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Circadian rhythms, referring to 24-h daily oscillations in biological and physiological

processes, can significantly regulate host immunity to pathogens, as well as

commensals, resulting in altered susceptibility to disease development. Furthermore,

vaccination responses to microbes have also shown time-of-day-dependent changes in

the magnitude of protective immune responses elicited in the host. Thus, understanding

host circadian rhythm effects on both gut bacteria and viruses during infection is

important to minimize adverse effects on health and identify optimal times for therapeutic

administration to maximize therapeutic success. In this review, we summarize the

circadian modulations of gut bacteria, viruses and their interactions, both in health

and during infection. We also discuss the importance of chronotherapy (i.e., time-

specific therapy) as a plausible therapeutic administration strategy to enhance beneficial

therapeutic responses.
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CIRCADIAN RHYTHMS

Circadian rhythms refer to 24-h oscillations of biological or physiological activity, which are found
in almost all life on earth (Loudon, 2012; Westwood et al., 2019). In mammals, the timing of
these rhythms is determined by a central core located in the suprachiasmatic nucleus (SCN) of
the mammalian brain, with additional inputs from peripheral oscillators (circadian modulators
located in cells or tissues outside of the SCN). These rhythms are strongly induced by light signals
via the retinohypothalamic tract (Meijer et al., 1986, 1992) within the SCN, stimulating neuronal
firing and inducing rhythmic neurotransmitter secretion, e.g., glucocorticoids such as vasoactive
intestinal polypeptide (Shinohara et al., 1994), which coordinate and regulate peripheral rhythms
located in other tissues of the body. This coordination by the SCN enables synchronization of these
light-controlled rhythms for maximal host benefit, that includes induction of metabolic pathways
in anticipation of dietary intake. Peripheral rhythms themselves are also influenced by other factors
including hormones and food intake/nutrient availability (Balsalobre et al., 2000; Damiola et al.,
2000). Together, the regulation of these rhythms is vital to maintain good health, as disruptions
to these rhythms alter susceptibility to infections, autoimmunity, metabolic diseases, and cancer
(Turek et al., 2005; Lee et al., 2010; Gibbs et al., 2014; Edgar et al., 2016; Voigt et al., 2016; Ehlers
et al., 2018; Hopwood et al., 2018; Krakowiak and Durrington, 2018).

At the transcriptional level, circadian rhythms are controlled by integrated autoregulatory
transcription-translation feedback loops, which direct proteins to bind to sequence-specific
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elements, resulting in the initiation or repression of circadian
gene expression. The interlocking of the three transcriptional
feedback loops, shown in Figure 1, generates ∼24-h cycles of
transcription with varied phases of expression depending on
the proteins available to bind to the promotors or enhancers
of target clock-controlled genes (CCGs) (Takahashi, 2017).
Together these loops enable a more responsive feedback
mechanism that modulates the circadian rhythm in response
to environmental changes or stimulations, and these include
temperature, hormones, food intake, and microbes.

MICROBES AND HEALTH

It has been estimated that ∼1,000 microbial species reside in
the human intestines, encoding a vast metagenome with millions
of unique genes, modulating host metabolism and regulation of
immune responses (Whitman et al., 1998; Qin et al., 2010; Li
et al., 2014). Microbial composition can be strongly influenced by
many factors including genetics, age, lifestyle and diet (Ley et al.,
2006; Turnbaugh et al., 2009; Wu et al., 2011; Goodrich et al.,
2014; Bokulich et al., 2016; Odamaki et al., 2016; Sonnenburg
and Bäckhed, 2016; Sonnenburg et al., 2016). Crosstalk between
bacteria and the immune system is important for the education
and development of a mature immune system, including the
development of adaptive T-helper 17 cells (Th17) and regulatory
T cells (Treg) (Ivanov et al., 2009; Atarashi et al., 2011, 2013),
as well as the development of innate lymphoid cells (Gury-
BenAri et al., 2016). Importantly, host bacterial composition
influences disease susceptibility to obesity (Bäckhed et al., 2004;
Turnbaugh et al., 2006; Vrieze et al., 2012), autoimmunity
(Frank et al., 2007; Wen et al., 2008; Feng et al., 2010; Lee
et al., 2011; de Goffau et al., 2013; Cekanaviciute et al., 2017;
Pearson et al., 2019a), cancer (Arthur et al., 2012), and infectious
diseases (Dubourg et al., 2017; Kaul et al., 2020; Yeoh et al.,
2021). Furthermore, host bacterial composition can modulate
responses to immunotherapy (Gopalakrishnan et al., 2018; Routy
et al., 2018; Mager et al., 2020) and drugs (Wu et al., 2017;
Zimmermann et al., 2019). Taken together, these reciprocal
interactions highlight the important role bacteria play in shaping
both our immune responses and therapeutic success against a
variety of microbial infections, but also other conditions.

Similarly to bacteria, viruses, which are obligate parasites
requiring infection of host cells in order to multiply, have co-
adapted to their hosts and endogenous viral elements have been
incorporated into host genomes millions of years ago (Simmonds
et al., 2019). Alongside bacteria, viruses are often associated
with many public health outbreaks, e.g., norovirus and rotavirus
(Atmar and Estes, 2006; Harris et al., 2008; Lysén et al., 2009;
Wikswo and Hall, 2012). Viruses have also been associated with
global pandemics including the H1N1 influenza virus (Smith
et al., 2009a,b) and SARS-CoV-2 (Wu Y. et al., 2020; Zhu et al.,
2020), which have been responsible for the deaths of millions of
people worldwide. Thus, there is great need to better understand
how antiviral responses are stimulated and how they can be
modulated to achieve protective antiviral responses, without
promoting significant inflammation and cell damage. Therefore,

better understanding of the mechanisms by which microbes
can be modulated, including by circadian rhythms, are essential
for identifying ways to improve the harnessing of microbes for
promoting disease protection and therapeutic success.

Circadian Oscillations of Commensal
Bacteria
Within the intestine, circadian rhythms alter the regeneration
of intestinal stem cells, production of gastric acid, gut motility,
nutrient absorption and mucosal immunity (Larsen et al., 1991;
Pan and Hussain, 2009; Hoogerwerf et al., 2010; Karpowicz
et al., 2013; Mukherji et al., 2013; Yu et al., 2013; Wang
et al., 2017). In addition, circadian rhythms alter the gut
microbial composition and functions (Thaiss et al., 2014, 2016;
Zarrinpar et al., 2014; Liang et al., 2015). This microbial
rhythmicity is strongly linked to food intake and thus, nutrient
availability. Mice housed in standard 12-h light/dark cycles
with food ad libitum, were found to consume the majority
of their food in the dark cycle, when they are most active,
corresponding with cyclical changes in the cecal microbial
composition, as studied by 16S rRNA sequencing (Hatori
et al., 2012; Zarrinpar et al., 2014). Driving these microbial
oscillations were time-of-day-dependent changes in themicrobial
abundances of species belonging to Firmicutes, Bacteroidetes,
and Verrucomicrobia (Figure 2). Importantly, these time-of-day-
dependent changes in microbial abundance were also associated
with functional changes (Thaiss et al., 2014, 2016). Time-
restricted feeding protocols, whereby mice are fed either in the
light or dark cycles only, confirmed these microbial oscillations
were regulated by dietary intake, rather than light exposure
(Mukherji et al., 2015a,b).

Diet can also affect microbial rhythms, as mice given standard
chow exhibited diurnal oscillations in microbial abundance,
whereas, mice fed a high-fat diet showed significantly blunted
microbial rhythms, which could be partially restored if given
time-restricted feeding (Zarrinpar et al., 2014; Leone et al.,
2015). A recent study in humans showed that arrhythmic
bacteria (not changed in abundance at different times-of-day)
could be linked to susceptibility to developing type 2 diabetes
(Reitmeier et al., 2020), which confirmed the importance of these
microbial rhythms in human health. It is not clear whether
arrhythmic or rhythmic bacteria regulate susceptibility to other
diseases. Obesity and obesity-associated health problems, e.g.,
hypertension and type 2 diabetes, are continuing to increase
in prevalence worldwide (Blüher, 2019), and these individuals
are more likely to develop severe complications and higher
mortality from infections including influenza H1N1 (Huttunen
and Syrjänen, 2010; Fezeu et al., 2011; Louie et al., 2011;
Milner and Beck, 2012) and more recently SARS-CoV-2 (Sattar
et al., 2020; Wu C. et al., 2020; Zhou et al., 2020). Thus,
greater numbers of the people within the population are likely
to be more susceptible to infectious disease in the future.
Therefore, it is important to understand the contribution of
the microbial rhythms in mediating susceptibility to infection
and whether time-restricted feeding can reduce an individual’s
susceptibility to infection.
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FIGURE 1 | Molecular modulation of circadian rhythm. Circadian rhythms are initiated and regulated by transcriptional/translational feedback loops. Circadian

locomotor output cycles kaput (CLOCK) and Aryl hydrocarbon receptor nuclear translocator like (ARNTL; also known as BMAL1) proteins heterodimerize and bind to

the E-box motifs of Period (Per) and Cryptochrome (Cry) genes, driving their transcription (Gekakis et al., 1998; Yoo et al., 2005; Xu et al., 2015). When PER and

CRY protein concentrations increase, they too form heterodimers and counter-regulate the CLOCK/ARNTL complex, and thus, inhibit their own expression.

CLOCK/ARNTL heterodimer proteins also drive the expression of the nuclear receptors REV-ERBα (encoded by Nr1d1; known as nuclear receptor subfamily group

D member (Nr1d) 1) and REV-ERBβ (encoded by Nr1d2) (as shown by REV-ERB), which bind to retinoic acid-related orphan binding elements (ROREs) located in

the CLOCK and ARNTL promoters, repressing Clock/Arntl transcription. A third subloop driven by the CLOCK/ARNTL complex, involves the proline and acidic

amino acid-rich basic leucine zipper factors, D-box binding protein (DBP), thyrotroph embryonic factor and hepatic leukemia factor proteins (represented as DBP in

the figure) (Takahashi, 2017). These proteins interact with the transcriptional repressor Nuclear Factor, Interleukin 3 Regulated (NFIL3; also known as E4BP4), the

expression of which is driven by the REV-ERB/ROR loop, at sites containing D-boxes (Takahashi, 2017; Xie et al., 2019). Red lines indicate repression, green arrows

indicate activation, blue curved arrows indicate gene transcription. Additional abbreviations used include deoxyribonucleic acid (DNA), Enhancer box (E-box)

Destruction box (D-box), retinoic acid-related orphan receptor (ROR).

FIGURE 2 | Time-of-day-dependent commensal microbial changes. Oscillations in microbial abundance and functions change at different times-of-day. The

abundance of species belonging to the Firmicutes phylum (solid black line) increase in response to dietary intake, while species of the Bacteroidetes and

Verrucomicrobia phyla (dotted black line) increase in abundance once all the nutrients from the food have been metabolized, due to their ability to metabolize host

glycans. These data were compiled from animal studies with data shown over a 24-h period from ZT12 on 1 day, to ZT12 the following day. ZT12 refers to 12 h post

light onset, while ZT24/0 refers to the end of the dark period and the start of the light cycle in standard 12-h light/dark housing conditions, with mice fed ad libitum.
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It should also be noted that some bacteria have their own
circadian rhythms. Cyanobacteria, e.g., Synechococcus elongatus,
encodes three core clock genes (kaiA, kaiB, and kaiC), which
regulate different bacterial biology including cell division,
photosynthesis, and amino acid uptake, providing a survival
advantage to the bacteria (Kondo et al., 1994). Klebsiella
(previously designated Enterobacter) aerogenes, a commensal
bacterium from the human gastrointestinal system, exhibits
rhythms in swarming/motility in response to oscillating host
melatonin levels (Paulose and Cassone, 2016; Paulose et al., 2016).
This was postulated to be related to the bacteria expressing
sequences similar to human melatonin binding sites, although
the similarity is only ∼24–42%; thus, further studies are needed
(Paulose et al., 2016). This bacterium also modulates circadian
rhythms in response to temperature changes (Paulose et al.,
2019), which affects host temperature changes after infection,
and, in turn, it is likely to influence microbial commensal
circadian rhythms. In addition, Escherichia coli and Pseudomonas
aeruginosa encode receptors for blue and red light, respectively,
enabling them to respond to light (Davis et al., 1999; Perlova
et al., 2019), a dominant influencer of circadian rhythms;
however, it is unknown if these receptors would induce bacterial
oscillations in the intestine, given that there is no direct light
source. Similarly, Legionella pneumophilia encodes homologues
of the KaiBC proteins of cyanobacteria that regulate circadian
gene expression; however, these gene homologues in Legionella
pneumophilia appear to only enhance stress resistance (Loza-
Correa et al., 2014). Given ∼1,000 microbial species live in the
human intestine, it is likely that other bacteria may express genes
or responses that can be controlled intrinsically in a circadian
manner.More studies are needed to probe whether these intrinsic
oscillations have any impact on other microbe rhythmicity or
immune functions.

Host Influences on Bacterial Circadian
Oscillations
Host circadian rhythms can also alter bacterial oscillations.
Studies using mice deficient in either Bmal1 or Per1/2, or mice
with a mutation in the Clock gene (altering the period, precision,
and persistence of circadian rhythms) revealed that all these mice
exhibit altered microbial rhythmicity and composition (Thaiss
et al., 2014; Liang et al., 2015; Voigt et al., 2016). It is likely that
this is a two-way interaction as germ-free (GF) mice, which lack
microbiota, have different intestinal and hepatocyte circadian
gene expression when compared to either specific pathogen-free
(SPF; which have microbiota) mice or conventionalized mice (GF
mice colonized with microbiota from SPF mice) (Leone et al.,
2015; Weger et al., 2019). Leone et al. (2015) found that these
diurnal oscillations modulated bacterial metabolite production,
particularly butyrate, which had direct influence on circadian
rhythm gene expression in the hepatocytes. Importantly, diet also
modulated bacterial metabolites – butyrate oscillated in normal
chow-fed mice, whereas hydrogen sulfide oscillated in high-fat
diet fed mice. This further highlights the important link between
diet, microbiota, and circadian rhythms.

The initial recognition of bacteria and virus by the host
is through pathogen recognition receptors (PRR) including
toll-like receptors (TLRs), nod-like receptors (NLRs), and
inflammasomes, all of which oscillate in their expression
at different times-of-day, in both hematopoietic and non-
hematopoietic cells (Silver et al., 2012a,b, 2018; Mukherji et al.,
2013; Wang et al., 2017, 2018; Pourcet et al., 2018). The presence
of gut microbiota influences both their circadian clock and
PRR expression (Mukherji et al., 2013; Wang et al., 2017).
Interestingly, the circadian clock in intestinal epithelial cells
relies on IL-23 secreted by TLR-stimulated dendritic cells, which
activates type 3 innate lymphocyte (ILC3) cells to subsequently
secrete IL-22 that in turn activates the circadian rhythms
in epithelial cells (Wang et al., 2017). Inflammasomes are
also regulated by circadian genes as Rev-erbα represses nlrp3
transcription by directly binding to the promoter region of the
nlrp3 gene (Wang et al., 2018). While bacterial composition
is regulated in a circadian manner, it is likely therefore,
that microbial ligands will oscillate and thus responses to
bacterial/viral ligands may vary in a time-dependent manner.
This is likely to be important, as studies in macrophages
have shown that the expression of different TLRs peak at
different times (Silver et al., 2012a), suggesting that anti-
microbe responses may also change at different times-of-day.
Furthermore, these time-of-day-dependent PRR rhythms can
also contribute to vaccine responses, as has been shown for B
cell-secreted antibody responses (Silver et al., 2012b) (discussed
in more detail later). To our knowledge, no studies to date
have correlated the microbial oscillations with ligand abundance
which could regulate PRR signaling at different times-of-day.
This may partially explain the disparity between responses to
different microbes at different times-of-day.

Hormones, e.g., glucocorticoids, are known to modulate
circadian rhythms (Sollars et al., 2014), including influencing
immune cell trafficking (Shimba et al., 2018), and immune
responses (Gibbs et al., 2014). Interestingly, gut microbiota
is also interconnected with glucocorticoids, as the microbiota
can metabolize glucocorticoids, generating steroid metabolites
(Morris and Brem, 2019), which affects the host’s immunity
and behaviour (Wohlgemuth et al., 2011; Luo et al., 2018),
whereas glucocorticoid treatment can alter the gut microbiota
composition (Wohlgemuth et al., 2011; Huang et al., 2015; Guo
et al., 2020). Thus far, little is known about the crosstalk between
circadian rhythms, microbiota and glucocorticoid responses.

Sex has also been shown to influence microbial rhythmicity,
with female mice exhibiting greater oscillations in microbial
abundance (as determined by 16S copies/g feces), and a possible
reduced fecal bacterial load compared to males (Liang et al.,
2015). Given that sex can alter the microbial composition and
disease susceptibility (Markle et al., 2013; Yurkovetskiy et al.,
2013; Ding and Schloss, 2014; Singh and Manning, 2016; Sinha
et al., 2019), it is possible that these alterations in microbial
rhythmicity may play an important role in contributing to
susceptibility to the diseases that affect more women than
men, e.g., breast and thyroid cancers and autoimmune diseases
such as systemic lupus erythematosus (Rees et al., 2016;
Westergaard et al., 2019).
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Importantly, changes in time-of-day or disruptions to the
circadian rhythms can have large impacts on the host’s
susceptibility to a number of health issues including obesity and
susceptibility to infections. Bellet et al. (2013); Nguyen et al.
(2013); Gibbs et al. (2014), viral pathogens (Edgar et al., 2016;
Gagnidze et al., 2016; Ehlers et al., 2018) (discussed next), and
parasites (Hopwood et al., 2018), indicating the importance of the
host circadian rhythm in susceptibility to disease.

Circadian Rhythm Influences the Host’s
Susceptibility to Pathogens
Both bacterial and viral pathogens exhibit time-of-day-
dependent differences in their ability to replicate or induce
immune responses (Figure 3). Time-of-day is often designated
by Zeitgeber (ZT) measurements, whereby ZT0 represents the
start of the circadian rhythm, i.e., when the light starts; any
time after ZT0, for example ZT6, represents the number of
hours (6 h) past the initiation of the circadian rhythm. In mice
housed in standard 12 h light/dark cycles, ZT0-ZT12 represent
the light phase when mice are resting, while ZT12–ZT24
(ZT0) represent the dark phase, when mice are most active.
Mice infected with Salmonella Typhimurium (Bellet et al.,
2013) or Streptococcus pneumoniae (Gibbs et al., 2014) showed
enhanced ability of the host to reduce pathogen colonization
and boost anti-bacterial immunity when infected during the
active phase (ZT16 or ZT12, respectively), compared to the rest
phase (ZT4 or ZT0, respectively). Similarly, mice infected with
Listeria monocytogenes (Nguyen et al., 2013) exhibited better
resolution of infection when infected later in the rest phase at
ZT8, compared with infection at the start of the rest phase at
ZT0. Clearly, host circadian rhythms modulate susceptibilities
to bacterial pathogens at different times-of-day. Using myeloid
cell-specific Bmal1-deficient mice (ArntlLoxP/LoxPLyz2Cre) to
study diurnal rhythms of inflammatory Ly6Chi monocytes,
Nguyen et al. (2013) found that the altered immune responses
to Listeria monocytogenes infection of the mice correlated with
different times-of-day. TheArntlLoxP/LoxPLyz2Cre mice developed
enhanced bacterial-induced inflammation driven by increased
recruitment of inflammatory monocytes and secretion of
chemokines (CCL2, CCL8) as well as cytokines (IL-1β and IL-6).
In addition, TNFα+iNOS+ DCs and IFNγ-secreting T cells were
also increased. Thus, Bmal1is important in the control of Ly6Chi

oscillations, limiting their recruitment at specific times-of-day
to prevent inflammation and promote host survival. Similarly,
in response to bacterial LPS and Salmonella Typhimurium
infection, Clock-mutated bone marrow derived monocytes
(BMDMs), causing a phase shift of 8 h, exhibited reduced
proinflammatory cytokine responses compared to wild-type
BMDMs (Bellet et al., 2013). While macrophages and monocytes
had been implicated in the circadian responses to both Salmonella
Typhimurium (Bellet et al., 2013) and Listeria monocytogenes
(Nguyen et al., 2013), they were not essential in mediating host
susceptibility to Streptococcus pneumoniae infection at different
times-of-day (Gibbs et al., 2014). Instead, bronchial airway
epithelial cells were found to modulate host susceptibility to
infection mediated through rhythmic glucocorticoid signaling,

which drove oscillations in Cxcl5 expression from the epithelium,
and thus differences in recruitment of neutrophils to the site of
infection. Both responses to Salmonella Typhimurium (Bellet
et al., 2013) and Streptococcus pneumoniae (Gibbs et al., 2014)
involve bacterial ligand (LPS/pneumolysin toxin) binding to
TLR4 to trigger an immune response. As mentioned earlier, host
TLRs can oscillate at different times of day both in the intestinal
epithelium and in immune cell subsets, including macrophages
and neutrophils (Silver et al., 2012a,b, 2018; Mukherji et al.,
2013; Wang et al., 2017). Thus, it is likely that TLR oscillations
are also involved in the regulation of the immune responses
to these bacteria. While TLR4 oscillations were not observed
in the mouse lung (Gibbs et al., 2014), this does not exclude
the role of TLR4 rhythmicity, as a heterogeneous population of
immune cells is present in the lung and each cell subset may
have altered TLR rhythmicity. Thus, more studies are required
to elucidate whether TLR signaling is vital in modulating these
circadian differences.

Crosstalk between viruses and host circadian rhythms
influences host circadian rhythm modulation of viral infections
and reciprocal viral modulation of host circadian rhythms.
Unlike bacteria, viruses do not themselves have circadian
rhythms of their own but viral infection of the host cell can
influence and be influenced by host circadian rhythms. Mice
infected with either murid herpesvirus 4 (MuHV-4) (Edgar et al.,
2016) or herpes simplex virus 2 (HSV-2) (Matsuzawa et al., 2018)
during the rest phase (ZT0–ZT12) showed greater protection
from viral infection, compared to the mice infected during
the active phase (ZT12–24). This protection correlated with
high Bmal1 gene expression in infected fibroblasts/keratinocytes,
which was confirmed by the studies using Bmal1-/- mice,
whereby viral load was significantly higher in Bmal1-/- mice
compared to wild-type mice. In addition, mice infected with the
DNA virus, herpes simplex virus 1 (HSV-1) as well as the RNA
viruses, Sendai virus and murine influenza A (IAV) also showed
enhanced viral replication in vivo in Bmal1-/- hosts (Edgar et al.,
2016; Ehlers et al., 2018). Moreover, viral replication of the
RNA viruses, respiratory syncytial virus (RSV) and parainfluenza
virus type 3 (PIV3) was also increased in Bmal1-deficient cells
in vitro (Majumdar et al., 2017). It was intriguing that Sendai
virus, IAV, RSV, PIV3 (all RNA viruses), which encode their
own RNA-dependent RNA polymerases, and therefore do not
utilize host transcriptional machinery for viral gene expression,
unlike the herpes viruses (DNA viruses) which are more reliant
on host transcription for gene expression, yet Bmal1-deficiency
increases viral replication in all these viruses. Treatment of
human A549 cells (an alveolar carcinoma line) with 100 nM
siRNA targeting Bmal1 (72% knockdown) led to higher PIV3
and RSV infections, respectively, agreeing with studies conducted
in Bmal1-/- mice (Majumdar et al., 2017). Seasonal variation
in Bmal1 expression in humans, namely Bmal1 expression is
lower in the winter months, coincides with higher disease risk
marker expression. This seasonal variation in Bmal1may explain
the increased susceptibility to viral infections during winter
months (Dowell, 2001; Dopico et al., 2015; Martinez, 2018).
Protein analysis comparing primary fibroblasts from WT and
Bmal1-/- mice indicated that circadian rhythms can control viral
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FIGURE 3 | Time-of-day-dependent changes in modulating host susceptibility to pathogens. Host circadian rhythms influence the promotion of bacterial and viral

disease depending on the time-of-day that the host was infected. Pathogens are shown around a circle representing different times of day with ZT0 representing the

start of the circadian cycle (Bmal1 induction) and rest/light phase and ZT6, ZT8, ZT12, and ZT18 representing 6, 8, 12, and 18 h past light onset, where at ZT12 the

dark/active phase starts. Red crosses indicate a time-of-day the host immune response is better prepared to prevent infection, while pathogens without a red cross

indicate a time that is better suited for the pathogens to cause disease. This figure was generated from published murine studies. Other pathogens, including human

pathogens, are likely to follow similar patterns. Changes in commensal gut microbial species at different times-of-day are also shown in boxes. Abbreviations: ZT,

Zeitgeber, S. pneumoniae (Streptococcus pneumoniae), S. Typhimurium (Salmonella Typhimurium), L. monocytogenes (Listeria monocytogenes); VSV, Vesicular

stomatitis virus; Mu-HV-4, Murid herpesvirus 4.

replication through many mechanisms, including alteration of
proteins related to virus particle uncoating, genome trafficking,
chromatin assembly, virus protein biosynthesis, viral assembly
and egress (Edgar et al., 2016). In addition, expression of
Nectin1, the receptor for HSV-2 (Taylor et al., 2007), oscillates
in both mouse skin and human keratinocytes, peaking at ZT18,
suggesting a mechanism for the increased infection at ZT18
vs. ZT6 (Matsuzawa et al., 2018). Altered immune responses
to viruses have also been implicated in time-of-day-dependent
susceptibilities to infection. For example, Sendai virus infections
in Bmal1-/- mice exacerbated inflammation, by increasing
CCL2, CXCL5, IFNs, and IL-6 production (Ehlers et al.,
2018). Furthermore, in studies of RSV infection, human nasal
wash samples showed virally-modulated impacts on circadian
genes. In infants hospitalized with RSV bronchiolitis, reduced
Bmal1 expression (Ehlers et al., 2018) was found in the nasal
wash samples compared to uninfected controls, and this likely
contributed to the higher levels of viral replication, and thus,
worse clinical manifestation.

Interestingly, some viral infections exploit host susceptibility
during the rest phase, suggesting different virus-specific
requirements at different times-of-day. Mice intranasally infected
with vesicular stomatitis virus (VSV) developed encephalitis, but
interestingly, the mice were more protected from the disease if
the infection was at ZT12 compared with those infected at ZT0
(40% vs. 95% mortality, respectively) (Gagnidze et al., 2016).
Further, the protective effect was due to Rev-Erbα-mediated ccl2
repression at the start of the active phase, leading to reduced
recruitment of inflammatory cells, and thus reduced disease

severity. Similarly, Rev-Erbα agonists repressed the replication
of hepatitis B and C viruses (HBV, Zhuang et al., 2021; HCV,
Zhuang et al., 2019) and human immunodeficiency virus (HIV,
Chang et al., 2018; Borrmann et al., 2020), whereas Bmal1
expression promoted viral replication. It is noteworthy that
Bmal1 is negatively regulated by Rev-Erbα. It is clear Bmal1 has
a pleiotropic role whereby Bmal1 promotes VSV, HBV, HCV,
and HIV replication, while suppressing IAV, RSV, HSV-2, PIV3,
HSV-1, and MuHV-4 replication. Therefore, there are likely to
be additional virus-specific pathways, which modulate circadian
rhythms that need to be further elucidated.

Other studies have shown that viral infections disrupt
epigenetic mechanisms, affecting the functioning of the circadian
clock. Using an in vitro HCV infection system, HCV core
protein (genotype 1b) decreased PER2 and CRY2 protein levels
in infected HuH-7 cells (human hepatoma cell line), whereas
overexpression of Per2 in HuH-7 cells reciprocally decreased
HCV RNA replication (Benegiamo et al., 2012). Further study
suggested that the CDH1 (E-cadherin) promoter region of
the HCV core protein(+) Huh-7 cells becomes substantially
hypermethylated, and the reduced CDH1 protein expression
in hepatocellular carcinoma patients was associated with poor
prognosis (Chen et al., 2014). Hypermethylation of the CDH1
(E-cadherin) promoter region also increased SIRT1 protein
levels in HCV core protein+ Huh-7 cells (Ripoli et al.,
2011). Importantly, SIRT1 is known to regulate the circadian
clock in hepatocytes, controlling regeneration, proliferation, and
metabolism of hepatocytes (Bellet et al., 2016; Sato et al., 2017).
Thus, HCV modulates circadian rhythms via manipulation of
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the epigenetic architecture. Further investigation into epigenetic
changes induced by viruses and bacteria in modulating circadian
rhythms is needed.

It should be noted that the effect of circadian rhythms on the
same virus could have different effects, dependent on whether
infection is active or latent. Acute herpes viral infections can be
influenced by circadian rhythms, whereas there was no evidence
suggesting that latent infections are similarly influenced (Edgar
et al., 2016). However, whether particular stimuli that induce
reactivation of latent viral infections can modify the influence
on circadian rhythms remains to be studied. In addition,
whether circadian dysregulation promotes viral reactivation also
is yet to be studied.

Together, these studies, just discussed, indicate that the time-
of-day can substantially alter the potency of the pathogenicity
and the host immunity. Importantly, the time at which the host
is most susceptible to pathogen infection varies and depends
on the type of virus and bacteria, all of which may have
important clinical implications. Thus far, circadian rhythms
and timed viral co-infection have not been studied; however,
this type of investigation may enable us to better understand
how circadian rhythm modulated pathways and the pathogens
interact. Studying bacterial and viral pathogens known to
differentially modulate host susceptibility at different times-of-
day may provide important insight into new pathways that could
be therapeutically targeted to boost host protection. Alterations
in the oscillations of gut commensal microbiota composition
have yet to be studied in response to viral and bacterial
pathogens, which likely play an important role in modulating
host susceptibility to infection, as discussed next.

BACTERIAL-VIRAL CROSSTALK IN
INFECTION

It is known that viral infections can alter the gut microbiota
composition, including HIV, influenza virus, norovirus,
rotavirus, HBV and HCV in humans, which can in turn
influence disease severity (reviewed in Li et al., 2019; Yuan
et al., 2020). Individuals with HIV infection had reduced
microbial richness and depleted Bacteroidia members but
their stool samples were enriched in species belonging to the
Proteobacteria phyla (Vujkovic-Cvijin et al., 2013). Interestingly,
the reduced alpha diversity (number of different microbial
species present) (Noguera-Julian et al., 2016), was associated
with the severity of immunodeficiency (Noguera-Julian
et al., 2016). However, this could be restored following anti-
retroviral therapy (Ji et al., 2018). Importantly, the alterations
in microbial composition were also associated with altered
microbial functions, whereby HIV infection repressed the
generation of proline, phenylalanine, and lysine (all amino
acids) (Serrano-Villar et al., 2016), while promoting tryptophan
catabolism (Vujkovic-Cvijin et al., 2013) by the microbiota.
Given Proteobacteria and Bacteroidetes (which includes the
Bacteroidia members) oscillate, it is conceivable that circadian
rhythms influence the microbiota composition in those
individuals. Administration of antibiotics/probiotics/prebiotics

in mice, as well as studies in germ-free (GF; which do not
have any bacteria) or gnotobiotic mice (which have a defined
microbial community), have confirmed that viral-bacterial
crosstalk can modulate susceptibility to viral infection and
disease, e.g., norovirus infection (Schaffer et al., 1963; Isaak
et al., 1988; Cadwell et al., 2010; Ichinohe et al., 2011; Basic
et al., 2014; Osborne et al., 2014; Robinson K. M. et al., 2014;
Pearson et al., 2019b).

Commensal bacteria exhibit both stimulatory and suppressive
functions in controlling viral infection, through direct and
indirect mechanisms, which can lead to harmful or beneficial
outcomes for the host (Figure 4). Commensal microbiota can
promote viral infections directly through the production of
microbial ligands (e.g., LPS) or metabolites (e.g., Bile acids or
SCFAs), which can promote: (1) target cell proliferation and
upregulation of virus receptors, e.g., CD300lf (a receptor for
murine norovirus) on Tuft cells (von Moltke et al., 2016; Nelson
et al., 2018; Wilen et al., 2018), (2) reactivation of viruses (Gorres
et al., 2014), (3) increased virion stability (Robinson C. M. et al.,
2014; Berger et al., 2017), and (4) increased viral replication
(Kuss et al., 2011). Importantly, norovirus infection of B cells
can be promoted or prevented depending on the presence of
bacteria expressing H-type histo-blood group antigens (Jones
et al., 2014; Karst, 2015). In addition, enteric bacteria have been
reported to enhance enteric viral (poliovirus) co-infection, which
consequently can facilitate genetic recombination and enhance
viral fitness (Erickson et al., 2018). Importantly, commensal
bacteria can alsomodulate the immune response, promoting viral
infection (Jude et al., 2003; Kane et al., 2011; Young et al., 2012;
Uchiyama et al., 2014; Baldridge et al., 2015; Wilks et al., 2015).
Two examples with different mechanisms of virus-mediated
immune suppression include mouse mammary tumor virus
(MMTV), which primarily infects intestinal dendritic cells, B cells
and T cells (Held et al., 1993; Beutner et al., 1994) and Norovirus,
which primarily infects intestinal Tuft cells (Wilen et al., 2018).
In MMTV infection, MMTV in conjunction with bacterial LPS
(signaling through TLR4), strongly induces proinflammatory IL-
6, which in turn promotes Tregs to produce IL-10, a potent
immune-suppressing cytokine, promoting viral escape from the
immune system (Jude et al., 2003; Kane et al., 2011; Wilks
et al., 2015). However, in norovirus infection, the presence of
gut bacteria downregulates antiviral IFNλ receptor expression in
the intestine and subsequently reduces intracellular downstream
signaling via Stat1 and Irf3 (Baldridge et al., 2015). This should
limit antiviral immunity and the survival of the virus.

On the other hand, commensal microbiota can also suppress
viral infections by multiple mechanisms including: (1) directly
binding to the virus, whereby the virus may be destabilized,
prevented from being internalized and/or viral replication is
suppressed (Botić et al., 2007; Conti et al., 2009; Mastromarino
et al., 2011; Chen et al., 2016; Bandoro and Runstadler, 2017),
and (2) boosting antiviral immunity and mucosal barrier
integrity. This antiviral immunity includes enhancing viral
antigen presentation to antigen-specific T and B cells, leading
to the activation of cytotoxic CD8+ T cells, generation of IFN-
γ-producing Th1 cells and IL-17a-secreting Th17 cells (Hensley-
McBain et al., 2016), as well as synthesis of virus-specific
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FIGURE 4 | Bacteria-virus crosstalk can promote virus infection or enhance host protection. Interactions between bacteria and viruses can promote infection (left

hand-side), or protection of the host (right-hand side) by multiple different mechanisms. These mechanisms focus on alterations to viral stability, replication, genetic

recombination, antigen release, mucosal barrier functions and host immunity including cytokine release and antibodies. Bacteria influence viral crosstalk both directly,

e.g., Lipopolysaccharide (LPS) binding to the virus or bacterial stimulation of host Toll-like receptor (TLR) or inflammasomes, and indirectly, including through the

production of short chain fatty acids (SCFAs e.g., butyrate) or metabolism of bile acids. Additional abbreviations include: IFN (interferons) and IL- (Interleukin-).

antibodies (Ichinohe et al., 2011; Oh et al., 2014) to control and
limit the infection. Furthermore, bacterial and viral ligands can
activate toll-like receptors and inflammasomes, both of which
promote the secretion of IFNs, IL-1β and IL-18 (Ichinohe et al.,
2011; Wang et al., 2012; Oh et al., 2014) from a range of cells,
while reducing IL-33 secretion (Oh et al., 2016) and enhancing
IL-22 (Hensley-McBain et al., 2016) and IFN responses (Steed
et al., 2017). Together, they boost antiviral immune responses and
mucosal barrier integrity.

Interestingly, microbial products, such as LPS, can also both
promote and suppress viral infections, which may be due to
different LPS structures that have different immunostimulatory
effects (Vatanen et al., 2016). This has been reported in MMTV
studies, where MMTV virions bound to E. coli LPS had a
greater ability to stimulate IL-6 production from splenocytes than
B. theta LPS (Wilks et al., 2015). However, further studies are
required to determine whether the differences in LPS from the
various bacterial sources, and/or their structures, differentially
modulate virus stability. Interestingly, different serotypes of
E. coli LPS can differentially alter body temperature in rats
(Dogan et al., 2000). As the peripheral circadian oscillators sense
temperature changes, it is also possible that the origin of the LPS
may differentially induce temperature changes in vivo and alter
circadian rhythmicity. Furthermore, as both bacteria and TLRs
oscillate, including TLR4, it is highly likely this will have an effect
on viral promotion or suppression.

Bacteriophages, viruses which infect and subsequently destroy
bacteria, are highly abundant and can modulate bacterial
composition of the host (Hsu et al., 2019; Khan Mirzaei et al.,
2020) and can prevent infection of the host by pathogenic
bacteria by adhering to the mucus layer (Dubos et al., 1943;
Matsuzaki et al., 2003). Importantly, bacteriophages have also
been shown to be influenced by circadian rhythms (Kao
et al., 2005; Liu et al., 2019). Cyanophages, which infect
cyanobacteria, have been shown to exhibit diurnal rhythms
in their ability to infect bacteria and in gene expression,
which relates to the ability of the cyanobacteria to undergo
photosynthesis (Liu et al., 2019). While this provides the first
evidence of circadian modulation of phages, future studies
are needed to determine whether phages in humans or mice
exhibit similar changes. It will also be important to develop
new technologies to fully understand the potential of these as
microbial modulators and as modulators of circadian rhythms
(Khan Mirzaei and Deng, 2021).

Further studies evaluating crosstalk between viruses and
bacteria in circadian rhythms are urgently needed. Studies
involving GF and gnotobiotic mice would be greatly insightful,
so would co-infection models. Better understanding of these
interactions would undoubtedly help not only to identify novel
pathways for therapeutic targeting but also to better understand
how therapy may inadvertently alter susceptibility to other
pathogens, including opportunistic pathogens.
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CIRCADIAN INFLUENCES ON
ANTIBACTERIAL AND ANTIVIRAL
THERAPY

Therapies targeting the circadian clock have shown promise in
controlling bacterial and viral infection. SR9009, a REV-ERB
agonist, which suppresses Bmal1, has successfully inhibited viral
entry and replication ofHCV (Zhuang et al., 2019), HBV (Zhuang
et al., 2021), and HIV-1 (Borrmann et al., 2020). Likewise,
SR8278, a REV-ERB antagonist, which represses Rev-erbα and
promotes Bmal1 expression, has rendered mice more susceptible
to VSV infection when infected at ZT12, compared to the more
protected mice infected at ZT12 without REV-ERB antagonist
treatment (Gagnidze et al., 2016). It is unknown, thus far, if Rev-
erb agonists change the gut bacterial composition and function.
Thus, these studies need to be conducted, and combined with
studies of viral infection. While the therapies targeting circadian
proteins have shown promise with respect to infection, it is
important to consider broader effects. For example, Rev-erbα
modulates Th17 cell development (Yu et al., 2013), and thus Rev-
erbα agonists may promote cell development, while antagonists
may prevent Th17 expansion. It is possible that Th17-promoting
Rev-erbα agonists may subsequently result in intestinal dysbiosis
in the host, due to dysregulated Th17 immune responses to gut
bacteria. In addition, given the plasticity of Th17, Treg, and Th1
responses (Lee et al., 2009; Wei et al., 2009; Mukasa et al., 2010),
any Rev-erbα modulation needs to be considered in all these
aspects for additional immune impacts that may alter both the
efficacy of treatment and susceptibility to other health problems.

The specific timing of therapeutic intervention, referred to
as chronotherapy, may also play a role in modulating bacterial
and viral crosstalk. In murine HSV-2 infection, time-of-day
influences the survival of the infected mice, with infections
at ZT6 repressing viral replication and promoting survival of
the host, compared to infections at ZT18 (Matsuzawa et al.,
2018). Interestingly, when these mice were infected at ZT18, a
fourfold higher dose of acyclovir (administered 30 min prior
to infection) was required for mice infected at ZT18, compared
to those infected at ZT6 to obtain similar survival and clinical
scores (100 mg/kg vs. 25 mg/kg). Therefore, the time of infection
can make a substantial difference to the drug dosage needed
to control the infection, which for some therapies may not be
possible due to the enhanced toxicity or side effects of the drug
when higher doses are used. In addition, the use of higher
doses may also promote host resistance to the effective therapy.
It is unclear whether antibiotics may have a similar effect on
bacterial pathogens at different times-of-day. If so, administering
the antibiotics at a time synchronized with the timing of optimal
anti-microbial host immune responses may prove beneficial and
prevent suboptimal doses of antibiotics being used, and thus
reduce antibiotic resistance.

Given that the microbiota have the ability to metabolize many
drugs (Zimmermann et al., 2019), and that the abundance of
bacteria can oscillate, it is likely that this change in the microbiota
at different times-of-day may alter the therapeutic responses
that the drugs elicit. For example, certain bacterial species

can enhance the success of therapy with immune checkpoint
blockade in mice and cancer patients (Sivan et al., 2015; Vétizou
et al., 2015; Mager et al., 2020) and gut bacteria could also
enhance the responses to chemotherapy via modulating the
tumor microenvironment and immune cell function (Iida et al.,
2013; Viaud et al., 2013). Importantly, not only does drug-
metabolism by microbiota have a local effect, but systemic
consequences can occur, particularly in the liver, where hepatic
drug metabolism can also be influenced by circadian oscillations
(Kim and Lee, 1998; Lin et al., 2019; Wang et al., 2019).
Interestingly, in the liver, Bmal1 regulates oscillations in drug
metabolizing genes, as Bmal1-deficient mice showed higher levels
of toxicity from metabolizing xenobiotics (Lin et al., 2019).
Given that Bmal1 promotes oscillations in drug-metabolizing
genes and toxicity sensitivity, and in addition, Bmal1 promotes
both HBV and HCV infection in hepatocytes, some potential
adverse effects of circadian therapies (i.e., Rev-erb agonists) on
drug metabolism, which may result in increasing toxicity, should
also be considered.

Circadian oscillations also modulate vaccine responses to
bacterial and viral pathogens. The magnitude of antibody
response to the trivalent inactivated influenza vaccine in
humans correlated with early TLR5 expression (Oh et al.,
2014). Microbial flagellin is a ligand for TLR5 (Hayashi
et al., 2001) and stimulation of TLR5 boosted plasma cell
numbers and antibody titers in response to the influenza
vaccine (Oh et al., 2014). TLR5 was also involved in boosting
antibody responses to the inactivated polio vaccine but not
to adjuvanted (Tetanus-Diphtheria-pertussis) vaccine or the
live-attenuated yellow fever vaccine (YF-17D). Interestingly,
antibody responses to the trivalent influenza vaccine are also
altered at different times-of-day, with higher titers observed in
elderly individuals vaccinated in the morning compared with
the afternoon (Long et al., 2016). It is unclear whether circadian
oscillations in gut bacteria contribute to the alteration seen
in anti-influenza antibody response; however, it is certainly
possible, as TLRs oscillate and are likely to be involved in
bacterial and viral ligand sensing. Further studies need to be
conducted for other vaccinations and in different age groups.
Given that elderly people have reduced immune responses
compared to younger individuals (Gustafson et al., 2020),
timing of the vaccination to boost the protective response is
clinically relevant.

APPLICABILITY OF ANIMAL MODELS
FOR HUMAN CIRCADIAN STUDIES

As discussed, it is clear animal models have a circadian rhythm
and that both bacterial and viral organisms are able to modulate
these rhythms to either promote better survival of the host or
better advantage to the pathogen. While these studies have been
enlightening and have some similarities with human circadian
rhythm studies, it is important to consider the true implication
of animal circadian studies and how these rhythms may be
different to humans.
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Both mice and humans have an evolutionarily preserved
molecular clock and SCN, which controls the circadian rhythms
in response to light; however, as mice are nocturnal and humans
are diurnal their responses to light can be different. Mice can
entrain to light exposure of 1 lux for a few minutes, while
humans require both a high light intensity (>100 lux’s) and a
longer duration (>30 min) to entrain (Daan and Pittendrigh,
1976; Khalsa et al., 2003). Thus, differences in study design
related to light intensity and duration can have different effects
between the species and thus the induction of circadian rhythms.
Similarly, laboratory animals are generally housed in abrupt 12-
h light/dark cycles, whereas humans can experience seasonal
variations in light exposure (Jasser et al., 2006; Higuchi et al.,
2007). Interestingly, nocturnal vs. diurnal animal species can
also have a different time window and magnitude of response
when serotonin is able to modulate circadian rhythms (Horikawa
and Shibata, 2004; Novak and Albers, 2004; Cuesta et al., 2008).
Thus, changes in response and timing need to be considered
when considering translation and applicability of animal studies
into human studies.

There are many other factors that may also be involved in
modulating circadian differences between mice and humans.
For example, changes in microbial composition between the
species, as well as food type and time eaten, will also be
important in determining microbial influences on circadian
rhythms. Furthermore, the laboratory animals studied are often
in-bred and thus, in comparison to humans, exhibit much less
genetic diversity, which also may influence the applicability of
murine studies to humans. However, as for other types of research
that use animal models, murine studies provide a signpost for
areas of investigation when considering circadian rhythms in
humans. Thus, it is important for studies conducted in animal
models to be confirmed in humans.

SUMMARY

Circadian rhythms modulate the composition and function of
commensal bacteria, and host susceptibility to bacterial and
viral infection. While the interactions between circadian rhythms
and viral or bacterial infection have been separately studied,

there is a significant knowledge gap regarding the three-way
crosstalk among viruses, bacteria and circadian rhythms. Thus,
the studies with co-infection (bacteria and virus) may provide
important insight into the crosstalk. It is clear that circadian
clock manipulation and vaccination at particular times-of-day
may have important implications for boosting host protection
from infection and inflammation. Thus, there is a need to better
understand these interactions. As discussed earlier, not all viruses
have the same time-of-day virulence to infect the host; thus,
we need to consider how to target individual viruses that may
alter susceptibility to infection by other viruses, opportunistic
bacteria or immune-mediated diseases. By better understanding
these interactions we may be able to reduce antiviral/antibiotic
resistance by using lower doses of drugs, which may also
result in fewer toxic side effects. Although it is difficult to
pinpoint the time when an infection occurs in humans, it is
possible to boost the protective immune responses at the optimal
time to enhance therapeutic success, whether by vaccination or
immune-modulating therapies. Finally, given the impact that
circadian rhythms have on microbes and immunity, it would
be important to consider the role of circadian rhythms in
the design and implementation of experiments in both animal
and human studies.
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