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Abstract: Circadian rhythmicity affects all living organisms on earth. Central and peripheral 

cellular clocks have the ability to oscillate and be entrained to environmental cues, thus allowing 

organisms to anticipate and synchronize their physiologic processes and behavior to recurring 

daily environmental alterations. Disruption of the circadian rhythm in modern life, such as 

by shift work and jet travel, leads to dyssynchrony of the central and peripheral clocks, and 

is an independent risk factor for cardiovascular disease and the metabolic syndrome. Aging 

has also been associated with attenuated cellular rhythmicity. Here we summarize the clinical 

observations linking cardiovascular health to circadian rhythm. In addition, we discuss recent 

advances in experimental models for understanding the clock machinery in terms of a variety 

of physiologic processes within the cardiovascular system. Together, these studies build the 

foundation for applying our knowledge of circadian biology to the development of novel therapy 

for cardiovascular disorders.
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Introduction
Cardiovascular disease is the leading cause of morbidity and mortality in the USA, 

affecting more than one in three US adults and resulting in enormous health care 

expenditure, which was $444 billion in 2010.1 Given the huge impact of cardiovas-

cular disease, intensive effort is being made to understand the basic mechanisms 

governing cardiovascular function in health and disease. One area of investigation 

that has gained momentum in recent years is the influence of circadian rhythms on 

cardiovascular biology.

Circadian (from the Latin, circa diem, meaning “approximately daily”) rhythm 

refers to any biological process that exhibits a 24-hour periodicity. Physiologic 

parameters of the cardiovascular system, such as heart rate, blood pressure (BP), 

vascular tone, and QT interval, show significant diurnal variation.2–4 Pathologic 

states, such as arrhythmogenic sudden cardiac death (SCD), myocardial infarction 

(MI), aneurysmal rupture, and stroke, also show a daily rhythmic pattern, with peak 

susceptibility in the early morning hours.5–8 In addition, disruption of the circadian 

rhythm either in the brain (central clock) or in the peripheral tissues (peripheral 

clock) leads to cardiovascular disease in both human and animal models.9–19 In this 

review, we summarize our current understanding of the interplay between circadian 

regulation and cardiovascular disease, as well as future directions in development 

of therapy.
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Clinical observations linking 
circadian and cardiovascular biology
Blood pressure
BP is known to show diurnal variation, with a peak in the 

mid-morning and a trough at night, with a 10% variation in 

ambulating humans.2 Diurnal BP variation results primarily 

from cyclic physical activity, including sleep–awake cycles, 

as demonstrated by studies in shift workers.20 Endogenous 

factors, although influenced by activity, contribute to the 

diurnal variation of BP via circadian variation in the auto-

nomic nervous system, arterial vascular tone, and humoral 

factors, including the renin angiotensin aldosterone axis, 

catecholamines, and cortisol. The heritability of circadian 

BP and heart rate variation may reflect the heritability of 

these endogenous factors.21

The association between this diurnal variation and predis-

position to disease has been noted in both normotensive and 

hypertensive individuals. O’Brien et al were the first to observe 

the increased risk of stroke in nondippers.22 Subsequent stud-

ies classified subjects into four groups according to their 

diurnal/nocturnal BP ratio (100× (mean diurnal BP - mean 

nocturnal BP)/mean diurnal BP):  nondippers (ratio ,10%), 

dippers (ratio 10%–20%), extreme dippers (ratio .20%), and 

inverse dippers or risers (ratio ,0%, as mean nocturnal BP 

is higher than mean diurnal BP). Nondipping was associated 

with secondary hypertension and23,24 endothelial dysfunc-

tion,23,25 as well as a higher risk for cardiovascular events 

and adverse outcomes, including heart failure and MI,26,27 

stroke, left ventricular hypertrophy,28 deterioration of kidney 

function,29,30 and progression to end-stage renal disease.31 

Further, nondipping hypertensive individuals were shown to 

have a three-fold increase in adverse cardiovascular events 

than dipping hypertensives.32 The Ohasama study of 1,542 

Japanese people revealed a linear relationship between the 

nocturnal decline in BP and cardiovascular mortality. Each 5% 

decrease in the decline (nondipping) was associated with an 

approximately 20% increase in the risk for cardiovascular mor-

tality.33 The group with riser BP had the highest risk for both 

fatal and nonfatal stroke when compared with the other three 

groups.34 Several mechanisms have been proposed to explain 

the higher night-time BP and associated worse outcome, ie, 

nocturnal autonomic dysfunction, disturbed baroreflex sensi-

tivity, sleep apnea, abnormal sodium handling, and nocturnal 

volume overload.

The role of the morning surge in BP, however, is more 

controversial. A steeper surge of morning BP has been 

associated with an increase in intima media thickness,35 

increased inflammatory markers (such as a higher number of 

macrophages and T-lymphocytes, as well as more ubiquitin–

proteasome, tumor necrosis factor-α, and nuclear factor-

kappa B activity),36 and higher stroke rates.37 The largest study 

of relevance so far was reported by Li et al, who analyzed 

5,645 individuals over a median follow-up of 11.4 years and 

concluded that people in the top 10% of the morning systolic 

surge are associated with increased all-cause mortality as well 

as adverse cardiovascular events.38 However, given that the 

morning surge is defined as the difference between the low-

est night-time BP or preawakening BP and the first morning 

BP, it is not surprising that a blunted “dipping” and a blunted 

morning surge (overall flat) may be closely linked. Indeed, 

Verdecchia and Hermida observed that a blunted morning 

surge was associated with an increased risk for cardiovas-

cular events, but did not find an effect on total mortality.39 

More standardized definition and measurement is critical to 

reconcile these seemingly discrepant findings.

Arrhythmia/sudden cardiac death
Electrocardiographic measurements, such as P-wave dura-

tion and area, P-R interval, QRS duration, and corrected 

QT (QTc) interval all show circadian variation in healthy 

individuals.3,4 Both atrial and ventricular tachyarrhythmias 

show a circadian clustering, with a peak in the early morning 

hours, as reviewed previously by Portaluppi et al.40 The only 

exception seems to be vagally mediated atrial fibrillation, 

which tends to occur at night, with a second peak after lunch 

when vagal drive dominates.

The majority of SCDs are thought to result from coronary 

artery disease, whether fatal ventricular arrhythmia due to an 

acute plaque rupture or chronic ischemic cardiomyopathy.41 

Implantable cardiac defibrillators allow faithful extended 

recording of ventricular arrhythmias in the outpatient setting 

and have greatly improved our understanding of the circadian 

rhythmicity of cardiac arrhythmia and SCD. The primary 

early morning peak and secondary late afternoon peak has 

been confirmed by a number of investigators, including in 

a meta-analysis by Cohen et al, who reported a morning 

excess in the incidence of SCD based on analysis of 19,390 

patients, with 30% of SCD occurring between 6 am and noon 

(relative risk 1.29, 95% confidence interval 1.26–1.32).5 The 

early morning excess of SCD is also independent of whether 

ischemic heart disease is present,42–44 suggesting mechanisms 

other than ischemia, eg, other endogenous circadian fac-

tors, such as metabolites, and intrinsic susceptibility of the 

myocardium.

Another interesting observation is patients with obstruc-

tive sleep apnea, who seem to have a marked nocturnal peak 
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for SCD, have the highest incidence between midnight and 6 

am (relative risk 2.57, 95% confidence interval 1.87–3.52).45 

Obstructive sleep apnea is associated with increased nocturnal 

sympathetic tone, BP, autonomic dysfunction, and platelet 

aggregation, all of which increase the risk for adverse car-

diac events. In addition, hypoxia can lead directly to cardiac 

ischemia and arrhythmia. Oxygenation can improve the 

electrical stability of the myocardium in animal models and 

alleviate arrhythmia in humans.46,47 However, it is not known 

if the standard of care, ie, the nocturnal continuous positive 

airway pressure device, can restore normal sleep physiology 

and circadian rhythm in these individuals.

Patients with long QT (LQT) syndrome provide a unique 

opportunity to study the biology of the time-of-day depen-

dency of arrhythmia. Stramba-Badiale et al were the first 

to demonstrate that QT prolongation at night is genotype-

dependent, with only LQT3 patients showing significant 

lengthening of QTc at night, which is consistent with the 

clinical observation that night-time events are most frequent 

in LQT3 patients with mutations in SCN5A.48 This was the 

first suggestion that the intrinsic circadian rhythm of a sin-

gular channel might contribute to the diurnal distribution of 

arrhythmic events.

Myocardial infarction
In 1985, Muller et al were the first to confirm the long 

suspected early morning clustering of MI, using creatine 

kinase to estimate the time of occlusion.6 This finding was 

confirmed in subsequent studies, including a meta-analysis of 

60,000 patients by Cohen et al7 and a study of 45,218 patients 

from the National Cardiovascular Data Registry reported 

by Mogabgab et al.49 Similar findings have been reported 

for unstable angina, stent thrombosis, and transient myo-

cardial ischemia.50,51 This circadian effect is abolished by a 

β-blocking agent or aspirin, suggesting involvement of both 

adrenergic activity and platelet aggregation.6,52

Despite the agreement regarding time of onset, circadian 

variation in the size of MI remains a focus of study and 

debate. Multiple groups have attempted to answer this chal-

lenging question in humans. Two retrospective studies and 

one prospective study have independently demonstrated that a 

larger infarct size, estimated by biomarker release, in patients 

with ST-elevation MI undergoing primary percutaneous coro-

nary intervention is associated with onset of symptoms in 

the sleep-wake transition.53–55 However, a recent  prospective 

multicenter, multiethnic cohort study did not find a clear 

circadian dependence of infarct size either in the entire data 

set or in each of the three  participating countries separately.56 

Unlike symptoms of ischemia, infarct size is influenced not 

only by the circadian biology of the patient, but also by the 

circadian biology of their health care providers, who are shift 

workers themselves and under different levels of stress in a 

time-of- day-dependent manner. This added complexity must 

be taken into consideration and may require larger cohorts 

and better designed controls, both of which are extremely 

challenging in human studies.

Stroke/thromboembolism/ 
pulmonary embolism
It has long been recognized that, like MI, arrhythmia, and 

SCD, ischemic cerebrovascular events have a peak incidence 

in the early morning with a secondary peak in the afternoon. 

A large multicenter observational study reported the most 

frequent time of onset of stroke to be between 8 am and 

11 am.7 This observation suggests a common mechanism 

that likely involves circadian rhythmicity of hemody-

namic (BP, vascular tone, autonomic function), hemostatic 

(platelet aggregation), and fibrinolytic (thrombogenic versus 

thrombolytic) factors. Interestingly, although occurring 

via a different mechanism, hemorrhagic cerebrovascular 

events also follow the same trend, according to multiple 

studies.57–61 Increased sympathetic tone and an arterial BP 

surge in the morning have been considered to be relevant 

driving forces.

Aneurysm rupture/dissection
Abdominal and thoracic aortic dissection and aneurysm 

rupture have been observed to have a time-of-day-dependent 

incidence, with a peak in the 6 am to noon window. It was 

first reported in two retrospective Italian studies62,63 of acute 

rupture of thoracic aortic aneurysm and abdominal aortic 

aneurysm, respectively, which identified a primary peak at 10 

am and a secondary peak at 8 pm. Subsequent studies world-

wide have come to the same conclusion;8,64–67 in particular, a 

large study by Mehta et al8 evaluated 957 patients enrolled in 

the International Registry of Acute Aortic Dissection (IRAD) 

between 1996 and 2000 and found a significantly higher 

frequency of acute aortic dissection between 6 am and noon 

in the entire data set as well as in an analysis of subgroups 

according to age, sex, type of dissection, and BP. This inter-

esting observation suggests that the underlying mechanism is 

independent of these factors, including BP, which was thought 

to be the driving factor for the diurnal variation of adverse 

cardiovascular events. The only subgroup that did not show 

a significant circadian variation was patients with diabetes, 

and this has been observed similarly in MI.
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Diabetes/autonomic dysfunction
Diabetic patients are at very high risk for adverse cardiovas-

cular events, but fail to show normal circadian fluctuations 

in the occurrence of MI68–70 or acute aortic dissection.8 The 

reduction in diurnal heart rate and variation in QT interval 

associated with increased autonomic dysfunction in patients 

with diabetes has been known for 30 years.71,72 Blunted noc-

turnal BP “dipping” is also prevalent in diabetic patients.73–75 

Disruption of circadian rhythm may explain the change in 

peak incidence of cardiovascular events in these patients. 

In addition, loss of normal circadian rhythm may result in a 

continuous vulnerability to adverse events and explain the 

excess disease burden in these patients.

Shift work
Shift work is common in many occupations, including the 

health care professions. Recent epidemiologic studies in the 

US and in Europe show that 15%–20% of employees are shift 

workers. Shift work leads to dyssynchronization of the central 

(brain) and peripheral clocks (eg, liver and heart; please refer 

to the next section for a detailed discussion on these). It has 

also been associated with behavioral risk factors, including 

smoking and poor dietary habits. Further, increased stress 

leads to neurohormonal changes that may adversely affect 

BP, lipid profile, and systemic metabolism. It has long been 

known that there is an increased risk of coronary artery 

disease amongst shift workers, and more recently diabetes 

and metabolic syndrome, which are direct risk factors for 

coronary artery disease.9,10,76,77 Other risk factors such as 

hypertension and dyslipidemia have also been associated 

with shift work. Knutsson et al reported a significantly 

increased risk of ischemic heart disease in 504 paper mill 

shift workers when compared with day workers and a dose 

response to the duration of shift work (relative risk 2.2 for 

11–15 years; relative risk 2.8 for 16–20 years). It was gener-

ally acknowledged, including in several meta-analyses, that 

shift work increases the risk of cardiovascular disease by 

about 40%.9,78,79 However, more recent studies have shown 

mixed results, including a meta-analysis by Frost et al which 

did not find an increased risk for ischemic heart disease in 

shift workers.80 Overall, most studies point in the direction 

of an adverse effect of shift work.

Molecular clock mechanism,  
the central clock, and the  
peripheral clock
The molecular circadian clock mechanism, which synchro-

nizes changes in gene expression with recurring patterns of 

daily life, such as eating and sleeping, is identified in all tissues 

and cell types. In mammals, the central clock exists in the 

suprachiasmatic nucleus in the hypothalamus, and peripheral 

clocks exist in all other tissues and cell types. The core 

molecular clock is composed of a transcriptional/translational 

feedback loop that synchronizes rhythmic gene expression 

downstream (reviewed by Takahashi et al).81 CLOCK and 

BMAL1 constitute the positive limb and drive transcription of 

Period (PER) and Cryptochrome (CRY) in the negative limb. 

Once PER and CRY reach a threshold level, they enter the 

nucleus and inhibit the CLOCK:BMAL1 heterodimer on their 

own promoters. The nuclear hormone receptors, REV-ERBα 

and β and RAR-related orphan receptor α (ROR-α), are both 

transcription targets of the CLOCK:BMAL1 complex and 

represses and activates BMAL1 transcription, respectively, to 

facilitate the robustness and stability of the clock. In addition, 

casein kinase Iε and δ (CsK) also contribute to the regulation 

of clock proteins.

Recent landmark research by O’Neill et al demonstrated 

biochemical oscillations in the oxidation-reduction state 

of peroxiredoxin, an antioxidant protein, as a conserved 

timekeeping mechanism in all three kingdoms of life.82 The 

oxidation-reduction cycle of peroxiredoxin is completely 

independent of transcription, as was observed in human 

mature red blood cells, which are anucleated as well as 

Ostreococcus tauri in the darkness, under which condition, 

transcription is completely shut off.83,84 This work turned an 

exciting new page in the field of circadian rhythm and cellular 

reduction-oxidation state.

The central clock controls the entrainment of various 

biological activities to zeitgebers (from the German meaning 

“time givers”), mainly light. The central clock receives photic 

input from the retina, projects to different regions of the brain, 

and secretes circulating factors to mediate physiologic rhythms 

both within the brain and in the periphery, thus coordinating 

the physiology and behavior of the organism.81 Lesions of the 

suprachiasmatic nucleus in rats abolish the circadian pattern 

of BP and heart rate without affecting minute-to-minute varia-

tion, thus providing evidence in support of central regulation 

of BP and heart rate through the clock in the suprachias-

matic nucleus. However, food intake also became arrhyth-

mic, which suggested that activity is similarly affected.11  

The critical role of the central clock in the cardiovascular 

system is highlighted further by the aforementioned increased 

risk of cardiovascular events and the metabolic syndrome in 

shift workers.

The peripheral clock allows the multicellular organism 

to anticipate environmental changes, coordinate metabolic 
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processes, and maximize energy efficiency. The zeitgebers 

for the peripheral clocks are less clear, because they are 

not only coupled to the central clock but are also able to 

oscillate autonomously. Indeed, environmental cues, such as 

restricted feeding, were found to be able to override the central 

clock locally and cause dyssynchrony between the central and 

peripheral clocks, as seen in the shift work paradigm.85 In the 

cardiovascular system, it is believed that neurohumoral factors 

play important roles in synchronizing the central and peripheral 

clocks, although the detailed mechanisms are as yet not well 

understood. High throughput studies confirm that approxi-

mately 10% of transcripts in each peripheral tissue type oscillate 

in a circadian fashion under the control of core clock genes; 

however, there is little overlap between the different tissues, and 

the total number of oscillating genes is estimated to be close to 

50% of the transcriptome.86–88 The role of the peripheral clock 

in the cardiovascular system is becoming a fast emerging field, 

and is elucidated further in the next section.

Mechanistic basis for circadian 
control of cardiovascular biology
Animal models of genetically engineered mutant core clock 

machinery have been instrumental in isolating and identify-

ing the role of the clock component in the cardiovascular 

system. This section discusses the experimental evidence for 

circadian regulation of the intrinsic components (cardiac and 

vascular) of the cardiovascular system as well as extrinsic 

factors (neurohumoral and hematological) that act directly 

on the cardiovascular system and affect its function.

Intrinsic factors
Cardiac
The peripheral clock in cardiomyocytes has been shown to 

affect all major processes of the myocardium, from energy 

metabolism to contractile function and from response to 

injury to electrophysiologic properties.

energy metabolism
The peripheral clock regulates many aspects of myocardial 

metabolism and allows the heart to anticipate and adapt to 

different sources of energy and demand efficiently in a time-

of-day-dependent manner. Chatham and Young recently 

reviewed this topic in detail. Briefly, the clock machinery 

regulates myocardial glucose uptake, flux via the glycolysis 

and hexosamine biosynthetic pathway, and pyruvate oxidation, 

as well as glycogen, triglyceride, and protein turnover.89 For 

example, the homozygous Clock mutant mouse model mimics 

the metabolic syndrome of hyperleptinemia, hyperlipidemia, 

hepatic steatosis, hyperglycemia, and hypoinsulinemia.90 

Cardiomyocyte-specific Clock mutant (CCM, dominant nega-

tive) mice show attenuated induction of myocardial fatty acid-

responsive genes during fasting.91 Moreover, in CCM hearts, 

myocardial oxygen consumption and fatty acid oxidation 

rates were increased and cardiac efficiency was decreased, 

without alterations in mitochondrial content or structure and 

only modest mitochondrial dysfunction.14

Contractile
Basal contraction and intracellular calcium levels were 

significantly greater in rat cardiomyocytes isolated during 

resting periods versus active periods. The increase in systolic 

intracellular calcium in response to isoproterenol was also 

significantly greater in resting periods than in active periods, 

reflecting a greater calcium load in the sarcoplasmic reticu-

lum in the resting period.92 Wild-type hearts but not CCM 

hearts showed a marked diurnal variation in responsiveness 

to an elevation in workload ex vivo, with a greater increase 

in cardiac power and efficiency during the dark (active) phase 

than in the light (inactive) phase.93

Qi and Boateng put forward an interesting hypothesis that 

CLOCK localizes to the sarcomeric z-disk and senses myo-

filament cross-bridge activity in neonatal cardiomyocytes.94 

However, this has been challenged recently by Wang et al 

because of a lack of specificity of the key antibody used in 

the first study.95 In addition, Lefta et al showed subtle shifts in 

titin isoform composition, altered myosin heavy chain gene 

expression at the mRNA level, and disruption of sarcomere 

structure in BMAL1 null hearts, although passive tension in 

single cardiomyocytes was unaltered.96 These studies sug-

gest a possible role for the molecular clock in regulating the 

passive properties and structure of sarcomeres in addition to 

their active contractile properties, but more definitive studies 

are needed.

Hypertrophy
Wild-type mice were found to show a five-fold increase in 

cardiac hypertrophy when challenged with the hypertrophic 

agonist isoproterenol at the active-to-sleep phase transition 

compared with administration of isoproterenol at the sleep-

to-active phase transition. This diurnal variation was not seen 

in CCM mice, which showed exaggerated hypertrophy at 

baseline.14 Global BMAL1-deficient mice develop dilated 

cardiomyopathy with advancing age, and cardiomyocyte-

specific knockout mice show increased biventricular weight 

and Mcip1 expression.14,96 Further, Martino et al have demon-

strated that pressure overload (transverse aortic constriction) 
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in mice maintained in a disruptive 20-hour rhythm versus 

a normal 24-hour rhythm environment leads to worsened 

dilated cardiomyopathy.97 Most interestingly, captopril, an 

angiotensin-converting enzyme inhibitor, benefited cardio-

vascular remodeling with improved cardiac function only 

when administered during sleep; wake-time captopril has an 

identical effect on cardiac remodeling and function to that 

of placebo, although achieved the same BP control as sleep 

time administration.98

ischemia/reperfusion
In a rat coronary ischemia/reperfusion model, the amplitude 

of circadian clock gene oscillation, measured by messenger 

RNA level, was rapidly attenuated in the ischemia/reperfu-

sion region when compared with the nonischemic region. 

This attenuation was not observed with hypoxia induced by 

a hypobaric chamber, suggesting that the clock machinery 

is involved in the response to ischemia/reperfusion, inde-

pendent of hypoxia.99 Durgan et al showed that wild-type 

mouse hearts subjected to ischemia/reperfusion at the 

sleep-to-wake transition (ZT12) had a 3.5-fold increase in 

infarct size compared with hearts subjected to ischemia/

reperfusion at the wake-to-sleep transition (ZT0) and this 

variation was abolished in CCM mice. This study provides 

the first evidence that there is a time-of-day-dependent 

susceptibility to ischemia/reperfusion that is intrinsic 

to cardiomyocytes.13 Studies by Virag et al showed that 

mPer2 mutant (functional null) mice have reduced infarct 

by 43% after nonreperfused MI, by 69% after ischemia/

reperfusion, and by 75% after preconditioned ischemia/

reperfusion, respectively.15,16 However, Eckle et al found 

that mPer2 mutant mice had larger infarct sizes and loss of 

the cardioprotection conferred by ischemic preconditioning 

when compared with wild-type mice.100 The same group 

also found a reduction in infarct size at ZT12 and ZT18 

compared with ZT0, which is different from the first report 

by Durgan et al.13 Although different surgical techniques and 

protocols (time-of-day) were used and may have contributed 

to the different results, more studies are needed to elucidate 

the reasons for this discrepancy.

Adenosine signaling has been implicated in the cardiac 

adaptation to limited availability of oxygen. Eckle et al identi-

fied PER2 as a target of adenosine receptor A2b, signaling 

of which leads to stabilization of PER2 during myocardial 

ischemia and subsequent stabilization of hypoxia-inducible 

factor-1α and induction of glycolysis. Most interestingly, 

stabilization of PER2 in the heart achieved by exposing 

mice to intense light resulted in transcriptional induction of 

glycolytic enzymes and PER2-dependent cardioprotection 

from ischemia.100

excitability
Our group provided the first molecular evidence of circadian 

transcriptional regulation of channel activity as a mechanism 

for cardiac arrhythmogenesis. Specifically, we reported that 

cardiac ion channel expression and QT interval duration 

(an index of myocardial repolarization) show endogenous 

circadian rhythmicity under the control of a clock-dependent 

oscillator, Krüppel-like factor 15 (KLF15). KLF15 tran-

scriptionally controls the rhythmic expression of Kv 

channel-interacting protein 2, a critical subunit required for 

generating the transient outward potassium current. Both a 

deficiency and an excess of KLF15 cause loss of rhythmic 

QT variation, abnormal repolarization, and enhanced sus-

ceptibility to ventricular arrhythmias.101 Schroder et al sub-

sequently demonstrated that cardiomyocyte-specific Bmal1 

knockout (iCS∆Bmal1-/-) mice had a slowed heart rate, 

prolonged R-R and QRS intervals, and increased episodes 

of arrhythmia. Isolated iCS∆Bmal1-/- hearts were more sus-

ceptible to arrhythmia during electromechanical stimulation. 

Further, the same group identified Scn5a, which encodes the 

principal cardiac voltage-gated sodium (+) channel (Na [V] 

1.5) and mediates the circadian variation in susceptibility to 

arrhythmia in humans, as a potential target.17 Interestingly, 

as mentioned, patients with LQT3 due to SCN5a mutations 

show a significant prolongation of QTc interval at night as 

well as increased adverse events during sleep.

vascular
Circadian rhythmicity has been shown to affect the function 

of all major cell types in the vasculature. This section dis-

cusses vascular smooth muscle cells and endothelial cells.

vascular smooth muscle cells
Under the dual regulation of neurohumoral input and the 

endothelial/nitric oxide system, vascular smooth muscle cells 

are critical in fine-tuning vascular resistance.  Vascular smooth 

muscle cells also possess an intrinsic biological clock. Serum 

shock, angiotensin II, and retinoic acid have all been shown 

to synchronize the oscillation of clock gene expression.102,103 

Chalmers et al demonstrated synchronized rhythmic expres-

sion of core clock genes and clock- controlled genes, such 

as tissue inhibitor of  metalloproteinase 1 and 3 (Timp1 and 

Timp3, respectively), collagen 3a1 (Col3a), transgelin 1 

(Sm22α) and calponin 1 (Cnn1) in a mouse smooth muscle 

cell line (Movas-1) using norepinephrine or forskolin as 
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zeitgebers.104  Circadian expression of core clock genes 

(PER2 and BMAL1) is attenuated in senescent human smooth 

muscle cells. Ectopic expression of TERT (telomerase) in 

senescent cells or treatment with forskolin, a PKA activa-

tor, restores circadian rhythmicity and serum responsiveness 

via activation of cyclic adenosine monophosphate response 

element-binding (CREB) protein.105 In addition, Saito et al 

showed that Rho-associated kinase 2 (ROCK2) plays a pivotal 

role in generating the intrinsic circadian rhythm of vascular 

contractility by receiving a cue from ROR-α.106

vascular endothelial cells
Endothelial function measured by brachial artery flow-

mediated endothelium-dependent vasodilation is reduced in 

the early morning (6 am) in healthy individuals.107 In vitro 

studies have confirmed the function of the peripheral 

clock in  vascular endothelial cells and identified important 

clock-controlled genes, including thrombomodulin, which 

codes for a membrane protein with anticoagulation activi-

ty.108 Aortic rings from mice with the Per2 mutation show 

impaired endothelium-dependent relaxation in response 

to acetylcholine, associated with decreased production of 

nitric oxide and vasodilatory prostaglandins and increased 

 production of cyclooxygenase-1, which is independent of BP 

or  dyslipidemia.12 Similar  findings in Bmal1 knockout mice 

and Clock mutant mice have been reported, and thought to 

be due to attenuated AKT signaling and reduced production 

of nitric oxide, at least in Bmal1 knockout arteries.109

In endothelial cells, the tissue plasminogen activator 

inhibitor 1 (PAI-1) promoter is under the direct regulation 

of cycle-like factor (CLIF)/CLOCK, BMAL1/CLOCK, 

and BMAL2/CLOCK heterodimers,110,111 and is inhibited 

by CRY and PER proteins. Westgate et al observed a diur-

nal variation of thrombosis in response to photochemical 

injury.19 In addition, this diurnal variation was abolished 

in Clock mutant mice, which showed a significantly longer 

time to thrombotic vascular occlusion, whereas global and 

endothelial deletion of Bmal1 was associated with a loss 

of circadian oscillation and a shortened time to thrombotic 

vascular occlusion.19

Endothelial progenitor cells have an important function 

in endothelial repair and postnatal neovascularization.112 

A reduced number of circulating endothelial progenitor 

cells has been associated with increased cardiovascular 

risk.113 Landmark studies by Méndez-Ferrer et al reported 

that circulating hematopoietic stem cells and their pro-

genitors (including endothelial progenitor cells) show robust 

 circadian fluctuations, peaking 5 hours after the initiation of 

light and reaching a nadir 5 hours after darkness. The cyclic 

release of hematopoietic stem cells is under the regulation 

of photic stimuli via core clock genes, the  sympathetic ner-

vous system, and stromal derivative factor-1 (CXCL12).114 

Normal individuals showed the highest number of circulating 

endothelial progenitor cells in the evening (10 pm).115 On 

the other hand, studies in diabetic patients and in a diabetic 

rat model showed decreased release of endothelial progeni-

tor cells, which was attributed to bone marrow neuropathy 

and decreased vascular reparative capacity.93 Endothelial 

progenitor cells from Per2 mutant mice showed reduced 

mobilization and response to vascular endothelial growth 

factor stimulation. Interestingly, endothelial progenitor cells 

from Per2 mutant mice and Bmal1 knockout mice showed 

an opposite effect on AKT activation, although both showed 

impaired endothelial function.116 This may represent their 

opposing relationship in the core clock transcription regula-

tory loop and anti-phasic expression. It is conceivable that 

the Yin of increased injury due to increased shear stress 

and vascular tone and the Yang of concomitantly lowered 

repair mechanisms due to reduced endothelial progenitor 

cell number and function contribute to the excess adverse 

cardiovascular events in the early morning.

Extrinsic factors
Neurohumoral
A host of neurohumoral factors acting on the cardiovascu-

lar system demonstrate circadian rhythmicity, and have an 

important role in entraining the peripheral cardiovascular 

system to the central clock. Sympathetic activity dominates 

during the day and peaks in the morning, whereas para-

sympathetic activity peaks at night. The renin-angiotensin-

aldosterone system,117,118 vasoactive intestinal peptide,119 

and atrial natriuretic peptide120 have all been shown to have 

diurnal variation in humans. Interestingly, secretion of corti-

sol, renin, and aldosterone show morning surges independent 

of activity;121,122 however, other processes, such as surges of 

catecholamines, are attenuated if the individual remains in 

bed in the morning.123,124

Neurohumoral factors such as norepinephrine, epineph-

rine, and angiotensin II, when added to aortic smooth muscle 

cells in vitro, can serve as a zeitgeber as predicted and syn-

chronize clock gene oscillation. However, oscillation of clock 

genes was preserved ex vivo in aortic, heart, and liver tissues 

harvested from dopamine beta-hydroxylase knockout mice 

(Dbh-/-), which could not synthesize either norepinephrine 

or epinephrine and was chronically treated with both pro-

pranolol and terazosin, thereby excluding compensation by 
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dopamine.125 Thus, although sympathetic signaling affects the 

peripheral cardiovascular diurnal rhythm, circadian rhythmic-

ity is preserved even without any adrenergic input.

Hematologic
Macrophages
Chronic systemic inflammation and macrophage infiltration 

is closely associated with an increased risk of cardiovascu-

lar events, and is a dynamic area of research. In mice, the 

spleen, lymph nodes, and peritoneal macrophages all contain 

a peripheral clock and more than 8% of the macrophage 

transcriptome oscillates in a circadian fashion, including 

many important regulators for recognition of pathogens 

and secretion of cytokines. Lipopolysaccharide is a robust 

zeitgeber for macrophages in culture. The peripheral clock 

regulates inflammatory innate immune function, with isolated 

spleen cells stimulated with lipopolysaccharide at different 

circadian times displaying circadian rhythms in secretion of 

tumor necrosis factor-alpha and interleukin-6.126 Rev-erbα 

has been shown to regulate the expression of important genes 

involved in innate immunity, including IL6, IL19, CXCL6, 

CXCL1, and CCL2.127 Sato et al recently demonstrated that 

Rev-erbα directly suppresses CCL2 expression via a RORE 

element in the promoter and regulates infiltration of inflam-

matory macrophages.128 An elegant study by Cheng et al, 

using an arterial isograft transplant mouse model, demon-

strated that wild-type grafts when anastomosed to either wild-

type mice or mice with disrupted circadian clocks exhibit 

no pathology, whilst aortic grafts from Bmal1 knockout or 

Per2,3 double-knockout mice transplanted into wild-type 

mice led to development of robust arteriosclerotic disease, 

with upregulation of T-cell receptors, macrophages, and 

infiltrating cells in the vascular grafts, that was independent 

of hemodynamics and B-cell-mediated or T-cell-mediated 

immunity.18 This clearly demonstrates the crucial role of the 

peripheral clock in maintaining vascular health independent 

of the central clock.

Other hematologic factors
Both the number of circulating platelets and platelet aggrega-

tion show circadian variation.129,130 The hypercoagulability 

noted in the early morning is also associated with a peak 

in tissue factor pathway inhibitor and activated factor VII 

levels.131,132 Further, the number of vascular cell adhe-

sion molecule-1-positive microparticles released from the 

endothelium in human plasma was reported to show a peak 

at 9 am, and was associated with increased coagulability 

through the tissue factor pathway.133 Further, levels of both 

prothrombin fragment (a marker for intravascular thrombin 

generation) and the plasmin–plasmin inhibitor complex 

(representing the degree of intravascular plasmin generation) 

were found to peak at 8 am.132 However, variations in platelet 

reactivity, fibrinogen, alpha 2-antiplasmin, and plasminogen 

were abolished in supine individuals.124 Fibrinolytic activity, 

in contrast, peaks in the afternoon and troughs in the 

morning.129,134 Tissue plasminogen activator inhibitor 1 peaks 

at 4 am135 and this diurnal variation persists in supine indi-

viduals.124 Interestingly, tissue-type plasminogen activator 

antigen also peaks in the morning; however, tissue-type 

plasminogen activator activity was found to be lower in the 

morning due to increased tissue plasminogen activator inhibi-

tor 1 activity.136 Indeed, a high level of tissue plasminogen 

activator inhibitor 1, associated with low fibrinolytic activity, 

was found to be an independent risk factor for first acute MI 

in both men and women.137 The combination of increased 

platelet aggregability,138 blood viscosity,139 and thrombotic 

activity,19 as well as decreased fibrinolytic activity,135,140–142 

would not only increase the size of an otherwise nonoc-

cluding thrombus but would also increase its resistance to 

thrombolysis.141

An interesting study reported by Mou et al demonstrated 

the expression of tissue-type plasminogen activator and tis-

sue plasminogen activator inhibitor 1 in the suprachiasmatic 

nucleus and their involvement in modulating photic phase 

shifts via activation of brain-derived neurotrophic factor143 

in brain slices. It will be exciting to see follow-up in vivo 

studies in this regard.

Therapeutic implications
The circadian clock is altered or dampened in multiple human 

cardiovascular disorders and animal models, including hyper-

tension, MI, and diabetes. Disturbed circadian rhythm is a risk 

factor for cardiovascular disease, as evidenced by studies in 

shift workers. In this section, we discuss therapeutic strate-

gies that take advantage of our understanding of circadian 

regulation in the cardiovascular system.

Chronotherapy
The effectiveness and toxicity of many drugs varies according 

to time of administration because of the circadian rhythmicity 

of a number of biochemical, physiological, and behavioral 

processes. Chronotherapy became widely used in clinical 

practice when the alternate morning oral corticosteroid regi-

men was introduced in the early 1960s.144

As mentioned earlier, nondippers tend to have worse cardio-

vascular outcomes. The possibility of achieving “ dipping” by 
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pharmacologic intervention has been attempted in both animal 

and human studies with some success. Martino et al showed in 

mice that the benefit of captopril (a short-acting angiotensin-

converting enzyme inhibitor) in cardiac  remodeling after 

pressure overload is only observed when administered during 

sleep time but not during wake time despite the same level of 

BP control.98 Similarly, human studies showed that ramipril 

5 mg daily as monotherapy taken at bedtime was associated 

with significantly reduced BP during sleep (ie, improved “dip-

ping”) when compared with taking the drug on awakening. 

The proportion of patients with controlled ambulatory BP at 

6 weeks increased from 43% to 65% (P=0.019) with treat-

ment at bedtime.145 Further, in the Heart Outcomes Prevention 

Evaluation (HOPE) study, ramipril was administered at night, 

although without a direct control group, and the benefits seen 

were three times greater than predicted from previous stud-

ies based on BP reduction alone.146 The Ambulatory Blood 

Pressure Monitoring for Prediction of Cardiovascular Events 

(MAPEC) study directly compared morning versus night-

time doses and concluded that night dosing achieved overall 

better BP control in 2,156 individuals with a mean follow-up 

of 5.6 years, and this was associated with a lower risk of total 

cardiovascular disease events (relative risk 0.39, confidence 

interval 0.29–0.51, P,0.001).147,148

Chronotherapy as part of the personalized medicine that 

takes age, gender, and genetic background into consideration 

for an optimized regimen will be the goal of the foreseeable 

future. Drug delivery strategies incorporating knowledge of 

circadian rhythmicity will enable us to harness the benefit 

of chronotherapy without requiring meticulous compliance 

and adherence on the part of patients. Further, strategized 

therapies that aim to minimize or avoid the vulnerable win-

dow in the early morning for certain cardiovascular events, 

such as lethal MI and arrhythmia, will allow us to achieve 

chronoprevention.

Resynchronization
After a 12-hour light-dark shift, as experienced by human shift 

workers, central clock (suprachiasmatic nucleus)-mediated 

entrainment of BP and heart rate occurs in 1–2 days in 

humans.149,150 However, the entrainment of cardiac peripheral 

clock and clock-controlled genes takes at least 5 days to occur,91 

thus creating a window of dyssynchrony. Therapies aimed at 

facilitating the transition of the peripheral clock will have impli-

cations for shift workers as well as frequent jet travelers.

Aging has been shown to attenuate circadian oscillation 

in vascular smooth muscle cells,105 although the  methodology 

used cannot distinguish whether this is due to overall 

dampened oscillation or an inability to synchronize within 

the cell population. Pharmacologic and behavior modifica-

tions that reinforce the “ticking of the clock” may ameliorate 

the cardiovascular risk factors associated with aging. In 

addition to changes in lighting conditions, nonphotic stimuli 

such as physical activity and feeding schedule have been 

shown to play key roles in entrainment of the peripheral 

clock.85,151,152 A small pilot study by Scheer et al showed that 

daily oral melatonin for 3 weeks reduced BP during sleep, 

with improved “dipping”. Although sleep was also improved, 

a direct correlation between improved sleep and decreased 

BP was not observed, suggesting that the beneficial effect 

on BP is independent of the improvement in sleep.153 More 

human studies are required to fully evaluate the potential of 

resynchronizing therapy.

Resetting the “clock”
A recent advance in the field has been the ability to directly 

manipulate the clock machinery. Two high throughput 

screens identified small molecules that inhibit the func-

tion of CKIα/δ and CKIε/δ, thus preventing degradation 

of PER2 and significantly lengthening the circadian period 

in human and mouse cell lines as well as living zebra fish 

in one study.154,155 Chen et al reported additional molecules 

that affect the period length and, interestingly, amplitude 

“damper” and “enhancer”, which further expand our toolbox 

for manipulating the clock.156 Of interest is a report by Solt 

et al that administration of a synthetic REV-ERB ligand in 

mice alters circadian behavior and the circadian pattern of 

gene expression in the hypothalamus as well as in peripheral 

tissues. Mice with diet-induced obesity treated with this 

ligand showed decreased obesity and a markedly improved 

metabolic profile with regard to dyslipidemia and hypergly-

cemia.157 These results suggest that directly manipulating the 

core clock machinery may be a new therapeutic opportunity 

in the treatment of cardiometabolic disease.

Conclusion
Our lives are intimately linked to the solar cycle. The 

cardiovascular system has evolved an intricate circadian 

rhythm that oscillates intrinsically and can be entrained to 

the environment by zeitgebers, such as activity, temperature, 

and feeding. Our knowledge of how peripheral tissue clocks 

coordinate with the central suprachiasmatic nucleus clock to 

regulate cardiovascular physiology has greatly advanced in 

recent years, from the simple observation of diurnal fluctua-

tion of physiologic parameters, to the molecular mechanisms 

of clock and their regulation on tissue-specific clock output 
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genes, to chemical tools for potential intervention in the 

clock itself. However, our insight into the molecular basis 

of circadian timing in a tissue-specific fashion is still limited 

and will continue to be a proliferating field of research in the 

immediate future. Discovering local physiologic and phar-

macologic zeitgebers will not only shed light on circadian 

biology but also provide opportunities for specific interven-

tion. Non-transcriptional control of the clock machinery is 

a brand new chapter in circadian biology, and on further 

exploration, may offer quicker and more local adaptation of 

the peripheral clock. Our ability to resynchronize or directly 

“reset” the clock is rapidly expanding, and holds promise for 

development of future therapeutic tools.
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