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Abstract
Background. Circular RNAs (circRNAs), a newly discovered type of endogenous noncoding RNA, have been  
proposed to mediate the progression of diverse types of tumors. Systematic studies of circRNAs have just begun, 
and the physiological roles of circRNAs remain largely unknown. Here, we focused on elucidating the potential role 
and molecular mechanism of circular forkhead box O3 (circFOXO3) in glioblastoma (GBM) progression.
Methods. First, we analyzed circFOXO3 alterations in GBM and noncancerous tissues through real-time quanti-
tative reverse transcription PCR (qRT-PCR). Next, we used loss- and gain-of-function approaches to evaluate the 
effect of circFOXO3 on GBM cell proliferation and invasion. Mechanistically, fluorescent in situ hybridization, RNA 
pull-down, dual luciferase reporter, and RNA immunoprecipitation assays were performed to confirm the inter-
action between circFOXO3 and miR-138-5p/miR-432-5p in GBM. An animal model was used to verify the in vitro 
experimental findings.
Results. CircFOXO3 expression was significantly higher in GBM tissues than in noncancerous tissues. GBM cell 
proliferation and invasion were reduced by circFOXO3 knockdown and enhanced by circFOXO3 overexpression. 
Further biochemical analysis showed that circFOXO3 exerted its pro-tumorigenic activity by acting as a competing 
endogenous RNA (ceRNA) to increase expression of nuclear factor of activated T cells 5 (NFAT5) via sponging 
both miR-138-5p and miR-432-5p. Notably, tumor inhibition by circFOXO3 downregulation could be reversed by  
miR-138-5p/miR-432-5p inhibitors in GBM cells. Moreover, GBM cells with lower circFOXO3 expression developed 
less aggressive tumors in vivo.
Conclusions. Our data demonstrate that circFOXO3 can exert regulatory functions in GBM and that  
ceRNA-mediated microRNA sequestration might be a potential strategy for GBM therapy.

Key Points

1. CircFOXO3 is aberrantly upregulated in GBM tissues.
2.  CircFOXO3 can function as a miR-138-5p and miR-432-5p sponge to regulate NFAT5 

expression.
3.  CircFOXO3 is a new factor and potential therapeutic target in GBM.
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Glioblastoma (GBM) is the most frequently occurring le-
thal central nervous system neoplasm.1 Largely because 
of the propensity of GBM to infiltrate adjacent normal 
brain tissues, the median survival of GBM patients is 
merely 12 months. As a result of such efficient invasive ac-
tivity, these tumors are unresectable and prone to reoccur. 
Therefore, the mechanism underlying GBM cell invasion 
has received a great deal of attention. The 2016 World Health 
Organization (WHO) GBM classification emphasizes the im-
portance of elucidating the molecular signature of GBM. 
Isocitrate dehydrogenase 1 and 2 (IDH1/2) mutations, 1p/19q 
codeletion, H3F3A or HIST1H3B/C K27M(H3-K27M) muta-
tions, and C11orf95–RELA fusions have been introduced as 
determining criteria for GBM, which could assist in diag-
nosis and therapy selection.2 This cancer type has gradually 
become a socioeconomic problem, and clarifying the mo-
lecular mechanism and treatment targets for GBM is of par-
amount importance.

Circular RNAs (circRNAs) are characterized by a cova-
lently closed continuous structure with neither a 5′ cap nor 
a 3′ polyadenylated tail, which differs from linear RNAs; 
thus, these molecules represent a novel class of non-
coding RNAs. Due to their unique structure, circRNAs are 
highly stable, predominantly distributed in the cytoplasm, 
and conserved across species.3 There is accumulating ev-
idence that circRNAs are aberrantly expressed in cancer 
and involved in tumor progression, including prolifera-
tion, survival, and motility.3,4 Many studies have indicated 
that circRNAs could function mainly as miRNA sponges; 
they communicate with and regulate each other by com-
petitive binding to miRNA response elements (MREs) to 
further regulate miRNA-targeted gene expression,5 bind 
proteins,6 encode proteins,7 and promote nuclear translo-
cation.8 These findings indicate that ectopically expressed 
circRNAs are important in tumorigenesis and cancer 
progression. Although preliminary studies on circRNA 
function in GBM have been conducted,7,9,10 the clinical sig-
nificance and underlying mechanisms of circRNAs in GBM 
remain poorly defined.

CircFOXO3 (hsa_circ_0006404) was reported to be 
downregulated in breast cancer11 and non–small cell 
lung cancer12 and to act as a powerful tumor suppressor 
by sponging certain miRNAs targeting the parental tran-
script FOXO3.13 Nevertheless, William et  al reported that 
circFOXO3 was upregulated in heart samples from aged 
patients.14 However, the role of circFOXO3 in GBM has 
not been reported. More importantly, whether other 

mechanisms through which circFOXO3 regulates tumor 
progression exist remains unknown.

The biological functions of miRNAs, which are endog-
enous, nonprotein-coding, single-stranded RNAs of 19 to 
25 nucleotides, have been extensively studied. MiRNAs 
have been shown to play several roles in tumor progres-
sion. MiR-138-5p and miR-432-5p exert tumor suppressor 
functions in different tumors. For example, miR-138-5p is 
always downregulated in cancer.15,16 There are very few 
reports in the literature concerning miR-432-5p; it has 
been shown to mediate cyclin-dependent kinase (CDK)4 
and 6 inhibitor resistance in breast tumors17 and is highly 
overexpressed in senescent fibroblasts.18 The possible 
mechanism needs to be further investigated. Importantly, 
the expression and underlying mechanisms of miR-138-5p 
and miR-432-5p in GBM progression have not been fully 
clarified.

Nuclear factor of activated T cells 5 (NFAT5) is a tran-
scription factor discovered as part of DNA binding in the 
renal medulla.19 Recent studies have suggested that NFAT5 
is dysregulated in tumors and involved in tumor progres-
sion, including in melanoma,20 hepatocellular carcinoma,21 
renal carcinoma,22 and breast cancer.23 Moreover, Yu et al 
demonstrated that NFAT5 promotes GBM cell-driven an-
giogenesis by reducing the expression and secretion of 
epidermal growth factor–like  domain  7.24 However, the 
potential role of NFAT5 in GBM invasiveness and its up-
stream regulatory mechanisms currently remain unclear.

In the present study, we used real-time quantita-
tive reverse transcription PCR (qRT-PCR) to first identify 
the expression of circFOXO3 in GBM tissues and cells. 
Subsequent studies clarified the functional effect and un-
derlying molecular mechanisms of circFOXO3 in GBM pro-
gression through a series of in vitro and in vivo assays. 
The aim was to provide a potential therapeutic target in pa-
tients with GBM.

Materials and Methods

Human Tissue Specimens

Forty-eight glioma tissues (WHO grade II: n = 16, WHO 
grade III: n = 10, WHO grade IV: n = 22) and 10 normal brain 
tissues were obtained at the Department of Neurosurgery 
of the Affiliated Wuxi No. 2 People’s Hospital of Nanjing 

Importance of the Study

GBM is one of the most aggressive brain tumors in the 
central nervous system and has a high incidence of re-
currence. The standard treatment for GBM is limited to 
surgery, irradiation, and chemotherapy. Here we pro-
vide the first evidence that circFOXO3 is overexpressed 
in GBM tissues and sponges specific microRNAs 
(miR-138-5p and miR-432-5p) to regulate NFAT5 ex-
pression through a ceRNA mechanism, thus promoting 

tumorigenesis in vitro and in vivo. MiR-138-5p/miR-
432-5p were aberrantly downregulated and act as 
tumor suppressor genes by targeting NFAT5 in GBM. 
Notably, the tumor inhibition caused by circFOXO3 
downregulation could be reversed by miR-138/432-5p 
inhibitors in GBM cells. Targeting circFOXO3/miR-
138/432-5p signaling appears to be a promising treat-
ment for GBM.
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Medical University between 2013 and 2018. Patient diag-
noses were independently re-reviewed by 2 pathologists 
and classified according to WHO criteria. All specimens 
were obtained with written informed consent from the 
patients. Tumor volumes were measured using preop-
erative contrast-enhanced T1-weighted MRI scans that 
were routinely acquired on the day of or prior to surgery. 
The area of contrast enhancement including central ne-
crosis was calculated for each axial section, and the tumor 
volume was quantified semi-automatically based on the 
sum of axial areas by OsiriX software. All of these samples 
were obtained at the initial diagnosis. The study was ap-
proved by the ethics committee of the Affiliated Wuxi No. 2 
People’s Hospital of Nanjing Medical University.

RNA Sample Treatment with RNase R and PCR

Total RNA was isolated with TRIzol (Life Technologies) ac-
cording to the manufacturer’s instructions. RNase R treat-
ment was carried out for 15  min at 37°C using 3 U/mg 
RNase R (Epicentre, cat. #RNR07250). The detailed steps of 
the qRT-PCR, IDH1/2 mutation, and O6-methylguanine DNA 
methyltransferase (MGMT) methylation PCR analyses are 
provided in the Supplementary Material. All primers are 
listed in Supplementary Table 1.

Cell culture, western blotting, and construction of cells 
with stable knockdown (KD) or overexpression (OE) of 
circFOXO3 assays were performed as we previously de-
scribed.25 Recombinant lentivirus and negative control 
(NC) lentivirus were purchased from Hanyin Co. (Shanghai, 
China). The details are described in the Supplementary 
Methods.

RNA Fluorescence In Situ Hybridization 

CircFOXO3 probes were designed and synthesized by 
RiboBio. The probe signals were detected with a fluores-
cence in situ hybridization (FISH) kit (RiboBio) according to 
the manufacturer’s instructions.

RNA Pull-Down Assay

Biotinylated miR-138-5p/miR-432-5p or its mutant were 
transfected into T98G cells with circFOXO3 OE. Then cells 
were harvested, lysed, sonicated, and incubated with C-1 
magnetic beads at 4°C for 3 hours. After washing with 
wash buffer, the RNA mix bound to the beads was eluted 
and extracted with TRIzol (Invitrogen) for qRT-PCR.

RNA Immunoprecipitation Assay

RNA immunoprecipitation (RIP) assay was carried out using 
the Magna RIP RNA-Binding Protein Immunoprecipitation 
Kit (Millipore) according to the manufacturer’s instructions. 
Antibodies against argonaute 2 (AGO2) (cat. #ab5072) and 
immunoglobulin G were purchased from Abcam for the 
RIP assays. Purified RNAs were extracted and analyzed by 
qRT-PCR.

Cell counting kit-8, transwell migration, luciferase reporter, 
and immunohistochemistry (IHC) assays were performed 
as previously described.9,25 The details were described in 
Supplementary Methods.

Colony Formation and Wound Healing Assay

For colony formation assay, GBM cells with or without 
circFOXO3-KD/OE were examined; for wound healing assay, 
GBM cells were seeded in 6-well plates and allowed to reach 
confluence. The details are in the Supplementary Methods.

Animal Experiments

Animal experiments were performed as we previously de-
scribed.25 The details are in the Supplementary Methods. 
The animal study was approved by the Institutional Animal 
Care and Use Committee of the Affiliated Wuxi No. 2 
People’s Hospital of Nanjing Medical University.

Statistical Analysis

The experimental data are presented as the mean ± SD from 
at least 3 replicates. Student’s two-tailed unpaired t-test was 
used to determine differences between 2 groups, and one-
way ANOVA was performed to test differences among at 
least 3 groups. The chi-square test was applied to determine 
the association of circFOXO3 levels with clinicopathological 
features. The Kaplan–Meier method was used to estimate 
survival curves for the mice. Correlations were measured 
by Pearson correlation analysis. All statistical analyses 
were performed using SPSS software for Windows v17.0. 
Significance was defined as P < 0.05.

Results

High CircFOXO3 Expression in Human 
GBM Tissue

CircFOXO3 contains one exon that ultimately creates a 
transcript of 1435 nucleotides by back-splicing (Fig. 1A, 
B). CircFOXO3 cDNA approximately 100 bp upstream and 
downstream from the junction site was amplified in GBM 
cells using divergent primers and analyzed by Sanger 
sequencing. The results confirmed the circFOXO3 junction 
(Fig. 1C). The divergent primers detected circRNAs in cDNA 
with or without RNase R treatment, demonstrating that 
the circRNAs were truly circular and could not amplify any 
product from genomic DNA. The convergent primers amp-
lified PCR products from linear FOXO3 mRNA, but these 
products disappeared after RNase R treatment (Fig. 1D).

To investigate whether circFOXO3 expression varied in 
GBM, we detected circFOXO3 expression in 48 gliomas 
and 10 normal controls. As shown in Fig. 1E, circFOXO3 
was significantly higher in high-grade glioma (HGG) than 
in low-grade glioma (LGG) (LGG vs normal controls: 
P = 0.033, HGG vs LGG, P = 0.008; one-way, P < 0.0001). 
For a detailed association analysis of circFOXO3 with 
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Fig. 1 Identification and expression of circFOXO3 in GBM tissues and cells. (A) The structure and part of the sequence of the junction of circFOXO3 
are provided, and divergent (red) primers were designed to amplify the back-splicing products. (B) Part of the mature circFOXO3 sequence. (C) 
Sanger sequencing after PCR using the indicated divergent flanking primers confirmed the “head-to-tail” splicing of circFOXO3. (D) Total RNA from 
cells with or without RNase R treatment was subjected to PCR. (E) CircFOXO3 transcript levels were significantly higher in HGG than in LGG (LGG vs 
normal controls: P = 0.033, HGG vs LGG, P = 0.008; one-way, P < 0.0001). (F) Quantitative RT-PCR analysis of circFOXO3 in GBM cells and HEBs. (G) 
A sketch of the short hairpin circFOXO3 vector structure. (H) A sketch of the circFOXO3 overexpression vector structure. ALU: Complementary ALU 
pairs were identified as at least one plus strand and one minus strand ALU element on opposite sides of the back-splice, which was required for 
the formation of circRNA; CMV: a common promoter in vectors. (I) Quantitative RT-PCR analysis of circFOXO3 expression in GBM cells. A multiple 
comparisons test adjusted P-value of <0.05 was considered statistically significant. Error bars represent the mean ± SD.
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clinicopathological characteristics and molecular markers, 
see Supplementary Tables 2 and 3. We analyzed IDH1/2 
mutation expression and MGMT methylation status in 48 
gliomas. Consistent with previous reports,26–28 the analysis 
revealed that 68.75% of WHO grade II, 60% of WHO grade 
III, and 4.5% of WHO grade IV samples were IDH1/2 mu-
tations and that 40.9% of GBMs (n = 9) exhibited MGMT 
methylation (Supplementary Fig. 1 and Supplementary 
Table 2). Based on the median relative circFOXO3 expres-
sion in glioma, the patients were separated into low and 
high expression groups (0.001061  ±  0.0001233, n = 48). 
Briefly, circFOXO3 expression was significantly associated 
with tumor size (P  =  0.009), histologic grade (P  =  0.014), 
wild-type IDH expression (P = 0.035), and MGMT methyla-
tion status (P = 0.00017) (Supplementary Table 3).

Altogether, these data suggest that increased 
circFOXO3 expression might be critically involved in GBM 
progression.

CircFOXO3 Promotes GBM Tumorigenesis and 
Invasion In Vitro

We determined circFOXO3 expression levels in 4 GBM cells 
(U87-MG, U251-MG, A172, and T98G) and human normal 
glial cells (HEBs). Compared with HEBs, GBM cells showed 
significant upregulation of circFOXO3, with high expres-
sion in U251-MG and U87-MG and low expression in A172 
and T98G. Therefore, U251-MG and U87-MG were selected 
for circFOXO3 KD, and A172 and T98G were selected for 
circFOXO3 OE (Fig. 1F).

To explore the function of circFOXO3 in GBM cells, 
we effectively knocked down circFOXO3 in U87-MG and 
U251-MG (Fig. 1G and 1I). We also successfully constructed 
a circFOXO3 expression lentivirus and overexpressed 
circFOXO3 in A172 and T98G (Fig. 1H, I). CCK-8 and colony 
formation assays were carried out to explore the effects 
of circFOXO3 on GBM cell proliferation. The CCK-8 assays 
showed that circFOXO3 KD significantly inhibited U87-MG 
and U251-MG cell proliferation (Fig. 2A, B). In addition, 
colony formation assays demonstrated that circFOXO3 
KD reduced the colony numbers (Fig. 2C–E) and size (Fig. 
2F). Moreover, circFOXO3 OE enhanced the proliferative 
ability of A172 and T98G (Supplementary Fig. 2A, B), signif-
icantly increased the number of colonies (Supplementary 
Fig. 2C–E), and notably increased the size of each colony 
(Supplementary Fig. 2F).

Then, we used transwell and wound healing assays to 
analyze the effects of circFOXO3 on GBM cell invasion. 
Transwell assays showed that cell invasion was obvi-
ously attenuated in circFOXO3 KD cells (Fig. 2G–I), and 
the number of invaded A172 and T98G cells increased 
after circFOXO3 OE (Supplementary Fig. 2G–I). Moreover, 
wound healing assays showed that wound closure in 
U87-MG and U251-MG with circFOXO3 KD was slower than 
that in controls (Fig. 2J–L), but wound closure was much 
faster after circFOXO3 expression upregulation in A172 
and T98G (Supplementary Fig. 2J–L). Collectively, these 
findings provide evidence that circFOXO3 KD can inhibit 
GBM cell proliferation and invasion in vitro and that in-
creased circFOXO3 levels are crucial for promoting GBM 
cell tumorigenesis and invasion.

CircFOXO3 Functions as a Sponge for MiR-138-5p 
and MiR-432-5p in GBM Cells

CircRNAs located predominantly in the cytoplasm usu-
ally serve as miRNA sponges to regulate expression and 
activity. Thus, we first searched the circRNADb database 
(http://202.195.183.4:8000/circrnadb/circRNADb.php) 
and found that no protein features were predicted for 
circFOXO3. Second, FISH analysis showed that circFOXO3 
was abundant and located in the cytoplasm (Fig. 3A). Based 
on the above findings we explored whether circFOXO3 
binds to miRNAs.

Because various algorithms use different methods 
to score miRNA targets, we screened and analyzed 2 
miRNAs (miR-138-5p and miR-432-5p) identified in dif-
ferent public databases (RegRNA, starBase, miRDB, and 
CircInteractome) and in previous reports12,13; the expres-
sion of these miRNAs was downregulated in glioma, and 
they had more than one binding site for specific miRNAs 
related to circFOXO3. In searching for miRNAs that bind 
to circFOXO3, we found binding sites for miR-138-5p/miR-
432-5p in circFOXO3 (Fig. 3B). Subsequently, we investi-
gated the correlation between circFOXO3 and miR-138-5p/
miR-432-5p in GBM cells. MiR-138-5p and miR-432-5p 
expression was upregulated after circFOXO3 KD and 
downregulated after circFOXO3 OE (Fig. 3C, D). Moreover, 
circFOXO3 levels were significantly decreased after the 
overexpression of miR-138-5p/miR-432-5p via mimics and 
increased after the inhibition of miR-138-5p/miR-432-5p 
(Fig. 3E, F; Supplementary Fig. 3).

To validate the direct binding between circFOXO3 and 
miR-138-5p/miR-432-5p, we conducted biotin-coupled 
miRNA capture and luciferase activity assay. Biotin-
labeled miR-138-5p/miR-432-5p and its mutant mimics 
were designed to pull down circFOXO3 in T98G cells 
overexpressing circFOXO3. We found obvious enrichment 
of circFOXO3 in wild-type miR-138-5p/miR-432-5p com-
pared with mutant (Fig. 3G). Additionally, HEK293T cells 
were cotransfected with miR-138-5p/miR-432-5p mimics 
and luciferase reporters. Compared with the controls, miR-
138-5p/miR-432-5p transfection reduced luciferase reporter 
activity (Fig. 3H). We then mutated the predicted binding 
sites for miR-138-5p/miR-432-5p and found no difference 
in luciferase reporter activity between miR-138-5p/miR-
432-5p mimics and the control (Fig. 3H).

Previous studies have demonstrated that the binding of 
circRNAs to miRNAs is mediated by AGO2. Thus, we per-
formed an anti-AGO2 RIP assay in U87-MG and showed 
that circFOXO3 and miR-138-5p/miR-432-5p were enriched 
in AGO2 (Fig. 3I).

These results indicated that circFOXO3 can function as a 
sponge for miR-138-5p/miR-432-5p.

MiR-138-5p/miR-432-5p Are Downregulated and 
Act as Tumor Suppressor Genes by Targeting 
NFAT5 in GBM Cells

Considering the interaction between circFOXO3 and miR-
138-5p/miR-432-5p, we next assessed the expression and 
function of miR-138-5p/miR-432-5p in GBM. As shown 
in Fig. 4A and B, miR-138-5p/miR-432-5p were found to 
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be significantly lower in HGG than in normal controls. 
Furthermore, CCK-8 assays revealed that decreased ex-
pression of miR-138-5p/miR-432-5p significantly promoted 
cell viability (Fig. 4C, D). Additionally, transwell assays in-
dicated that the invasive ability was obviously higher in 
miR-138-5p/miR-432-5p inhibitor-transfected cells than in 
NC-transfected cells (Fig. 4E).

According to previous reports,24,29,30 certain GBM onco-
genes are targets of miR-138-5p/miR-432-5p. Thus, 14 
oncogenes among the miR-138-5p/miR-432-5p targets 
were selected using the mirDIP database (http://ophid.
utoronto.ca/mirDIP/) (Supplementary Table 4). Among 
these oncogenes, 3 (CDK6, NFAT5, and SP1) are closely in-
volved in tumor progression. Thus, we altered miR-138-5p/
miR-432-5p expression and detected the levels of the re-
spective targets (Fig. 4F, G and Supplementary Fig. 4). 
Western blot analysis revealed that NFAT5 expression was 
downregulated in cells overexpressing miR-138-5p or miR-
432-5p but increased in cells transfected with a miR-138-5p 
or miR-432-5p inhibitor (Fig. 4G). Moreover, high NFAT5 
mRNA and protein levels were observed in GBM (Fig. 4H, 

I). As predicted, NFAT5 was shown to have binding sites 
for miR-138-5p/miR-432-5p (Fig. 4J). Then, wild-type and 
mutant 3′ untranslated region sequences of NFAT5 were 
cloned to construct reporter plasmids and mutant vectors, 
respectively. Cotransfection with miR-138-5p/miR-432-5p 
mimics and reporter plasmids strongly reduced luciferase 
activity. Conversely, cotransfection with miR-138-5p/miR-
432-5p mimics and mutated vectors had no obvious effect 
on luciferase activity (Fig. 4K). Consequently, the findings 
confirmed that NFAT5 is a direct target of miR-138-5p/
miR-432-5p.

Altogether, these data indicated that miR-138-5p/miR-
432-5p promoted the proliferation and invasion of GBM 
cells by targeting NFAT5.

CircFOXO3 Modulates MiR-138-5p and MiR-
432-5p Targets

Next, we measured the expression of these targets after 
circFOXO3 OE or KD. The results showed that NFAT5 was 
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the most strikingly upregulated when circFOXO3 was 
overexpressed (Fig. 5A, B and Supplementary Fig. 5).

Given that NFAT5 shares MREs with circFOXO3, we con-
ducted a correlation analysis and rescue assays to inves-
tigate whether circFOXO3 exerts its oncogenic effect by 
modulating NFAT5 expression via sponging miR-138-5p/
miR-432-5p. Correlation analysis demonstrated a mod-
erate positive correlation between circFOXO3 and NFAT5 
(r = 0.8122, P < 0.0001) (Fig. 5C). In addition, a moderate 
negative correlation was observed between circFOXO3 
and miR-138-5p (r  =  −0.4629, P  =  0.0076) or miR-432-5p 
(r = −0.3971, P = 0.0244) (Fig. 5D, E).

Furthermore, rescue experiments were performed 
by cotransfecting circFOXO3 KD and miR-138-5p and/
or miR-432-5p inhibitors in U87-MG. Quantitative RT-PCR 
and western blot assays indicated that NFAT5 mRNA 
and protein levels were partly increased in U87-MG cells 
cotransfected with circFOXO3 KD and miR-138-5p/miR-
432-5p inhibitor compared with those in the circFOXO3 
KD group (Fig. 5F, G). Also, the proliferation ability of 
U87-MG cells cotransfected with circFOXO3 KD and miR-
138-5p/miR-432-5p inhibitor was increased compared with 
those in the circFOXO3 KD group (Fig. 5H). These findings 
suggest that inhibition of miR-138-5p/miR-432-5p could 
partly restore the proliferation suppression induced by 
circFOXO3 KD. Similarly, circFOXO3 KD could also partly 
attenuate the downregulation of invasion promotion medi-
ated by miR-138-5p/miR-432-5p in U87-MG (Fig. 5I).

Altogether, these data demonstrated that circFOXO3 
promotes GBM progression by eliminating miR-138-5p/
miR-432-5p, which target NFAT5.

Suppression of CircFOXO3 Inhibits Xenograft 
Growth In Vivo

To determine the in vivo effect of circFOXO3 on GBM pro-
gression, we injected circFOXO3 KD or circFOXO3 NC 
cells into the corpus striatum of anesthetized nude mice. 
After implantation, a few animals started to show signs of 
morbidity, and mice were assessed by MRI to confirm in-
tracranial tumor formation (Fig. 6A). CircFOXO3 suppres-
sion significantly reduced tumor growth and invasion (Fig. 
6A–C). Tumor volumes were also decreased by approxi-
mately 2-fold in the circFOXO3 KD group (P = 0.001; Fig. 
6B). Strikingly, mice implanted with circFOXO3 KD cells 
had a median survival of 56.5 days, whereas 100% of the 
controls died within 37 days (Fig. 6D). Consistently, NFAT5 
expression was decreased in the circFOXO3 KD group (Fig. 
6E, F). Altogether, these results suggest that circFOXO3 is 
critical for GBM progression in vivo.

Discussion

Accumulating evidence has confirmed that circRNAs play 
important roles in tumor pathology and might be used as 
diagnostic and therapeutic targets. For instance, a decrease 
in circMTO1 (circular mitochondrial transfer RNA transla-
tion optimization 1) in hepatocellular carcinoma may be a 
prognostic indicator of poor patient survival.5 The growth 

and migration of hepatocellular carcinoma cells are inhib-
ited by cSMARCA5, which could be a potential therapeutic 
target.31 Another study indicated that ectopic expression of 
circFOXO3 could suppress tumor growth and cancer cell 
proliferation and survival.13 However, the expression, func-
tion, and molecular mechanism of circFOXO3 in GBM re-
main unknown.

Here, we found that circFOXO3 was aberrantly 
upregulated in GBM tissues compared with normal con-
trols. High circFOXO3 expression was significantly as-
sociated with tumor size, clinical stage, wild-type IDH 
expression, and MGMT methylation status. Recently, it 
was reported that IDH mutations occur in a subset of GBM 
patients and in the majority of WHO grades II and III dif-
fuse gliomas.32 Additionally, IDH mutations predict greater 
sensitivity to temozolomide.33 MGMT methylation is a 
well-established confounding prognostic marker for GBM 
patients and predicts the response of GBM patients to 
alkylating agents.28,34 The findings reported herein indicate 
that circFOXO3 plays a vital role in GBM progression. At 
a functional level, we found that circFOXO3 KD inhibited 
GBM cell proliferation and invasion. In contrast, circFOXO3 
OE enhanced GBM cell proliferation and invasion in vitro. 
These data suggest that circFOXO3 acts as an oncogene 
in GBM.

RNAs can communicate with each other as ceRNAs 
through competitively shared miRNAs.35 In accord-
ance with previous reports,36–38 we presented the ceRNA 
mechanism in a series of thorough experiments. The cy-
toplasmic accumulation of circFOXO3 in GBM cells il-
lustrated by FISH indicated that circFOXO3 may function 
through posttranscriptional regulation. Next, bioinfor-
matics analysis identified several miRNAs that might in-
teract with circFOXO3. Interestingly, both miR-138-5p and 
miR-432-5p could bind and be regulated by circFOXO3. 
In addition, RNA pull-down, luciferase assays, and RIP 
showed that circFOXO3 interacted with miR-138-5p/miR-
432-5p, which provided evidence that circFOXO3 competes 
with miR-138-5p/miR-432-5p in GBM cells. In loss-of-
function experiments, a miR-138-5p or miR-432-5p inhib-
itor reduced the number of invading cells upon circFOXO3 
KD. Moreover, the effects of circFOXO3 KD on cell prolif-
eration could be reversed by a miR-138-5p/miR-432-5p in-
hibitor. Therefore, circFOXO3 may exert its physiological 
functions via sponging both miR-138-5p and miR-432-5p. 
To date, there has been little information regarding the 
role of miR-138-5p and miR-432-5p in GBM. The expres-
sion levels of miR-138-5p and miR-432-5p were decreased 
and negatively associated with circFOXO3 expression in 
GBM. Additionally, CCK-8 and transwell assays suggested 
that miR-138-5p and miR-432-5p may participate in GBM 
tumorigenesis.

Recent researches have pointed to an important role 
for NFAT5 in tumor progression.20–24 In this study, we re-
port for the first time that NFAT5 is directly targeted by 
miR-138-5p and miR-432-5p. CircFOXO3 indirectly regu-
lated NFAT5 expression via sequence matching with both 
miR-138-5p and miR-432-5p. Moreover, the effects of 
circFOXO3 downregulation on NFAT5 expression could 
be reversed by a miR-138-5p/miR-432-5p inhibitor in GBM 
cells. Additionally, we found that NFAT5 was upregulated 
and positively associated with circFOXO3 expression in 
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GBM. This finding is in accordance with previous reports 
indicating that NFAT5 promotes tumor progression.22–24 
Therefore, circFOXO3 may regulate the proliferation and 
invasion of GBM cells by modulating NFAT5 expression. 
However, the opposite expression pattern of circFOXO3 
was also reported in breast cancer11 and non–small cell 
lung cancer.12 Du et  al found that circFOXO3 suppresses 
cell proliferation and cell cycle progression by binding to 
CDK2 and p21, resulting in the formation of a ternary com-
plex. Additionally, circFOXO3 was shown to interact with 
other cell cycle–associated proteins, including CDK6, p16, 
and p27 and to facilitate p53 ubiquitination and degrada-
tion by binding to both p53 and murine double minute 
2.6,39 Furthermore, circFOXO3 was shown to be highly 
expressed in heart samples from aged patients and to in-
teract with inhibitor of DNA binding 1 protein, E2F1, focal 
adhesion kinase, and hypoxia-inducible factor 1α.14 These 
studies indicate that the circFOXO3 tertiary conformation 
differs in various diseases, resulting in the formation of 
different ternary complexes. Here we observed different 
trends in circFOXO3 expression, and CDK6 expression was 
not correlated with circFOXO3 in GBM cells, suggesting 
that the previously reported roles of circFOXO3 in other tu-
mors are not ubiquitous. This discrepancy is complicated 
and might be caused by different tertiary structures of 
circFOXO3 in GBM, which awaits further investigation.

In this study, we provide the first evidence that circFOXO3 
is overexpressed in GBM tissues and functions as a miR-
138-5p/miR-432-5p sponge to regulate NFAT5 expression 
through a ceRNA mechanism, thus promoting tumorigen-
esis in vitro and in vivo (Fig. 6G). We demonstrated that 
circFOXO3 is a new factor and potential therapeutic target 
in GBM. Our findings emphasize the significance of the in-
teraction between circRNAs and miRNAs in tumorigenesis.
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Supplementary data are available at Neuro-Oncology 
online.
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