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Background: Head and neck squamous cell carcinoma (HNSCC) is the most

common head and neck cancer and is highly aggressive and heterogeneous,

leading to variable prognosis and immunotherapy outcomes. Circadian rhythm

alterations in tumourigenesis are of equal importance to genetic factors and

several biologic clock genes are considered to be prognostic biomarkers for

various cancers. The aim of this study was to establish reliable markers based on

biologic clock genes, thus providing a new perspective for assessing

immunotherapy response and prognosis in patients with HNSCC.

Methods:We used 502 HNSCC samples and 44 normal samples from the TCGA-

HNSCC dataset as the training set. 97 samples from GSE41613 were used as an

external validation set. Prognostic characteristics of circadian rhythm-related

genes (CRRGs) were established by Lasso, random forest and stepwise

multifactorial Cox. Multivariate analysis revealed that CRRGs characteristics

were independent predictors of HNSCC, with patients in the high-risk group

having a worse prognosis than those in the low-risk group. The relevance of

CRRGs to the immune microenvironment and immunotherapy was assessed by

an integrated algorithm.

Results: 6-CRRGs were considered to be strongly associated with HNSCC

prognosis and a good predictor of HNSCC. The riskscore established by the 6-

CRRG was found to be an independent prognostic factor for HNSCC in

multifactorial analysis, with patients in the low-risk group having a higher

overall survival (OS) than the high-risk group. Nomogram prediction maps

constructed from clinical characteristics and riskscore had good prognostic

power. Patients in the low-risk group had higher levels of immune infiltration

and immune checkpoint expression and were more likely to benefit from

immunotherapy.

Conclusion: 6-CRRGs play a key predictive role for the prognosis of HNSCC

patients and can guide physicians in selecting potential responders to prioritise
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immunotherapy, which could facilitate further research in precision immuno-

oncology.
KEYWORDS

HNSCC, circadian rhythm, biomarkers, tumor microenvironment, immunotherapy,
prognostic signature
1 Introduction

As the sixth most common cancer worldwide, HNSCC includes

malignant lesions originating in the mouth, lips, nasopharynx,

pharynx, or larynx (1). Globally, HNSCC has an incidence of

more than 809,000 cases and more than 316,000 deaths,

accounting for 3.6% of all cancer deaths (2). Currently, HNSCC

treatment has been based on various therapeutic approaches such as

surgery, chemotherapy, radiotherapy, and photodynamic therapy

(3). However, the prognosis for individuals with HNSCC remains

dismal, and morbidity and mortality rates are rising yearly due to

the disease’s very aggressive and diverse character (4). Patients with

HNSCC diagnosed at an early stage have a 60-95% chance of

successful treatment by primary tumor resection combined with

extensive neck debulking (5). However, most patients have

advanced cancer at the time of diagnosis, with tumor metastasis

and recurrence. The prognosis of the disease is strongly correlated

with the TNM stage and histologic grade of HNSCC, which serve as

the main foundation for several treatment choices, including

prognostic classification, immunotherapy, radiation, and

chemotherapy (6–10). However, the prognosis of HNSCC

patients based on conventional clinicopathological staging may

not be totally accurate since people with the same clinical stage

may have varied clinicopathologic characteristics (9, 11). Therefore,

to forecast the prognosis of HNSCC patients and direct tailored

treatment, new prognostic biomarkers and molecular targets must

be found in order to improve the quality of life for HNSCC patients.

The circadian clock system is used by organisms to adjust their

biochemical and behavioral processes to the cyclical environmental

changes caused by the rotation of the Earth (12, 13). The master

clock is located in the suprachiasmatic nucleus above the optic cross

and is based on neural and humoral inputs that synchronize the

cellular autonomous clock in peripheral organs with the “master

clock” and thus regulate most life activities (14, 15). The circadian

rhythm alteration in tumorigenesis may have the same importance

as genetic factors and altered biological clock gene expression has

been found in cancer cells (16–18). It has been shown that biological

clock genes can directly or indirectly regulate the five major

pathways of DNA repair and thus the progression of the cell

cycle (19–21). There are also suggestions that dysregulation of

circadian genes can contribute to inflammation and tumor

progression through activation of p38, c-Myc, NF-kB, Bcl-XL,

and protein kinase A (PKA) pathways (17, 22–25). Considering
02
the significant role of CRRGs in tumors, several biological clock

genes have been considered as prognostic biomarkers for various

cancers (26–28). Currently, the prognostic value of CRRGs in

HNSCC and the role of the tumor immune microenvironment

are unclear. Hence, the purpose of this study was to develop a new

risk-scoring system based on CRRGs to accurately predict

prognosis and characterize the immune landscape of patients with

CRRGs, providing a theoretical basis for personalized and precise

clinical treatment.

With the continuous development of bioinformatics, a large

quantity of articles was constructing prognostic models of diseases

by filtering the prognostic markers of the features through methods

as machine learning (29–31). In our study, we screened 6 reliable

CRRGs by two machine learning methods, constructed a prognostic

model based on the TCGA-HNSCC cohort, and went on to

establish a risk score and comprehensively analyzed the

relationship between CRRGs and immune microenvironment,

immunotherapy, and chemotherapy sensitivity. We aimed to

demonstrate the value of 6-CRRGs for assessing the prognosis of

HNSCC patients through a comprehensive analysis of genomic data

and to develop new tools to improve treatment options.
2 Method

2.1 Data sources

We downloaded gene expression profiles and clinical data of

TCGA-HNSCC cohort including 504 tumor patients and 44 normal

controls from the TCGA database (https://portal.gdc.cancer.gov/).

The level 3 HTSeq-Fragments per kilobase million (FPKM) data of

TCGA-HNSCC was converted to TPM (transcripts per million

reads) according to the following formula: TPMn = FPKMn * 10
6/

(FPKM0 +… + FPKMm), where n represented gene n and m

represented the total number of all genes, respectively. Then, we

performed a log2-based transformation of TPM. After excluding

samples lacking complete clinical information, 501 HNSCC

samples were included in the subsequent analysis. The sample

size of HNSCC patients at the M stage varied greatly. This stage

was consequently excluded from the analysis. We obtained 97

HNSCC patients with complete follow-up information from

GSE41613 as an external validation set. In this study, two

separate datasets, TCGA-HNSCC and GSE41613, were merged
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and the batch effect was corrected for using the ComBat function in

the R package “sva” in order to eliminate the batch effect in the

microarray expression data. We obtained Circadian rhythm-

associated 1424 genes by Genecards (https://www.genecards.org/)

(Supplementary Table 1).
2.2 Model construction

The “limma” R package was used to analyze CRRGs that are

differentially expressed in HNSCC tissues and normal tissues.

Univariate Cox regression analysis was performed to identify

CRRGs with prognostic value. The prognostic network of DE-

CRRGs associated with prognosis was mapped by the “igraph” R

package. The obtained genes were further screened by Lasso and the

RF algorithm, respectively. After the intersection of genes screened

by the two methods, multivariate analysis was used for modeling

and R package “glmnet” (32) was used to determine key genes and

their regression coefficients. For each patient, the CRRGs risk score

was calculated as follows, risk score = ExpressionmRNA1 ×

Co e f m RNA 1 + Exp r e s s i o nmRNA 2 × Co e f m RNA 2 +…

ExpressionmRNAn × CoefmRNAn.
2.3 Model validation

Subsequently, the HNSCC patients in the dataset were divided

into low-risk and high-risk groups according to the median risk

score. Overall survival (OS) was compared between the two groups

using Kaplan-Meier curves created by survminer in the R

package. The “pec” R package was used for PCA analysis and c-

index calculation. The prediction accuracy of the signature was

evaluated by constructing a time-dependent ROC using the

“timeROC” R package.
2.4 Independent prognostic analysis and
nomogram predictive model construction

Univariate Cox regression and multivariate Cox regression

analysis were used to evaluate whether risk score was an

independent prognostic factor. The rms R package combined

with risk scores and clinicopathological characteristics was used

to construct a nomogram for predicting the probability of survival

at 1, 3, and 5 years in HNSCC patients.
2.5 Enrichment analysis

The “c2.cp.kegg.v7.4.symbols” obtained from the MSigDB

database were analyzed using the “GSVA” R package. Gene

Ontology (GO) analysis is done using the Cluster-Profiler

R package.
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2.6 Immunoassay of risk signatures

Currently recognized methods, including XCELL (33, 34),

TIMER (35, 36), QUANTISEQ (37, 38), MCPCOUNT (39), EPIC

(40), CIBERSORT (35, 41), and CIBERSORT-ABS (42)is used to

measure immune infiltration correlation. The CIBERSORT

algorithm was used to evaluate immune cell infiltration in

HNSCC patients. Single sample GSEA (ssGSEA) was used to

evaluate the immune function of the two groups. At the same

time, we collected 19 inhibitory immune checkpoints with

therapeutic potential from Auslander’s study (43). We obtained

the gene set associated with cancer-immune circulation from the

website developed by Xu et al. (http://biocc.hrbmu.edu.cn/TIP/)

(44) and the gene set that was positively correlated with the clinical

response to the anti-PD-L1 drug (atezolizumab) from the research

features of Mariathasan (45). Using the GSVA algorithm (46) to

calculate the enrichment scores of genetic signatures positively

correlated with the cancer immune cycle and immunotherapy.

Visualization was performed using the ggcor R software package.

In addition, we analyzed the prediction of the 6-CRRGs signature

on tumor immunotherapy response by the IMvigor210 cohort

(http://research-pub.gene.com/IMvigor210CoreBiologies/).
2.7 Somatic mutation analysis

We downloaded the mutation data available to patients with

TCGA-HNSCC from the TCGA Data Portal (https://

portal.gdc.cancer.gov/). We analyze mutation data from HNSCC

samples using maftools (47). The tumor mutation burden (TMB)

score is calculated as follows: (Total Mutation/Total Coverage Base)

× 10^6 (48). GSCALite (http://bioinfo.life.hust.edu.cn/web/

GSCALite/) provides an online cancer genomic analysis platform

by integrating 33 cancer data from TCGA and normal tissue

genomics data from GTEx (49).
2.8 Database for tumor immune single-
cells

A single-cell RNA sequencing database focused on the tumor

microenvironment (TME) is housed at the Tumor Immunization

Single Cell Center (TISCH)(http://tisch.comp-genomics.org/home/).

Detailed cell type annotations are provided at the single cell level for

further analysis of specific gene expression in different cell types. The

specific gene expression in different cell types further reveals the

variation of TME in patients with different HNSCC, thus explaining

to some extent the heterogeneity of HNSCC.
2.9 Drug sensitivity

GDSC (Genomics of Drug Sensitivity in Cancer) (https://

www.cancerrxgene.org/) was used to measure half-maximal
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inhibitory concentrations (IC50). This is achieved by using the

pRRophetic R package.
2.10 Statistical analysis

Statistical analyses were performed using R software v4.1.3.

Kaplan-Meier (KM) survival curves and log-rank tests were used to

compare overall survival (OS) in the high-risk and low-risk groups.

The LASSO regression analysis and RF were used to screen

candidate CRRGs. Stepwise multifactor Cox regression analysis

was used to construct CRRGs characteristics. Time-dependent

ROC was used to assess the predictive performance of the model.

Spearman correlation analysis was used to assess the correlation

between risk score and immune cell infiltration. Wilcox test was

used to compare the proportion of TIICs, immune checkpoints, and

immune function between the two groups. P < 0.05 was considered

statistically significant and false discovery rate (FDR) < 0.05 was

considered statistically significant.

3 Results

3.1 Identification of candidate CRRGs

The primary design of this study can be known from the

graphical flow chart (Figure 1). Aiming to explore CRRGs with

differential expression and prognostic significance in HNSCC

patients, we first performed differential expression analysis of

gene expression in the normal and tumor groups by using the

“limma” R package. After filtering the data according to thresholds

(|log2FC|>1.0, FDR <0.05), we identified a total of 373 differential

expressions (DE) CRRGs, of which 102 were down-regulated and

271 were up-regulated in HNSCC tissues (Supplementary Table 2).

The DE-CRRGs were visualized by volcano plot and heat map

(Figures 2A, B). The heatmap showed the top 50 CRRGs with the

greatest upregulation of expression and the top 50 CRRGs with the
Frontiers in Immunology 04
greatest downregulation of expression relative to normal tissue.

Univariate cox analysis yielded CRRGs that were associated with

patients’ OS, and we ultimately identified 85 CRRGs that were

prognostically significantly associated (Figure 2C). We then

performed prognostic network mapping on them, and the CRRGs

showed significant correlation and prognostic significance

(Figure 2D). Based on these results, CRRGs may be associated

with HNSCC tumorigenesis and progression.
3.2 Selection of modeling genes using
LASSO and RF algorithms
Two machine learning algorithms were applied to screen

signature genes among biological clock genes associated with the

prognosis of HNSCC patients. For the LASSO algorithm, cross-

validation was performed. The minimum criteria for constructing

the LASSO classifier were selected to identify 28 feature genes

(Figures 3A, B). Combined with RF feature selection, the

classification tree results (Figures 3C, D) were selected for genes

with heavy variable importance > 0.004. Through crossover, a total of

11 feature genes including IL1B, TXN, and CASP3 were finally

identified for LASSO, RF algorithm, and represented by the VENN

diagram (Figure 3E). Subsequently, a stepwise multifactorial Cox risk

regression algorithm was used to downscale these high-dimensional

data, and the optimal Lambda value was 0.0273. Six prognosis-related

CRRGs were finally identified for ADA, CYP2D6, RYR2, DSCAM,

IRF4, and HPRT1. The corresponding regression coefficients were

obtained as 0.2527, -0.6680, 0.3155, 0.3035, - 0.1897, and 0.5259. In

multivariate Cox analysis, a linear prediction model was established

based on the weighted regression coefficients of the six prognosis-

related CRRGs, calculated as Risk score = (0.2527 × ADA expression

level) + (-0.6680 × CYP2D6 expression level) + (0.3155 × RYR2

expression level) + (0.3035 × DSCAM expression level) + (-0.1897 ×

IRF4 expression level) + (0.5259 × HPRT1 expression level).
FIGURE 1

The flowchart summarizes the main design of the present study.
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3.3 Validation of 6-CRRGs signature

For the purpose of evaluating the stability of the constructed

risk model in predicting patient prognosis, we used the TCGA-

HNSCC cohort as the internal training and the GSE41613 cohort as

the external validation cohort. Risk scores were calculated

separately for each sample in the TCGA training and validation

cohorts based on the same risk formula, and we could find that

when the risk of HNSCC patients was elevated in both cohorts,

patients showed a survival disadvantage of reduced OS and

increased mortality (Figures 4A, B). Based on the median risk

score, we were able to divide the patients into two subgroups of high

and low risk to explore prognostic differences. The Kaplan-Meier

curves showed a significant difference in prognosis between the high
Frontiers in Immunology 05
and low-risk patients in these two cohorts respectively, with patients

in the low-risk group having a more significant survival advantage

(Figures 4C, D). The ROC curve (Receiver operating characteristic

curve) was used as a tool to predict the survival time of patients at 1,

3, and 5 years. The AUC values for the TCGA-HNSCC cohort were

0.701, 0.705, and 0.664 respectively while the AUC values for the

GSE41613 cohort were 0.723, 0.695, and 0.713 respectively

(Figures 4E, F). This indicates that the model has an excellent

predictive effect. Based on a principal components analysis of the

risk model, both high-risk and low-risk patients in the two cohorts

showed significant differences and were successfully divided into

two relatively independent clusters (Figures 4G, H). These results

confirm that the risk model has stable and excellent generalisability

and predictive capability.
B

C D

A

FIGURE 2

Identification of candidate CRRGs. (A, B) Heat map and volcano plot of differentially expressed CRRGs. (C) The prognosis of 85 CRRGs in the whole
HNSCC cohort was analyzed by a univariate Cox regression model. (D) Correlation analysis of the expression of CRRGs after 87 COX regression
analyses. The genes with favorable prognoses are marked in green and the harmful factors in purple. The size of the point indicates the P-value
calculated by the COX regression, the larger the value, the smaller the point.
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3.4 Clinical correlation and survival analysis
of 6-CRRGs in patients with HNSCC

Given the significant differences in OS between high and low-

risk groups in individual clinical characteristics, in order to explore

and compare such differences in a more focused manner, we

divided HNSCC patients into six different subgroups based on

clinical characteristics. Namely, pathological stage (I-II and III-IV),

Age (≤65 and >65 years), gender (female and male), pathological

grading (G1-2 and G3-4), N-stage (N0-1 and N2-3), T-stage (T1-2

and T3-4) and HPV status (positive and negative). Notably, in all

subgroups, low-risk patients had a significant survival advantage of

longer survival time compared to high-risk patients (Figure 5).

Based on the analysis of the results, we are more confident that the

6-CRRGs risk model is a reliable clinical prediction tool.
3.5 Correlation analysis of risk scores with
clinical characteristics

To provide an analysis of the association between high and low-

risk groups and clinical characteristics, a heatmap was made based

on clinical characteristics, risk, and gene expression, which showed

the correlation between CRRGs established in the prognostic risk

model and the clinical characteristics and risk scores of all HNSCC

patients in TCGA as a whole group (Supplementary Figure 1A). By

comparing the distribution of clinical characteristics between the

high and low-risk groups, we found significant differences in the
Frontiers in Immunology 06
distribution of clinical stage, grading, T-stage, and N-stage, while

age and gender did not vary significantly between the two

subgroups (Supplementary Figure 1B). The Wilcoxon test was

then used to compare the differences in risk scores for clinical

characteristics between the subgroups to test the correlation

between both. Risk scores were found to be significantly

associated with grade (P<0.01), T stage (P<0.01), stage (P<0.01),

and N stage (P<0.05), but not with age, or gender (Supplementary

Figures 1C–H).
3.6 Creation of nomograms based on 6-
CRRGs signatures combined with clinical
characteristics

To verify the credibility and clinical value of the biological

signature constructed based on the 6-CRRGs as a predictor of

prognosis, we included each HNSCC patient’s risk score with

common clinical indicators for comparison and observed the

correlation between each factor and patient prognosis after

successive univariate Cox and multivariate Cox analyses. Based

on the analysis of the results, it is clear that Stage, T-stage, N-stage,

and risk score (P<0.001) were all prognostic factors significantly

associated with patient prognosis in the univariate cox analysis

(Figure 6A). However, after multifactorial cox analysis, only the risk

score (P<0.001) and N stage (P=0.002) remained significant

(Figure 6B). We further compared risk, N stage, and the

remaining clinical indicators and it is worth noting that risk
A B

D

E

C

FIGURE 3

Lasso regression analysis and random survival forest screening for special issue genes. (A) Lasso coefficient curves. (B) Adjusted parameter selection
in the Lasso model with tenfold cross validation. (C, D) RF error rate versus. (E) Wayne diagram showing intersection genes.
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(AUC=0.701) was superior to N stage (AUC=0.609) and the other

indicators (Figure 6E). It suggests that the risk score is the most

reliable factor as an independent predictor of patient prognosis.

Based on the above analysis, the hope of being able to predict

patients’ prognoses quantitatively and inform clinical decision-

making. We integrated the risk score and its clinical indicators to

construct a Nomogram plot as a means of predicting the probability

of prognostic survival at 1, 3, and 5 years (Figure 6C). Calibration

analysis showed that the prediction curves for OS for patients at 1,

3, and 5 years were highly similar to the ideal 45-degree calibration
Frontiers in Immunology 07
line, indicating excellent stability of the Nomogram plot

(Figure 6D). We then compared Nomogram, risk, and common

clinicopathological features, with risk (AUC=0.718) and

Nomogram (AUC=0.743) having more accurate predictive

performance and discriminatory power than a single independent

clinical indicator (Figure 6F). Subsequently, DCA (Decision curve

analysis) showed that Nomogram and risk yielded greater net

benefit and predictive benefit, indicating that both the model’s

risk score and nomogram could be used as primary decision factors

(Figure 6G). Combined with the above results, this suggests that our
A B

D

E F

G H

C

FIGURE 4

Validation of 6-CRRGs Signature. (A, B) Distribution of risk scores and patient survival between low and high-risk groups in the TCGA cohort and the
GEO cohort. (C, D) KM curve compares the overall HNSCC patients between low- and high-risk groups in the TCGA cohort and the GEO cohort. (E,
F) Time-dependent ROC curves analysis in the TCGA cohort and the GEO cohort. (G, H) PCA plot in the TCGA cohort and the GEO cohort.
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6-CRRGs risk model is more practical and influential for clinical

decision-making and is more suitable as a clinical decision tool for

predicting the prognosis of HNSCC patients in the clinical setting.
3.7 Functional enrichment analysis of
CRRGs in HNSCC

We performed gene ontology (GO) analysis and Kyoto

Encyclopedia of Genes and Genomes (KEGG) analysis on DEGs

to elucidate the information pathways and underlying molecular

mechanisms of the risk signature. After filtering the data according

to thresholds (|log2FC|>1.0, FDR<0.05), we could obtain

enrichment results that were significantly different in the

HNSCC and normal groups. Cellular fractions (CC) mainly

include immunoglobulin complex, external side of plasma

membrane and immunoglobulin complex, circulating, etc.

Molecular functions (MF) include mainly antigen binding and

immunoglobulin receptor binding. Biological processes (BP)

include immunoglobulin production, regulation of B cell

activation, B cell receptor signaling pathway and humoral

immune response, etc. (Figures 7A, B). KEGG and GSVA further

explored enrichment pathways that differed significantly between

high and low-risk groups, ultimately identifying 91 significantly

enriched pathways (Figure 7C), including other relevant KEGG
Frontiers in Immunology 08
pathways such as base excision repair, and protein export in the

high-risk group. The low-risk group included KEGG pathways

related to a-linolenic acid metabolism, metabolism of linoleic

acid, and metabolism of arachidonic acid. It is worth noting that

the results of the GO enrichment analysis were mainly related to

immune-related functions and biological processes, so we

performed a more comprehensive and detailed analysis of the

immune landscape of patients in the high and low-risk groups.
3.8 Multi-omics mutation analysis of 6-
CRRGs

Aberrant mutations and copy number variants in somatic cells

may have potential relevance in tumourigenesis and progression. We

first visualized the distribution of mutated genes between high and

low-risk groups with the ''maftools'' R package to see if the combined

landscape of mutation profiles differed between the two subgroups.

Through the results, we noted the distribution of the top 15 mutated

genes with the highest frequency of change, with a higher frequency of

somatic mutations in the high-risk group (95.6%) than in the low-risk

group (88.98%) (Figures 8A, B). with the highest mutation frequencies

being TP53, TTN, and FAT1 in that order. The analysis revealed

significant differences in prognosis between the high and low TMB

groups. Based on these results, we collaborated on the effects of TMB
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FIGURE 5

Clinical correlation and survival analysis of 6-CRRGs in patients with HNSCC (A, B) age, (C, D) gender, (E, F) tumor grade, (G, H) N stage, (I, J) tumor
stage, (K, L) T stage, and (M, N) HPV status.
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and risk scores for prognostic analysis, and we obtained four

subgroups and found that patients with low TMB and low risk had

a much better prognosis than the other subgroups (Figures 8C, D).

However, there was no significant difference between the TMB and

high and low-risk groups (Figure 8E). In addition, we explored the

incidence of CNV mutations in the risk signature, where RYR2 and

HPRT1 copy numbers tended to be amplified, while IRF4, DSCAM,

CYP2D6, and ADA tended to be absent (Figure 8F). Figure 8G

showed the percentage of CNV in HNSCC for 6-CRRGs.

The mutational sites and mutational trends of 6-CRRGs on

chromosomes are shown in Figure 8H. To clarify the biological

mechanisms underlying the aberrant expression of 6-CRRGs in

HNSCC patients, we investigated the single nucleotide locus

variants (SNVs) of 6-CRRGs in patient tissues. Analysis of the

results showed that missense mutations are most likely to occur in

HNSCC patients and that single nucleotide polymorphisms (SNPs)

are a common variant type (Figure 8I). Risk signatures in somatic

mutations were present in a total of 87 HNSCC patients, with the

highest frequency of mutations being in RYR2 (Figure 8J). SNV

Classes were mainly C>T and C>A (Figure 8K). In addition,

Spearman's correlation coefficient analysis of copy number variants

and gene expression revealed that HPRT1 and ADA showed

upregulated copy number variants (Figure 8L). We explored

heterozygous and homozygous mutations and showed that the

heterozygous copy number amplification was mainly in ADA and

RYR2, while DSCAM was mainly realized as deletion. Homozygous

mutations were mainly HPRT1 and RYR2 amplifications, while

DSCAM again showed a reduction in copy number, so the
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abnormal gene expression could be the result of both copy number

variation and single nucleotide variation (Figures 8M, N).
3.9 6-CRRGs signature predicts TME and
immune cell infiltration

Crosstalk between cancer cells and TME is closely related to

tumor proliferation, invasion, and metastasis [27]. And while

Tumor-infiltrating immune cells (TIICs) are one of the important

components of TME, their composition, and distribution are

inextricably linked to the process of tumor development. First, we

explored the correlation between risk score and infiltrating immune

cell abundance based on a total of seven different algorithms, EPIC,

XCELL, CIBERSORT, MCPCOUNTER, QUANTISEQ,

CIBERSORT-ABS and TIMER, where CD4+ T cell infiltration

was positively correlated with risk score in most algorithms

(Figure 9A). To bring the distribution of immune infiltration in

HNSCC into full view to further explore the specific immune

phenotype of HNSCC. Next, we explored the immune infiltration

of 22 immune cell subpopulations inferred from mRNA expression

in HNSCC patient tissues in the TCGA database by the

CIBERSORT algorithm and investigated the differences between

the high- and low-risk groups. The levels of the different types of

immune cell populations in each HNSCC patient sample can be

obtained by looking at the length of the various colors in the bar

graph. From the graphs, we found a relatively high proportion of

M0, M1, and M2 macrophages and T cells CD8, T cells CD4
A B
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C

FIGURE 6

Creation of nomograms based on 6-CRRGs signatures combined with clinical characteristics. (A) Univariate and (B) multivariate COX regression
analysis of the signature and different clinical features. (C) A nomogram combining risk score, age, grade, gender, stage, T stage, and N stage. (D)
The calibration curve of the constructed nomogram of 1-year, 3-year, and 5-year survival. (E) Time-dependent ROC curves analysis. (F) The
nomogram’s time-dependent ROC curves. (G) Decision curve analysis.
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memory resting in the tissues of HNSCC patients, accounting for

approximately 57% of the 22 immune cell subpopulations. Instead,

the percentage of eosinophils, Monocytes, and Neutrophils were

relatively low at approximately 10% (Figure 9B). Meanwhile, since

the composition of the tumor immune microenvironment

significantly affects tumor growth, some studies have confirmed

whether circadian rhythm disorders affect the ratio of various

immune cells in the tumor microenvironment and ultimately

promote tumor progression. The expression of Neutrophils,

Eosinophils, Macrophages M2, Macrophages M1, and T cells CD4

memory resting was significantly higher in the high-risk group

(Figure 9C). As immune cells with immune checkpoints can

significantly influence immune function, we compared ssGSEA

scores for immune function and several immune function scores

were significantly higher in the low-risk group than in the high-risk
Frontiers in Immunology 10
group (Figure 9D). Owing to the importance of checkpoint-based

immunotherapy, we analyzed the expression of immune checkpoint

genes in the high-risk and low-risk groups. Most immune

checkpoint genes were found to be significantly upregulated in

the low-risk group, including IDO2, CTLA-4, TIGIT, KIR3DL1,

PDCD1, and CD28 (Figure 9E), indicating that patients in the low-

risk group may have better efficacy with ICB treatment. As ICB

response plays an important role in immune checkpoint therapy, we

further analyzed the correlation between risk score and ICB

response signature and found that of these, only Systemic lupus

erythematosus, Alcoholism, and Proteasome showed a significant

negative correlation with a risk score. No significant correlations

were found with the p53 signaling pathway, MicroRNAs in cancer,

and Cytokine-cytokine receptor interaction with risk scores. In

contrast, the other immune cycle steps were positively correlated
A B

C

FIGURE 7

Functional enrichment analysis of CRRGs in TCGA-HNSCC. (A, B) Gene Ontology (GO) enrichment analysis was used to analyze the differential
genes between HNSCC and normal samples. (C) GSVA analysis between the high-risk cohort and the low-risk cohort.
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with our risk score. A correlation analysis between risk score and

ICB response signature was also performed, in which we found that

the Re-lease of cancer cells, Monocyte recruiting, Neutrophil

recruiting, Basophil recruiting, and MDSC recruiting (step 4)

interactions were significantly positively correlated, only Cancer

antigen presentation, Macrophage recruiting and Eosinophil

recruiting (step 4) were not significantly correlated with risk

scores, while the other immune cycle steps were negatively

correlated with our risk scores (Figure 9F). More importantly, the

expression of 6-CRRGs was significantly higher in patients with
Frontiers in Immunology 11
progressive and stable disease than in those in partial or complete

remission (P=7.2e-06) (Figure 9G). To examine the potential of risk

scores in predicting immunotherapy from a real immunotherapy

cohort, we selected IMvigor210 as the cohort of patients receiving

immunotherapy. The distribution of immune response outcomes in

the high- and low-risk groups is shown in Supplementary

Figure 2A, which shows that low-risk patients are more likely to

produce an immune response, possibly predicting that low-risk

patients can produce better therapy when receiving immunotherapy

(Supplementary Figure 2B). Where the 1, 3, and 5-year predictive
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FIGURE 8

Multi-omics mutation analysis of 6-CRRGs. (A) Somatic mutations in the high-risk group. (B) Somatic mutations in the low risk group. (C) The KM curve
compares the overall HNSCC patients between high and low mutation groups. (D) KM curve based on mutation and risk scores for the four subgroups
compares the overall HNSCC patients between. (E) TMB analysis between high- and low-risk groups. (F) Copy number trends of 6-CRRGs. (G) CNV
occupancy. (H) Copy number change circle plot. (I) Mutations of 6-CRRGs in TCGA-HNSCC patients. (J) Mutation analysis of 6-CRRGs in somatic cells.
(K) SNV analysis. (L) Copy number variation and gene expression Spearman correlation coefficient analysis. (M) Heterozygous mutations. (N)
Homozygous mutations.
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sensitivity was tested by ROC curves with satisfactory AUC values

(Supplementary Figure 2C). The survival curves of patients in the

high and low risk groups of the cohort clock were remarkably

different, with a meaningful survival advantage for low risk patients

(Supplementary Figure 2D).
3.10 6-CRRGs signatures have better
prognostic predictive performance than
other signatures

For further demonstration of whether our constructed 6-

CRRGs signature has an accurate predictive capability for

HNSCC patients, we collected five published prognostic
Frontiers in Immunology 12
signatures, namely Liu signature (50), Jiang signature (51), Chen

signature (52), Huang signature (53) and Wang signature (54)

(Supplementary Figures 3A–F). To increase the comparability of

signatures and to ensure fairness of comparison, we obtained risk

coefficients for each gene using the same modeling approach, from

which we were able to calculate the risk score for each HNSCC

sample in the entire TCGA cohort. Furthermore, using the median

value of the risk scores for all samples allowed the samples to be

divided into two prognostic subgroups of high and low risk. It was

found that while all five signatures, except the Chen signature, were

effective in classifying HNSCC patients into two subgroups with

significantly different prognoses, its ROC curves were not

satisfactory in predicting AUC values for 1-, 3- and 5-year

survival, all being significantly lower than the AUC values of our
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FIGURE 9

6-CRRGs risk score predicts TME and immune cell infiltration. (A) Immune cell bubble map. (B) Barplot showing the proportion of 22 kinds of TICs in
HNSCC tumor samples. (C) Differences in immune cell infiltration between high- and low-risk groups. (D) Immune cell and immune function ssGSEA
scores between high- and low-risk groups. (E) Immune checkpoint differences between high- and low-risk groups. (F) Correlation between risk
score and ICB response signature. And the correlation of risk scores with each step of the tumor immune cycle. * P <0.05; ** P <0.01; *** P <0.001
(G) Correlation between risk scores and clinical response to cancer immunotherapy.
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model. More notably on the C-index analysis, it also showed that

our signature performed remarkably better than the other

signatures (Supplementary Figure 3G). The above results suggest

that our constructed signature of 6-CRRGs exhibits more accurate

and stable predictive performance than the other signatures.
3.11 Correlation analysis of immune
microenvironment and 6-CRRGs signature

Based on the single-cell dataset of HNSCC_GSE103322 in the

TISCH database, we analyzed the correlation between the

expression of 6-CRRGs and the immune microenvironment.

There are 20 cell populations and 11 immune cell types stored in

the GSE103322 dataset (Supplementary Figures 4A, B), and the

distribution and numbers of various cell types are clearly visible

(Supplementary Figure 4C). The expression levels of 6-CRRGs in

various immune cells were observed in Supplementary Figures 4D–

I, where ADA and HPRT1 were expressed on various immune cells,

while IRF4 was mainly expressed in CD4Tconv, CD8T, and

CD8Tex. Unfortunately, we found that CYP2D6, RYP2H, and

DSCAM were barely expressed in the immune microenvironment.
3.12 6-CRRGs signature predicts
chemotherapy sensitivity

On the basis of risk scores, to evaluate the potential biological

value of 6-CRRGs as biomarkers for predicting response to clinical

drug therapy in patients with HNSCC, we analyzed the IC50 values
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of 198 drugs between high and low risk groups of patients with

TCGA-HNSCC by the “pRRophetic” R package. We found 142

chemotherapeutic or targeted agents with significantly different

chemosensitivity. In Figure 10 we showed that in the low-risk

group Rapamycin (P=0.00073), Docetaxel (P=0.00062), Gefitinib

(P=3.7e-07), 5-Fluorouracil (P=5.7e-07), Lapatinib (P=1.7e-05) and

Paclitaxel (P=1.1e-10) possessed higher IC50 values. In contrast,

among the remaining six chemical or targeted agents IGF1R_3801

(P=2.9e-09), Erlotinib (P=0.00062), Camptothecin (P=2.1e-07),

Cisplatin (P=0.00034), Palbociclib (P=8.8e-05) Gemcitabine

(P=2.2e-08) had higher IC50 values at higher risk.
4 Discussion

Despite the heavy health burden of HNSCC on society,

circadian rhythm-associated genes have lacked systematic studies

in HNSCC. Therefore, we constructed a multigene prognostic

model based on circadian rhythm-related genes based on the

TCGA-HNSCC dataset. In this study, we selected 6-CRRGs to

construct a new prognostic model using Lasso, RF, and univariate

and multifactor COX risk regression analyses. The signature of the

6-CRRGs we constructed proved to be an independent prognostic

factor for HNSCC. We found significant prognostic differences

between the two groups. ROC curve and calibration curve analyses

demonstrated the outstanding predictive performance of the 6-

CRRGs signature. In addition, we constructed a nomogram and

found that the 6-CRRGs signature has better predictive efficacy

compared to clinicopathological features, which can help clinicians

to make more accurate prognostic judgments for HNSCC patients.
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FIGURE 10

6-CRRGs signature predicts chemotherapy sensitivity. (A) IGF1R_3801, (B) Rapamycin, (C) Docetaxel, (D) Paclitaxel, (E) Erlotinib, (F) 5-Fluorouracil,
(G) Camptonthecin, (H) Cisplatin, (I) Palbociclib, (J) Gefitinib, (K) Gemcitabine, (L) Lapatinib.
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It is now well established that adenosine is able to bind to A2AR

and thereby limit the antitumor activity of CD4+ T cells, CD8+ T

cells, and NK cells, and that it induces the expression of CTLA-4

and PD-1 to promote immune escape (55, 56). ADA is a key

enzyme that protects T cells from adenosine inhibition, and its

absence would promote tumor progression (57, 58). On this basis,

ADA activity was considered an indicator of immune function in

patients with HNSCC (59, 60). Cytochrome P450 2D6 (CYP2D6) is

a catabolic enzyme of some commonly used drugs. Individuals with

the CYP2D6PM genotype have been reported to be more

susceptible to HNSCC and to have a greater impact on treatment

response (61). mutations in ryanodine receptor 2 (RYR2) are

commonly thought to be strongly associated with lethal

arrhythmias and heart failure (62, 63). and subsequent studies

have shown that RYR2 somatic mutations and promoter

methylation were shown to contribute to the pathogenesis

of HNSCC (64). Hypoxanthine phosphoribosyl transferase 1

(HPRT1) regulates the production of purines and inosine

involved in the cell cycle and can enhance chemoresistance via

the MMP1/PI3K/Akt axis in patients with oral squamous cell

carcinoma (65).

TME has become a consensus as a key factor influencing the

development of cancer, and the immune microenvironment should

be noted as one of the main features of TME. Treg cells, as key cells

regulating immune responses and maintaining self-tolerance, cause

CD8+ T cell dysfunction in TME in HNSCC (66–68). In addition,

despite the higher degree of infiltration of M1-type macrophages in

the high-risk group, it has been shown that M2 is the predominant

macrophage type in TME of HNSCC and is able to suppress the

antitumor effects of M1 by secreting various cytokines (69–71).

Further integrating the results of immune cell, and immune

function analysis, we hypothesize that both low- and high-risk

groups of HNSCC patients may have a suppressive immune

microenvironment and limited immune cell infiltration different

from other common malignancies. Given the immunosuppression

and therapeutic resistance caused by complex TME, immunotherapy

has great potential for oncology treatment (72). Ipilimumab is an

FDA-approved CTLA-4 inhibitor and has been tested in various

clinical trials in patients with HNSCC (NCT02369874,

NCT02551159, NCT02319044) (73–76). One case reported a

satisfactory outcome with nabumab in combination with

ipilimumab in a patient with refractory HNSCC (77).

Unfortunately, although immune checkpoint blockade (ICB)-based

immunotherapies have some potential for HNSCC, most patients

have satisfactory efficacy against them, and the intensity of the

stimulatory co-signal hardly exceeds that of the heavy inhibitory

factor in TME (78, 79). Therefore, it is crucial to screen patients

sensitive to various immune checkpoint therapies based on their

expression of immune checkpoint genes, and our model has

promising results in this regard.

High tumor mutational load is usually considered to be strongly

associated with a good prognosis due to increased immunogenicity

of tumor-specific antigenic targets and tumor-infiltrating immune

cells (80). However, the opposite result has been observed in

HNSCC, possibly due to the low immunogenicity of HNSCC

(81). The search for new antigens that are widely mutated in
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HNSCC is crucial for targeted therapy. TP53, due to its ability to

halt tumor progression by regulating apoptosis, angiogenesis, and

DNA repair, may promote tumor cell metastasis through the

accumulation of p53 molecules compared to wild-type TP53

leading to poor prognosis in HNSCC patients (82, 83). FAT1 has

two opposing mechanisms, on the one hand, binding ß-catenin to

prevent tumor progression. On the other hand, interaction with

Ena/VAPS and Scribble promotes cell invasiveness and metastasis,

which requires additional experimental studies under different

conditions (84–86). These highly mutated genes in HNSCC

provide new directions and perspectives for subsequent targeted

therapies, which may lead to better benefits for patients.

Although the 6-CRRGs signature we constructed has promising

value in predicting the prognosis of HNSCC patients and helping

clinicians with treatment selection, we still need to acknowledge

that this study has some limitations. Firstly, our study was based on

the analysis of data from public databases, which may lead to

deviations in predictions from the actual situation, although we

have taken several approaches to try to avoid this. There is still a

need to collect a large amount of clinical information on HNSCC

patients in the clinic as well as sequencing data after receiving

immunotherapy in order to validate the accuracy of the practical

application of the model and the accuracy of predicting response to

immunotherapy and chemotherapy. Finally, we did not consider

tumor location in this study because HNSCC contains too many

sites of incidence, and the number of patients varies too much from

site to site. In TCGA, some of the tumors had only single-digit

sample sizes and could not be studied. This is, of course, one of the

limitations of our study.
5 Conclusion

In summary, we systematically explored 6-CRRGs signature for

HNSCC and successfully constructed a prognostic signature of 6-

CRRGs, which can accurately assess the prognosis and immune

status of HNSCC patients and help clinicians identify specific sub-

groups of patients who may benefit from immunotherapy and

chemotherapy for personalized treatment.
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