first

seen when an invocation of BF_cbc_encrypt() finishes.

Additionally, this instance of routine BF_cbc_encrypt()

is invoked by bf_cbc_cipher(). For step 2 and

step 3, the complete output buffer of the block ci-

pher operation is first seen when an invocation of

AES_cfb128_encrypt() finishes. Additionally, this in-

stance of routine AES_cfb128_encrypt() is invoked by

aes_256_cfb128_cipher(). For step 5, the complete

output buffer of the SHA-1 hash is first seen when an

invocation of SHA1_Final() finished and this instance of

routine SHA1_Final() is invoked by SHA1(). The runtime

environment information reported by CipherXRay matches the

ground trueth, which validates the accuracy of CipherXRay’s

analysis result.

It took CipherXRay about 8 minutes to complete the anal-

ysis in this experiment.

B. RSA Encryption and Decryption

We have chosen to use RSA in our experiment on the public

key cryptography analysis. We have used two programs in

the experiment: one to encrypt a short message using RSA

public key and the other to decrypt the ciphertext using the

corresponding RSA private key. We have used 1024-bit RSA

key in the experiment, and the short message is less than 1024

bits. Our primary goal is to recover the RSA private key, whose

format is defined in PKCS#1 [30] as shown in Figure 10.

By analyzing the execution log of the RSA public key

encryption program, CipherXRay has been able to identify

both the modulus n and the public exponent e of the public

key.

Table IV shows the RSA private key fields identified by

CipherXRay from analyzing the execution log of the RSA

private key decryption program. It shows that CipherXRay

has successfully identified the length field and value field of

modulus n, public exponent e, prime1 p, prime2 q, exponent1

d mod (p − 1), exponent2 d mod (q − 1) and coefficient

q−1 mod p. Besides, the first byte of the key, a type field, the

length field of the version and the length field of the private

exponent are also identified. However, the value field of the

private exponent d has not been identified.

Further investigation shows that the RSA implementation

in OpenSSL uses the Chinese Remainder Theorem to cal-

culate the modulo exponentiation which does not use the

private exponent d at all. Therefore, CipherXRay does not

see any avalanche effect from the private exponent d. This

further proves the accuracy of CipherXRay. Having two prime

numbers p and q identified, it is trivial to derive the private

IEEE TDSC, VOL. X, NO. X, MONTH YEAR 10

RSAPrivateKey ::= SEQUENCE {

version Version,

modulus INTEGER, -- n

publicExponent INTEGER, -- e

privateExponent INTEGER, -- d

prime1 INTEGER, -- p

prime2 INTEGER, -- q

exponent1 INTEGER, -- d mod (p-1)

exponent2 INTEGER, -- d mod (q-1)

coefficient INTEGER, -- (inverse of q) mod p

otherPrimeInfos OtherPrimeInfos OPTIONAL

}

Fig. 10. RSAPrivateKey Format

Address Range Offset Range Size Field

04186028 - 04186028 0 - 0 1

0418602d - 0418602d 5 - 5 1

04186030 - 04186031 8 - 9 2

04186033 - 041860b2 11 - 138 128 n

041860b4 - 041860b7 140 - 143 4 e

041860b9 - 041860bc 145 - 146 2

0418613d - 0418613d 277 - 277 1

0418613f - 0418617e 279 - 342 64 p

04186180 - 04186180 344 - 344 1

04186182 - 041861c1 346 - 409 64 q

041861c3 - 04186203 411 - 475 65 d mod (p − 1)
04186205 - 04186205 477 - 477 1

04186207 - 04186246 479 - 542 64 d mod (q − 1)
04186248 - 04186248 544 - 544 1

0418624a - 04186289 546 - 609 64 q−1 mod p

TABLE IV
RSA PRIVATE KEY FIELDS IDENTIFIED BY CIPHERXRAY

exponent d from p, q, e, n. Therefore, CipherXRay has

successfully recovered the RSA private key.

In the public key recovery experiment, it took CipherXRay

about 10 minutes to recover RSA public key with a 17-bit e,

about 40 minutes to to recover the 1024-bit RSA private key.

C. KeePassX

To validate CipherXRay’s capability in recovering the cryp-

tographic secrets and keys from Common-Off-The-Shelf se-

curity applications, we chose KeePassX 0.4.3 [7], a cross-

platform clone of KeePass Password Safe [6]. Besides using

strong encryption (e.g., AES-256) to protect the password

database, KeePass and KeePassX keep the hash of the master

key and all the entry passwords encrypted in the memory at

run-time. Specifically, within 21 microseconds after the entry

passwords have been read and decrypted from the password

database, KeePassX re-encrypts all entry passwords in the

memory with a random key generated at run-time. By keeping

the cryptographic secrets encrypted in the memory, KeePass

[4] claimed that “even if you would dump the KeePass process

memory to disk, you couldn’t find the passwords.”

In order to recover the entry passwords and the master key

from KeePass or KeePassX, we have to determine exactly

when and where the entry passwords and the master key will

be briefly unencrypted in the memory.

We used KeePassX to create a 1468-byte encrypted pass-

word database of four entries. After marking the encrypted

password database as tainted, we used CipherXRay to monitor

the execution of KeePassX. The execution log of KeePassX

shows that the tainted data was used by a lot of non-

cryptographic functions in addition to cryptographic functions.

Nevertheless, CipherXRay successfully identified that there is

a 128-bit block cipher decryption in CBC mode of operation

on the data read from the database file. CipherXRay further

identified the 256-bit secret key that was derived from the mas-

ter password. Based on these information, CipherXRay deter-

mined that the IV should be 16 bytes and have 〈1 : 1〉 pattern

on the first block of the plaintext. It further identified the 16-

byte IV that corresponds to the data read from the encrypted

password database from offset 32 to 47. CipherXRay also

successfully recovered the four entry passwords in plaintext

form even though KeePassX re-encrypts them immediately

after they have been derived in the memory.

To verify the correctness of the recovered master key and IV,

we used OpenSSL command line tool to open the KeePassX

password file with the recovered 256-bit master key and 128-

bit IV. We were able to obtain all the four plaintext password

entries.

It took CipherXRay about 35 minutes to recover the 256-bit

master key and all the entry passwords protected by KeePassX.

D. Malware Agobot, Kraken and Stuxnet

To validate CipherXRay’s capability in front of real world

malware, we have experimented with Agobot, Kraken and

Stuxnet. Agobot has built-in support of SSL 3.0 to encrypt its

C&C traffic. We set up one Agobot node that communicates

with the Agobot server, and used CipherXRay to monitor and

analyze the execution of Agobot node. The Agobot negotiated

to use AES-256 CBC mode as its cipher in the TLS session

with the Agotbot server. It took CipherXRay about 15 minutes

to detect the first AES-256 CBC decryption and the 240-

byte Rijndael key schedule that has the avalanche effect on

the decrypted plaintext output inside Agobot. The first 32

bytes of the key schedule are the dynamically generated

256-bit AES key used by Agobot. Therefore, CipherXRay

automatically recovered not only the decrypted plaintext C&C

communication message of Agonot, but also the secret key

dynamically generated by Agobot at run-time.

Both Kraken and Stuxnet used proprietary ciphers to protect

its C&C communication and files. It is desirable to see if

CipherXRay could detect such proprietary ciphers that are not

cryptographically strong.

Since the C&C server our Kraken sample tried to connect to

was no longer alive, we could not monitor the live C&C traffic

from the botmaster. Instead we used the C-reimplementation

of the reverse-engineered Kraken encryption/decryption algo-

rithms [34] to encrypt a short message. CipherXRay was able

to to detect the avalanche effect from the first three 4-byte

units (key1, key2 and seed) of the 76-byte input to the 64-

byte output buffer. Specifically, every byte in key1, key2 and

seed taints all bytes of the 64-byte output. When the Kraken

encryption runs in block-wise mode, each 8-byte block in the

input has the avalanche effect on the corresponding 8-byte

block in the output, which is the typical pattern of 64-bit block

cipher in ECB mode.

Stuxnet uses a proprietary stream cipher to protect its 1860-

byte configuration file mdmcpq3.pnf. We experimented with

IEEE TDSC, VOL. X, NO. X, MONTH YEAR 11

the reverse engineered stuxnet decryption algorithm [39] to

decrypt a 1860-byte input. CipherXRay successfully detected

the avalanche effect from the key to the 1860-byte output. This

allows us to automatically recover the key and the output of

Stuxnet’s proprietary stream cipher.

In summary, CipherXRay can detect the avalanche effect

from not only standard cryptographic algorithms (e.g., AES)

but also the proprietary ciphers of Kraken and Stuxnet, and

automatically figure out the key, the output and the block size

from real world malwares.

E. Checksum and Compression

Checksum and compression are closely related to crypto-

graphic operations. We have experimented with a few third

party software that have built-in checksum and a popular

compression utility.

Open-vcdiff [1] is a encoder and decoder program for the

VCDIFF generic differencing and compression data format,

and it uses Adler32 checksum [48]. cksfv [3] uses CRC32 to

create simple file verification listings and test existing sfv files.

We used CipherXRay to analyze the executions of Open-

vcdiff and cksfv. Interestingly, CipherXRay detected the

avalanche effect from the execution of cksfv. No avalanche

effect was detected from Open-vcdiff. After further investi-

gation, we have confirmed that CRC32 checksum does have

the avalanche effect while Alder32 checksum does not. Note,

although CRC32 is not a cryptographic hash function, it is

indeed a hash function that maps a large input to a fixed

size output. Therefore, CipherXRay did perform correctly with

programs that have built-checksum. It also confirmed that

VCDIFF compression does not have the avalanche effect.

We further experimented with popular bzip2 [2] compres-

sion program. CipherXRay detected one instance of hash-

like avalanche effect to a buffer of 8 bytes. No cipher-like

avalanche effect was found in the compression algorithms used

in bzip2. We manually checked the source code of bzip2,

and we found out that bzip2 stores CSC32 checksums in two

adjacent 32-bit fields (blockCRC and combinedCRC) in the

“structure holding all the compression-side stuff.” The two

adjacent CRC32 fields together exhibit the hash-like avalanche

effect to a buffer of 8 bytes.

In summary, CipherXRay did not detect any avalanche

effect from any program tested that does not have crypto-

graphic or CRC32 operations. Since CRC32 is indeed a hash

function (not cryptographically strong though) that exhibits

the avalanche effect, CipherXRay did perform correctly with

programs using CRC32 checksum.

F. Obfuscated Cryptographic Binary

It is desirable to see how CipherXRay performs in the

presence of binary obfuscation. Since Valgrind does not sup-

port Windows application directly, we used Wine [8] to run

our obfuscated Windows programs on Linux. This allows

CipherXRay to monitor the instruction execution of Windows

binary executables.

We used the Windows binary packers ASPack, PECompact

and a cross-platform packer UPX [10] to pack a binary test

program that encrypts the plaintext read from a disk file with

AES-256 block cipher in CBC mode. ASPack and PECompact

were applied to the Windows version of the test program, and

UPX was applied to the Linux version of the test program.

In all cases, CipherXRay was able to recover the same

cryptographic secrets from the packed test program as that of

the unpacked version. CipherXRay has successfully identified

the block cipher’s operation mode, operation type (whether it

is encryption or decryption), the location, size and boundary

of the input buffer, output buffer and secret key of the AES-

256 CBC mode encryption operation. The success with the

Windows version of the packed test program confirms that

CipherXRay is independent from the underlying operating

systems.

We further packed the Stuxnet decryption test program with

UPX. CipherXRay was able to detect the same avalanche

effect and recover the key and the cryptographic output as

the unpacked version.

Note, binary obfuscation such as packing would defeat

static binary analysis. Fortunately, most analysis of our Ci-

pherXRay prototype is dynamic binary analysis, which enables

CipherXRay to be effective on certain obfuscated binary

executables.

In this experiment, it took CipherXRay less than two min-

utes recover all the block cipher secrets from the packed binary

executables without using any knowledge of the packers.

VII. DISCUSSION

Current implementation of CipherXRay assumes all the

input, output and cryptographic keys are kept in continuous

memory buffers. To the best of our knowledge, all widely used

software implementations (e.g., OpenSSL) of cryptographic

algorithms follow this convention due to performance consid-

eration. In addition, all the malwares we have experimented

have kept the cryptographic secrets in continuous buffer as

well.

In principle, deliberate obfuscation (e.g., putting the cryp-

tographic input, output and key in discontinuous buffers) does

not remove the avalanche effect among the cryptographic

input, key and output, but makes it harder to detect the

avalanche effect.

Since CipherXRay is based on information flow analysis,

it is subject to any attack on information flow analysis [19]

such as obfuscation [46], [44], [37]. White box cryptography

[50], [11] aims to protect the software implementations of

cryptographic primitives against attacks from the execution

environment. It uses all kinds of obfuscation techniques to

hide the secret or private key in cryptographic software imple-

mentation. Theoretically program obfuscation has been shown

to have some fundamental limitation [13], [47]. How much

program obfuscation could negatively impact CipherXRay is

an open problem and needs further investigation.

Note, the hash function (e.g., CRC32) and the cipher (e.g.,

proprietary cipher of Stuxnet) detected by CipherXRay are not

necessarily cryptographically strong.

As shown in the Stuxnet experiment in section VI-D, current

CipherXRay prototype is able to detect and recover the key and

IEEE TDSC, VOL. X, NO. X, MONTH YEAR 12

the output of stream ciphers. Automatic detection of stream

cipher input was partially implemented. It is a future work

to complete the implementation of stream cipher support in

CipherXRay.

Intel AES instruction set [5] aims to eliminate the major tim-

ing and cache-based attacks that threaten table-based software

implementations of AES. While we do not expect the AES

instruction set would eliminate the avalanche effect between

memory buffers, we are not able to empirically validate this

due to the fact that Valgrind does not support AES instruction

set.

VIII. RELATED WORKS

Key recovery attack against cryptosystem. Traditional

key recovery attacks assume physical access to the cryp-

tosystem (e.g., smart card), and they can use timing (e.g.,

timing attack [31]) and power (e.g., differential power anal-

ysis [32]) to recover the cryptographic secrets. Furthermore,

electromagnetic radiation has been used to recover the secret

key from a nearby cryptographic device [25]. Brumley and

Boneh [14] extended the timing attack from local to network-

based. Shamir and Someren [45] investigated how to efficiently

identify stored secret keys from large amount of data (such as

file). Recently researchers have investigated how to recover

secret keys from memory offline [29] and live applications

[28], [23]. Most of these key recovery attacks depend on

specific implementations, and they are not able to pinpoint

the cryptographic operations. Therefore, they are unable to

recover transient keys involved in multiple rounds of nested

cryptographic operations.

Binary analysis. Binary analysis has been widely used

in malware detection, analysis [42], [24], [12], [52], [33],

[20], [16] and protocol reverse engineering [18], [35], [49],

[17], [21], [36], [15]. Specifically, Reformat [49], Dispatcher

[17] used instruction profiling (i.e., ratio of bitwise and

arithmetic instructions) to detect the cryptographic operations

from the binary execution. Based on instruction profiling,

BCR [15] further extracts the interface of identified encryp-

tion/decryption functions from binary executables. Gröbert

[26], [27] used combinations of instruction profiling and

implementation specific signature (e.g., constants, sequence

of mnemonics) to identify cryptographic functions from binary

executable. One fundamental limitation of instruction profiling

based approaches is that they can not distinguish multiple

rounds of nested cryptographic operations, which would ap-

pear as one big cryptographic operation to them. Therefore,

they are not able to recover the transient cryptographic secrets

as shown in Figure 1.

Based on the observation that decrypted data is likely

to have lower entropy than encrypted data, Lutz [38] used

entropy to detect the decryption operation (only) from the

binary execution. Apparently, such method does not work

in the presence of multiple rounds of nested cryptographic

operations.

By using checksum specific heuristics, TaintScope [48] is

able to identify all kinds of checksums (e.g., CRC32, Adler32,

MD5) from a given binary execution. BitFuzz [16] used taint

degree - the number of the bytes in taint source that would taint

the current value, to detect various encoding functions (e.g.,

encryption, checksum). The key technique used in TaintScope

and BitFuzz is based on detecting the mixing of multiple

input bytes (rather than the avalanche effect), which will

detect those checksum algorithms (e.g., Adler32) that do not

exhibit the avalanche effect. Because multiple rounds of nested

cryptographic operations as a whole would exhibit the pattern

of mixing of multiple input bytes, they would appears as “one

big operation” in view of mixing based detection. Therefore,

mixing based approaches are not able to pinpoint the boundary

between multiple rounds of cryptographic operations thus they

can not recover the transient cryptographic secrets in between

nested cryptographic operations as shown in Figure 1.

In contrast, CipherXRay can accurately pinpoint the bound-

ary of individual cryptographic operation from multiple nested

cryptographic operations. This enables it to recover transient

cryptographic secrets that only exist in between nested cryp-

tographic operations.

IX. CONCLUSIONS

We have presented a novel binary analysis framework

CipherXRay. Based on the defining characteristic of all (good)

cryptographic algorithms – the avalanche effect, CipherXRay

has been shown to be able to detect public key cryptography,

block cipher and hash operations and pinpoint exactly when

and where the cryptographic input, output, IV and keys will be

in the memory even if they exist for only a few microseconds.

We have empirically validated the effectiveness of Ci-

pherXRay with OpenSSL, popular password safe KeePassX,

encrypted C&C communication of Agobot, proprietary ciphers

used by malware Kraken and Stuxnet, and a number of third

party programs. Despite KeePass re-encrypts all the entry

passwords in memory within 21 microseconds after they have

been read and decrypted from the password file, CipherXRay

is able to recover not only all the entry passwords protected

by KeePassX but also the 256-bit master key and the 128-bit

IV that enable one to directly decrypt the KeePassX password

file offline using OpenSSL library.

Our experiments demonstrate that current software imple-

mentations of cryptographic algorithms achieve hardly any

secrecy if their execution can be monitored. While this new ca-

pability helps better analyze sophisticated malwares protected

by strong cryptographic algorithms, it raises the question on

whether and to what extent a monitored execution could keep

its secrecy.

ACKNOWLEDGMENT

We would like to thank the anonymous reviewers for their

comments and suggestions that helped us improve the quality

of our paper.

REFERENCES

[1] An encoder/decoder for the VCDIFF (RFC3284) format.
http://code.google.com/p/open-vcdiff/.

[2] bzip2 high-quality data compressor. http://www.bzip.org/.
[3] Creates simple file verification (.sfv) listings and tests existing sfv files.

http://linux.softpedia.com/get/Utilities/cksfv-6520.shtml.

IEEE TDSC, VOL. X, NO. X, MONTH YEAR 13

[4] Detailed Information about the Security of KeePass.
http://keepass.info/help/base/security.html.

[5] Intel Advanced Encryption Standard (AES) Instructions Set - Rev
3. http://software.intel.com/en-us/articles/intel-advanced-encryption-
standard-aes-instructions-set/.

[6] KeePass Password Safe. http://keepass.info.

[7] KeePassX, Cross Platform Password Manager. http://www.keepassx.org.

[8] Run Windows applications on Linux, BSD, Solaris and Mac OS X.
http://www.winehq.org.

[9] The OpenSSL Project. http://www.openssl.org/.

[10] Ultimate Packer for eXecutables. http://upx.sourceforge.net/.

[11] White-Box Cryptography. http://whiteboxcrypto.com.

[12] C. K. Andreas Moser and E. Kirda. Exploring Multiple Execution Paths
for Malware Analysis. In Proceedings of the 2007 IEEE Symposium on

Security and Privacy (S&P 2007), pages 231–245. IEEE, May 2007.

[13] B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai, S. Vadhan,
and K. Yang. On the (Im)possibility of Obfuscating Programs (Extended
Abstract). In Proceedings of the 21st Annual International Cryptology

Conference on Advances in Cryptology (CRYPTO 2001), pages 1–18,
2001.

[14] D. Brumley and D. Boneh. Remote Timing Attacks Are Practical. In
In Proceedings of the 12th USENIX Security Symposium, pages 1–14,
San Diego, CA, USA, August 2003. USENIX.

[15] J. Caballero, N. M. Johnson, S. McCamant, and D. Song. Binary
Code Extraction and Interface Identification for Security Applications.
In Proceedings of the 17th Network and Distributed System Security

Symposium (NDSS 2010), February 2010.

[16] J. Caballero, P. Poosakam, S. McCamant, D. Babić, and D. Song.
Input Generation via Decomposition and Re-Stitching: Finding Bugs in
Malware. In Proceedings of the 17th ACM Conference on Computer and

Communications Security (CCS 2010), pages 413–425, October 2010.

[17] J. Caballero, P. Poosankam, C. Kreibich, and D. Song. Dispatcher:
Enabling Active Botnet Infiltration using Automatic Protocol Reverse-
engineering. In Proceedings of the 16th ACM Conference on Computer

and Communications Security (CCS 2009), pages 621–634. ACM,
October 2009.

[18] J. Caballero and D. Song. Polyglot: Automatic Extraction of Protocol
Format using Dynamic Binary Analysis. In Proceedings of the 14th ACM

Conference on Computer and Communications Security (CCS 2007),
pages 317–329. ACM, October 2007.

[19] L. Cavallaro, P. Saxena, and R. Sekar. On the Limits of Information Flow
Techniques for Malware Analysis and Containment. In Proceedings

of the 5th International Conference on Detection of Intrusions and

Malware, and Vulnerability Assessment (DIMVA 2008), pages 143 –
163, July 2008.

[20] P. M. Comparetti, G. Salvaneschi, E. Kirda, C. Kolbitsch, C. Kruegel,
and S. Zanero. Identifying Dormant Functionality in Malware Programs.
In Proceedings of the 2010 IEEE Symposium on Security and Privacy

(S&P 2010), pages 61–76. IEEE, May 2010.

[21] P. M. Comparetti, G. Wondracek, C. Kruegel, and E. Kirda. Prospex:
Protocol Specification Extraction. In Proceedings of the 2009 IEEE

Symposium on Security and Privacy (S&P 2009), pages 110–125. IEEE,
May 2009.

[22] W. Drewry and T. Ormandy. Flayer: Exposing Application Internals. In
Proceedings of the First USENIX Workshop on Offensive Technologies

(WOOT ’07), August 2007.

[23] T. Duong and J. Rizzo. Cryptography in the Web: The Case of
Cryptographic Design Flaws in ASP.NET. In Proceedings of the 2011

IEEE Symposium on Security & Privacy (S&P 2011), pages 481–489,
Oakland, CA, May 2011.

[24] M. Egele, C. Kruegel, E. Kirda, H. Yin, and D. Song. Dynamic Spyware
Analysis. In Proceedings of the 2007 USENIX Annual Technical

Conference (ATC 2007), page 233 246, June 2007.

[25] K. Gandolfi, C. Mourtel, and F. Olivier. Results of Electromagnetic
Analysis. In Proceedings of the Third International Workshop on

Cryptographic Hardware and Embedded Systems (CHES 2001), May
2001.

[26] F. Gröbert. Automatic Identification of Cryptographic Primitives in Soft-
ware. Deplima Thesis, Ruhr-University Bochum, Germany, February
2010.

[27] F. Gröbert, C. Willems, and T. Holz. Automated Identification of
Cryptographic Primitives in Binary Programs. In Proceedings of the 14th

International Symposium on Recent Advances in Intrusion Detection

(RAID 2011), September 2011.

[28] D. Gullasch, E. Bangerter, and S. Krenn. Cache Games Bringing
Access-Based Cache Attacks on AES to Practice. In Proceedings of

the 2011 IEEE Symposium on Security & Privacy (S&P 2011), pages
490–505, Oakland, CA, May 2011.

[29] J. A. Halderman, S. D. Schoen, N. Heninger, W. Clarkson, W. Paul, J. A.
Calandrino, A. J. Feldman, J. Appelbaum, and E. W. Felten. Lest We
Remember: Cold Boot Attacks on Encryption Keys. In Proceedings of

the 17th USENIX Security Symposium, pages 45–60. USENIX, August
2008.

[30] J. Jonsson and B. Kaliski. Public-Key Cryptography Standards (PKCS)
#1: RSA Cryptography Specifications Version 2.1. RFC 3447, IETF,
February 2003.

[31] P. C. Kocher. Timing Attacks on Implementations of Diffie-Hellman,
RSA, DSS, and Other Systems. In Proceedings of the 16th Annual Inter-

national Cryptology Conference on Advances in Cryptology (CRYPTO

1996), pages 104–113, 1996.
[32] P. C. Kocher, J. Jaffe, and B. Jun. Differential Power Analysis. In

Proceedings of the 19th Annual International Cryptology Conference

on Advances in Cryptology (CRYPTO 1999), pages 388–397, 1999.
[33] C. Kolbitsch, T. Holz, C. Kruegel, and E. Kirda. Inspector Gadget:

Automated Extraction of Proprietary Gadgets from Malware Binaries.
In Proceedings of the 2010 IEEE Symposium on Security and Privacy

(S&P 2010), pages 29–44. IEEE, May 2010.
[34] F. S. Leder and P. Martini. NGBPA Next Generation BotNet Protocol

Analysis. In Proceedings of the 24th Internatinal Conference on

Information Security (IFIP/Sec 2009), May 2009.
[35] Z. Lin, X. Jiang, D. Xu, and X. Zhang. Automatic Protocol Format

Reverse Engineering Through Context-Aware Monitored Execution. In
Proceedings of the 15th Network and Distributed System Security

Symposium (NDSS 2008), February 2008.
[36] Z. Lin, X. Zhang, and D. Xu. Automatic Reverse Engineering of Data

Structures from Binary Execution. In Proceedings of the 17th Network

and Distributed System Security Symposium (NDSS 2010), February
2010.

[37] C. Linn and S. Debray. Obfuscation of Executable Code to Improve
Resistance to Static Disassembly. In Proceedings of the 10th ACM

Conference on Computer and Communications Security (CCS 2003),
pages 272–280. ACM, October 2003.

[38] N. Lutz. Towards Revealing Attackers’ Intent by Automatically De-
crypting Network Traffic. Master Thesis MA-2008-08, Swiss Federal
Institute of Technology Zurich, 2008.

[39] A. Matrosov, E. Rodionov, D. Harley, and J. Malcho. Stuxnet Under
the Microscope (Revision 1.31). http://www.eset.com/resources/white-
papers/Stuxnet Under the Microscope.pdf.

[40] J. Mulroy. Attackers Get Sneakier With Encrypted Malware.
http://www.pcworld.com/businesscenter/article/243721/attackers

get sneakier with encrypted malware.html?
[41] N. Nethercote and J. Seward. Valgrind: a Framework for Heavyweight

Dynamic Binary Instrumentation. In Proceedings of the 2007 ACM

SIGPLAN Conference on Programming Language Design and Imple-

mentation (PLDI 2007), pages 89–100, San Diego, California, 2007.
ACM Press.

[42] J. Newsome and D. Song. Dynamic Taint Analysis for Automatic De-
tection, Analysis, and Signature Generation of Exploits on Commodity
Software. In Proceedings of the 12th Network and Distributed System

Security Symposium (NDSS 2005), February 2005.
[43] T. Pettersson. Cryptographic Key Recoveryfrom Linux Memory Dumps.

In Presentation, Chaos Communication Camp, August 2007.
[44] I. Popov, S. Debray, and G. Andrews. Binary Obfuscation Using Signals.

In Proceedings of the 16th USENIX Security Symposium, pages 275–290.
USENIX, Auguest 2007.

[45] A. Shamir and N. van Someren. Playing Hide and Seek with Stored
Keys. In Proceedings of the Third International Conference on Financial

Cryptography (FC 1999), pages 118 – 124, February 1999.
[46] M. Sharif, A. Lanzi, J. Giffin, and W. Lee. Impeding Malware Analysis

Using Conditional Code Obfuscation. In Proceedings of the 15th

Network and Distributed System Security Symposium (NDSS 2008),
February 2008.

[47] S. K. Udupa, S. K. Debray, and M. Madou. Deobfuscation: Reverse
Engineering Obfuscated Code. In Proceedings of the 12th Working

Conference on Reverse Engineering (WCRE 2005), November 2005.
[48] T. Wang, T. Wei, G. Gu, and W. Zou. TaintScope: A Checksum-Aware

Directed Fuzzing Tool for Automatic Software Vulnerability Detection.
In Proceedings of the 2010 IEEE Symposium on Security and Privacy

(S&P 2010), pages 497–512. IEEE, May 2010.
[49] Z. Wang, X. Jiang, W. Cui, X. Wang, and M. Grace. ReFormat:

Automatic Reverse Engineering of Encrypted Messages. In Proceedings

of the 14th European Symposium on Research in Computer Security

(ESORICS 2009), pages 200–215, September 2009.

IEEE TDSC, VOL. X, NO. X, MONTH YEAR 14

[50] B. Wyseur. White-Box Cryptography. PhD thesis, Katholieke Univer-
siteit Leuven, 2009.

[51] W. Yan, Z. Zhang, and N. Ansari. Revealing Packed Malware. IEEE

Security and Privacy, 6(5):65–69, October 2008.
[52] H. Yin, D. Song, M. Egele, E. Kirda, and C. Kruegel. Panorama:

Capturing System-wide Information Flow for Malware Detection and
Analysis. In Proceedings of the 14th ACM Conference on Computer and

Communications Security (CCS 2007), pages 497–512. ACM, October
2007.

Xin Li received the B.S. and M.S. degrees in
electrical engineering from the Huazhong University
of Science and Technology, Wuhan, China, in 2003
and 2005, respectively. After that, he worked as a
software engineer in Intel Asia-Pacific Research and
Development Ltd for 3 years. Since September 2008,
he has been pursuing the Ph.D. degree at George
Mason University. His current research interests
include dynamic binary instrumentation, dynamic
binary analysis and malware analysis.

Xinyuan Wang is an Associate Professor of Com-
puter Science at George Mason University. He re-
ceived his Ph.D. in Computer Science from North
Carolina State University in 2004 after years profes-
sional experience in networking industry. His main
research interests are around computer network and
system security including malware analysis and
defense, attack attribution, anonymity and privacy,
VoIP security, digital forensics. Xinyuan Wang is a
recipient of the NSF Faculty Early Career Develop-
ment (CAREER) Award.

Wentao Chang received the B.S. degree (Hons.)
in Computer Science and Technology from Nanjing
University, Nanjing, China in 2006, M.S. degree
in Computer Science from George Mason Univer-
sity in 2010. He is currently working towards the
Ph.D. degree in Computer Security at George Mason
University. His research interests include malware
analysis, web and mobile security.

