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Abstract: Periodically oscillating biological processes, such as circadian rhythms, are carefully con-
certed events that are only beginning to be understood in the context of tissue pathology and
organismal health, as well as the molecular mechanisms underlying these interactions. Recent reports
indicate that light can independently entrain peripheral circadian clocks, challenging the currently
prevalent hierarchical model. Despite the recent progress that has been made, a comprehensive
overview of these periodic processes in skin is lacking in the literature. In this review, molecular
circadian clock machinery and the factors that govern it have been highlighted. Circadian rhythm
is closely linked to immunological processes and skin homeostasis, and its desynchrony can be
linked to the perturbation of the skin. The interplay between circadian rhythm and annual, seasonal
oscillations, as well as the impact of these periodic events on the skin, is described. Finally, the
changes that occur in the skin over a lifespan are presented. This work encourages further research
into the oscillating biological processes occurring in the skin and lays the foundation for future
strategies to combat the adverse effects of desynchrony, which would likely have implications in
other tissues influenced by periodic oscillatory processes.
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1. Introduction

The term circadian rhythm, defined by Franz Halberg, a pioneer of chronobiology,
in 1959, was originally adapted from Greek [1,2]. It is a hybrid of the words “circa” and
“day”, meaning approximately 24 h or a day. In his later work, Halberg described biological
cycles, which are an overlay of oscillations that occur in mammals. At the turn of the
century, further work in the area led to the discovery that these oscillations took place
under the control of molecular clocks. Initially, a hierarchical model was put forth where
a master clock located in the brain was thought to dictate tact to the peripheral clocks in
tissues and organs [3]. This hierarchical model has since been amended. The importance
of the circadian rhythm was recognized in 2017, with the awarding of the Nobel Prize to
Jeffrey C. Hall, Michael Rosbash, and Michael W. Young for their discoveries of molecular
mechanisms controlling the circadian rhythm [4].

The findings of Halberg served as a foundation to understand aging as a multi-
dimensional overlay of several clocks. Over time, dysregulation of these clocks occur,
which is concomitant with a continuous and progressive loss of function of physiological
and cellular processes. The rate of loss of function over time is influenced by intrinsic and
extrinsic factors including nutrition and environmental factors [3,5–9]. In this review, we
aim to summarize the research in the field of chronobiology, with a particular focus on skin
biology. In addition to the circadian rhythm, this review also addresses the chronobiological
changes that occur in the skin with the seasons over a given year, as well as the changes
that occur over the lifespan of an individual.
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2. Molecular Structure of the Circadian Clock

The mammalian circadian clock at a cellular level consists of at least 3 overlapping
feedback loops (Figure 1) [3,8,10]. In the first loop, the core circadian clock proteins BMAL1
(basic helix–loop–helix ARNT llike 1; also called ARTNL, aryl hydrocarbon receptor nuclear
translocator-like) dimerizes either with CLOCK (circadian locomoter output cycles kaput)
or with NPAS2 (neuronal PAS domain protein 2) and then triggers the expression of PER
(period circadian regulator; PER1-3), CRY (cryptochrome circadian regulator; CRY1-2),
ROR (or RAR, related orphan receptor), NR1D1 (nuclear receptor subfamily 1 group D
member 1; also called REV-ERE), DBP (D-box binding PAR Bzip transcription factor), and
other clock controlled genes by binding to their E-box elements (5′-CACGTG-3′) in the
promoter region. On reaching a critical concentration, the proteins PER and CRY dimerize
to inhibit their own expression by preventing the binding of BMAL1:CLOCK to DNA,
which results in an oscillation of these proteins [3,8,10,11].

Figure 1. Molecular structure of the circadian clock. The circadian clock consists of three core feedback
loops. The newly described feedback loop has also been depicted. Loop 1: BMAL1 dimerizes with
CLOCK or NPAS2. These dimers bind to the promoter region E-box elements (5′-CACGTG-3′),
triggering PER1-3, CRY, ROR, NR1D1, and DBP expression. PER and CRY dimerize on reaching
a critical concentration, inhibiting their own expression, causing oscillation of the expression of
these proteins. Loop 2: The transcription of BMAL1, CLOCK, and NFIL3 is triggered when ROR
binds to the RORE element 5′-(A/G)GGTCA-3′ in their promoter region. This binding of ROR
to RORE is inhibited by NR1D1. Loop 3: PER transcription is initiated when the D box element
(5′-TTATG(T/C)AA-3′) in its promoter region is bound to by DBP (Loop1). This binding is negatively
regulated by NFIL3 (Loop 2). DEC loop: The DEC protein that gives this loop its name, is responsible
for its own oscillatory expression by inhibiting the binding of BMAL1:CLOCK to E-box elements
(5′-CACGTG-3′) in its promoter.

In the second loop, the protein ROR binds to the RORE element 5′-(A/G)GGTCA-3′

in the promoter of BMAL1, CLOCK, and NFIL3 (nuclear factor, interleukin 3 regulated),
resulting in their transcription. The binding of ROR to the RORE element is inhibited by
NR1D1, and potentially also by related proteins from this family. This completes the second
loop (Figure 1). The protein DBP, whose expression is under the control of BMAL1:CLOCK
from the first loop binds to the D box (5′-TTATG(T/C)AA-3′) in the promoter region of PER.
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This binding is negatively regulated by NFIL3 from the second loop. Taken together, this is
considered the third loop (Figure 1). Similar to PER1/2, CRY1 is regulated by a combinato-
rial mechanism involving both E-box and RORE, giving rise to a phase distinct from DBP
and REV-ERB. The newly described DEC loop is ancillary to the core circadian loops, and
is characterized by the expression of DEC and other circadian controlled genes, which are
under the control of BMAL1:CLOCK. DEC, in turn, inhibits the binding of BMAL1:CLOCK
to the E-box element, thereby regulating its own expression (Figure 1) [12,13]. Posttransla-
tional modifications (PTMs) and proteasomal degradation of these core components of the
molecular clock machinery are essential to maintain the oscillatory nature of these proteins
and the proteins they regulate. These PTMs include phosphorylation, glycosylation, ubiqui-
tination, acetylation, and SUMOylation, as reviewed by Hirano et al. [14]. In some cases, a
further level of complexity is introduced in the form of crosstalk between these mechanisms;
for instance, O-linked β-N-acetylglucosamine (O-GlcNAc) competing for the same serine
and threonine residues as kinases for phosphorylation [14,15]. The PTMs that have been
best characterized are those that are undergone by the PER proteins. One example of
this is the phosphorylation of PER proteins by the casein kinases CKIδ and CKIε, along
with CKIα, which has been identified from computational and high throughput screening
campaigns [16–21]. Inhibiting these kinases leads to lengthening of the circadian period
with an increase in the stability of the PER protein. Interestingly, the protein CK2 (also
called CSNK2A2; casein kinase 2 alpha 2) has been shown to regulate the same protein in
the PER accumulation phase, resulting in the shortening of the circadian period, as opposed
to the phase in which PER levels decline where CKIδ and CKIε are implicated [17–21].
Further posttranscriptional regulators, targets, and their interactions continue to be eluci-
dated; recently, HRD1 was suggested to be a regulator of BMAL1, although this protein
is known to be regulated by CK2, PKCα, SIRT1, etc. [14,22]. A further mechanism for the
regulation of the molecular circadian clock, which determines period length, is the ratio of
CRY1 to CRY2 in cells, and the nuclear import rate of these CRY proteins as suggested by
Li et al. [23].

The proteins of the circadian clock machinery continue to be characterized. This con-
tributes to elucidation of further functions of the individual clock proteins, also contributing
to a better understanding of the dynamics of their interactions and the context in which
they exert influence. Recent studies have observed transcriptomic and proteomic oscilla-
tions, even with BMAL1 being knocked out [24]. However, this study is controversial, and
contrasting results have been determined from the same dataset [25,26]. Nonetheless, circa-
dian rhythms are complex, and are carefully orchestrated processes regulated at multiple
levels with intricacies that continue to be unraveled. The investment of cellular resources
and the multiple redundancies in the regulator mechanism indicate the importance of
these processes with further compensatory mechanisms, and redundancies continue to be
observed at the organism level [3,6,27,28].

3. Zeitgebers and the Circadian Clock in Mammalian Skin

The intracellular molecular clock oscillates in response to environmental signals known
as ‘Zeitgebers’, derived from German and directly translating to ‘time giver’. As a result, in
the study of circadian rhythm, time in days is often divided into ‘zeitgeber time’. Light is
the primary zeitgeber. It is detected via the optical nerve, which then transmits signals of
perceived light to the hypothalamic suprachiasmatic nucleus (SCN) [10]. This information
is used to entrain the functional molecular clocks in peripheral tissues via the autonomic
nervous system and the hypothalamus pituitary adrenal axis via hormones including
glucocorticoids and catecholamines (epinephrine and norepinephrine) [29]. The hormones
prolactin, growth hormone, and melatonin have been implicated in circadian signaling.
Other zeitgebers that have been exploited in in vivo studies include sleep wake cycles,
feeding and fasting regimes, and temperature (Figure 2). These zeitgebers are linked to the
presence of light, as well as circulating levels of melatonin [30–32]. Ex vivo tissue retains
circadian oscillation for days after it has been excised. This has been proven by studies
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using transcription analysis and bioluminescent clock gene reports [33–38]. To achieve
synchrony of in vitro cells in culture, researchers have used serum shock, cAMP, and the
glucocorticoid drug dexamethasone as zeitgebers (Figure 2).

Figure 2. Zeitgebers and connections between central and peripheral circadian clocks. Light, the
primary zeitgeber, gives tact to the central circadian clock in the hypothalamic suprachiasmatic
nucleus (SCN) via the optical nerve. This, in turn, entrains the molecular clocks in peripheral
tissues. The peripheral clocks can achieve entrainment independent of the SCN and can commu-
nicate with each other. Links between peripheral clocks examined in the literature are demarked
with blue dashes. Sleep–wake cycle, feed and fasting, temperature, as well as melatonin, cAMP,
and glucocorticoids can act as zeitgebers (illustration uses an element from Servier Medical Art:
https://smart.servier.com/smart_image/suprachiasmatic-nucleus/ (accessed on 18 June 2021);
licensed under a Creative Commons Attribution 3.0 Unported License).

Historically, it has been proposed that the clock hosted in the SCN is the master clock
dictating the pace to the clocks present in the peripheral tissues. This hierarchical model
has been reworked since it has been shown that light can entrain the circadian clock in these
peripheral tissues even after SCN ablation or scarring, although oscillations were found
to be lower in these cases [35,39,40]. Furthermore, the peripheral clocks can communicate
with each other, achieving entrainment independent of the SCN. Recent research proposes
a ‘memory’ and ‘response’ model where the peripheral clocks, particularly the clocks of the
liver and skin, are capable of remembering the pace set by the SCN, but are also capable of
adjusting their rhythm to stimuli perceived in the absence of a functioning SCN clock [39,40].
This research shows that light remains the primary zeitgeber, and since skin has an interface
with light, its role as a mediator in circadian rhythm sensing is currently under scrutiny.
The potential of UV, visible, and infra-red light to cause DNA damage, oxidative stress,
lipid peroxidation, etc., in skin cells has been well characterized. Furthermore, UV light
is also able to stimulate the production of melanin and melanocyte stimulating hormone
(MSH) in the skin. This knowledge that skin cells have been known to interact with
light makes it even more plausible that they can be directly entrained by light exposure.
Photopigment neuropsin (OPN5), which is expressed in melanocytes and keratinocytes,
has been proposed as a likely mediator of this interaction [35,41]. However, OPN5 would
require 11-cis retinal for its function. In the retina, this is supplied by the retinal pigment
epithelia from retinol via the enzyme retinoid isomerohydrolase (RPE65) [42]. The presence

https://smart.servier.com/smart_image/suprachiasmatic-nucleus/
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of this enzyme in mammalian skin is debated in the literature; thus, the source of 11-cis
retinal in the skin is still unknown [43–45]. Further research is required to clarify the
biochemistry and physiology of this intricate system.

4. Influence of the Circadian Clock on Immune Response of the Skin

The components of the circadian clock machinery are crucial to the development
and functioning of a robust immune system. Indeed, most immune cell lineages have
intrinsic clocks that govern their maturation, migration, differentiation, and function.
An example is NFIL3, which is responsible for the development and maintenance of a
population of interferon-gamma (IFN-γ) producing group 1 innate lymphoid cells and
NK cells [46]. This, in turn, can be linked to the rhythmic activation of IFN-sensitive
gene pathways in the skin, including a key transcription factor IFN regulatory factor 7
(Irf7) via Toll-like receptor 7 (TLR7). The induction of TLR7 is used in in vivo models
to study psoriasiform inflammation [47,48]. Similarly, ROR-α expression is thought to
be increased in activated phenotype Treg cells in mouse skin [49]. Activated Treg cells
expressing ROR-α have been shown to attenuate the function of group 2 innate lymphoid
cells that reside in the skin. This has been shown to limit allergic skin inflammation in
models of atopic dermatitis mediated by type II cytokines including IL-4, IL-5, and IL-13,
(Figure 3). Left unchecked, these interleukins would possibly involve the recruitment
of TH2 cells into the skin, leading to increased CCL17 and CCL22 production [49–51].
Furthermore, the circadian clock determines the rhythm with which immune cells circulate
or migrate into tissues. The adhesion molecules ICAM-1 and VCAM-1 on endothelial
cells vary based on the degree of inflammation, as well as rhythmicity, and act as homing
signals for leukocytes in homeostasis, as well as inflammation [52]. Moreover, in skin, CD44
appears to be the adhesion molecule that varies in a circadian manner and acts as a honing
signal for leucocytes in endothelial cells that constitute the capillaries of the dermis [52,53].
This circadian rhythmic variation prevents overactivation of the immune system when
an external challenge is unlikely, and preparation of the immune system in more active
phases of the day when a host is more likely to be faced with a challenge of a pathogen [52].
This can also be seen in the enhanced expression of the antimicrobial peptide retinoic
acid receptor responder 2 (Rarres2), cathelicidin antimicrobial peptide (Camp), and beta
defensin 1 (Defb1) in phases of heightened activity [52,54]. Thus, although the immune
system remains constantly vigilant and primed to mount a response to antigens, research
into the influence of circadian rhythm on the immune system suggests an existence of a
partition of the day into two phases. The first phase is one of heightened vigilance during
waking hours where most activity occurs and an immune onslaught is most likely. This is
followed by a recovery phase where resolution of inflammation and tissue repair occurs in
the entire organism including the skin (Figure 3) [10].

The modulation of the two immunological pathways in skin has been shown to
be influenced by glucocorticoids and nutrient intake, which act as zeitgebers. Of these,
glucocorticoids have been studied in greater depth and have been linked to the central
clock in the SCN [5,6,27,55]. The secretion of adrenocorticotropin (ATCH) from the anterior
pituitary gland is under the control of the SCN [10]. This endocrine hormone, in turn,
regulates the release of glucocorticoid hormones from the adrenal glands, which then
give tact to the circadian clocks in peripheral tissues, as well as demonstrating immune
regulatory function. However, ablation of the adrenal glands does not lead to loss of
circadian oscillation in the skin and other peripheral tissue. In addition to the fact that
skin can be directly entrained, this retention of circadian rhythm could be explained by
the fact that keratinocytes of the epidermal layer in the skin are capable of regulating
immune function by de novo synthesis of glucocorticoids via 11ß-hydroxylase (Cyp11b1),
in addition to reactivation of inactive glucocorticoids via the enzyme 11ß-hydroxysteroid
dehydrogenase type 1 (HSD11B1) [5,35].
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Figure 3. Influence of the circadian clock on skin immune response and homeostasis. The influence
of the circadian clock on the immune responses in the skin allows for the day to be partitioned into
a recovery phase and a heightened vigilance phase. Circadian oscillations of cytokines, adhesion
molecules, and antimicrobial peptides have been observed. In the maintenance of epidermal home-
ostasis, the day can be divided into five succussive 4–5 h phases where distinct cellular processes
occur. Further details can be found in [56]. Since the information in this review is a cumulation of
information from studies performed in mice (nocturnal) models and cells, as well as human (diurnal)
tissue and cells, the sinusoid in this figure serves a representational purpose only.

Thus far, the close interlinking of the immune responses and circadian rhythm has
been established, and hence it can be correctly assumed that inflammation can disrupt the
local, peripheral circadian clocks, as well as the central clock in the SCN. Recent reports im-
plicate the NF-kB pathway in playing a central role in causing these perturbations [57–59].
In addition to this pathway, researchers have shown that TNF-α, IFN-γ, IL-1, and LPS
are capable of disrupting the oscillations of a core clock gene and the genes that they
control (Figure 3) [10,27,60–66]. In particular, TNF-α has been identified as a mediator of
circadian phase changes. It alters the expression of a number of core components of the
circadian clock machinery and has been attributed to the ability to inhibit the binding of
BMAL1:CLOCK to its E-box promoter. Furthermore, disruption of the circadian clock can
cause disruptions to the immune system. In a chronic jet lag mouse model, even a single
exposure to jet lag was able to worsen the response to a high dose LPS challenge [65]. More
specifically for skin, when tested in a mouse model for human allergic contact dermatitis,
the T-cell mediated chronic hypersensitivity response was triggered by the disruption of the
circadian clock. This pathology manifests together with heightened IgE level and increased
mast cell numbers [67,68]. In another mouse model where psoriasis was induced via TLR7,
CLOCK and Per2 were found to regulate the severity of psoriasis via the direct modulation
of the expression of IL23R (Figure 3) [48]. In humans, epidemiological studies have also
associated shift work, where the circadian clock is assumed to be disrupted, with higher risk
of psoriasis [67,69]. These inflammatory reactions brought on by circadian disruptions are
also likely to compromise the integrity of the skin, since, in human keratinocytes, TIMP3,
which is a broad spectrum inhibitor of extracellular matrix (ECM)-degrading enzymes
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(MMPs, ADAM, ADAMTS), is likely to be under CLOCK control [3,6,27,47,70–73]. Thus,
the magnitude of immune responses in the skin are profoundly impacted by the circadian
system. In turn, disruption of the circadian rhythm of the skin leads to immune hyperactiv-
ity or an aberrant immune response that can manifest as pathologies such as dermatitis or
psoriasis. A better understanding of the circadian rhythm and the immune system could
help in the development of therapeutic approaches to treat diseased skin, especially since
skin permeability also varies in a circadian manner [74]. Circadian transcriptome analysis
has already delved into the oscillatory expression pattern of rhythmic genes in tissues
(including skin) from a human, a non-human primate (baboon), and a mouse [75–78]. The
core clock components and their immediate output targets were the most enriched tran-
scripts across tissues. These studies also found that epidermal molecular oscillations are
more robust than those of the dermal fibroblasts [79]. Non-sun-exposed skin showed the
strongest nocturnal preference, whereas sun-exposed skin showed diurnal preference [76].
Furthermore, a majority of therapeutic targets are influenced by circadian oscillations,
and many of the drugs that target these genes have a short half-life (<6 h), such that the
circadian cycling of their targets could be consequential in the efficacy of administered
treatment [75,76]. In an effort to take these oscillations into account, efforts have been made
to monitor the circadian rhythm of a patient via biomarkers in the skin [79,80]. Although
this approach has the potential to make big advancements in the field of circadian medicine,
starting with the temporal adjustment of doses, the interference of circadian phases from
peripheral tissue should be done cautiously.

5. Influence of the Circadian Clock on Skin Homeostasis and Stress Mediation

As in the case of the immune cells, circadian oscillations are observed in keratinocytes
and melanocytes of the epidermis and the fibroblasts of the dermis [38,81]. The circadian
clock machinery responsible for oscillations impact the metabolic processes of these cells
and has an impact of tissue homeostasis. The epidermis is generated from epidermal
stem cells in the basal layer that undergo asymmetric cell division, giving rise to either
daughter stem cells or keratinocytes that will undergo a process of differentiation and
desquamation to form the horny layer of the stratum corneum. It takes cells approximately
14 days for epidermal stem cells to end up as part of the stratum corneum. During this
2-week period, the process of differentiation does not occur continuously, but instead
appears to occur in five sequential 24-h cyclic phases coordinated by the circadian clock.
When studied via gene expression, each phase lasts for 4–5 h (Figure 3) [3,56,82]. For
undifferentiated keratinocytes, the first phase includes cells being primed for differentiation
with the upregulation of genes including klf9 and notch3 [56,83]. In the second and third
phases, calcium dependent differentiation is triggered, together with the metabolic process
associated with it. These three phases correspond to the late night to early morning hours,
and vitamin D metabolism is also upregulated here. In the next two phases, genes associated
with DNA damage protection and stress mediation are upregulated in undifferentiated
keratinocytes, along with genes involved in preparing the onset of the next cycle of cell
division and differentiation. In differentiated keratinocytes, the genes upregulated in
the first three phases under circadian control remained similar to their undifferentiated
counterparts, but included genes associated with DNA damage protection and repair,
indicating constant vigilance against assault to the genetic code (Figure 3). In the next two
phases, differentiated keratinocytes seem to shift their focus to building a defensive barrier
with genes for differentiation and keratin organization being upregulated. This is likely
to include the surface lipids of the skin that are under clock control and contribute to the
skin barrier [56,84]. The differentiation process is not only dependent on the expression of
the clock genes, but also their amplitude. The differentiation of the keratinocytes increases
the amplitude of oscillation of PER1-2 and DBP, whereas that of BMAL1 is decreased.
Disturbances to this oscillation, by overexpressing PER1 and PER2, or by decreasing the
expression of CRY1 and CRY2, leads to spontaneous oscillations, which would perturb
the division of the epidermal stem cells, and consequently also the homeostasis of the
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epidermis [35]. Autophagy is also closely linked to maintaining skin homeostasis. In the
liver, the rhythmicity of autophagy is coordinated via C/EBPß, and in skin fibroblasts, the
desynchrony of autophagy with age was reported by monitoring the gene expression of
the marker LC3B and PER2 [70,85,86]. Although the interplay of autophagy, the circadian
clock, and aging continue to be of interest, the role of these processes in skin cells has yet to
be clarified [87].

Melanocytes and dermal fibroblasts have also shown to possess functioning circadian
clock machinery, but the amplitude of oscillations appear smaller than that of keratinocytes.
Despite this, the circadian clock plays a functional role in melanocytes by controlling
the abundance of melanosomes, as well as the expression of melanin synthesis enzyme,
Tyrosinase and the phosphorylation of MITF, which increases when BMAL1 or PER1 are
silenced [88,89]. The protein OPN4 has been shown to affect the molecular clock com-
ponents and their responsiveness to classical clock activators in melanocytes. Knocking
out OPN4 in melanocytes resulted in rapid cell cycle progression and increased cellular
proliferation, which correlated with the altered gene expression of MITF and the core circa-
dian clock components [90]. The impact of the function of the circadian clock on dermal
fibroblasts is yet to be characterized. However, the influence of circadian rhythm on the
synthesis and secretion of Type I collagen, a major component of the ECM of the dermis, is
already known [91,92]. Furthermore, the efficiency of migration and adhesion of fibroblasts
modulated via actin dynamics was found to be circadian regulated [93]. This has been
underlined by the correlation found from a database analysis indicating daytime wounds
heal approximately 60% faster than wounds occurring at night. The nuclear protein NONO
has been suggested as a possible molecular link between wound healing and the circadian
rhythm of fibroblasts [94].

Thus, not only is normal function of skin impacted by circadian oscillations, but also
the ability of skin to deal with stress is influenced by the cellular clock. As described above,
the genes involved in DNA damage protection and repair in the epidermis are under clock
control, as well as genes that mediate oxidative stress responses, in particular NRF2, the
peroxiredoxins, glutathione peroxidase, and sestrins [95–100]. It can be hypothesized that
these genes are under the control of the circadian clock so that the skin may prepare for
stress mediation only when the onset of this stress is likely, i.e., during active hours with
maintenance undertaken during non-active hours. This is corroborated with the fact that, in
human skin, the activity of the DNA repair enzyme 8-oxoguanine DNA glycosylase (OGG1)
was higher at night [101]. This is particularly important in the case of melanocytes, since
they can accumulate DNA damage long after UV exposure, via melanin excitation [8,102].
In mouse skin, the xeroderma pigmentosum group A (XPA) protein, which is the rate
limiting subunit of excision repair, exhibited circadian rhythmicity; thus, when mouse skin
was exposed to UV irradiation, the likelihood of development of skin cancer after UV was
linked to the time of day [103,104].

The evolutionary conserved hormone melatonin is also responsible for combating
DNA damage and oxidative stress, as well as maintaining skin homeostasis [31]. This
corelates with the finding that the circadian rhythm of melanin secretion is disrupted in
psoriatic patients [105]. Since this molecule and its related metabolites are free radicle
scavenges, it is capable of stress mediation [31,96]. Skin pigmentation and hair growth are
also controlled by melatonin; its activity may also be influenced by the skin’s circadian
clock [88,89,106]. Melatonin has also been implicated in the control of skin and body
temperature in a circadian manner. In rat skin, the circadian clock machinery dermal
fibroblasts is capable of using melatonin as an internal signal to fine-tune its oscillations,
with temperature being used as an external queue [107]. Although melatonin is secreted
from the pineal gland and synthesis is regulated by the degradation of arylalkylamine
N-acetyltransferase (AANAT) in its synthetic pathway via light detected in the retina, the
concentration of melanin in the skin can be far greater than that present in serum [108–110].
Therefore, further research is needed to disentangle the role of locally synthesized melatonin
in the skin and its circadian clock.
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After introducing the molecular mechanisms underlying the circadian rhythm, the
following section will describe additional oscillations and lifespan associated processes,
and how they interfere with skin relevant endpoints or molecular patterns.

6. Overlapping Oscillations and Underlying Individual Lifespan
6.1. Annual Clock

Physiological changes in human skin are a consequence of seasonality (Figure 4)
triggered by several parameters such as light irradiation of various wavelengths with
changing intensities over the year, temperature, temperature shifts between indoors and
outdoors, humidity, and sweat resulting in, for example, a decrease in pH due to acidi-
fication and wind accelerated evaporation, thus modulating trans-epidermal water loss
(TEWL) (Figure 4). The seasonal temperature changes modulate blood microcirculation
and thus the accessibility to nutrients, which contributes to physiological skin changes
(Figure 4). Recently, an effort was made to characterize these changes on the level of the
transcriptome [76].

Figure 4. Seasonal variations or annual clock. During the annual four seasons, physical factors
change, mainly based on the climate and weather situation, and individually directly affect the skin
conditions (e.g., UV-intensity or wind). These results are based on exposure and its intensity to the
listed effects on human skin, such as hydration.

6.2. Challenges over Summer

An elevated temperature environment engages the skin thermoregulatory mechanisms.
This includes increased activity of the sweat glands in the dermis that open out on the
surface of the skin, leading to increased hydration levels, sebum dilution, and increased
TEWL, which reduces the skin surface pH [111]. This could lead to skin itch [112], as
the acidic pH of sweat results in an irritating effect on the skin by promoting Th2 and
Th17-mediated inflammation and subsequent downregulation of filaggrin expression at the
molecular level. The downregulation of filaggrin has a direct effect on moisture content in
the skin since it is the precursor of the skin’s natural moisturizing factor (NMF) [113–116].
Interestingly, dry skin is mainly discussed as a result of the cold seasons, but not often
considered over summer. In summer, the skin is typically exposed more intensely to
sunlight, mainly UV-irradiation, which affects skin aging. During summer, the exposure to
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pollution is high as the climate and local weather conditions often do not allow effective
air exchange and thus local pollution, also called urban stress, becomes more important,
especially in crowded areas.

6.3. Challenges in Winter

The seasonal rhythm influenced by the duration of melatonin production in the sum-
mer is shortened in winter. Melatonin has been associated with hair growth, suppression
of UV damage in skin cells, and wound healing [117]. Because it has antioxidant effects,
topical melatonin has been used in wound healing, sun protection, and anti-aging prod-
ucts [117]. In winter, low relative humidity leads to high TEWL [118]. TEWL is often used
as a parameter to assess the functional state of the epidermal barrier function. In vivo, it
has been shown that exposure of skin to a low-humidity environment induces changes in
the moisture content in the stratum corneum and skin surface pattern [119,120].

7. Intersection of Circadian Rhythms and Aging (Aging Clock)

The rhythmicity of multiple features are altered with age (Figure 5). This includes
sleep, body temperature cycles, and locomotor activity [121,122]. For circadian rhythm,
the amplitude of oscillation of clock controlled genes decreases with age in peripheral
tissue, but not in the SCN, particularly when Per2 is being tracked [123]. This indicates
that age-related circadian alteration in peripheral clocks are independent of the SCN clock.
This is possible due to the weakened neurotransmission ability of the aged SCN neuronal
network [123]. In aged skin, this problem is further compounded by the presence of
senescent cells. Senescent cells show dampened circadian rhythmicity and are less efficient
in the transmission of circadian signals to their clocks [124]. Therefore, senescence is
implicated as the mechanism by which aging impairs entrainment of peripheral circadian
clocks [124,125]. Furthermore, aged dermal fibroblasts secrete a unique aging-associated set
of proteins, distinct from the canonical senescence-associated secretory phenotype. Among
these include multiple candidates involved in inflammatory signaling and maintenance
or alteration of the tissue microenvironment [126]. Thus, there is a high likelihood that
aging via senescence is directly capable of disrupting the above mentioned immunological
and stress mediatory pathways in skin. Since the rigidity of the tissue microenvironment
is also impacted, aging also likely dampens the circadian clock of keratinocytes (which
prefer a softer matrix) and fibroblasts (which prefer a more firm matrix) [127,128]. This
being said, the role of the circadian clock in aging needs to be examined with very carefully
designed animal studies, since core clock proteins have important roles in organismal
development and maintenance. This would necessitate the use of conditional knockouts
in place of conventional transgenic ‘null’ mice. For example, Bmal1 plays a crucial role
in ocular and neural development [122,129], whereas CLOCK was found to play a role in
heterochromatin stabilization, cell regeneration, and cartilage regeneration [130].

In the discussion of the circadian rhythm of aged skin, special considerations have
to be made for skin stem cells (reviewed in [131]). The circadian oscillations of epidermal
cells remain robust even under aged conditions, but they are rewired to adapt to the
stressors associated with an aged environment, and remain committed to development
and maintenance of the skin barrier through daily rhythmic cell division, in spite of DNA
damage they many have incurred [132]. It has been hypothesized that maintenance of
autophagic flux, which is under circadian control in liver cells, may help stem cells to
adapt to stress in their environment and retain stemness [133,134]. However, this is yet
to be proven in epidermal stem cells. In summary, the role of circadian rhythm and its
relationship with skin aging is only now beginning to be understood. Hopefully, this
review and the seminal research articles that it highlights foster further research in the area.
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Figure 5. Aging clock. In infancy and early childhood, cellular processes are well balanced, and
skin is in healthy state with given examples (metabolic rate to hormone level). The degree to which
strong influences (e.g., from lifestyle to nutrients) affect the aging process of an individual are
summarized. Cellular processes associated with aging range from, e.g., senescence to age-related
damage-associated molecular patterns (DAMPS).

8. Conclusions and Outlook

Circadian rhythm and other biological periodic oscillations are a complex system
of interconnected processes that are in fine balance. The disturbance of this continu-
ously changing balance (intrinsic aging) leads to desynchronization events, that may be
detrimental to phenotypic characteristics. A better understanding of the phases of these
biological rhythms and the influence exerted by the relevant molecular players is impor-
tant to develop agents that would be able to efficaciously resynchronize these rhythms.
However, these potential modulations and their physiological consequences are yet to be
thoroughly characterized.

Specifically, considering the circadian rhythm in skin that plays a role in stress media-
tion, any supplementation or support of the circadian-controlled cellular stress pathways
would help rebalance the oscillations that occur in this tissue [95–100]. If the oscillation
of the cellular circadian clock could be resynchronized, this would benefit the tissue not
only in the mediation of stress, but also in the regulation of the immunological pathway,
including the magnitude of their activation. This could prevent adverse effects of a desyn-
chronized clock machinery, such as the atopic skin and disruption of the skin barrier that
are observed in shift workers [8,69,135–138]. This knowledge would also help to recover
asynchrony of skin cells after extrinsic stresses [139,140]. Nevertheless, additional research
into the circadian rhythms of the skin and the players involved in the molecular signaling
machinery is still necessary if aiming to achieve mitigation of desynchronization and its
detrimental downstream effects.
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Research on the entrainment of the peripheral circadian clocks, their interactions, and
their impact on local tissue function, as well as on the central SCN clock, is still in its
infancy. These interactions need to be better understood, not only to be able to prevent
desynchronization of peripheral circadian clocks, but also to explore the possibility of
resynchronizing the cellular circadian machinery via peripheral tissue, especially via the
skin. These potential circadian modulations are gaining importance as we learn more about
the important role of circadian rhythms in normal tissue functions, particularly relevant in
modern society where we are persistently receiving potentially desynchronizing external
stimuli over extended durations.
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