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Circatidal and Circadian Rhythms of Locomotion in
Limulus polyphemus

CHRISTOPHER C. CHABOT1,*, JEFFREY KENT1, AND WINSOR H. WATSON III2

1Department of Biological Sciences, Plymouth State University, Plymouth, New Hampshire 03264; and
2Department of Zoology, University of New Hampshire, Durham, New Hampshire 03824

The nocturnal increases in the sensitivity of the lateral
eye of Limulus polyphemus, the species of horseshoe crab
found along the Atlantic coast, have been firmly established
as being controlled by an endogenous circadian clock (1, 2,
3) located in the brain (4). Virtually nothing is known,
however, about the control of the animal’s behavioral
rhythms of mating and spawning that are observed in the
intertidal zone during high tides in late spring (5, 6, 7).
Many other marine species, especially intertidal crabs, ex-
hibit similar rhythmic behaviors that have been demon-
strated to be under the control of endogenous clocks that
are circatidal (8, 9, 10, 11, 12), circadian (10, 12), or both.
While there is some evidence that the activity of juvenile
horseshoe crabs is primarily nocturnal (13, 14), and possi-
bly controlled by a circadian clock (14), we know of no
published work showing that locomotor activity in the adult
is endogenously controlled on either a 12.4-h (circatidal) or
24-h (circadian) basis. We report here that locomotor ac-
tivity in adult individuals of L. polyphemus is endogenously
modulated on both a circatidal and a circadian basis and
that when the animals are subjected to a light-dark (LD)
cycle, most activity occurs at night.

The locomotor activity of individual adult horseshoe
crabs was recorded using activity chambers located in re-
circulating aquaria. Animals were exposed to three condi-
tions: a 12:12 LD cycle, at 11–14 °C (“fall” conditions,
LD1), a 14:12 LD cycle, at 17–21 °C (“summer” conditions,
LD2), and constant darkness (DD). Typical records of the
locomotor activity of three horseshoe crabs exposed to these
three different photoperiods are presented in Figure 1. Cir-
catidal rhythms were observed in all animals. While signif-
icant activity rhythms (15) in the tidal range (12.4 h) were
found in only 3 of 6 animals (tau � 12.83 � 0.78 h

[mean � SEM]) during LD1, in LD2, significant tidal
rhythms (12.2 � 0.1 h) were observed in all animals. In
some cases in LD2 (4 of 6 animals), clear free-running
rhythms were sometimes apparent, (Fig. 1; middle, bottom
panels), while in other cases the activity appeared to syn-
chronize to the LD cycles (Fig. 1; top). In DD, circatidal
rhythms (12.6 � 0.2 h) were found in 5 of 6 animals (Fig.
1; all panels).

Most animals (5 of 6 in LD1; 6 of 6 in LD2) exhibited
significant rhythms in the circadian range (tau � 24.29 �
0.14 h). Periodogram analyses (15) and visual inspection
indicated that 5 of the 6 animals tested synchronized their
activity to the initial 12:12 LD cycle (LD1). The single
animal that did not thus synchronize had a very low level of
activity. Significantly more activity occurred during the
dark phase than the light phase in 4 of 6 animals (Fig. 1; top
and bottom [but not middle] panels). The average period
(tau) for these animals in the daily (24-h) range in LD1 was
24.12 � 0.09 h. Upon subsequent exposure to “summer”
conditions (LD2), 3 (of 6) animals remained synchronized to
the LD cycle (Fig. 1; top panel). In others (2 of 6), this
apparent synchronization was not stable (Fig. 1; middle,
days 10–18 and days 29–42) and, in still another animal,
the synchronization, if any, was unclear (Fig. 1; bottom).
Animals that both synchronized and showed a clear onset of
activity initiated their activity a significant amount of time
(1.7 � 0.1 h; P � 0.005) before the lights went out during
LD2 but not LD1 (1.1 � 0.5 h; P � 0.15). Significantly more
activity occurred during D versus L periods in 3 of 6
animals (Fig. 1; top panel only). In constant darkness (DD),
all animals also expressed significant circadian rhythms
(25.27 � 0.69 h; Fig. 1, all panels). In addition, the activity
patterns of 3 of 6 animals in DD exhibited evidence of
entrainment based on the similarity of phasing with the
previous LD cycle (Fig. 1; top, middle). L. polyphemus was
significantly more active overall during LD2 than during
LD1 and DD (P � 0.03). Neither circatidal (P � 0.78) nor
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circadian (P � 0.51) tau values were significantly affected
by photoperiod.

Our results provide the first evidence for an endogenous
circatidal rhythm in L. polyphemus. While field studies (5,
6, 16, 17, 18) and a wealth of anecdotal observations in
popular literature have cited the propensity of horseshoe
crabs to mate during high tides, this is the first study to
demonstrate that an endogenous clock may set the timing
for this behavior. Other marine invertebrates, including fid-
dler crabs and green crabs, have also been shown to possess
endogenous circatidal locomotor rhythms that can be en-
trained by tidally related stimuli (19) such as inundation
(20), salinity changes (21), and temperature changes (20).
The cues that horseshoe crabs use in their natural habitat to
synchronize their mating activities to the natural tidal cycle
are currently unknown.

We also provide evidence that the locomotor activity of
adult individuals of L. polyphemus can be synchronized to
an LD cycle, and that these rhythms will persist in constant
conditions. This finding is consistent with a previous report
showing that juveniles (14) of L. polyphemus exhibit circa-
dian rhythms of locomotion. Interestingly, however,
whereas 100% of the adult animals in the current study (6 of
6) exhibited significant circadian rhythms in DD, only 40%
(2 of 5) of the juvenile animals did (in DD; 14). It is not
surprising that L. polyphemus exhibits circadian rhythms of
locomotion, because circadian modulation of lateral eye visual
sensitivity—especially the electroretinogram (ERG)—has
been very well documented, and it is clear that horseshoe
crabs possess one or more circadian clocks (22, 23, 24, 4,
25, 26, 1, 3). However, we have two reasons to suspect that
the timing mechanism that mediates this rhythm of visual
sensitivity may be different than the mechanism that con-
trols the timing of locomotion. First, in none of the papers
cited above that document circadian control of visual sen-
sitivity is there any mention or indication of a tidal rhythm.
Second, although there was clear evidence of rhythmic
activity in most of the animals exposed to LD, in several
(Fig. 1; middle, bottom panels) the activity was coordinated
with the LD cycle only for short periods of time—that is,
there was not consistent synchronization or entrainment.
This type of modulation of ERG activity also has not been
reported in the literature on electroretinograms in L.
polyphemus.

Our results also indicate that under the laboratory condi-
tions to which our animals were exposed, horseshoe crabs
are primarily nocturnally active. Of the animals that ap-
peared stably synchronized to the LD cycle (3 of 6), all were
significantly more active during the night than during the
day. These findings are consistent with previous studies of
locomotor activity in larvae (27) and juveniles (13, 14) as
well as with the large body of literature demonstrating

greatly increased visual sensitivity at night (3) One field
report on a Florida population of L. polyphemus also indi-
cates a preference for mating at night (6), but interestingly,
other studies in Florida report a preference for diurnal
patterns of mating (17). Furthermore, juveniles of L.
polyphemus in Florida also show a similar preference for
diurnal activity in the intertidal zone (5, 16). The issue is
further complicated by a study of L. polyphemus in Cape
Cod, Massachusetts, in which animals were found mating
both during the day and at night (7), which is also the
pattern in New Hampshire (Watson, unpubl. obs.) where our
animals were caught, and in Maine (S. Schaller, pers.
comm., Bar Mills Ecological). While the factors associated
with the differences in behavior observed between the stud-
ies remain to be determined, it is clear from our study that
LD cycles do affect both circadian and circatidal rhythms in
the laboratory. Several of our animals did not remain com-
pletely entrained when exposed to LD (Fig. 1; middle,
bottom panels), suggesting that the LD cycle may be a less
important stimulus in the temporal organization of locomo-
tor activity than it is for the physiological rhythm of visual
sensitivity. While our results do not directly show that the
circatidal activity rhythms observed in L. polyphemus actu-
ally entrain to LD cycles, the expression of the timing of
these rhythms appears to at least be modulated by the LD
cycle. Similar modulating effects of LD on circatidal loco-
motor rhythms have been observed in some species of crabs
(19) but not in others (28).

Our results also show that L. polyphemus can exhibit
clear circatidal rhythms in locomotion in the laboratory,
even during nonbreeding times of years (November–Febru-
ary). In the field, the appearance of millions of horseshoe
crabs along the eastern seaboard, primarily during April
through July, clearly indicates a strong seasonal preference
for mating. L. polyphemus has been reported to be much less
active at other times of the year (18) and, in winter, either to
burrow in the mud in or around estuaries or to move to the
open ocean where it has been found far out on the conti-
nental shelf (29). While annual changes in the timing of
behavior (that are often strongly influenced by photoperiod)
have been well documented in a wide variety of species
(30), we are surprised that circatidal rhythms were ex-
pressed during this time of year. Whether horseshoe crabs
normally express tidal rhythms throughout the year, but
these are not observed, or whether the rhythms we observed
were initiated by the longer photoperiod or the increased
temperature, remains to be elucidated.
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Figure 1. Locomotor activity of 3 (of the 6 tested) individuals of Limulus polyphemus housed in activity chambers (39 cm wide � 32 cm long � 9-cm
deep) in recirculating aquaria (left panels). Data are double-plotted to facilitate visual inspection. Periodograms corresponding to the respective
photoperiods and animals are presented in the right panels. Animals were exposed to three consecutive photoperiods. (1) LD1 � 12:12 (light source: 20-W
broad-spectrum fluorescent bulbs, Simkar Corp., Pittsburgh, PA; light intensity during L � 150 lux/2.8 �mol and during D � 0 lux/0 �mol), with water
temperature � 11–14 °C. These conditions simulated fall temperature and photoperiod, during which L. polyphemus may be expected not to exhibit tidal
rhythms); (2) LD2 � 14:10; temperature � 17–21 °C. These conditions simulated summer conditions during which L. polyphemus would be expected to
exhibit tidal rhythms. (3) DD � constant darkness; temperature � 17–21 °C. These conditions were employed to determine whether the rhythms observed
in LD would persist in DD. Water was collected at the Jackson Estuarine Laboratory (Durham, NH), and the salinity was kept between 25‰ and 27‰.
Although temperature varied either between 17 and 21 °C or 11 and 14 °C, neither temperature nor salinity cycled with periods near 12 or 24 h (HOBO
data loggers, Onset, Pocasset, MA). In October 2002, horseshoe crabs (2 females, weighing 519 g and 676 g; 4 males, weighing 197–310 g) were caught
in lobster traps in Great Bay, New Hampshire, an area that experiences semidiurnal tides. Immediately after the crabs were brought to the laboratory in
Plymouth, New Hampshire, magnets were affixed to their dorsal carapace, between the lateral eyes, using cyanoacrylate glue and duct tape. Magnetic reed
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switches (one per activity chamber) that produced a voltage change whenever a crab passed under one were used to monitor activity. The animals were
not fed after being caught and were always individually housed in activity chambers. A “ceiling” (9-cm high) was used to prevent the animals from flipping
over and becoming immobilized. In addition, three bricks were placed on the ceiling to weigh it down and to create a shielded, darker area over about half
of each activity chamber to provide a shelter. Activity was recorded on a CPU-based data collection system and analyzed using the ClockLab suite of
programs for analysis of time-series data (Actimetrics, Evanston, IL). Significance of rhythmicity was determined both visually and by chi-square
periodogram analysis (P � 0.01; 15). The period (tau) in the circadian range for each individual during each experiment was determined by recording the
highest significant peak on the periodogram between 22 and 26 h or for circatidal rhythms, between 10 and 14 h. Entrainment to LD cycles was ascertained
by visually comparing the onsets of activity during the last several days in LD2 to the onsets during the first several days in DD. Phase angles were
determined by comparing the difference between the onset of the LD cycles and the onset of activity for each animal (as determined by best-drawn eye-fit
lines). To determine a preference for activity during L (diurnality) or D (nocturnality), the amount of activity during L and D for each day for each animal
was summed. Paired Student’s t-test or repeated measures ANOVA (P � 0.05; Statview, ver. 4.51, Abacus Concepts, Berkeley, CA) was used to determine
statistical significance between means.
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