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Circadian and Homeostatic 
Modulation of Multi-Unit Activity in 
Midbrain Dopaminergic Structures
Karim Fifel  1,2, Johanna H. Meijer1 & Tom Deboer1

Although the link between sleep disturbances and dopamine (DA)-related neurological and 
neuropsychiatric disorders is well established, the impact of sleep alterations on neuronal activity of 
midbrain DA-ergic structures is currently unknown. Here, using wildtype C57Bl mice, we investigated 
the circadian- and sleep-related modulation of electrical neuronal activity in midbrain ventral-
tegmental-area (VTA) and substantia nigra (SN). We found no significant circadian modulation of 
activity in SN while VTA displayed a low amplitude but significant circadian modulation with increased 
firing rates during the active phase. Combining neural activity recordings with electroencephalogram 
(EEG) recordings revealed a strong vigilance state dependent modulation of neuronal activity with 
increased activity during wakefulness and rapid eye movement sleep relative to non-rapid eye 
movement sleep in both SN and VTA. Six-hours of sleep deprivation induced a significant depression of 
neuronal activity in both areas. Surprisingly, these alterations lasted for up to 48 hours and persisted 
even after the normalization of cortical EEG waves. Our results show that sleep and sleep disturbances 
significantly affect neuronal activity in midbrain DA structures. We propose that these changes in 
neuronal activity underlie the well-known relationship between sleep alterations and several disorders 
involving dysfunction of the DA circuitry such as addiction and depression.

Located in the mesencephalon, the ventral tegmental area (VTA) and Substantia nigra (SN) are the main sources 
of dopamine (DA) in the basal ganglia and forebrain1. Within these structures dopaminergic (70%), GABAergic 
(30%) and glutamatergic (2–3% only in the VTA) neurons are anatomically intermingled and electrophysio-
logically connected2. Functionally, these clusters of neurochemically diverse neurons control and/or modulate 
a broad range of behaviors including goal-directed behavior, motor actions, motivation, response to reward, 
learning, working memory, attention and decision-making3. Recently, growing interest has been shown towards 
the investigation of the role of VTA- and SN-dopaminergic and GABAergic neurons in the regulation of sleep and 
wakefulness4–9. �is interest has been partially sparked by the recognition of sleep/wake cycle alterations in many 
neurological disorders in which VTA and SN function, including DA release, is compromised, such as Parkinson’s 
disease (PD)10,11. Inversely, alterations of the sleep-wake cycle are associated with risks for a wide variety of medi-
cal conditions directly or indirectly modulated by DA neurocircuitry12–15. Sleep deprivation (SD) adversely a�ects 
cognitive performances16, impairs judgment and decision making16, biases values computations by increasing the 
emphasis on gain outcomes relative to losses17–21, intensi�es drug abuse and increases the likelihood of relapse 
a�er withdrawal22,23.

Recent animal studies as well as imaging studies in humans have shown that SD produces aberrant function-
ing in multiple sites of the dopaminergic reward circuitry and that these alterations were signi�cantly correlated 
with SD-related behavioral and functional alterations17–21. Moreover, the modulation of the DA neurotransmis-
sion has been implicated in the therapeutic e�ects of SD in major depression24 as well as in the motor bene�ts 
experienced by a subset of patients with PD25.

The sensitivity of different brain structures to SD is variable26–28 suggesting that some brain structures 
belonging to the reward neuronal network might be more responsive to SD than others. Although some of the 
brain areas a�ected by SD are part of the DA circuitry26–28, the underlying mechanism(s) by which SD a�ects the 
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mesocorticolimbic reward circuitry remain poorly understood. Additionally, whether sleep loss a�ects the elec-
trophysiology of midbrain VTA and SN structures is unknown.

We therefore set out to assess the acute and long-term e�ects of a 6-hour sleep deprivation on electrical 
impulse frequency, also called multi-unit activity (MUA), as a measure of activity of neurons in the VTA and SN. 
In addition, electroencephalogram (EEG) and electromyogram (EMG) recordings were performed to investigate 
changes in the characteristics of sleep and waking before, during and a�er SD and their correlation with neuronal 
activity in VTA and SN. Given that SD a�ects DA neurotransmission29, we hypothesize that SD will alter the 
electrical activity of these midbrain structures.

Materials and Methods
Animals and locomotor activity recordings. �e experiments were performed in rooms with monitored 
constant temperature and humidity conditions. Food and water were available ad libitum. A total of 17 adult male 
C57Bl/6JOlaHsd mice (16–20 weeks age old at the time of experiments) were used for this study. �e animals 
were purchased from Harlan (�e Netherlands). All the experiments were approved by of the Ethics Committee 
of Leiden University Medical Center and were carried out in accordance with the EU Directive 2010/63/EU on 
the protection of animals used for scienti�c purposes. Animal cages were equipped with passive infrared motion 
sensors to record general locomotor activity.

In vivo multi-unit activity, EEG, and EMG recordings. In vivo multiunit activity (MUA) and EEG and 
EMG were recorded as described previously30. In brief, for the MUA recordings, stainless steel tripolar electrodes 
(0.125 mm diameter; Plastics One, Inc., Roanoke, VA) were implanted in each animal under deep anaesthesia. 
For di�erential recordings, two electrodes were directed toward the targeted midbrain structure with 0.4-mm 
space between the electrodes. �e third electrode was placed in the cortex as a reference electrode. Measurements 
were performed from one electrode at a time. �e electrodes were placed to record from the ventral tegmental 
area (VTA, relative to Bregma: 3.16 mm posterior and 0.59 mm lateral; depth: 4.37 mm), medial substantia nigra 
(SNM, relative to Bregma: 3.16 mm posterior and 1.11 mm lateral; depth: 4.22 mm) and lateral substantia nigra 
(SNL, relative to Bregma: 3.16 mm posterior and 1.75 mm lateral; depth: 3.7 mm). �e coordinates were adapted 
from ref.31 (Supplemental Fig. S1).

For EEG, electrodes were screwed into the skull above the dura over the right cortex (2.0 mm lateral to the 
midline and 3.5 mm posterior to Bregma) and cerebellum (at the midline and 1.5 mm posterior to lambda). For 
EMG recordings, two wires with suture patches were inserted in the tissue between the skin and the neck muscle.

�e animals were connected to the recording system via a �exible cable and counterbalanced swivel system, and the 
animals were acclimated to the setup under similar (12:12 L:D, food ad libitum) conditions. �e animals’ behavioural 
activity (drinking and locomotion) was recorded continuously in order to obtain an estimate of the circadian rhythm.

Neuronal activity in the midbrain structures was ampli�ed approximately 40,000X, band-pass �ltered (500–
5,000 Hz, −40 dB/decade). Online, a window discriminator converted the action potentials into electronic pulses. 
A second window discriminator was set at a higher level to detect artefacts caused by the animal’s movements. 
Action potentials and movement-related artefacts were counted in 10-s epochs. �e analogue EEG and EMG 
signals, which were recorded continuously, were ampli�ed approximately 2,000X, band-pass �ltered (0.5–30 Hz, 
−40 dB/decade), and digitized at 100 Hz. All data were recorded simultaneously and stored on a computer hard 
disk. �e stability of the multi-unit signal and EEG recording was evaluated daily by visually inspecting the sig-
nals. �e circadian rhythm in the signal and the amplitude of the EEG were monitored before the baseline data 
were collected. As soon as the signals were stable, experimental recordings were started. A�er the experiments, 
the animals were sacri�ced to verify the recording sites. To mark the location of the electrode tip, current was 
passed through the electrode, and the brain was perfused with a bu�ered solution containing 4% paraformalde-
hyde and 8% potassium ferrocyanide.

�e brains were removed, post-�xed overnight in 4% paraformaldehyde, and cryo-protected in 30% sucrose 
solution. Free-�oating coronal sections (40 µm thickness) were cut on a freezing microtome. �e sections were 
stained with cresyl violet, mounted on gelatinized slides, dried, dehydrated in increasing gradients of ethanol, 
cleared in toluene, and cover-slipped with Depex.

O�ine, the EEG power density spectra were calculated in 10-s epochs corresponding to the 10-s epochs of 
the action potentials of the targeted hypothalamic structure using a fast Fourier transform (FFT) routine within 
the frequency range of 0–25.0 Hz in 0.1-Hz bins. EMG signals were integrated over 10-s epochs. �ree vigilance 
states—wakefulness, NREM sleep, and REM sleep—were determined visually based on standardized EEG/EMG 
criteria for rodents30. Wakefulness was scored when the EMG showed an irregular, high-amplitude pattern and 
the EEG signal was low in amplitude with relatively high activity in the theta band (6–9 Hz). NREM sleep was 
scored when EMG amplitude was low, and the EEG amplitude was higher than during wakefulness, with high 
values in the slow wave range (1–4 Hz). REM sleep was scored when the amplitude of the EMG and EEG were low, 
and the EEG showed relatively high values in the theta range. Epochs containing artefacts in the electrical signal 
or in the EEG signal (observed during the scoring of the vigilance states) were excluded from the analysis of the 
neuronal activity and EEG spectral analysis. Over the 3 days of recordings, on average 31.4 (±9.7) 10-seconds 
epochs per day and per animal were excluded because of electrical artefacts of the signals. �is correspond to 
2.2% of the entire signal analysed per animal.

All MUA data and EEG power density data were calculated relative to the respective mean values recorded 
during NREM sleep over the 24-h baseline L:D period. �is enabled us to calculate mean values over all animals. 
To analyse changes of EEG power density in SWA and changes in neuronal activity at vigilance state transitions, 
intervals with a duration of 4min containing artefacts-free transitions from one vigilance state (VS1) to another 
(VS2) were selected by the following criteria30: (A) In the 2 mins preceding the transition, at least 75% had to be 
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scored as VS1, and not more than two epochs of VS2 should occur. (B) In the 2 mins a�er the transition, at least 
75% had to be scored as VS2. (C) Furthermore, the three 10-s epochs preceding and following the transition had 
to belong to the vigilance state corresponding to the transition.

Sleep deprivation. A previously validated method using an enriched, novel environment32 was used to 
stimulate spontaneous exploratory wakefulness without inducing stress. SD was performed during the �rst 6 
hours of the light-dark cycle. �e duration of 6 h was chosen to avoid potential stress e�ects that might be precip-
itated following a longer period of SD. Clean bedding, food, water, toys, and novel nesting materials were used 
as stimuli to stimulate wakefulness. During the SD episode, the animals were monitored via their online EEG 
signal. Whenever the animals appeared to be entering NREM sleep—or if an increase in slow wave amplitude was 
observed—new material was introduced to the cage of the animal.

Statistical analysis. Data were analysed using SigmaStat version 12.0. All summary data are reported as the 
mean ± s.e.m. Statistical signi�cance was determined using one-way ANOVA (Fig. 1A,C,E; Fig. S2A–H; Table 1; 
Fig. S5A–L), paired Student’s t-test (Fig. 1B,D,F), cosinor analysis (Fig. 1A,C,E, Fig. S2A–H), a repeated-measures 
ANOVA, with time, neuronal activity, sleep state, and power density considered as repeated measures coupled 
to Dunnett post hoc analysis in the case of signi�cance (Fig. 2A–F; Fig. 3A–L; Fig. 4A–E; Fig. S6A–F; Fig. S7A–F; 
Fig. S8A–F; Fig. S9A–F), second order polynomial regression (Fig. 4; Fig. S2) or simple linear regression (Fig. S4A–F; 
Fig. 5A–F; Fig. 6A–F). p-values are indicated in the text and the �gure legends. Di�erences were considered signi�-
cant when p < 0.05.

Results
Daily and circadian modulation of MUA in the VTA and SN. Baseline recording of both EEG/EMG 
polysomnography and MUA in VTA and SN were obtained under both 1 day of light/dark (LD) cycle followed by 
1 day of constant darkness (DD). As previously shown33, mice spent 62.3% of their time asleep during the light- 
and subjective day-periods in LD and DD respectively (Supplemental Fig. S2A–C). Cortical EEG power densities 
(between 0–25 Hz) also showed a dynamical change over time in LD and DD (Supplemental Fig. S2D–H). �e 
EEG slow-wave activity (SWA, EEG power between 0.1 and 4 Hz during NREM sleep) is considered to be the best 
physiological indicator of sleep pressure33–35. It peaked in early rest phase and decreased progressively to reach 
low levels in late rest phase at the transition to the active phase in both LD and DD. During the active phase, sleep 
pressure builds up34 as evidenced by the progressive increase in SWA. In both LD and DD, it reached a maximum 
at the transition to the rest phase (LD: R2 = 0.7, p < 0.0001; DD: R2 = 0.64, p < 0.0001, second order polynomial 
regression analysis, Supplemental Fig. S2D, E). Recently, EEG power in the theta and higher beta (15–35 Hz) were 
shown to track sleep need during wakefulness36,37. We therefore extracted power density from waves in this fre-
quency range from the EEG signals during wakefulness and analyzed their evolution over LD and DD. We found 
that the dynamic of the power density of theta activity (6–9 Hz) during waking in both LD and DD parallels the 
evolution of SWA in NREM sleep (Supplemental Fig. S2G) consistent with published data in rats36. In addition, 
power density in the low beta range (12.5–25 Hz) showed no signi�cant circadian modulation (Cosinor analysis, 
Supplemental Fig. S2H) although two-way ANOVA revealed signi�cant di�erences over the day between LD and 
DD (p = 0.002, Supplemental Fig. S2H).

MUA recording were performed in the VTA (n = 6) and SN (n = 11). DA neurons within the VTA and SN are 
molecularly, anatomically and functionally heterogeneous38. Two populations of DA neurons, corresponding to 
medial-SN and lateral-SN, have been recently identi�ed based on molecular as well as electrophysiological char-
acteristics39,40. We therefore, distinguished between medial and lateral recordings obtained from SN (SNM, n = 5 
and SNL, n = 6 respectively). In the VTA, a signi�cant daily (in LD) and circadian (in DD) modulation of MUA 
was found with high levels during the dark phase and subjective night and low levels during the light phase and 
subjective day (p < 0.001, One-way ANOVA and cosinor analysis, Fig. 1A) in phase with the behavioral rhythm 
of the animals (Fig. 1A, Supplemental Fig. S2A). No circadian modulation of MUA was found under either of the 
conditions in the SN region (One-way ANOVA and cosinor analysis, Fig. 1A). Examples of individual raw data of 
MUA are shown in Supplemental Fig. S3.

A vigilance state-dependent modulation of neuronal activity in both VTA and SN was found (Table 1, 
Supplemental Figs S4, S5). �e �ring rates were higher during wakefulness and REM sleep compared to NREM 
sleep (Table 1, Supplemental Fig. S4). �is di�erentiation of �ring rates between states, together with the noc-
turnal distribution of sleep and waking could be the cause of the circadian modulation of MUA. On the other 
hand, intrinsic changes in neuronal activity could also result in a circadian modulation of MUA. To disentangle 
these two factors, we analyzed the patterns of neuronal activity separately for waking (Fig. 1C) and NREM sleep 
(Fig. 1E). �e VTA was the only structure that showed a daily and circadian modulation of total MUA (p < 0.001, 
One-way ANOVA, Fig. 1A). During NREM sleep, VTA and SNL showed a signi�cant modulation during NREM 
sleep in both LD and DD while the modulation in SNM was not signi�cant (Fig. 1C). None of the structures 
showed a signi�cant daily or circadian modulation during waking (Fig. 1E). To compare the rhythms between 
VTA and SN, we extracted the amplitudes from the Cosinor �ts of each individual rhythm (Fig. 1B,D,F). Unlike 
the robust rhythms of MUA in the SCN41, the amplitude of MUA rhythms we recorded in the VTA and SN 
were lower (Fig. 1B,D,F) and were comparable to the published MUA recordings in the SN in rats42. We found 
no di�erence in the robustness of the MUA rhythms between LD and DD under all vigilance-state conditions 
(Fig. 1B,D,F).
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SD induces long-lasting alterations of MUA in the VTA and SN. To assess the consequence of increased  
sleep pressure on the MUA of VTA and SN, mice were challenged with a 6 h sleep deprivation. As shown 
before33,34, the animals responded to the SD by spending 6.4% more time in sleep (NREM and REM sleep) during 
the 16 h following SD. In the 2nd day following SD, the animals fully recovered as values returned to baseline levels 
(Supplemental Figs S6 and S7).

During SD, all investigated midbrain areas showed an increase in neuronal activity (Fig. 2A,B,C), and a�er SD, 
a sustained decrease in activity was observed. In both SN areas, neuronal activity dropped a�er SD to levels below 
control. Although this decrease did not reach signi�cance in all time points, this decrease in activity lasted dur-
ing the whole 42 h recorded following SD and pre-SD levels were not fully recovered mainly in SNL (Fig. 2B,C). 
No signi�cant alterations of MUA rhythms were found on the 2nd day following SD (Cosinor analysis, P > 0.05, 
Fig. 2A,B,C).

Because changes in vigilance states in�uenced neuronal �ring rate (Table 1, Supplemental Figs S4, S5) and SD 
induced alterations in sleep/wake architecture (Supplemental Fig. S6), the alterations observed in the MUA of the 
VTA and SN (Fig. 2) could be due to either changes in sleep/wake distribution or intrinsic changes in electrical 
activity caused by SD, or both. To discriminate between these two factors, we analyzed the patterns of neuronal 
activity separately for waking and NREM sleep (Supplemental Figs S8 and S9). We found that the decrease in 

Figure 1. Daily and circadian modulation of MUA means in the VTA, SNM and SNL over respectively Light-
Dark (LD, Black) and constant darkness (DD, red) cycles. Total (A), NREM sleep related (C) and wakefulness-
related (E) MUA are displayed in 1-hour bins as a percentage of the mean activity during NREM sleep over 
LD cycle. �e light and dark phases of LD cycles are indicated by the white and grey backgrounds respectively. 
(B,D,F) show the cosinor amplitudes of MUA rhythms. Error bars represent s.e.m. ns: not signi�cant. (One-way 
ANOVA and Cosinor analysis in A,C,E and t-test in B,D,F).

Midbrain Structure Wakefulness REM Sleep

SN-Lateral (n = 6) 137.4 ± 4.1* 141 ± 4.6*

SN-Medial (n = 5) 145.2 ± 6* 149.1 ± 9.1*

VTA (n = 6) 183.7 ± 28.7* 145.5 ± 6.2*

Table 1. Vigilance states modulation of neuronal activity in the VTA, SNM and SNL. MUA activity is calculated 
as a percentage of the mean activity during NREM sleep over 24 h (set as 100). All midbrain structures increased 
their neuronal �ring rate during wakefulness and REM sleep. *p < 0.001.
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MUA in the VTA and SN a�er SD was evident both during wakefulness (Supplemental Fig. S8) and NREM sleep 
(Supplemental Fig. S9). Notably, the decrease in MUA was maintained even a�er the normalization of the vigi-
lance states during the 2nd day following SD (Supplemental Figs S8 and S9).

To further investigate the extent of SD-induced alterations of neuronal activity in relation to sleep/wake states, 
we analyzed the dynamic of neuronal activity at di�erent vigilance state transitions (Fig. 3). Although the activity 
in all structures maintained a vigilance state-dependent modulation with highest activity during REM sleep and 
waking, there was a general decrease in neuronal activity in all states a�er SD except for MUA during the transi-
tion wake to NREM sleep in the VTA that showed a non-signi�cant increase during the 2th day a�er SD (Fig. 3). 
Collectively, our results show that SD induces long-lasting depression of the overall MUA in the VTA and SN 
which was evident in all vigilance states.

Cortical EEG power densities are unreliable markers of MUA alterations in the VTA and SN. During  
NREM sleep, cortical activity is dominated by slow waves whose amplitude and incidence is quanti�ed using 
spectral analysis of the EEG power density of cortical slow (0.1–1 Hz) and delta wave (1–4 Hz) oscillations34. 
�is measurement -called SWA- is considered the most reliable index of sleep homeostasis34,43 and has been 
shown to re�ect dynamic changes in neuronal activity in the cortex35,44,45. �is also applies to the striatum under 
basal LD conditions46,47. Whether SWA dynamics correlate also with the alterations in neuronal activity that we 
found in the VTA and SN a�er SD is currently unknown. We therefore examined whether the changes in SWA 
faithfully mirror the SD-induced changes in neuronal �ring in the VTA and SN. During baseline, and consist-
ent with previous studies30,35,44, both slow wave (0.1–1 Hz, R2 = 0.61, p < 0.0001, polynomial regression analysis, 
Fig. 4A) and delta wave (1–4 Hz, R2 = 0.7, p < 0.0001, polynomial regression analysis, Fig. 4B) activity decreased 
during the day (i.e. the sleep phase) and increased during the night (i.e. the active phase). A similar pattern was 

Figure 2. Long-term e�ects of 6 hours of sleep deprivation (SD) on neuronal activity in the VTA and SN. 
(A,C,E) Time course of mean neuronal activity in the ventral tegmental area (VTA, n = 6), medial substantia 
nigra (SNM, n = 5) and lateral substantia nigra (SNL, n = 6) measured over three consecutive 24-hour periods. 
Activity is displayed in 1-hour intervals as a percentage of the mean activity measured during NREM sleep 
during the baseline day. SD was induced during the �rst 6 hours of the �rst day a�er baseline, and activity was 
measured during the 1st (red) and 2nd (blue) days a�er SD. For comparison, the data recorded during the baseline 
day in (A,C,E) are triple-plotted (black lines). �e light and dark phases of LD cycles are indicated by the 
white and grey backgrounds respectively. During SD and in both the VTA (A) and SN (C,E) neuronal activity 
increased signi�cantly compared to baseline. Triangles indicate signi�cance with p < 0.05 (two-way repeated 
measures ANOVA followed by Dunnett’s test). (B,D,F) Relative mean neuronal activity measured in 6 h-bins in 
the VTA (B), SNM (D) and SNL (F) during control day (black bars), Post-SD1 (red bars) and Post-SD2  
(blue bars). VTA, Ventral Tegmental Area; SNM, Medial Substantia Nigra; SNL, Lateral Substantia Nigra.
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Figure 3. Multi-unit activity during vigilance state transitions during baseline (black), SD day (red) and 
post-SD (blue). Time course of the VTA (A–C), SNM (D–F) and SNL (G–I) neuronal activity and EEG 
slow-wave activity (power density 0–4 Hz) at the transition from NREM to REM sleep (A,D,G,J), NREM 
to REM sleep (B,E,H,K) and wake to NREM sleep (C,F,I,L) during the 2 min before and a�er the vigilance 
state transition. �e curves connect 10s mean-values calculated over the entire LD, SD and post-SD days. All 
variables are expressed as a percentage of the mean activity during NREM sleep over baseline. All changes at 
the transition were signi�cant (p < 0.001, ANOVA factor ‘time’ over 24 10-s epochs). Black lines: Control day; 
Red lines: Post-SD1; Blue lines: Post-SD2. Additionally, red and blue triangles indicate signi�cant changes of 
neuronal activity during SD and post-SD days (two-way repeated measures ANOVA followed by Dunnett’s test).



www.nature.com/scientificreports/

7SCIENTIFIC REPORTS |  (2018) 8:7765  | DOI:10.1038/s41598-018-25770-5

also observed for the spindle frequency (7–15 Hz) activity (R2 = 0.67, p < 0.0001, polynomial regression analysis, 
Fig. 4C). A�er SD, both slow oscillations and delta wave activities were signi�cantly higher than baseline for 6 
and 5 hours respectively (Fig. 4A,B) while spindle frequency activity remained higher than baseline for 15 hours 
a�er SD (Fig. 4C). During the 2nd day a�er SD, spindle frequency activity returned to baseline values (Fig. 4A–C). 
�ese results show that the dynamics of SWA do not re�ect the electrophysiological alterations measured in the 
VTA and SN. Alterations in the latter were found to persist long a�er SWA returned to baseline (compare Fig. 2 
with Fig. 4).

�e correlation analysis between the changes in the delta-wave (1–4 Hz) activity and MUA during NREM 
sleep was either not signi�cant (in the case of the VTA) or weakly positive in the case of SN-M and SN-L during 
both baseline and a�er SD (Fig. 5). �e correlations with Slow oscillations (0.1–1 Hz) activity were positive a�er 

Figure 4. Changes in cortical EEG power density following 6 h SD. (A–E) Time course of mean percentages 
of EEG slow oscillations activity (A), Delta wave activity (B), spindle frequency activity (C) during NREM 
sleep, and theta activity (D) and beta activity (E) during waking over the 72 h experimental protocol. Data are 
presented as a percentage of the mean activity (±s.e.m.) over the 24 h baseline day and averaged in 1h bins. �e 
traces of the baseline day are triple-plotted in black for easy comparison. Values during the 6 h SD in (A–C) are 
omitted because the remaining ≈10% of NREM during this period are in�uenced by the SD intervention. �e 
light and dark phases of LD cycles are indicated respectively by white and black shading in the background. 
Triangles indicate signi�cance with p < 0.05 (two-way repeated measures ANOVA followed by Dunnett’s test).
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SD in both SN-M and SN-L (Fig. 5C,E). Although not signi�cant during baseline in the VTA, this correlation 
was much weaker during post-SD1 and not signi�cant during the 2nd day post-SD (Fig. 5A). �ese results reveal 
a regional di�erence in the sensitivity of midbrain DA structures to sleep deprivation with the VTA being insen-
sitive to increased sleep pressure relative to SN.

As an alternative, other frequencies in the EEG may better represent the long-term changes in neuronal activ-
ity in the VTA and SN36,37. �eta (6–9 Hz) power density during wakefulness showed a progressive increase 
during SD (Fig. 4D). A�er SD, it remained higher compared to baseline during the �rst 4h a�er SD (Fig. 4D). �e 
power density of low beta (12.5–25 Hz) oscillations during wakefulness showed also a signi�cant increase during 
SD but rapidly decreased to baseline value 1h a�er SD (Fig. 4E). �e pattern of both theta and beta power density 
a�er SD also does not re�ect the changes in neuronal activity observed in the VTA and SN during wakefulness 
(compare Fig. 4D,E with Supplemental Fig. S8). �e correlations between changes in theta activity and beta activ-
ity with changes in MUA during wake were positive for both the SN-M and SN-L (Fig. 6B,C,E,F). For the VTA, 
the correlation with theta activity during baseline was much weaker or not signi�cant a�er SD (Fig. 6A) while 
the correlations with beta activity were negative before and a�er SD (Fig. 6D). �ese results con�rm the regional 
di�erence in the sensitivity and responses of the VTA and SN to di�erent brain states. Furthermore, our �ndings 
indicate that although EEG power density correlated with neuronal activity in midbrain VTA and SN structures, 
the changes in the EEG merely mirror the long-lasting changes of neuronal activity patterns induced by SD in 
midbrain dopaminergic structures.

Discussion
Here, we investigated the relationship between changes in environmental light, circadian and homeostatic com-
ponents of sleep/wake behavior on the one hand and neuronal activity in midbrain’s VTA and SN on the other. A 
modest daily and circadian modulation of MUA was found in the VTA while in the SN, no signi�cant circadian 
oscillation was found. Additionally, changes in the vigilance states was associated with a signi�cant modulation 
of MUA in both the VTA and SN. �e main �nding of this study consists of the long-term alterations of MUA in 
these structures following a 6 h episode of sleep deprivation. Importantly, these alterations outlasted the changes 
in the density of cortical EEG waves which recovered from SD-related e�ects maximum 18 h following SD. �is 
study shows that previously reported SD-related alterations within the reward circuitry29 could result from alter-
ations in neuronal activity of midbrain DA structures precipitated by SD.

Daily modulation of neuronal activity in the VTA and SN. �e environmental light-dark cycle exerts 
a powerful synchronizing e�ects on physiological and behavioral rhythms48. To investigate the in�uence of LD 
on the rhythm of MUA as well as the potential circadian modulation of neuronal activity in the VTA and SN, we 
recorded under both LD and DD conditions. We found no signi�cant daily and circadian oscillations of MUA 
�ring rates in both subdivisions of SN while in the VTA a signi�cant daily and circadian modulation of MUA 
was found. However, the amplitude of the MUA rhythms was about 6-fold lower compared to the robust rhythms 
reported in the SCN41,42.

Our recordings consist of multi-unit activity from the population of neurons surrounding the tip of the elec-
trode regardless of the neurochemical identity of neurons. In both the VTA and SN, DA (≈70%) and GABA 
(30%) neurons are intermingled1. �erefore, the neural activity rhythms we recorded in these areas should be 
regarded as an estimation of the average activity of these two populations of neurons. A minority (2–3%) of 
neurons in VTA are glutamatergic1 and therefore, their contribution will be small compared to DA and GABA 
neuronal activity49.

Several monoaminergic neurons in the brain (e.g. norepinephrine, serotonin, acetylcholine and histamine) 
show robust vigilance state-dependent variation in �ring rates, with high activity during waking and with pauses 
either in NREM or REM sleep50. In contrast, DA neurons in the VTA and SN do no signi�cantly alter their �r-
ing rate across quiet wakefulness and sleep states51–56. Furthermore, within any vigilance state, DA neurons do 
not display a circadian modulation of their �ring rates51. �e only slight but signi�cant change in �ring rates 
of DA neurons in both the VTA and SN is a 20% increase in �ring rates with active waking compared to all 
other states51,52,55,56. Vigilance state changes in �ring patterns (regular vs bursting pattern) have been shown 
in the VTA57 and SN58. �ese alterations have been associated either with rewarding states59 or spontaneous 
movement51,60 during wakefulness. In contrast, GABAergic neurons undergo robust �ring rate changes with 
sleep-wake vigilance states (50% and 130% increase in respectively active wake and REM sleep relative to SWS) 
in both the VTA54,61 and SN54. �is speci�c vigilance state-dependent modulation of GABA neurons could also 
explain the low amplitude of MUA rhythms we found in both the VTA and SN given that GABA neurons account 
for only 30% of the total number of neurons in these structures. However, other factors such as weak neuronal 
connectivity with the central clock in the SCN could also account for the low amplitude of MUA rhythms. �e 
absence of vigilance state-dependent variation in �ring rate of DA neurons51–56 suggest that the robust rhythmic 
modulation of DA concentration in the brain is driven by other mechanisms such as the circadian modulation of 
DA re-uptake by DA transporters62.

We show that MUA rates in both VTA and SN undergo robust arousal-state-dependent changes with higher 
activity in REM sleep and wake compared to NREM sleep. �is mirrors the pattern of changes in DA con-
centration in both the cortex and striatum63. �e sharp changes seen in the NREM sleep to wake and wake to 
NREM sleep transitions are likely to re�ect the sum of �ring rate changes in presumed DA and GABAergic neu-
rons51,52,54–56,61. �e changes in MUA �ring rates in SN at the NREM to REM sleep transition is likely to re�ect 
changes in the activity of GABAergic neurons54 since DA neurons do not alter their �ring rates during this tran-
sition51–56. In the VTA, recent electrophysiological57 and photometry recording4 showed a signi�cant increase 
in activity when the animals transit from NREM to REM sleep. �e signi�cant increase in MUA in VTA at this 
transition is therefore likely to re�ect the sum of increased �ring rates of both DA4,57 and GABA neurons61.
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Light’s influence on MUA of the VTA and SN. �e 24-h light-dark cycle has profound e�ects on mul-
tiple physiological functions48. Several lines of evidence support also a modulatory e�ect of the DA neurotrans-
mission by light. For example, electrophysiological studies in rodents have shown acute increases or decreases of 
DA neuronal activity to brief light pulses64,65. Here we show that the 24 h dynamic of VTA and SN-MUA activity 
was not altered when the animals were released into one day of constant darkness. Furthermore, the dynamics of 
MUA at the vigilance states transitions were not signi�cantly di�erent between LD and DD. �ese results suggest 
that one day of DD has only minor e�ects on the electrophysiology of midbrain VTA and SN structures in mice. 
Long-term continuous exposure to bright light66 or constant darkness67 was shown to induce profound alterations 
of the DA neurotransmission including degeneration of DA neurons. �ese alterations negatively impacted mood 
by precipitating a depressive behavioral phenotype67. Additionally, long term exposure to di�erent photoperiods 
a�ect di�erent aspects of the DA neurotransmission in both rodents68 and humans69,70. Together with our results, 
these studies suggest that prolonged exposure to altered light schedules is necessary to adversely a�ect DA cir-
cuitry and its related physiological functions.

Long-lasting effects of SD on neural activity of the VTA and SN. To investigate the electrophysio-
logical responses of midbrain VTA and SN to increased sleep pressure, we sleep deprived mice for the �rst 6 h 
of the day during which mice normally spend most of their time asleep. Previous studies on the e�ect of sleep 
deprivation on DA neurotransmission have mainly used the stressful disk-over-water method to disrupt sleep71,72. 
�is method makes it di�cult to dissociate the observed alterations from the related e�ects such as stress asso-
ciated with the method of SD73. Here, we used a method to stimulate spontaneous exploratory wakefulness by 
introducing fresh food and water and new objects into the cage without inducing stress32,74. �e choice to perform 
the SD during the �rst 6 h of the subjective day is based on the rational of the study to investigate the impact of 
homeostatic sleep pressure on the activity of midbrain DA structures. Sleep pressure is the highest during this 
time window, hence a deprivation during this interval will maximally interfere with sleep need. Recent PET and 
fMRI studies in humans conducted in stress-free laboratory settings have reported a downregulation of dopamine 
D2/D3 receptors in the striatum following 24 h total SD14,75–77. �ese studies suggest that the DA neurotransmis-
sion is a�ected by SD per se29. By directly recording neuronal MUA in the VTA and SN, we extend these �ndings 
by showing that even a 6-h SD is su�cient to induce a signi�cant and long-lasting decrease in neural activity in 
both the VTA and SN.

Because of our MUA neuronal recording method, we cannot pinpoint the neurochemical identity of neurons 
(DA or GABA) that reduced their �ring rate a�er SD. One study employing single-unit recordings of DA neurons 
both in the VTA and SN in rats found no signi�cant e�ect of SD on the �ring rate of DA neurons54. In contrast, 
GABAergic neurons in the VTA showed a robust 40% decrease in �ring rates following 24 h SD61. �us, the 

Figure 5. Correlations between neuronal activity in the VTA (A,B), SNM (C,D) and SNL (E,F) and slow 
oscillations and delta wave activities measured from EEG signals during NREM sleep. Changes in mean �ring 
rates in the VTA, SNM and SNL measured in 1-min bins as a function of the power density of slow oscillations 
(A,C,E) and delta waves (B,D,F). *p < 0.05, **p < 0.01, (Black circles: Control day; Red circles: Post-SD1; Blue 
circles: Post-SD2).
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reduced neuronal activity we found a�er SD in the VTA and SN could be attributed to reduced activity of GABA 
rather than DA neurons. �is conclusion is corroborated by electrophysiological studies showing that GABA61 
but not DA neurons51–56,58 display robust vigilance state-dependent modulations of their neuronal �ring rates. 
Furthermore, recent microdialysis experiments in rats77 as well as PET studies in humans14,76,77 have shown that 
SD does not change DA content of the striatum which is one of the main target structures of DA neurons in both 
the VTA and SN. However, another study has reported increased extracellular DA in basal forebrain during, and 
throughout the 3 recorded hours following 6 h of SD74. Because basal forebrain is innervated also by a group of 
dopaminergic neurons located in the ventral periaqueductal gray matter (vPAG) which have been shown recently 
to modulate sleep-wake states78, the increase seen in extracellular concentration of DA in basal forebrain74 could 
be attributed to the activation of vPAG DA neurons78 rather than DA neurons in the VTA and SN77,79. Future 
studies using single cell recordings or in-vivo calcium imaging are needed to assess the responses of the di�erent 
populations of DA neurons to SD as well as the relative contribution of DA vs GABAergic neurons to the altered 
electrophysiological activity we show here in the VTA and SN following SD.

Cortical EEG and VTA and SN electrophysiology. Consistent with previous studies34,44,80, the dynamic 
of cortical waves as re�ected by EEG power densities was altered by SD. We found that SWA, which comprises 
the EEG power density of cortical slow and delta wave oscillations in the range of 0.1–1 and 1–4 Hz respec-
tively, increased during the 6 h following SD. Similar dynamic was also observed for theta wave activity dur-
ing wakefulness while a more rapid recovery was observed for the beta wave activity during wakefulness. �e 
increase in spindle frequency (7–15 Hz) activity lasted longer (up to 16 h a�er SD) (Fig. 4C). However, during 
the second day following SD, the dynamic of all EEG power densities recovered their baseline pattern. Given 
that the MUA changes in VTA and SN outlasted all EEG power density changes, the question arises why the 
altered neuronal activity precipitated by SD in the VTA and SN is not exteriorized at the EEG cortical level. 
Pharmacological81–83, transgenic8, as well as recent optogenetic4,5,9 studies have established conclusively the potent 
role of DA in the modulation of the electro-cortical activity over the di�erent vigilance states. �erefore, the 
normal pattern of EEG signals (Fig. 4) as well as sleep/wake structure in the second day following SD would 
suggest an unaltered mesocorticolimbic DA neurotransmission. Microdialysis measurements of DA concentra-
tions in rats77 as well as PET studies in humans14,76,77 support this conclusion. If the suppression of VTA and SN 
MUA re�ects a decrease in the activity of GABAergic neurons in these two midbrain structures61, why is this not 
re�ected at the EEG cortical level? To date, the physiological role of GABA neurons in midbrain VTA and SN 
structures in controlling particular EEG frequency bands has not been investigated84. Anatomical studies showed 

Figure 6. Correlations between neuronal activity in the VTA (A,B), SNM (C,D) and SNL (E,F) in one hand 
and theta (A–C) and beta (D–F) activities measured from EEG signals during wakefulness. (A–F) Changes 
in mean �ring rates in the VTA (A,D), SNM (B,E) and SNL (C,F) measured in 1-min bins as a function of the 
power density of theta activity (A–C) and beta activity (D–F). *p < 0.05, **p < 0.01 (Black circles: Control day; 
Red circles: Post-SD1; Blue circles: Post-SD2).
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that GABAergic neurons in the VTA and SN project primarily to widespread subcortical areas85. �e projections 
of VTA GABAergic neurons to the prefrontal cortex are sparse85. �erefore, the potential alteration of cortical 
neuronal activity as a result of SD-related suppression of VTA and SN-GABAergic neurons61 is unlikely to sig-
ni�cantly alter EEG dynamic. Because of the dense subcortical projection of midbrain GABAergic neurons85, 
our results however, cannot exclude the possible alteration of neuronal activity (hence related-physiology and 
function) of potentially all subcortical targets of midbrain GABAergic neurons. For instance, GABAergic neurons 
in SN project densely to the thalamus86 and SD has been shown to signi�cantly increase thalamic activity during 
the day following one night of total SD26,27. �is hyperactivity response might re�ect a disinhibition as a result 
of a suppression of GABAergic neurons in the SN a�er SD. Furthermore, we have recently demonstrated that 
6 h SD induces a sustained suppression of MUA in lateral hypothalamus80 which receives also dense projections 
from VTA GABAergic neurons85 suggesting a causal link between these two structures in mediating SD-induced 
alterations of neuronal activity. Notably, our data also show that SWA, considered the most accurate index of sleep 
homeostatic pressure34 fails to reliably re�ect the duration of changes in midbrain VTA and SN neuronal activity 
following SD. Taken together, our results show that SD induces long-term alterations of neuronal activity in the 
midbrain dopamine-GABAergic structures and that these alterations do not necessarily exteriorize at the cortical 
EEG level. Because we didn’t expect SD to induce such long lasting e�ects on VTA and SN electrophysiology, we 
recorded only 42 h following SD. Longer recordings will be necessary to study the complete dynamics of recovery. 
Such data holds also relevant translational value as to understand the long-lasting impact of SD on physiological 
functions related to midbrain DA and GABA systems.

Potential mechanisms underlying the suppression of MUA in the VTA and SN. According to the 
activity-dependent metabolites homeostatic theory of brain function50, the increased metabolic rate during wake-
fulness is accompanied by the accumulation of speci�c metabolites in the extracellular milieu of the brain. �ese 
excess levels of metabolites (i.e. adenosine, GABA) passively act on the wake-promoting neuronal systems of the 
brain to dampen their activities (reviewed in50). Electrophysiologically, this leads to the slowing-down of the EEG 
signals corresponding to the initiation of sleep at the behavioral level. Although this phenomenon is not global, 
and regional di�erences in the sensitivity of di�erent brain areas to these activity-dependent metabolites have 
been shown87,88, it has been demonstrated to operate in key wake promoting areas such as basal forebrain and 
lateral hypothalamus (reviewed in50). Here we show that the correlations between changes in MUA and delta wave 
activity a�er SD were either not signi�cant (in the VTA and SN-M) or weakly negative (in SN-L). Furthermore, 
the correlations between changes in MUA during NREM sleep and slow oscillations activity a�er SD were para-
doxically positive. �e deeper NREM sleep was accompanied by higher MUA. Collectively these �ndings suggest 
that increased sleep pressure a�er SD contributes only weakly to the suppression of MUA we found in the VTA 
and SN following SD. �is conclusion is also re-enforced by the persistence of the MUA suppression even a�er 
the recovery of both sleep/wake structure and the cortical EEG dynamic. Both DA and GABAergic neurons in the 
VTA and SN receive excitatory, inhibitory and modulatory inputs from diverse cortical and subcortical areas89,90. 
�e activity of most of these structures is known to be a�ected by SD27,28,88. �erefore, the most parsimonious 
explanation of the electrophysiological alterations we found in the VTA and SN would be a local perturbation of 
the excitation and inhibitory balance because of SD-induced alteration of the activity of cortical and subcortical 
areas projecting to VTA and SN. Alternatively, SD is known to alter the expression of several neurotransmitter 
receptors which might a�ect neuronal excitability91. Whether this also applies to DA and/or GABAergic neurons 
in the VTA and SN is however not yet known.

Clinical implications. DA and GABAergic neurons are part of a brain reward network84,92. �e speci�c 
role of midbrain DA as well as GABAergic neurons in mediating reward-driven actions is well established84,93. 
Dysfunction of this system can lead to deleterious and life-threatening behaviors and emotional imbalance 
as exempli�ed by drug abuse and mood disorders92. In this study, we show that sleep states as well as sleep 
deprivation induce signi�cant alterations of neuronal activity in midbrain VTA and SN. Perhaps the clearest 
implication of our results is the well-known association between sleep deprivation and aberrant reward-related 
behavioral outcomes16–21. Using fMRI, several studies have shown that SD leads to altered responses in several 
brain areas including the striatum and the VTA17–20. Importantly, these responses were associated with sig-
ni�cant value computation biases as shown by greater emphasis on gain- relative to loss-related choices17–21. 
Furthermore, Volkow et al. have shown that SD induces a downregulation of striatal D2/D3 receptors in healthy 
volunteers14,76,77 which was associated with altered activation of a network of brain areas involved in attention75. 
Interestingly, the same downregulation of striatal D2/D3 receptors is also documented in cocaine abusers and 
short sleep duration has been recently suggested to signi�cantly account for the relationship between cocaine 
abuse and the alteration of the striatal DA neurotransmission94. Our �ndings imply that midbrain dopaminer-
gic structures are a potential neuronal center through which SD mediates these behavioral outcomes. SD has 
been also reported to confer a bene�cial e�ect on motor impairments in PD patients25. However, this �nding 
is not consistent and high degree of response-heterogeneity to SD was reported among PD patients25. Another 
clinical implication of our �nding is the well-established link between SD and depression34,95. SD is a potent 
anti-depressive therapy in patients with depression95 and recently, optogenetic manipulations revealed a crucial 
role of VTA DAergic neurons in the rapid regulation of depression-related behaviors in mice96. Taken together, 
our results suggest that alterations of the activity of midbrain DA structures (VTA and SN) contribute signif-
icantly to changes in mood and motor functions and to reported de�cits in judgement and decision making 
following sleep loss.
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