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Abstract

The most dramatic feature of life on Earth is our adaptation to the cycle of day and night. 

Throughout evolutionary time, almost all living organisms developed a molecular clock linked to 

the light-dark cycles of the sun. In present time, we know that this molecular clock is crucial to 

maintain metabolic and physiological homeostasis. Indeed, a dysregulated molecular clockwork is 

a major contributing factor to many metabolic diseases. In fact, the time of onset of acute 

myocardial infarction exhibits a circadian periodicity and recent studies found that the light 

regulated circadian rhythm protein Period 2 (PER2) elicits endogenous cardioprotection from 

ischemia. Manipulating the molecular clockwork may prove beneficial during myocardial 

ischemia in humans. MicroRNAs are small non-coding RNA molecules capable of silencing 

messenger RNA (mRNA) targets. MicroRNA dysregulation has been linked to cancer 

development, cardiovascular and neurological diseases, lipid metabolism, and impaired immunity. 

Therefore, microRNAs are gaining interest as putative novel disease biomarkers and therapeutic 

targets. To identify circadian microRNA-based cardioprotective pathways, a recent study evaluated 

transcriptional changes of PER2 dependent microRNAs during myocardial ischemia. Out of 352 

most abundantly expressed microRNAs, miR-21 was amongst the top PER2 dependent 

microRNAs and was shown to mediate PER2 elicited cardioprotection. Further analysis suggested 

circadian entrainment via intense light therapy to be a potential strategy to enhance miR-21 

activity in humans. In this review, we will focus on circadian microRNAs in the context of 

cardioprotection and will highlight new discoveries, which could lead to novel therapeutic 

concepts to treat myocardial ischemia.
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Introduction

Our sun, the most prominent mechanism of circadian entrainment, formed 4.5 billion years 

ago [1]. However, it took another 2 billion years until photosynthetic organisms completely 

changed the world: 2.4 billion years ago, some of the first organisms to appear on earth, 

cyanobacteria, acquired the ability to use sunlight via photosynthesis, producing oxygen as a 

byproduct. Oxygen thereby accumulated in the atmosphere [2] leading to The Great 

Oxygenation Event and subsequent extinction of almost all anaerobic bacteria [3]. 

Organisms that could use oxygen for respiration therefore thrived and populated the earth as 

we see today.

The emergence of sunlight and oxygen were undoubtedly two of the most dramatic 

environmental changes to influence organismal evolutionary history [2]. Biological systems 

in all organisms had to adapt to sunlight cycles and oxygen saturation to survive. As a result, 

almost all organisms on this planet are equipped with light and oxygen sensing proteins [4, 

5]. Light sensing proteins are known as circadian rhythm proteins. A single celled organism 

like cyanobacteria can directly sense light [6], but more complex multi-cellular species 

developed a light sensing machinery within the interconnected biological system. In 

mammals, sunlight is sensed by melanopsin receptors in retinal ganglion cells followed by 

an activation of nerve cells and a signaling cascade through the retino-hypothalamic tract to 

the SCN (suprachiasmatic nuclei) in the hypothalamus of the brain [7, 8]. In the SCN, core 

circadian proteins, which are CLOCK, BMAL1, PER1, PER2, CRY1, and CRY2, change 

their expression according to light-dark cycles [9]. Interestingly, this light sensing pathway 

is linked to the oxygen sensing system in mammals [10]. In fact, hypoxia inducible factor 1ζ 
(HIF1A), one of the most commonly known oxygen sensing proteins [11] belongs to the 

same protein family as CLOCK, BMAL1, PER1/2, and CRY1/2 [12]. All these proteins are 

part of the PAS domain superfamily of transcriptional regulators [13]. Indeed, it was shown 

that Hif1ζ mRNA levels cycle in a circadian manner in mouse cardiac tissue [14] and 

several investigations identified a relationship between HIF1A and the circadian clock [14]. 

The PAS domain superfamily was first described in Drosophila and abbreviated for PER, 

ARNT and SIM. The PAS domain enables proteins the ability to sense oxygen, light or 

metabolism [6]. Based on these fundamental principles, it becomes clear how important a 

robust and functional circadian system is for health and disease prevention. In fact, 

numerous diseases are known to have a circadian periodicity. Examples include myocardial 

ischemia, sudden cardiac death, stroke, thrombosis, and sepsis which vary during a 24-h 

time suggesting circadian involvement [4,5,15–17]. Recently, studies identified a protective 

role of circadian rhythm proteins in myocardial ischemia [18–21]. It was found that the light 

regulated circadian protein PER2 mediates the cardioprotective effects of ischemic 

preconditioning [15]. Ischemic preconditioning, where the heart is exposed to short, non-

lethal episodes of ischemia prior to an extended ischemia time is probably the most powerful 

cardioprotective strategy at the bench [16]. Very recent studies confirmed the 

cardioprotective role of PER2 in ischemic preconditioning [17] and additional studies found 

that hypoxia resets the circadian clock through HIF1A [18] (Figure 1). These observations 

and the relationship between circadian and oxygen sensing proteins indicates an important 

role of circadian rhythm proteins in disease states of low oxygen availability, such as 
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myocardial ischemia. Targeting these pathways is inevitable and could lead to the 

development of novel and powerful cardioprotective strategies.

Putative novel disease biomarkers with therapeutic targets include microRNAs, which 

gained the interest of many researchers in the past several years. To identify circadian 

microRNA-based cardioprotective pathways, a recent study evaluated transcriptional 

changes of PER2 dependent microRNAs during myocardial ischemic preconditioning [19]. 

Out of the 352 most abundantly expressed microRNAs, miR-21 was amongst the top PER2 

dependent microRNAs. In depth studies identified miR-21 as a cardioprotective downstream 

target of PER2 and suggested circadian entrainment via intense light therapy as a potential 

strategy to enhance miR-21 activity in humans. While this is the first study on cardiac-

specific circadian microRNAs to date, other studies showed the impact of microRNAs in 

controlling general circadian pathways. This current review will summarize recent findings 

on circadian and cardiac micro RNAs and will evaluate potential therapeutic concepts.

MicroRNAs as cardiovascular therapeutic targets

Only 1% of the human genome codes for genes that function in protein synthesis [20]. The 

remaining 99% of DNA was initially considered to be non functional. However, it is now 

well recognized that several noncoding RNAs have important biological functions [21–29]. 

Among these noncoding RNAs several subcategories exist, including long noncoding and 

small noncoding RNAs. One type of small noncoding RNAs, microRNAs, have attracted a 

lot of attention in the past few years [30]. MicroRNAs are short (22 nucleotides), interact 

with messenger RNAs, and can silence gene expression. The functional domain of 

microRNAs is the so-called seed region which is only 6–8 nucleotides long [24]. Initially, 

double-stranded RNA is formed from a precursor transcript. Primary microRNAs (pri-

microRNA) are transcribed by RNA polymerase II. The pri-microRNAs are 5′ capped, have 

a stem loop structure, and are 3′ polyadenylated. The canonical biogenesis of a pri-

microRNA transcript is cleaved by the endoribonuclease Drosha in the nucleus and 

subsequently by endoribonuclease Dicer in the cytoplasm. Noncanonical pathways that are 

independent of this canonical pathway could produce microRNAs from small nucleolar 

RNA, transfer RNA (tRNA), or Y RNA, as intermediate products. Later, the microRNA 

duplex unwinds, whereby only the guide strand, which is usually the functional unit, is 

loaded in the RNA-induced silencing complex (RISC). The complimentary strand is often 

degraded. In the RISC, the microRNA binds to its target mRNA, preventing its translation 

into a protein. The human genome harbors 1881 microRNA loci that encode for 2588 

mature microRNAs [31], indicating an important role in gene regulation. Single microRNAs 

suppress more than one gene, and microRNAs with similar seed regions may suppress a 

similar, but non-identical set of genes. Gene suppression is usually partial rather than total 

(supporting that microRNAs function to maintain cellular homeostasis), and a single gene 

can have binding sites for multiple microRNAs [21]. In general, overexpressing microRNAs 

via mimetics will suppress target genes, whereas inhibiting an endogenous microRNA will 

undo the suppression of its target gene. As repression of microRNAs is considered to be 

safer, current clinical studies mainly use microRNA inhibitors (anti-miRs[21]). Current 

difficulties for cardiovascular applications include safety issues for systemic applications: 

generally high doses are required which can compromise efficacy and safety. So far, several 
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microRNAs were identified as cardiovascular therapeutic targets and are abundantly 

expressed in the heart. For example, mir-133 is highly expressed in cardiomyocytes and 

overexpression seems to prevent hypertrophic cardiomyopathy through controlling multiple 

components of the β1AR transduction cascade [32]. Other microRNA manipulation in the 

heart, like miR-208 inhibition, were shown to be beneficial in animal models of heart failure. 

It was found that miR-208a inhibition reversed myosin switching during heart failure 

thereby improving cardiac function and remodeling during heart disease progression [33]. 

Several other microRNAs were shown to regulate the gene program that controls cardiac 

fibrosis. As such, miR-15 and miR-30 are negative regulators of fibrosis. Expression of these 

microRNAs are reduced during myocardial ischemia or upon thoracic aortic constriction 

surgery [31]. Moreover, miR-15 was found as a regulator of cardiac hypertrophy and fibrosis 

by inhibition of the TGFβ-pathway [34]. MiR-21, which was recently identified as a 

potential circadian microRNA [19] has also been studied extensively in the context of heart 

fibrosis [35]. It was found that in vivo inhibition of miR-21 attenuates the fibrotic response 

and improves cardiac function in mouse models of heart failure [36]. However, these results 

were not reproduced in a subsequent study using different anti-miRs [37], indicating current 

challenges in the therapeutic use of microRNAs.

MicroRNAs in cardioprotection from myocardial ischemia

Several microRNAs have been implicated in influencing infarct sizes after ischemia-

reperfusion (IR) injury. Examples of microRNAs found to increase cell death in IR-injury 

are miR-15 [38], miR-34 [39], miR-320 [40], miR-140 [41], miR-1/miR-206 [42], miR-92a 

[43], miR-122 [44], miR-150 [45], miR-181a [46] and miR-376b-5p [47]. MicroRNAs that 

can reduce cardiomyocyte cell death or enhance cardiac regeneration are miR-24 [48], 

miR-29 [49], miR-30 [50], mir-214 [51], miR-7a/b [52], miR-20a [53], miR-132 [54], 

miR-138 [55], miR-144/451 [56], miR-155 [57], miR-210 [58], miR-499 [59] and miR-874 

[60]. In addition, a recent study found a crucial role for miR-21 in preventing cardiomyocyte 

cell death through targeting the programmed cell death 4 gene (PDCD4 [61], Figure 2). 

Other miR-21 target genes are Fas ligand (FasL) or tensin homology deleted on chromosome 

10 (PTEN) and are also antiapoptotic [62]. Besides regulating apoptosis, miR-21 has been 

implicated in the attenuation of inflammation or in the angiogenic repair process of ischemic 

injury via a decrease of NF-kappa B or through the PTEN/AKT/ERK1-VEGF pathway, 

respectively [62]. Recent studies indicate that miR-21 also reduces hydrogen peroxide-

induced apoptosis in cardiac stem cells through PTEN/PI3K/AKT signaling [63]. Moreover, 

bone marrow-derived mesenchymal stem cells overexpressing miR-21 efficiently repair 

myocardial damage in rats [64]. Interestingly, HIF1A was identified as an upstream 

transcriptional regulator of miR-21[18]. Moreover, it was shown that HIF1A and PER2 bind 

together during hypoxia and that PER2 is essential for the regulation of HIF1A target genes 

during hypoxia [15].

In vivo studies confirmed many of these findings and identified miR-21 as a top microRNA 

in anesthetic preconditioning of the heart [65]. Exposure to volatile anesthetics, such as 

isoflurane, was shown to decrease myocardial infarct size in vivo and increase cell viability 

after oxidative stress in vitro [66]. Using anesthetic preconditioning in miR-21 deficient 

mice, however, did not mediate any cardioprotective effects [67]. Interestingly, a recent 
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study on ischemic preconditioning of the heart identified miR-21 as a top circadian protein 

PER2 dependent microRNA [19]. Similarly, an earlier study found miR-21 as the top 

microRNA in ischemic preconditioning of the heart [68]. Here, miR-21 knockdown using 

anti-miRs abolished ischemic preconditioning mediated cardioprotection. As such, ischemic 

and anesthetic preconditioning of the heart seem to merge on the same microRNA level. 

Along these lines, a recent review on anesthetic preconditioning indicated that anesthetic and 

ischemic preconditioning share similar mechanisms [66]. Having miR-21 identified as a 

major downstream target of anesthetic or ischemic preconditioning of the heart opens up 

new possibilities to target powerful endogenous cardioprotective mechanisms [69].

Circadian microRNAs

Disease development is strongly influenced by circadian rhythms and therefore researchers 

have begun to explore the potential role of microRNAs. Rhythmic control of microRNA 

expression appears to be highly conserved and has significant consequences for circadian 

timing [70]. As such several rhythmically regulated microRNAs were identified. 

Surprisingly many biologically relevant time cues, such as the daily light cycle can also 

drive rhythmic microRNA expression. Studies in Arabidopsis have recently found that 

miR-167, miR-168, miR-171 and miR-398 oscillate, with higher levels during the daytime 

than during the night [71]. However, rhythmicity of these microRNAs was not regulated by 

the circadian clock which became evident when Arabidopsis was transferred to constant 

light conditions. Under constant light, no oscillation was observed [71]. This suggests that 

light might control these microRNAs. Within humans, it would not be surprising to observe 

a similar pattern of microRNA expression driven by exogenous time cues [70]. In fact, 

findings on miR-21 expression indicated regulation by light in mice and humans [19]. In 

addition, a diurnal expression pattern and regulation of circadian rhythm pathways was 

found. However, dysregulation of miR-21 at baseline in circadian rhythm protein deficient 

mice was not shown. This could mean that oscillating microRNAs could function as 

circadian rhythm protein independent regulators of circadian rhythm dependent gene 

regulation (Figure 3).

In the mammalian SCN, microRNAs play also an important role in clock timing and 

entrainment. For example, miR-132 and miR-219 show oscillatory expression in wildtype 

mice, but not in circadian mutant mice [72]. Both microRNAs have CRE-enhancer 

sequences allowing for CREB-dependent regulation [73], but only miR-132 was shown to be 

inducible by light [72]. Moreover, miR-219 regulates the length of the circadian day and 

miR-132 modulates the phase-shifting capacity of light [72]. As miR-132 is induced by 

photic entrainment cues via a MAPK/CREB-dependent mechanism, it modulates clock-gene 

expression, and thereby attenuates the entraining effects of light. In addition, both light-

responsive miR-132 and clock-regulated miR-219 influence cellular excitability and thereby 

probably lead to changes in length and phase of the circadian clock. The expression of 

miR-122, a known regulator of liver metabolism, is also subject to circadian control. While 

the mature microRNA does not oscillate, both miR-122 precursors have a robust circadian 

expression pattern [74]. In fact, genetic deletion of miR-122 revealed changes in the 

expression of clock-controlled genes. Interestingly, REV-ERBα, a key nuclear receptor 

regulator of the circadian system, also regulates miR-122 [74]. Another clock controlled 
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microRNA, miR-142–3p, is controlled by the BMAL1/CLOCK heterodimer and, in turn, 

can target BMAL1 [75, 76]. In a different study evidence found that miR-155, a 

proinflammatory microRNA induced by TLRs (Toll-like receptors), controls BMAL1 

mRNA and protein levels in myeloid cells, leading to alterations in clock function and 

circadian control of inflammation [77]. Indeed, the free-running period in miR-155−/− mice 

was shortened when compared to wildtype mice. MicroRNA control of the circadian system 

is further supported by studies in Dicer deficient mice, in which microRNA processing is 

globally compromised [78]. These studies demonstrate that RNA interference mediated by 

microRNAs primarily affect the clock through translational control of PER in the cytoplasm, 

which delays cytoplasmic PER accumulation and thus generates a time delay in the 

circadian feedback inhibition. These studies also identified three microRNAs, miR-24, 29a 

and 30a, which affected the circadian clock through regulation of PER1 and PER2 mRNA 

stability and translation. Thus, these studies indicate microRNAs as key regulators of the 

pacemaker genes, PER1 and PER2, and for generating the time delay crucial for the 

circadian feedback loop. This evidence positions microRNAs as important and dynamic 

regulators of different aspects of circadian rhythms: Some microRNAs affect and fine-tune 

the pace of the core clock, while others influence the response to external temporal cues as 

well as behavioral and peripheral outputs. Therefore, microRNAs have the potential to 

become novel modulators of circadian rhythms and might be able to positively influence 

cardiovascular physiology (Figure 3).

MicroRNAs in Circadian Entrainment

The most concerning illness associated with clock physiology may result from a dampened 

circadian oscillator, which is observed as part of the aging process [79]. Therefore, 

researchers believe that a robust circadian timekeeping system is important for human health 

and well-being [4, 5, 80–83]. Indeed, approaches to increase entrainment and thereby the 

robustness of the clock timing process have been found to be beneficial in certain disease 

states. One study found that restricted feeding increased the circadian amplitude and could 

prevent mice from becoming obese when exposed to a high fat diet [84]. Another study 

found using short term caloric restricted feeding in mice to be cardioprotective. In addition, 

cardiac microRNA profiling of short term caloric restricted feeding was associated with the 

circadian clock [85]. Similarly, an independent study tested whether activity alters or could 

rescue a disrupted circadian system. Here, they examined the effects of wheel access on 

vasointestinal polypeptide (VIP)-deficient mice, a model that exhibits circadian deficits [86]. 

Indeed, voluntary scheduled exercise increased the amplitude of PER2 expression and 

rescued the disrupted circadian system in VIP deficient mice. Some studies on blue enriched 

light exposure on rats found similar effects on circadian rhythmicity and amplitude. In 

addition, marked positive effect on the circadian regulation of neuroendocrine, metabolic, 

and physiologic parameters associated with the promotion of animal health and wellbeing 

were observed [87]. Similarly, one study demonstrated that day/night rhythms play a critical 

role in compensatory remodeling of cardiovascular tissue, and disruption of day/night 

rhythms exacerbated disease pathophysiology [88]. Here, they used a murine model of 

pressure overload cardiac hypertrophy in a rhythm-disruptive 20-hour versus 24-hour 

environment. Echocardiographic studies revealed increased left ventricular end-systolic and 
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-diastolic dimensions and reduced contractility in rhythm-disturbed animals exposed to 

transverse aortic constriction. Considering these findings, it is compelling that light 

exposure, restricted feeding or scheduled exercise could also be cardioprotective through 

strengthening the circadian clock. Since microRNAs can be regulated by external cues such 

as light, without involvement of the circadian rhythm proteins, it is probable that light 

exposure also improves a disrupted circadian system through enhancing the amplitude of 

microRNAs and optimizing their function (Figure 4).

MiR-21, a cardiac PER2 dependent microRNA

In general, while several circadian microRNAs have been implicated in cardioprotection 

from ischemia (Table 1), studies on cardiac circadian microRNAs are scarce [85]. Recent 

profiling of PER2 dependent microRNAs in cardiac ischemia indicated a critical role for 

miR-21 [19]. In vitro studies revealed that PER2 dependent miR-21 regulates cellular 

glycolysis during cellular stress [15]. In fact, myocardial ischemia leads to the activation of 

pathways directed towards enhancing myocardial oxygen efficiency. As such, a metabolic 

switch from more “energy-efficient” utilization of fatty acids to more “oxygen-efficient” 

utilization of glucose as the main source for energy generation is pivotal to allow the 

myocardium to function under ischemic conditions [89].

Following studies on myocardial ischemia and reperfusion injury found larger infarct sizes 

and abolished light elicited PER2 cardioprotection [15] in miR-21−/− mice. In addition, 

intense light exposure in wildtype mice increased miR-21 levels. Here, mice were housed 

under 14h light and 10h dark conditions. Instead of room light (200LUX), however, intense 

light (10,000 LUX) was used. The strategy enhanced PER2 or miR-21 in murine hearts. 

These findings indicate that circadian entrainment through intense light could be the 

underlying mechanism (Figure 4). Notably, a hallmark of the mammalian circadian 

pacemaker is its ability to be entrained by light [90]. Humans are primarily entrained by 

sunlight, regardless of other external cues [91]. The greater the intensity of the light, the 

more robust the entrainment and the amplitude of the circadian rhythm. This has been shown 

by studies on melatonin suppression, indicating that humans might need brighter or more 

intense light for optimal entrainment of circadian rhythms [92]. In fact, intense light 

exposure was found to increase PER2 and glycolytic enzymes and decrease infarct size and 

troponin levels during myocardial ischemia in mice [15]. However, intense light therapy in 

the regulation of cardiac microRNAs has not yet been described. While studies on 

cardioprotective effects of light exposure in humans are missing, light induced 

cardioprotective miR-21 could be one mechanism by which intense light exposure reduced 

myocardial damage in murine studies [15]. Interestingly, the above-mentioned studies on the 

cardiac circadian microRNA miR-21 used also intense light in human healthy volunteers. 

Here, intense light exposure for 30 minutes over five days increased miR-21 or PER2 

dependent phosphofructokinase activity in plasma samples. To our knowledge, nobody 

previously analyzed human metabolic changes upon intense light therapy. However, the 

effects of intense light therapy in humans are recognized and already widely used. As such, 

intense light therapy is used to treat seasonal affective disorder [93, 94], but also might have 

effects on preventing delirium [95] or may improve sleep overall [96, 97]. Intense light 

significantly increases miR-21 in human plasma samples, which is associated with increased 
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phosphofructokinase activity (the key enzyme of glycolysis). These findings indicate that 

light is a promising strategy to activate PER2 elicited cardioprotection [15] and to increase 

the robustness of the circadian system in humans [80, 98]. More detailed studies on intense 

light therapy in humans will help us to further dissect these mechanisms.

Conclusion

Using cardiac circadian microRNAs for cardiac entrainment and concomitant 

cardioprotection seems compelling considering the reviewed research findings. However, 

several discrepancies in studies on cardioprotective microRNAs hamper the immediate 

translation from bench to bedside. One study found significantly increased infarct sizes in 

miR-21 deficient mice when compared to controls. In contrast, other studies on miR-21 null 

mice did not find any significant differences in infarct sizes during myocardial ischemia and 

reperfusion injury [52,53]. While several differences in methodologies might have 

contributed to the contrary findings, the most prominent differences were the ischemia 

times. While some studies use 60 minutes of ischemia, others have a 30-minute ischemia 

protocol. Indeed, marked differences in cardioprotective mechanisms using various ischemia 

times have been reported [54] and may explain the many differences reported on 

microRNAs in cardioprotection. In addition, miR-21 is predominantly expressed in cardiac 

fibroblasts when compared with other cell types of the heart [99] and it was found that 

miR-21 inhibition attenuates the fibrotic response and improves cardiac function in mouse 

models of heart failure [36]. However, these results were not reproduced in subsequent 

studies [37], emphasizing our current challenges in the therapeutic use of microRNAs. In 

fact, another study on bone marrow-derived mesenchymal stem cells found that 

overexpressing miR-21 efficiently repaired myocardial damage in rats [64].

Nevertheless, possible therapeutic approaches could target specific microRNAs and thereby 

limit their ability to suppress components of the core clock timing process or clock output 

genes. In fact, a robust circadian timekeeping system is important for human health and 

well-being [4, 5, 80–83]. Circadian entrainment using intense light during the day increases 

robustness and circadian amplitude of cardiac PER2, which was found to significantly 

reduce infarct sizes in an in-situ mouse model for myocardial IR-injury [15]. Administration 

of microRNAs in a time of the day dependent manner could therefore help to restore a 

weakened circadian system, improve metabolism via the increase of oxygen efficient 

pathways and thereby promote cardioprotection from ischemia. As numerous microRNAs 

have also been found to be protective in the acute setting during cardiac ischemia or 

reperfusion, administration of microRNAs during cardiac revascularization would represent 

another therapeutic approach.

There are several challenges that need to be addressed for these types of approaches to be 

implemented. For example, the timing of microRNA administration and organ-specific 

therapeutic targeting are crucial areas of investigation. In fact, one study uncovered a 

microRNA tissue-specific regulation of gene expression phase and amplitude [100]. These 

findings suggest that microRNAs function to adapt clock-driven gene expression to tissue-

specific requirements [101]. Further research is required to determine whether similar 

cardiac microRNAs exist. In general, practical application of these methods will need a 
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deeper understanding of microRNA biology, the clock, and its role in the regulation of a 

myriad of gene networks that contribute to human physiology and pathology.
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Figure 1. Mechanisms of circadian rhythms
The circadian clock is composed of a primary negative feedback loop involving the genes 

CLOCK, BMAL1, Period homologue 1 (PER1), PER2, Cryptochrome 1 (CRY1) and CRY2. 

This clockwork is composed of a set of proteins that are synchronized by daylight. Those 

proteins that belong to the so-called PAS domain superfamily. PAS stands for Period, Arnt 

and Sim, three drosophila genes in which the PAS domain was discovered. Hypoxia 

Inducible Factor 1 Alpha (HIF1A) that plays an important role in hypoxic and ischemic 

disease states also belongs to this family of PAS domain positive proteins. The PAS domain 

has been described as a binding site to allow interactions between those proteins and to 

sense oxygen or light. Recent findings indicate that low hypoxia can also regulate the 

clockwork, like light.
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Figure 2. Potential upstream and downstream targets of miR-21
MiR-21 is located on Chromosome 17 and has been found to be a hypoxia inducible factor 1 

α (HIF1A) target gene. Through AKT1 activation, miR-21 can increase its own 

transcription via a positive feedback loop. During myocardial ischemia HIF1A and Period 2 

(PER2) bind together. PER2 was shown to be essential in the regulation of HIF1A target 

genes, which explains recent findings on a PER2 dependent regulation of miR-21. The main 

mechanisms how miR-21 reduces cardiac cell death is through targeting programmed cell 

death 4 (PDCD4), Fas ligand (FASL), and phosphatase and tensin homology deleted on 

chromosome 10 (PTEN). Inflammation may also be reduced because of a decrease in NF-

κB. Recent studies indicate that miR-21 also protects from ischemia trough upregulation of 

oxygen efficient glycolysis – probably via stimulation of HIF1 and PER2 dependent 

phosphofructokinase (PFK). Some data, however, indicate that miR-21, induced by 
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transforming growth factor beta receptor 3 (TGFBR3) stimulation, exacerbates tissue 

fibrosis via suppression of Sprouty homolog 1(SPRY1).
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Figure 3. Possible microRNA pathways for regulating the circadian clock
(A) External cues control the circadian clock work and thereby regulate clock dependent 

microRNAs and their target genes. (B) External cues such as sunlight directly control 

microRNAs and thereby regulate microRNA regulated clock genes and their dependent 

target genes. (C) External cues regulate microRNAs and their target genes in a circadian 

manner based on the rhythm of the external cue.
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Figure 4. Circadian cardiac entrainment as cardioprotective mechanism
Apart from light, exercise or restricted feeding have been shown to entrain the circadian 

system. Increasing the amplitude and the robustness of PER2 or miR-21 expression could 

represent a possible cardioprotective mechanism.
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Table 1

Micro RNAs implicated in cardioprotective and/or circadian mechanisms

cardioprotection circadian cardioprotection and circadian function in the heart

miR-1/miR-206 increase cell death of cardiomyocytes

miR-15 increase cell death of cardiomyocytes

miR-7a/b reduce cell death of cardiomyocytes

miR-20a reduce cell death of cardiomyocytes

miR-21* miR-21* miR-21* reduce cell death of cardiomyocytes

miR-24 miR-24 miR-24 reduce cell death of cardiomyocytes

mir-29a mir-29a mir-29a enhanced cardiac regeneration

miR-30/miR-30a miR-30/miR-30a miR-30/miR-30a reduce cell death of cardiomyocytes

miR-34 increase cell death of cardiomyocytes

miR-92a increase cell death of cardiomyocytes

miR-122 miR-122 miR-122 increase cell death of cardiomyocytes

miR-132 miR-132 miR-132 enhanced cardiac regeneration

miR-133 enhanced cardiac regeneration

miR-138 reduce cell death of cardiomyocytes

miR-140 increase cell death of cardiomyocytes

miR-142-3p unknown

miR-144/451 reduce cell death of cardiomyocytes

miR-150 increase cell death of cardiomyocytes

miR-155 miR-155 miR-155 reduce cell death of cardiomyocytes

miR-167* unknown

miR-168* unknown

miR-171* unknown

miR-181a increase cell death of cardiomyocytes

miR-208 enhanced cardiac regeneration

miR-210 reduce cell death of cardiomyocytes

miR-214 reduce cell death of cardiomyocytes

miR-219 unknown

miR-320 increase cell death of cardiomyocytes

miR-376b-5p increase cell death of cardiomyocytes

miR-398* unknown

miR-499 reduce cell death of cardiomyocytes

miR-874 reduce cell death of cardiomyocytes

*
light regulated microRNAs
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